1
|
García-Sáez J, Figueroa-Fuentes M, González-Corralejo C, Roncero C, Lazcanoiturburu N, Gutiérrez-Uzquiza Á, Vaquero J, González-Sánchez E, Bhutia K, Calero-Pérez S, Maina F, Traba J, Valverde ÁM, Fabregat I, Herrera B, Sánchez A. Uncovering a Novel Functional Interaction Between Adult Hepatic Progenitor Cells, Inflammation and EGFR Signaling During Bile Acids-Induced Injury. Int J Biol Sci 2024; 20:2339-2355. [PMID: 38725853 PMCID: PMC11077361 DOI: 10.7150/ijbs.90645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 03/04/2024] [Indexed: 05/12/2024] Open
Abstract
Chronic cholestatic damage is associated to both accumulation of cytotoxic levels of bile acids and expansion of adult hepatic progenitor cells (HPC) as part of the ductular reaction contributing to the regenerative response. Here, we report a bile acid-specific cytotoxic response in mouse HPC, which is partially impaired by EGF signaling. Additionally, we show that EGF synergizes with bile acids to trigger inflammatory signaling and NLRP3 inflammasome activation in HPC. Aiming at understanding the impact of this HPC specific response on the liver microenvironment we run a proteomic analysis of HPC secretome. Data show an enrichment in immune and TGF-β regulators, ECM components and remodeling proteins in HPC secretome. Consistently, HPC-derived conditioned medium promotes hepatic stellate cell (HSC) activation and macrophage M1-like polarization. Strikingly, EGF and bile acids co-treatment leads to profound changes in the secretome composition, illustrated by an abolishment of HSC activating effect and by promoting macrophage M2-like polarization. Collectively, we provide new specific mechanisms behind HPC regulatory action during cholestatic liver injury, with an active role in cellular interactome and inflammatory response regulation. Moreover, findings prove a key contribution for EGFR signaling jointly with bile acids in HPC-mediated actions.
Collapse
Affiliation(s)
- Juan García-Sáez
- Dept. of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid (UCM), Health Research Institute of the “Hospital Clínico San Carlos” (IdISSC), Madrid, Spain
| | - María Figueroa-Fuentes
- Dept. of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid (UCM), Health Research Institute of the “Hospital Clínico San Carlos” (IdISSC), Madrid, Spain
| | - Carlos González-Corralejo
- Dept. of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid (UCM), Health Research Institute of the “Hospital Clínico San Carlos” (IdISSC), Madrid, Spain
| | - Cesáreo Roncero
- Dept. of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid (UCM), Health Research Institute of the “Hospital Clínico San Carlos” (IdISSC), Madrid, Spain
| | - Nerea Lazcanoiturburu
- Dept. of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid (UCM), Health Research Institute of the “Hospital Clínico San Carlos” (IdISSC), Madrid, Spain
| | - Álvaro Gutiérrez-Uzquiza
- Dept. of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid (UCM), Health Research Institute of the “Hospital Clínico San Carlos” (IdISSC), Madrid, Spain
| | - Javier Vaquero
- TGF-β and Cancer Group, Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
- Biomedical Research Networking Center in Hepatic and Digestive Diseases (CIBEREHD-ISCIII), Madrid, Spain
| | - Ester González-Sánchez
- TGF-β and Cancer Group, Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
- Biomedical Research Networking Center in Hepatic and Digestive Diseases (CIBEREHD-ISCIII), Madrid, Spain
| | - Kunzangla Bhutia
- Dept. Biochemistry and Molecular Biology, Faculty of Biology, Complutense University of Madrid (UCM), Madrid, Spain
| | - Silvia Calero-Pérez
- Biomedical Research Institute Sols-Morreale, Spanish National Research Council and Autonomous University of Madrid (IIBM, CSIC-UAM); Biomedical Research Networking Center in Diabetes and Associated Metabolic Disorders of the Carlos III Health Institute (CIBERdem-ISCIII), Madrid, Spain
| | - Flavio Maina
- Aix Marseille Univ, Inserm, CNRS, Centre de Recherche en Cancérologie de Marseille (CRCM), Institut Paoli-Calmettes, Turing Center for Living Systems, Marseille, France
| | - Javier Traba
- Dept. for Molecular Biology, Center for Molecular Biology Severo Ochoa, Spanish National Research Council-Autonomous University of Madrid (CSIC-UAM), Madrid, Spain
| | - Ángela M. Valverde
- Biomedical Research Institute Sols-Morreale, Spanish National Research Council and Autonomous University of Madrid (IIBM, CSIC-UAM); Biomedical Research Networking Center in Diabetes and Associated Metabolic Disorders of the Carlos III Health Institute (CIBERdem-ISCIII), Madrid, Spain
| | - Isabel Fabregat
- TGF-β and Cancer Group, Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
- Biomedical Research Networking Center in Hepatic and Digestive Diseases (CIBEREHD-ISCIII), Madrid, Spain
| | - Blanca Herrera
- Dept. of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid (UCM), Health Research Institute of the “Hospital Clínico San Carlos” (IdISSC), Madrid, Spain
- Biomedical Research Networking Center in Hepatic and Digestive Diseases (CIBEREHD-ISCIII), Madrid, Spain
| | - Aránzazu Sánchez
- Dept. of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid (UCM), Health Research Institute of the “Hospital Clínico San Carlos” (IdISSC), Madrid, Spain
- Biomedical Research Networking Center in Hepatic and Digestive Diseases (CIBEREHD-ISCIII), Madrid, Spain
| |
Collapse
|
2
|
Wang Q, Li Y, Yuan H, Peng L, Dai Z, Sun Y, Liu R, Li W, Li J, Zhu C. Hypoxia preconditioning of human amniotic mesenchymal stem cells enhances proliferation and migration and promotes their homing via the HGF/C-MET signaling axis to augment the repair of acute liver failure. Tissue Cell 2024; 87:102326. [PMID: 38442547 DOI: 10.1016/j.tice.2024.102326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 01/17/2024] [Accepted: 02/06/2024] [Indexed: 03/07/2024]
Abstract
BACKGROUND Transplantation of mesenchymal stem cells (MSCs) is a newly developed strategy for treating acute liver failure (ALF). Nonetheless, the low survival rate of MSCs after transplantation and their poor homing to damaged tissues limit the clinical application of MSCs. The research assessed whether hypoxic preconditioning (HPC) can improve the biological activity of human amniotic mesenchymal stem cells (hA-MSCs), promote their homing ability to the liver of mice with ALF, and influence liver tissue repair. METHODS Flow cytometry, CCK8, Transwell, and Western blotting assays were conducted to assess the effects of hypoxic preconditioning on the phenotype, proliferation, and migration of hA-MSCs and the changes in the c-Met and CXCR4 gene expression levels were studied. To evaluate the effects of the transplantation of hypoxic preconditioning of hA-MSCs on the homing and repair of D-galactosamine (D-GalN)/LPS-induced ALF, the mechanism was elucidated by adding c-Met, CXCR4-specific blockers (SU11274 and AMD3100). RESULTS After hypoxia pretreatment (1% oxygen volume fraction), hA-MSCs maintained the morphological characteristics of adherence and vortex colony growth and showed high CD44, CD90, and CD105 and low CD31, CD34, and CD45 expression levels. Hypoxic preconditioning of hA-MSCs significantly increased their proliferation and migration and highly expressed the c-Met and CXCR4 genes. In vivo and in vitro, this migration-promoting effect was suppressed by the c-Met specific blocker SU11274. In the acute liver failure mouse model, the HGF expression level was considerably elevated in the liver than that in the serum, lungs and kidneys. The transplantation of hypoxic preconditioned hA-MSCs introduced a remarkable improvement in the liver function and survival rate of mice with ALF and enhanced the anti-apoptosis ability of liver cells. The anti-apoptotic enhancing effect of hypoxic preconditioning was suppressed by the c-Met specific blocker SU11274. Hypoxic hA-MSCs administration was observed to have considerably increased the fluorescent cells in the liver than that recorded after administering normal oxygen-hA-MSCs. The number of hepatic fluorescent cells decreased remarkably after adding the c-Met inhibitor SU11274, compared to that recorded after hypoxic pretreatment, whereas the effect of c-Met inhibitor SU11274 on normal oxygen-hA-MSCs was not significant. CONCLUSIONS Hypoxic preconditioning depicted no impact on the morphology and phenotype features of the human amniotic mesenchymal stem cells, but it can promote their proliferation, migration, anti-apoptotic effect, and homing rate and improve the repair of acute liver failure, which might be mediated by the HGF/c-Met signaling axis.
Collapse
Affiliation(s)
- Qian Wang
- Department of Infectious Disease, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yuwen Li
- Department of Pediatrics, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Hui Yuan
- Department of Infectious Disease, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Linya Peng
- Department of Infectious Disease, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zixing Dai
- Department of Infectious Disease, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ye Sun
- Department of Infectious Disease, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Rui Liu
- Department of Infectious and Tropical Diseases, The Second Affiliated Hospital of Hainan Medical University, Hainan, China
| | - Wenting Li
- Department of Infectious and Tropical Diseases, The Second Affiliated Hospital of Hainan Medical University, Hainan, China
| | - Jun Li
- Department of Infectious Disease, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| | - Chuanlong Zhu
- Department of Infectious Disease, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China; Department of Infectious and Tropical Diseases, The Second Affiliated Hospital of Hainan Medical University, Hainan, China.
| |
Collapse
|
3
|
Palao N, Sequera C, Cuesta ÁM, Baquero C, Bragado P, Gutierrez-Uzquiza A, Sánchez A, Guerrero C, Porras A. C3G down-regulation enhances pro-migratory and stemness properties of oval cells by promoting an epithelial-mesenchymal-like process. Int J Biol Sci 2022; 18:5873-5884. [PMID: 36263169 PMCID: PMC9576514 DOI: 10.7150/ijbs.73192] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 08/11/2022] [Indexed: 01/12/2023] Open
Abstract
Previous data indicate that C3G (RapGEF1) main isoform is highly expressed in liver progenitor cells (or oval cells) compared to adult mature hepatocytes, suggesting it may play an important role in oval cell biology. Hence, we have explored C3G function in the regulation of oval cell properties by permanent gene silencing using shRNAs. We found that C3G knock-down enhanced migratory and invasive ability of oval cells by promoting a partial epithelial to mesenchymal transition (EMT). This is likely mediated by upregulation of mRNA expression of the EMT-inducing transcription factors, Snail1, Zeb1 and Zeb2, induced in C3G-silenced oval cells. This EMT is associated to a higher expression of the stemness markers, CD133 and CD44. Moreover, C3G down-regulation increased oval cells clonogenic capacity by enhancing cell scattering. However, C3G knock-down did not impair oval cell differentiation into hepatocyte lineage. Mechanistic studies revealed that HGF/MET signaling and its pro-invasive activity was impaired in oval cells with low levels of C3G, while TGF-β signaling was increased. Altogether, these data suggest that C3G might be tightly regulated to ensure liver repair in chronic liver diseases such as non-alcoholic steatohepatitis. Hence, reduced C3G levels could facilitate oval cell expansion, after the proliferation peak, by enhancing migration.
Collapse
Affiliation(s)
- Nerea Palao
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad Complutense de Madrid; 28040 Madrid, Spain.,Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain
| | - Celia Sequera
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad Complutense de Madrid; 28040 Madrid, Spain.,Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain.,Aix-Marseille Univ, CNRS, Developmental Biology Institute of Marseille (IBDM), Turing Center for Living Systems, Parc Scientifique de Luminy, 13009 Marseille, France
| | - Ángel M Cuesta
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad Complutense de Madrid; 28040 Madrid, Spain.,Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain
| | - Cristina Baquero
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad Complutense de Madrid; 28040 Madrid, Spain.,Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain
| | - Paloma Bragado
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad Complutense de Madrid; 28040 Madrid, Spain.,Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain
| | - Alvaro Gutierrez-Uzquiza
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad Complutense de Madrid; 28040 Madrid, Spain.,Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain
| | - Aránzazu Sánchez
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad Complutense de Madrid; 28040 Madrid, Spain.,Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain
| | - Carmen Guerrero
- Instituto de Biología Molecular y Celular del Cáncer (IBMCC), Universidad de Salamanca-CSIC, 37007 Salamanca, Spain.,Instituto de Investigación Biomédica de Salamanca (IBSAL), 37007 Salamanca, Spain.,Departamento de Medicina, Universidad de Salamanca, 37007 Salamanca, Spain.,✉ Corresponding authors: A. Porras, Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, UCM, Ciudad Universitaria, Madrid, Spain. Tel.: +34 913941627; E-mail: . Co-correspondence: C. Guerrero, Centro de Investigación del Cáncer, Campus Unamuno s/n, Salamanca, Spain. Tel.: +34 923294801; Fax.: +34 923294795; e-mail:
| | - Almudena Porras
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad Complutense de Madrid; 28040 Madrid, Spain.,Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain.,✉ Corresponding authors: A. Porras, Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, UCM, Ciudad Universitaria, Madrid, Spain. Tel.: +34 913941627; E-mail: . Co-correspondence: C. Guerrero, Centro de Investigación del Cáncer, Campus Unamuno s/n, Salamanca, Spain. Tel.: +34 923294801; Fax.: +34 923294795; e-mail:
| |
Collapse
|
4
|
Olivera-Salazar R, García-Arranz M, Sánchez A, Olmedillas-López S, Vega-Clemente L, Serrano LJ, Herrera B, García-Olmo D. Oncological transformation in vitro of hepatic progenitor cell lines isolated from adult mice. Sci Rep 2022; 12:3149. [PMID: 35210455 PMCID: PMC8873244 DOI: 10.1038/s41598-022-06427-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 01/03/2022] [Indexed: 12/16/2022] Open
Abstract
Colorectal cancer cells can transfer the oncogene KRAS to distant cells, predisposing them to malignant transformation (Genometastasis Theory). This process could contribute to liver metastasis; besides, hepatic progenitor cells (HPCs) have been found to be involved in liver malignant neoplasms. The objective of this study is to determine if mouse HPCs—Oval cells (OCs)—are susceptible to incorporate Kras GAT (G12D) mutation from mouse colorectal cancer cell line CT26.WT and if OCs with the incorporated mutation behave like malignant cells. To achieve this, three lines of OCs in different conditions were exposed to CT26.WT cells through transwell co-culture for a week. The presence of KrasG12D and capacity to form tumors were analyzed in treated samples by droplet digital PCR and colony-forming assays, respectively. The results showed that the KrasG12D mutation was detected in hepatic culture conditions of undifferentiated OCs and these cells were capable of forming tumors in vitro. Therefore, OCs are susceptible to malignant transformation by horizontal transfer of DNA with KrasG12D mutation in an undifferentiated condition associated with the liver microenvironment. This study contributes to a new step in the understanding of the colorectal metastatic process.
Collapse
Affiliation(s)
- Rocío Olivera-Salazar
- New Therapies Laboratory, Health Research Institute-Fundación Jiménez Díaz University Hospital (IIS-FJD), Avda. Reyes Católicos, 2, 28040, Madrid, Spain.
| | - Mariano García-Arranz
- New Therapies Laboratory, Health Research Institute-Fundación Jiménez Díaz University Hospital (IIS-FJD), Avda. Reyes Católicos, 2, 28040, Madrid, Spain.,Department of Surgery, School of Medicine, Universidad Autónoma de Madrid (UAM), Arzobispo Morcillo, 4, 28029, Madrid, Spain
| | - Aránzazu Sánchez
- Department of Biochemistry and Molecular Biology, School of Pharmacy, Universidad Complutense de Madrid (UCM), Plaza de Ramón y Cajal, s/n, 28040, Madrid, Spain
| | - Susana Olmedillas-López
- New Therapies Laboratory, Health Research Institute-Fundación Jiménez Díaz University Hospital (IIS-FJD), Avda. Reyes Católicos, 2, 28040, Madrid, Spain
| | - Luz Vega-Clemente
- New Therapies Laboratory, Health Research Institute-Fundación Jiménez Díaz University Hospital (IIS-FJD), Avda. Reyes Católicos, 2, 28040, Madrid, Spain
| | - Luis Javier Serrano
- New Therapies Laboratory, Health Research Institute-Fundación Jiménez Díaz University Hospital (IIS-FJD), Avda. Reyes Católicos, 2, 28040, Madrid, Spain
| | - Blanca Herrera
- Department of Biochemistry and Molecular Biology, School of Pharmacy, Universidad Complutense de Madrid (UCM), Plaza de Ramón y Cajal, s/n, 28040, Madrid, Spain
| | - Damián García-Olmo
- New Therapies Laboratory, Health Research Institute-Fundación Jiménez Díaz University Hospital (IIS-FJD), Avda. Reyes Católicos, 2, 28040, Madrid, Spain.,Department of Surgery, School of Medicine, Universidad Autónoma de Madrid (UAM), Arzobispo Morcillo, 4, 28029, Madrid, Spain.,Department of Surgery, Fundación Jiménez Díaz University Hospital (FJD), Avda. Reyes Católicos, 2, 28040, Madrid, Spain
| |
Collapse
|
5
|
BMP9 Promotes an Epithelial Phenotype and a Hepatocyte-like Gene Expression Profile in Adult Hepatic Progenitor Cells. Cells 2022; 11:cells11030365. [PMID: 35159174 PMCID: PMC8834621 DOI: 10.3390/cells11030365] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 01/17/2022] [Accepted: 01/18/2022] [Indexed: 11/24/2022] Open
Abstract
Bone morphogenetic protein 9 (BMP9), a member of the TGF-β superfamily, has emerged as a new player in chronic liver diseases (CLDs). Its levels increase in the fibrotic liver where it promotes fibrogenesis. It also regulates hepatic progenitor cells (oval cells in rodents), a cell population that contributes to repopulate the liver and recover functionality upon severe damage, but it can also be pro-fibrogenic, depending upon the hepatic microenvironment. Here we analyze the effect of chronic exposure to BMP9 in oval cells. We show that cells chronically treated with BMP9 (B9T-OC) display a more epithelial and hepatocyte-like phenotype while acquiring proliferative and survival advantages. Since our previous studies had revealed a functional crosstalk between BMP9 and the HGF/c-Met signaling pathways in oval cells, we analyzed a possible role for HGF/c-Met in BMP9-induced long-term effects. Data evidence that active c-Met signaling is necessary to obtain maximum effects in terms of BMP9-triggered hepatocytic differentiation potential, further supporting functionally relevant cooperation between these pathways. In conclusion, our work reveals a novel action of BMP9 in liver cells and helps elucidate the mechanisms that serve to increase oval cell regenerative potential, which could be therapeutically modulated in CLD.
Collapse
|
6
|
Herranz-Itúrbide M, Peñuelas-Haro I, Espinosa-Sotelo R, Bertran E, Fabregat I. The TGF-β/NADPH Oxidases Axis in the Regulation of Liver Cell Biology in Health and Disease. Cells 2021; 10:cells10092312. [PMID: 34571961 PMCID: PMC8470857 DOI: 10.3390/cells10092312] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/30/2021] [Accepted: 08/30/2021] [Indexed: 12/28/2022] Open
Abstract
The Transforming Growth Factor-beta (TGF-β) pathway plays essential roles in liver development and homeostasis and become a relevant factor involved in different liver pathologies, particularly fibrosis and cancer. The family of NADPH oxidases (NOXs) has emerged in recent years as targets of the TGF-β pathway mediating many of its effects on hepatocytes, stellate cells and macrophages. This review focuses on how the axis TGF-β/NOXs may regulate the biology of different liver cells and how this influences physiological situations, such as liver regeneration, and pathological circumstances, such as liver fibrosis and cancer. Finally, we discuss whether NOX inhibitors may be considered as potential therapeutic tools in liver diseases.
Collapse
Affiliation(s)
- Macarena Herranz-Itúrbide
- TGF-β and Cancer Group, Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), L’Hospitalet de Llobregat, 08908 Barcelona, Spain; (M.H.-I.); (I.P.-H.); (R.E.-S.); (E.B.)
- Oncology Program, CIBEREHD, National Biomedical Research Institute on Liver and Gastrointestinal Diseases, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Irene Peñuelas-Haro
- TGF-β and Cancer Group, Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), L’Hospitalet de Llobregat, 08908 Barcelona, Spain; (M.H.-I.); (I.P.-H.); (R.E.-S.); (E.B.)
- Oncology Program, CIBEREHD, National Biomedical Research Institute on Liver and Gastrointestinal Diseases, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Rut Espinosa-Sotelo
- TGF-β and Cancer Group, Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), L’Hospitalet de Llobregat, 08908 Barcelona, Spain; (M.H.-I.); (I.P.-H.); (R.E.-S.); (E.B.)
- Oncology Program, CIBEREHD, National Biomedical Research Institute on Liver and Gastrointestinal Diseases, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Esther Bertran
- TGF-β and Cancer Group, Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), L’Hospitalet de Llobregat, 08908 Barcelona, Spain; (M.H.-I.); (I.P.-H.); (R.E.-S.); (E.B.)
- Oncology Program, CIBEREHD, National Biomedical Research Institute on Liver and Gastrointestinal Diseases, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Isabel Fabregat
- TGF-β and Cancer Group, Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), L’Hospitalet de Llobregat, 08908 Barcelona, Spain; (M.H.-I.); (I.P.-H.); (R.E.-S.); (E.B.)
- Oncology Program, CIBEREHD, National Biomedical Research Institute on Liver and Gastrointestinal Diseases, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Department of Physiological Sciences, Faculty of Medicine and Health Sciences, University of Barcelona, 08907 Barcelona, Spain
- Correspondence: ; Tel.: +34-932-607-828
| |
Collapse
|
7
|
Addante A, Roncero C, Lazcanoiturburu N, Méndez R, Almalé L, García-Álvaro M, ten Dijke P, Fabregat I, Herrera B, Sánchez A. A Signaling Crosstalk between BMP9 and HGF/c-Met Regulates Mouse Adult Liver Progenitor Cell Survival. Cells 2020; 9:cells9030752. [PMID: 32204446 PMCID: PMC7140668 DOI: 10.3390/cells9030752] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 03/13/2020] [Accepted: 03/17/2020] [Indexed: 12/17/2022] Open
Abstract
During chronic liver disease, hepatic progenitor cells (HPC, oval cells in rodents) become activated, proliferate, and differentiate into cholangiocytes and/or hepatocytes contributing to the final outcome of the regenerative process in a context-dependent fashion. Here, we analyze the crosstalk between the hepatocyte growth factor (HGF)/c-Met signaling axis, key for liver regeneration, and bone morphogenetic protein (BMP)9, a BMP family ligand that has emerged as a critical regulator of liver pathology. Our results show that HGF/c-Met signaling blocks BMP9-mediated apoptotic cell death, while it potentiates small mothers against decapentaplegic (SMAD)1 signaling triggered by BMP9 in oval cells. Interestingly, HGF-induced overactivation of SMAD1, -5, -8 requires the upregulation of TGF-β type receptor activin receptor-like kinase (ALK)1, and both ALK1 and SMAD1 are required for the counteracting effect of HGF on BMP9 apoptotic activity. On the other hand, we also prove that BMP9 triggers the activation of p38MAPK in oval cells, which drives BMP9-apoptotic cell death. Therefore, our data support a model in which BMP9 and HGF/c-Met signaling axes establish a signaling crosstalk via ALK1 that modulates the balance between the two pathways with opposing activities, SMAD1 (pro-survival) and p38 mitogen-activated protein kinases (p38MAPK; pro-apoptotic), which determines oval cell fate. These data help delineate the complex signaling network established during chronic liver injury and its impact on the oval cell regenerative response.
Collapse
Affiliation(s)
- Annalisa Addante
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid (UCM), Health Research Institute of the Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain; (A.A.); (C.R.); (N.L.); (R.M.); (L.A.); (M.G.-Á.)
| | - Cesáreo Roncero
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid (UCM), Health Research Institute of the Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain; (A.A.); (C.R.); (N.L.); (R.M.); (L.A.); (M.G.-Á.)
| | - Nerea Lazcanoiturburu
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid (UCM), Health Research Institute of the Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain; (A.A.); (C.R.); (N.L.); (R.M.); (L.A.); (M.G.-Á.)
| | - Rebeca Méndez
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid (UCM), Health Research Institute of the Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain; (A.A.); (C.R.); (N.L.); (R.M.); (L.A.); (M.G.-Á.)
| | - Laura Almalé
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid (UCM), Health Research Institute of the Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain; (A.A.); (C.R.); (N.L.); (R.M.); (L.A.); (M.G.-Á.)
| | - María García-Álvaro
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid (UCM), Health Research Institute of the Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain; (A.A.); (C.R.); (N.L.); (R.M.); (L.A.); (M.G.-Á.)
| | - Peter ten Dijke
- Department of Cell and Chemical Biology and Oncode Institute, Leiden University Medical Center, 2300 RC Leiden, The Netherlands;
| | - Isabel Fabregat
- TGF-β and Cancer Group, Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), 08907 L’Hospitalet de Llobregat, Barcelona, Spain;
- School of Medicine and Health Sciences, University of Barcelona, 08007 Barcelona, Spain
- Oncology Program, CIBEREHD, National Biomedical Research Institute on Liver and Gastrointestinal Diseases, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Blanca Herrera
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid (UCM), Health Research Institute of the Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain; (A.A.); (C.R.); (N.L.); (R.M.); (L.A.); (M.G.-Á.)
- Correspondence: (B.H.); (A.S.); Tel.: +34 913941855 (A.S.)
| | - Aránzazu Sánchez
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid (UCM), Health Research Institute of the Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain; (A.A.); (C.R.); (N.L.); (R.M.); (L.A.); (M.G.-Á.)
- Correspondence: (B.H.); (A.S.); Tel.: +34 913941855 (A.S.)
| |
Collapse
|
8
|
Almalé L, García-Álvaro M, Martínez-Palacián A, García-Bravo M, Lazcanoiturburu N, Addante A, Roncero C, Sanz J, de la O López M, Bragado P, Mikulits W, Factor VM, Thorgeirsson SS, Casal JI, Segovia JC, Rial E, Fabregat I, Herrera B, Sánchez A. c-Met Signaling Is Essential for Mouse Adult Liver Progenitor Cells Expansion After Transforming Growth Factor-β-Induced Epithelial-Mesenchymal Transition and Regulates Cell Phenotypic Switch. Stem Cells 2019; 37:1108-1118. [PMID: 31108004 DOI: 10.1002/stem.3038] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 04/08/2019] [Accepted: 04/29/2019] [Indexed: 01/10/2023]
Abstract
Adult hepatic progenitor cells (HPCs)/oval cells are bipotential progenitors that participate in liver repair responses upon chronic injury. Recent findings highlight HPCs plasticity and importance of the HPCs niche signals to determine their fate during the regenerative process, favoring either fibrogenesis or damage resolution. Transforming growth factor-β (TGF-β) and hepatocyte growth factor (HGF) are among the key signals involved in liver regeneration and as component of HPCs niche regulates HPCs biology. Here, we characterize the TGF-β-triggered epithelial-mesenchymal transition (EMT) response in oval cells, its effects on cell fate in vivo, and the regulatory effect of the HGF/c-Met signaling. Our data show that chronic treatment with TGF-β triggers a partial EMT in oval cells based on coexpression of epithelial and mesenchymal markers. The phenotypic and functional profiling indicates that TGF-β-induced EMT is not associated with stemness but rather represents a step forward along hepatic lineage. This phenotypic transition confers advantageous traits to HPCs including survival, migratory/invasive and metabolic benefit, overall enhancing the regenerative potential of oval cells upon transplantation into a carbon tetrachloride-damaged liver. We further uncover a key contribution of the HGF/c-Met pathway to modulate the TGF-β-mediated EMT response. It allows oval cells expansion after EMT by controlling oxidative stress and apoptosis, likely via Twist regulation, and it counterbalances EMT by maintaining epithelial properties. Our work provides evidence that a coordinated and balanced action of TGF-β and HGF are critical for achievement of the optimal regenerative potential of HPCs, opening new therapeutic perspectives. Stem Cells 2019;37:1108-1118.
Collapse
Affiliation(s)
- Laura Almalé
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid, Health Research Institute of the Hospital Clínico San Carlos, Madrid, Spain
| | - María García-Álvaro
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid, Health Research Institute of the Hospital Clínico San Carlos, Madrid, Spain
| | - Adoración Martínez-Palacián
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid, Health Research Institute of the Hospital Clínico San Carlos, Madrid, Spain
| | - María García-Bravo
- Cell Differentiation and Cytometry Unit, Hematopoietic Innovative Therapies Division, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain.,Advanced Therapies Mixed Unit, CIEMAT/IIS Fundación Jiménez Díaz, Madrid, Spain
| | - Nerea Lazcanoiturburu
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid, Health Research Institute of the Hospital Clínico San Carlos, Madrid, Spain
| | - Annalisa Addante
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid, Health Research Institute of the Hospital Clínico San Carlos, Madrid, Spain
| | - Cesáreo Roncero
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid, Health Research Institute of the Hospital Clínico San Carlos, Madrid, Spain
| | - Julián Sanz
- Department of Pathology, Hospital Clínico San Carlos, Madrid, Spain
| | - María de la O López
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid, Health Research Institute of the Hospital Clínico San Carlos, Madrid, Spain
| | - Paloma Bragado
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid, Health Research Institute of the Hospital Clínico San Carlos, Madrid, Spain
| | - Wolfgang Mikulits
- Department of Medicine I, Institute of Cancer Research, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Valentina M Factor
- Laboratory of Experimental Carcinogenesis, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Snorri S Thorgeirsson
- Laboratory of Experimental Carcinogenesis, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA.,Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - J Ignacio Casal
- Department of Functional Proteomics, Centro de Investigaciones Biológicas (CIB-CSIC), Madrid, Spain
| | - José-Carlos Segovia
- Cell Differentiation and Cytometry Unit, Hematopoietic Innovative Therapies Division, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain.,Advanced Therapies Mixed Unit, CIEMAT/IIS Fundación Jiménez Díaz, Madrid, Spain
| | - Eduardo Rial
- Department of Cellular and Molecular Medicine, Centro de Investigaciones Biológicas (CIB-CSIC), Madrid, Spain
| | - Isabel Fabregat
- TGF-β and Cancer Group, Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL) and University of Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain.,Oncology Program, CIBEREHD, National Biomedical Research Institute on Liver and Gastrointestinal Diseases, Instituto de Salud Carlos III, Madrid, Spain
| | - Blanca Herrera
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid, Health Research Institute of the Hospital Clínico San Carlos, Madrid, Spain
| | - Aránzazu Sánchez
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid, Health Research Institute of the Hospital Clínico San Carlos, Madrid, Spain
| |
Collapse
|
9
|
Jiang W, Wang R, Liu D, Zuo M, Zhao C, Zhang T, Li W. Protective Effects of Kaempferitrin on Advanced Glycation End Products Induce Mesangial Cell Apoptosis and Oxidative Stress. Int J Mol Sci 2018; 19:E3334. [PMID: 30373106 PMCID: PMC6274833 DOI: 10.3390/ijms19113334] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Revised: 10/12/2018] [Accepted: 10/17/2018] [Indexed: 12/11/2022] Open
Abstract
Advanced glycation end products (AGEs) and the receptor for AGEs (RAGE) both play important roles in diabetic nephropathy (DN). Previous studies have identified glomerular mesangial cells (GMCs) injury as a key early risk factor in the development of DN. Kaempferitrin (KM) is a potent antioxidant with hypoglycemic action. Although KM is known to protect against AGE-induced damage in GMCs, the effects and the mechanisms by which they occur are poorly understood. In this study, cultured rat GMCs were exposed to AGE-induced oxidative stress (OS) to model DN in vitro. Reactive oxygen species (ROS) was analyzed by 2',7'-dichlorofluorescin diacetate (DCFH-DA). Superoxide dismutase (SOD) and malondialdehyde (MDA) were studied using commercial kits. Mitochondrial membrane potential (Δψm) was measured by rhodamine 123. Hoechst 33258 and annexin V and propidium iodide (PI) double staining were performed to observe the apoptosis states in GMCs, whereas apoptosis and protective mechanism in AGE-induced GMCs were investigated by Western blot. The data revealed that KM effectively increased SOD activity, decreased MDA levels, suppressed ROS generation, and protected against OS in AGE-induced GMCs. Treatment with KM also inhibited the expression of collagen IV and transforming growth factor-β1 (TGF-β1), improved mitochondrial membrane potential recovery, and suppressed the mitochondrial/cytochrome c-mediated apoptosis pathway through the expression of anti-apoptotic factors in GMCs in vitro. These findings suggest that KM may be a new potential agent in the treatment of DN in future.
Collapse
Affiliation(s)
- Wenxian Jiang
- School of Pharmacy, Weifang Medical University, Weifang 261053, China.
| | - Rongshen Wang
- School of Pharmacy, Weifang Medical University, Weifang 261053, China.
| | - Di Liu
- School of Pharmacy, Weifang Medical University, Weifang 261053, China.
| | - Min Zuo
- School of Pharmacy, Weifang Medical University, Weifang 261053, China.
| | - Chunzhen Zhao
- School of Pharmacy, Weifang Medical University, Weifang 261053, China.
| | - Tianliang Zhang
- Experimental Center for Medical Research, Weifang Medical University, Weifang 261053, China.
| | - Wanzhong Li
- School of Pharmacy, Weifang Medical University, Weifang 261053, China.
| |
Collapse
|
10
|
Chen J, Li HY, Wang D, Guo XZ. Delphinidin protects β2m-/Thy1+ bone marrow-derived hepatocyte stem cells against TGF-β1-induced oxidative stress and apoptosis through the PI3K/Akt pathway in vitro. Chem Biol Interact 2018; 297:109-118. [PMID: 30365941 DOI: 10.1016/j.cbi.2018.10.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 08/15/2018] [Accepted: 10/22/2018] [Indexed: 12/12/2022]
Abstract
β2m-/Thy1+ bone marrow-derived hepatocyte stem cells (BDHSCs) have a potential to be applied for cellular treatment in liver cirrhosis. However, the resultant tissue regeneration is restricted by transplanted cells' death. The accumulation of transforming growth factor beta 1 (TGF-β1) in liver fibrosis local microenvironment may play an essential role in the rapid cell death of implanted β2m-/Thy1+ BDHSCs. The main mechanism of poor survival of the target stem cells is still unknown. Delphinidin, an anthocyanidin, has potent antioxidant and anti-inflammatory activities. However, whether this bio-active ingredient can substantially contribute to β2m-/Thy1+ BDHSCs' protection from TGF-β1 induced apoptosis in vitro remains to be elucidated. In the present research, we determined whether delphinidin pretreatment can improve the survival of β2m-/Thy1+ BDHSCs during exposure to TGF-β1 and elucidated its underlying mechanisms. By using TGF-β1, we induced the apoptosis of β2m-/Thy1+ BDHSCs and assessed the apoptotic rates up to 24 h by flow cytometry. β2m-/Thy1+ BDHSC proliferation was gauged using 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyl- 2H-tetrazolium bromide (MTT) assay. The expression grades of Bcl-2, Akt, caspase-3, and Bax were observed through Western blot analysis. We found that delphinidin can significantly impede TGF-β1-induced apoptosis dose-dependently, scavenge reactive oxygen species (ROS), and inhibit the discharge of caspase-3 in β2m-/Thy1+ BDHSCs. We also demonstrated that delphinidin can activate the phosphatidylinositol-3-kinase (PI3K)/Akt signaling pathway. The suppression of ROS and succeeding apoptosis was achieved by pretreatment with LY294002, a PI3K/Akt pathway inhibitor. In summary, our findings revealed that delphinidin can protect β2m-/Thy1+ BDHSCs from apoptosis and ROS-dependent oxidative stress induced by the TGF-β1 via PI3K/Akt signaling pathway. On the basis of these data, delphinidin can be regarded as a promising anti-apoptotic agent for enhancing β2m-/Thy1+ BDHSC survival during cell transplantation in liver cirrhosis patients.
Collapse
Affiliation(s)
- Jiang Chen
- Department of Gastroenterology, Shenyang General Hospital of PLA, No. 83 Wenhua Road Shenyang City, 110016, Liaoning, PR China
| | - Hong-Yu Li
- Department of Gastroenterology, Shenyang General Hospital of PLA, No. 83 Wenhua Road Shenyang City, 110016, Liaoning, PR China
| | - Di Wang
- Department of Gastroenterology, Shenyang General Hospital of PLA, No. 83 Wenhua Road Shenyang City, 110016, Liaoning, PR China
| | - Xiao-Zhong Guo
- Department of Gastroenterology, Shenyang General Hospital of PLA, No. 83 Wenhua Road Shenyang City, 110016, Liaoning, PR China.
| |
Collapse
|
11
|
Xiao X, Yuan Q, Chen Y, Huang Z, Fang X, Zhang H, Peng L, Xiao P. LncRNA ENST00000453774.1 contributes to oxidative stress defense dependent on autophagy mediation to reduce extracellular matrix and alleviate renal fibrosis. J Cell Physiol 2018; 234:9130-9143. [PMID: 30317629 DOI: 10.1002/jcp.27590] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 09/18/2018] [Indexed: 12/27/2022]
Affiliation(s)
- Xiangcheng Xiao
- Department of Nephrology Xiangya Hospital, Central South University Changsha China
| | - Qiongjing Yuan
- Department of Nephrology Xiangya Hospital, Central South University Changsha China
| | - Yusa Chen
- Department of Nephrology Xiangya Hospital, Central South University Changsha China
| | - Zhihua Huang
- Department of Nephrology Xiangya Hospital, Central South University Changsha China
| | - Xi Fang
- Department of Nephrology Xiangya Hospital, Central South University Changsha China
| | - Haixia Zhang
- Department of Nephrology Xiangya Hospital, Central South University Changsha China
| | - Ling Peng
- The Nephrotic Laboratory, Xiangya Hospital, Central South University Changsha China
| | - Ping Xiao
- Department of Nephrology Xiangya Hospital, Central South University Changsha China
| |
Collapse
|
12
|
Addante A, Roncero C, Almalé L, Lazcanoiturburu N, García-Álvaro M, Fernández M, Sanz J, Hammad S, Nwosu ZC, Lee SJ, Fabregat I, Dooley S, ten Dijke P, Herrera B, Sánchez A. Bone morphogenetic protein 9 as a key regulator of liver progenitor cells in DDC-induced cholestatic liver injury. Liver Int 2018; 38:1664-1675. [PMID: 29751359 PMCID: PMC6693351 DOI: 10.1111/liv.13879] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 04/26/2018] [Indexed: 12/14/2022]
Abstract
BACKGROUND & AIMS Bone morphogenetic protein 9 (BMP9) interferes with liver regeneration upon acute injury, while promoting fibrosis upon carbon tetrachloride-induced chronic injury. We have now addressed the role of BMP9 in 3,5 diethoxicarbonyl-1,4 dihydrocollidine (DDC)-induced cholestatic liver injury, a model of liver regeneration mediated by hepatic progenitor cell (known as oval cell), exemplified as ductular reaction and oval cell expansion. METHODS WT and BMP9KO mice were submitted to DDC diet. Livers were examined for liver injury, fibrosis, inflammation and oval cell expansion by serum biochemistry, histology, RT-qPCR and western blot. BMP9 signalling and effects in oval cells were studied in vitro using western blot and transcriptional assays, plus functional assays of DNA synthesis, cell viability and apoptosis. Crosslinking assays and short hairpin RNA approaches were used to identify the receptors mediating BMP9 effects. RESULTS Deletion of BMP9 reduces liver damage and fibrosis, but enhances inflammation upon DDC feeding. Molecularly, absence of BMP9 results in overactivation of PI3K/AKT, ERK-MAPKs and c-Met signalling pathways, which together with an enhanced ductular reaction and oval cell expansion evidence an improved regenerative response and decreased damage in response to DDC feeding. Importantly, BMP9 directly targets oval cells, it activates SMAD1,5,8, decreases cell growth and promotes apoptosis, effects that are mediated by Activin Receptor-Like Kinase 2 (ALK2) type I receptor. CONCLUSIONS We identify BMP9 as a negative regulator of oval cell expansion in cholestatic injury, its deletion enhancing liver regeneration. Likewise, our work further supports BMP9 as an attractive therapeutic target for chronic liver diseases.
Collapse
Affiliation(s)
- Annalisa Addante
- Faculty of Pharmacy, Department Biochemistry and Molecular Biology, Complutense University of Madrid, Health Research Institute of the Hospital Clínico San Carlos, Madrid, Spain
| | - Cesáreo Roncero
- Faculty of Pharmacy, Department Biochemistry and Molecular Biology, Complutense University of Madrid, Health Research Institute of the Hospital Clínico San Carlos, Madrid, Spain
| | - Laura Almalé
- Faculty of Pharmacy, Department Biochemistry and Molecular Biology, Complutense University of Madrid, Health Research Institute of the Hospital Clínico San Carlos, Madrid, Spain
| | - Nerea Lazcanoiturburu
- Faculty of Pharmacy, Department Biochemistry and Molecular Biology, Complutense University of Madrid, Health Research Institute of the Hospital Clínico San Carlos, Madrid, Spain
| | - María García-Álvaro
- Faculty of Pharmacy, Department Biochemistry and Molecular Biology, Complutense University of Madrid, Health Research Institute of the Hospital Clínico San Carlos, Madrid, Spain
| | - Margarita Fernández
- Faculty of Pharmacy, Department Biochemistry and Molecular Biology, Complutense University of Madrid, Health Research Institute of the Hospital Clínico San Carlos, Madrid, Spain
| | - Julián Sanz
- Department Pathology, Hospital Clínico San Carlos, Madrid, Spain
| | - Seddik Hammad
- Medical Faculty Mannheim, Department Medicine II, Heidelberg University, Manhheim, Germany
| | - Zeribe C. Nwosu
- Medical Faculty Mannheim, Department Medicine II, Heidelberg University, Manhheim, Germany
| | - Se-Jin Lee
- Department Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Isabel Fabregat
- Bellvitge Biomedical Research Institute, L’Hospitalet de Llobregat, Barcelona, Spain
| | - Steven Dooley
- Medical Faculty Mannheim, Department Medicine II, Heidelberg University, Manhheim, Germany
| | - Peter ten Dijke
- Department Cell and Chemical Biology and Oncode Institute, Leiden University Medical Center, RC Leiden, The Netherlands
| | - Blanca Herrera
- Faculty of Pharmacy, Department Biochemistry and Molecular Biology, Complutense University of Madrid, Health Research Institute of the Hospital Clínico San Carlos, Madrid, Spain
| | - Aránzazu Sánchez
- Faculty of Pharmacy, Department Biochemistry and Molecular Biology, Complutense University of Madrid, Health Research Institute of the Hospital Clínico San Carlos, Madrid, Spain
| |
Collapse
|
13
|
Cao Z, Ye T, Sun Y, Ji G, Shido K, Chen Y, Luo L, Na F, Li X, Huang Z, Ko JL, Mittal V, Qiao L, Chen C, Martinez FJ, Rafii S, Ding BS. Targeting the vascular and perivascular niches as a regenerative therapy for lung and liver fibrosis. Sci Transl Med 2018; 9:9/405/eaai8710. [PMID: 28855398 DOI: 10.1126/scitranslmed.aai8710] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 01/30/2017] [Accepted: 07/18/2017] [Indexed: 02/05/2023]
Abstract
The regenerative capacity of lung and liver is sometimes impaired by chronic or overwhelming injury. Orthotopic transplantation of parenchymal stem cells to damaged organs might reinstate their self-repair ability. However, parenchymal cell engraftment is frequently hampered by the microenvironment in diseased recipient organs. We show that targeting both the vascular niche and perivascular fibroblasts establishes "hospitable soil" to foster the incorporation of "seed," in this case, the engraftment of parenchymal cells in injured organs. Specifically, ectopic induction of endothelial cell (EC)-expressed paracrine/angiocrine hepatocyte growth factor (HGF) and inhibition of perivascular NOX4 [NADPH (reduced form of nicotinamide adenine dinucleotide phosphate) oxidase 4] synergistically enabled reconstitution of mouse and human parenchymal cells in damaged organs. Reciprocally, genetic knockout of Hgf in mouse ECs (HgfiΔEC/iΔEC) aberrantly up-regulated perivascular NOX4 during liver and lung regeneration. Dysregulated HGF and NOX4 pathways subverted the function of vascular and perivascular cells from an epithelially inductive niche to a microenvironment that inhibited parenchymal reconstitution. Perivascular NOX4 induction in HgfiΔEC/iΔEC mice recapitulated the phenotype of human and mouse liver and lung fibrosis. Consequently, EC-directed HGF and NOX4 inhibitor GKT137831 stimulated regenerative integration of mouse and human parenchymal cells in chronically injured lung and liver. Our data suggest that targeting dysfunctional perivascular and vascular cells in diseased organs can bypass fibrosis and enable reparative cell engraftment to reinstate lung and liver regeneration.
Collapse
Affiliation(s)
- Zhongwei Cao
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China. .,Ansary Stem Cell Institute, Division of Regenerative Medicine, Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Tinghong Ye
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Yue Sun
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Gaili Ji
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Koji Shido
- Ansary Stem Cell Institute, Division of Regenerative Medicine, Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Yutian Chen
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Lin Luo
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China.,West China Hospital, Sichuan University, China
| | - Feifei Na
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China.,West China Hospital, Sichuan University, China
| | - Xiaoyan Li
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Zhen Huang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Jane L Ko
- Department of Biological Sciences, Seton Hall University, South Orange, NJ 07079, USA
| | - Vivek Mittal
- Department of Cardiothoracic Surgery, Weill Cornell Medicine, New York, NY 10065, USA
| | - Lina Qiao
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Chong Chen
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China.,West China Hospital, Sichuan University, China
| | - Fernando J Martinez
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Shahin Rafii
- Ansary Stem Cell Institute, Division of Regenerative Medicine, Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Bi-Sen Ding
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China. .,Ansary Stem Cell Institute, Division of Regenerative Medicine, Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| |
Collapse
|
14
|
Sun ZJ, Wu Y, Hou WH, Wang YX, Yuan QY, Wang HJ, Yu M. A novel bispecific c-MET/PD-1 antibody with therapeutic potential in solid cancer. Oncotarget 2018; 8:29067-29079. [PMID: 28404966 PMCID: PMC5438713 DOI: 10.18632/oncotarget.16173] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 01/24/2017] [Indexed: 02/06/2023] Open
Abstract
The bispecific antibody is a novel antibody, which can target two different antigens and mediate specific killing effects by selectively redirecting effector cells to the target cells. Here, we designed and synthesized a bispecific antibody (BsAb) that can bind cellular-mesenchymal to epithelial transition factor (c-MET, overexpressed in several human solid tumor), and programmed death-1 (PD-1, involved in cancer cell immune evasion) with high affinity and specificity. We found that BsAb can induce the degradation of c-MET protein in cancer cells, including MKN45, a gastric cancer cell line, and A549, a lung cancer cell line. BsAb inhibited hepatocyte growth factor (HGF)-mediated proliferation, migration, and antiapoptosis, and downregulated HGF-stimulated phosphorylation of c-MET, protein kinase B (AKT), and extracellular signal-regulated kinase (ERK1/2). BsAb can also rescue T cell activation. Furthermore, xenograft analysis revealed that BsAb markedly inhibits the growth of subcutaneously implanted tumors and chronic inflammation. On the basis of these results, we have identified a potential bispecific drug, which can effectively target c-MET and PD-1 for the treatment of human solid cancers.
Collapse
Affiliation(s)
- Zu-Jun Sun
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education and Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Fudan University, Shanghai, China
| | - Yi Wu
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education and Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Fudan University, Shanghai, China
| | - Wei-Hua Hou
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education and Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Fudan University, Shanghai, China
| | - Yu-Xiong Wang
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education and Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Fudan University, Shanghai, China
| | - Qing-Yun Yuan
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education and Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Fudan University, Shanghai, China
| | - Hui-Jie Wang
- Department of Medical Oncology, Shanghai Cancer Center and Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Min Yu
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education and Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Fudan University, Shanghai, China
| |
Collapse
|
15
|
Jin Y, Yang J, Lin L, Lin Y, Zheng C. The Attenuation of Scutellariae radix Extract on Oxidative Stress for Colon Injury in Lipopolysaccharide-induced RAW264.7 Cell and 2,4,6-trinitrobenzene Sulfonic Acid-induced Ulcerative Colitis Rats. Pharmacogn Mag 2016; 12:153-9. [PMID: 27076753 PMCID: PMC4809171 DOI: 10.4103/0973-1296.177913] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Background: Oxidative stress (OS) has been regarded as one of the major pathogeneses of ulcerative colitis (UC) through damaging colon. It has been shown that Scutellariae radix (SR) extract has a beneficial effect for the prevention and treatment of UC. Objective: The aim of this study was to investigate whether SR had a potential capacity on oxidant damage for colon injury both in vivo and in vitro. Materials and Methods: The 2,4,6-trinitrobenzene sulfonic acid (TNBS) was used to induce UC rats model while 1 μg/ml lipopolysaccharide (LPS) was for RAW264.7 cell damage. Disease activity index (DAI) was determined to response the severity of colitis. The myeloperoxidase (MPO) activity in rat colon was also estimated. The 2,2’-azino-bis-3-ethylbenzthiazoline-6-sulfonic acid assay was performed to evaluate the total antioxidant capacity of SR. Furthermore, the activity of glutathione peroxidase (GSH-PX), catalase (CAT), superoxide dismutase (SOD), and lipid peroxidation malondialdehyde (MDA) in cell supernatant and rat serum were detected by appropriate kits. In addition, an immunohistochemical assay was applied to examine transforming growth factor beta 1 (TGF-β1) protein expression in colon tissue. Results: The treatment with SR could significantly increase the activity of GSH-PX, CAT, and SOD associated with OS in LPS-induced RAW264.7 cell damage and TNBS-induced UC rats. However, the level of MDA was markedly reduced both in vitro and in vivo. Furthermore, SR significantly decreased DAI and reversed the increased MPO activity. Thus, SR could decrease the severity of acute TNBS-induced colitis in rats. Immunohistochemical assay showed that SR significantly downregulated TGF-β1 protein expression in colon tissue. Conclusion: Our data provided evidence to support this fact that SR attenuated OS in LPS-induced RAW264.7 cell and also in TNBS-induced UC rats. Thus, SR may be an interesting candidate drug for the management of UC. SUMMARY Scutellariae radix (SR) could significantly increase the activity of glutathione peroxidase, catalase, and superoxide dismutase associated with OS in lipopolysaccharide-induced RAW264.7 cell damage and 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced ulcerative colitis rats The level of malondialdehyde was markedly reduced by SR both in vitro and in vivo SR could decrease the severity of acute TNBS-induced colitis in rats SR could significantly downregulate the expression of transforming growth factor beta 1 protein in colon tissue.
Abbreviations used: OS: Oxidative stress, UC: Ulcerative colitis, SR: Scutellariae radix, TNBS: 2,4,6-trinitrobenzene sulfonic acid, DAI: Disease activity index, MPO: Myeloperoxidase, GSH-PX: Glutathione peroxidase, CAT: Catalase, SOD: Superoxide dismutase, MDA: Malondialdehyde, TGF-β1: Transforming growth factor beta 1, OD: Optical density, ROS: Reactive oxygen species.
Collapse
Affiliation(s)
- Yu Jin
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Tiexi District, Shenyang 110021, Liaoning, China
| | - Jun Yang
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Tiexi District, Shenyang 110021, Liaoning, China
| | - Lianjie Lin
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Tiexi District, Shenyang 110021, Liaoning, China
| | - Yan Lin
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Tiexi District, Shenyang 110021, Liaoning, China
| | - Changqing Zheng
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Tiexi District, Shenyang 110021, Liaoning, China
| |
Collapse
|
16
|
Hepatocyte Growth Factor Reduces Free Cholesterol-Mediated Lipotoxicity in Primary Hepatocytes by Countering Oxidative Stress. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:7960386. [PMID: 27143995 PMCID: PMC4842075 DOI: 10.1155/2016/7960386] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 02/04/2016] [Indexed: 11/17/2022]
Abstract
Cholesterol overload in the liver has shown toxic effects by inducing the aggravation of nonalcoholic fatty liver disease to steatohepatitis and sensitizing to damage. Although the mechanism of damage is complex, it has been demonstrated that oxidative stress plays a prominent role in the process. In addition, we have proved that hepatocyte growth factor induces an antioxidant response in hepatic cells; in the present work we aimed to figure out the protective effect of this growth factor in hepatocytes overloaded with free cholesterol. Hepatocytes from mice fed with a high-cholesterol diet were treated or not with HGF, reactive oxygen species present in cholesterol overloaded hepatocytes significantly decreased, and this effect was particularly associated with the increase in glutathione and related enzymes, such as γ-gamma glutamyl cysteine synthetase, GSH peroxidase, and GSH-S-transferase. Our data clearly indicate that HGF displays an antioxidant response by inducing the glutathione-related protection system.
Collapse
|
17
|
The Characteristics Variation of Hepatic Progenitors after TGF-β1-Induced Transition and EGF-Induced Reversion. Stem Cells Int 2016; 2016:6304385. [PMID: 26955393 PMCID: PMC4756202 DOI: 10.1155/2016/6304385] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 01/11/2016] [Indexed: 02/06/2023] Open
Abstract
Profibrogenesis cytokine, transforming growth factor- (TGF-) β1, induces hepatic progenitors experiencing epithelial to mesenchymal transition (EMT) to matrix synthesis cells, even tumor initiating cells. Our previous data found that epidermal growth factor (EGF) blocks and reverses TGF-β1-induced transition. The aim of this study is to determine the characteristic changes of hepatic progenitors after TGF-β1-induced transition and EGF-induced reversion. Hepatic oval cells, rat hepatic progenitors, were isolated from rats fed a choline-deficient diet supplemented with ethionine. TGF-β1-containing medium was used for inducing EMT, while EGF-containing medium was used for reversing EMT. During TGF-β1-induced transition and EGF-induced reversion, hepatic oval cells sustained their progenitor cell marker expression, including α-fetoprotein, albumin, and cytokeratin-19. The proliferation ability and differentiation potential of these cells were suppressed by TGF-β1, while EGF resumed these capacities to the level similar to the control cells. RNA microarray analysis showed that most of the genes with significant changes after TGF-β1 incubation were recovered by EGF. Signal pathway analysis revealed that TGF-β1 impaired the pathways of cell cycle and cytochrome P450 detoxification, and EGF reverted TGF-β1 effects through activating MAPK and PI3K-Akt pathway. EGF reverses the characteristics impaired by TGF-β1 in hepatic oval cells, serving as a protective cytokine to hepatic progenitors.
Collapse
|
18
|
Kaur M, Sachdeva S, Bedi O, Kaur T, Kumar P. Combined effect of hydrogen sulphide donor and losartan in experimental diabetic nephropathy in rats. J Diabetes Metab Disord 2015. [PMID: 26221579 PMCID: PMC4517497 DOI: 10.1186/s40200-015-0185-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Background Diabetic nephropathy (DN) is one of the complex complications of Diabetes Mellitus (DM). The present study has been designed to examine protective role of hydrogen Sulphide (H2S) donor against streptozotocin (STZ) -induced behavioral, oxidative abnormalities and its DN like symptoms in rats. Methods For the induction of DN single intraperitoneal administration of STZ (45 mg/kg) was given till third week. Behavioral parameters were measured on 1st, 7th, 21st and 42nd days and biochemical parameters were performed on 42nd day. All the drug treatments [NaHS (10 & 30 μmol/kg i.p), DL-propargylglycine (10 mg/kg i.p), standard drug- Losartan (5 mg/kg p.o)] were given for 3 weeks staring from 21st day after the STZ injection. Results Three weeks treatment with sodium hydrosulphide (NaHS) (10 and 30 μmol/kg i.p,) significantly attenuated the behavioral and biochemical abnormalities in STZ-treated animals. DL-propargylglycine (10 mg/kg i.p) pretreatment with sub-effective dose of NaHS (30 μmol/kg i.p) significantly reversed the protective effect of NaHS. However, combination of both NaHS (30 μmol/kg i.p) and standard drug losartan (5 mg/kg p.o) potentiated their effects as compared to their effect alone. Conclusion The results of the present study suggest that H2S treatment showed significant improvement in behavioral and biochemical abnormalities induced by STZ administration. Thus H2S represents a target of treatment to prevent the progression of complications by DN.
Collapse
Affiliation(s)
- Manpreet Kaur
- Pharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, 14200 Punjab India
| | - Shilpi Sachdeva
- Pharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, 14200 Punjab India
| | - Onkar Bedi
- Pharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, 14200 Punjab India
| | - Tavleen Kaur
- Pharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, 14200 Punjab India
| | - Puneet Kumar
- Pharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, 14200 Punjab India
| |
Collapse
|
19
|
Suárez-Causado A, Caballero-Díaz D, Bertrán E, Roncero C, Addante A, García-Álvaro M, Fernández M, Herrera B, Porras A, Fabregat I, Sánchez A. HGF/c-Met signaling promotes liver progenitor cell migration and invasion by an epithelial-mesenchymal transition-independent, phosphatidyl inositol-3 kinase-dependent pathway in an in vitro model. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1853:2453-63. [PMID: 26001768 DOI: 10.1016/j.bbamcr.2015.05.017] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Revised: 05/08/2015] [Accepted: 05/13/2015] [Indexed: 12/11/2022]
Abstract
Oval cells constitute an interesting hepatic cell population. They contribute to sustain liver regeneration during chronic liver damage, but in doing this they can be target of malignant conversion and become tumor-initiating cells and drive hepatocarcinogenesis. The molecular mechanisms beneath either their pro-regenerative or pro-tumorigenic potential are still poorly understood. In this study, we have investigated the role of the HGF/c-Met pathway in regulation of oval cell migratory and invasive properties. Our results show that HGF induces c-Met-dependent oval cell migration both in normal culture conditions and after in vitro wounding. HGF-triggered migration involves F-actin cytoskeleton reorganization, which is also evidenced by activation of Rac1. Furthermore, HGF causes ZO-1 translocation from cell-cell contact sites to cytoplasm and its concomitant activation by phosphorylation. However, no loss of expression of cell-cell adhesion proteins, including E-cadherin, ZO-1 and Occludin-1, is observed. Additionally, migration does not lead to cell dispersal but to a characteristic organized pattern in rows, in turn associated with Golgi compaction, providing strong evidence of a morphogenic collective migration. Besides migration, HGF increases oval cell invasion through extracellular matrix, a process that requires PI3K activation and is at least partly mediated by expression and activation of metalloproteases. Altogether, our findings provide novel insights into the cellular and molecular mechanisms mediating the essential role of HGF/c-Met signaling during oval cell-mediated mouse liver regeneration.
Collapse
Affiliation(s)
- A Suárez-Causado
- Dep. Bioquímica y Biología Molecular II, Facultad de Farmacia, Universidad Complutense, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain.
| | - D Caballero-Díaz
- Dep. Bioquímica y Biología Molecular II, Facultad de Farmacia, Universidad Complutense, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain.
| | - E Bertrán
- Laboratori d'Oncologia Molecular, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Universitat de Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain.
| | - C Roncero
- Dep. Bioquímica y Biología Molecular II, Facultad de Farmacia, Universidad Complutense, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain.
| | - A Addante
- Dep. Bioquímica y Biología Molecular II, Facultad de Farmacia, Universidad Complutense, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain.
| | - M García-Álvaro
- Dep. Bioquímica y Biología Molecular II, Facultad de Farmacia, Universidad Complutense, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain.
| | - M Fernández
- Dep. Bioquímica y Biología Molecular II, Facultad de Farmacia, Universidad Complutense, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain.
| | - B Herrera
- Dep. Bioquímica y Biología Molecular II, Facultad de Farmacia, Universidad Complutense, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain.
| | - A Porras
- Dep. Bioquímica y Biología Molecular II, Facultad de Farmacia, Universidad Complutense, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain.
| | - I Fabregat
- Laboratori d'Oncologia Molecular, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Universitat de Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain; Departament de Ciències Fisiològiques II, Universitat de Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain.
| | - A Sánchez
- Dep. Bioquímica y Biología Molecular II, Facultad de Farmacia, Universidad Complutense, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain.
| |
Collapse
|
20
|
Ma Y, Li W, Yin Y, Li W. AST IV inhibits H₂O₂-induced human umbilical vein endothelial cell apoptosis by suppressing Nox4 expression through the TGF-β1/Smad2 pathway. Int J Mol Med 2015; 35:1667-74. [PMID: 25891879 DOI: 10.3892/ijmm.2015.2188] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 04/08/2015] [Indexed: 11/06/2022] Open
Abstract
Endothelial cell apoptosis plays an important role in the pathophysiological mechanisms of vascular complications in diabetes mellitus (DM). NADPH oxidase 4 (Nox4)-dependent reactive oxygen species (ROS) aggregation is the main cause of vascular endothelial cell apoptosis. The transforming growth factor-β1 (TGF-β1)/Smad2 signaling pathway is involved in the apoptosis of several types of cells. However, the association between vascular endothelial cell apoptosis and Nox4, and the involvement of the TGF-β1/Smad2 signaling pathway in vascular endothelial cell apoptosis remain unclear. In the present study, we aimed to investigate the role of Nox4-dependent ROS production and to determine the involvement of the TGF-β1/Smad2 signaling pathway in endothelial cell apoptosis induced by oxidative stress which causes vascular injury in DM. We demonstrated that hydrogen peroxide (H2O2) increased Nox4-dependent-ROS aggregation, as well as the expression of TGF-β1, Smad2, Bax and caspase-3, decreased Bcl-2 expression and increased the apoptosis of human umbilical vein endothelial cells (HUVECs). Treatment with diphenyliodonium (DPI), a specific inhibitor of Nox4 or astragaloside IV (AST IV), a monomer located in an extract of astragaloside, decreased Nox4 expression and the levels of ROS, decreased TGF-β1 and Smad2 expression, altered the expression of apoptosis-related genes and decreased the apoptosis of HUVECs. Treatment with LY2109761, a selective inhibitor of the TGF-β1/Smad2 pathway, produced results similar to those of DPI; however, LY2109761 had no effect on Nox4 expression and ROS levels. Taken together, the findings of the present study suggest that H2O2 contributes to HUVEC apoptosis by inducing Nox4-dependent ROS aggregation and activating the TGF-β1/Smad2 signaling pathway. Our data indicate that the protective effects of AST IV against vascular endothelial cell apoptosis in DM are mainly associated with the decrease in Nox4 expression through the TGF-β1/Smad2 signaling pathway. Furthermore, the inhibition of the activation of the TGF-β1/Smad2 signaling pathway may be another potential therapeutic strategy in the treatment of DM.
Collapse
Affiliation(s)
- Yuhong Ma
- Department of Pharmacology, College of Basic Medicine, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Weizu Li
- Department of Pharmacology, College of Basic Medicine, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Yanyan Yin
- Department of Pharmacology, College of Basic Medicine, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Weiping Li
- Department of Pharmacology, College of Basic Medicine, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| |
Collapse
|
21
|
Izarra A, Moscoso I, Levent E, Cañón S, Cerrada I, Díez-Juan A, Blanca V, Núñez-Gil IJ, Valiente I, Ruíz-Sauri A, Sepúlveda P, Tiburcy M, Zimmermann WH, Bernad A. miR-133a enhances the protective capacity of cardiac progenitors cells after myocardial infarction. Stem Cell Reports 2014; 3:1029-42. [PMID: 25465869 PMCID: PMC4264058 DOI: 10.1016/j.stemcr.2014.10.010] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Revised: 10/20/2014] [Accepted: 10/21/2014] [Indexed: 01/06/2023] Open
Abstract
miR-133a and miR-1 are known as muscle-specific microRNAs that are involved in cardiac development and pathophysiology. We have shown that both miR-1 and miR-133a are early and progressively upregulated during in vitro cardiac differentiation of adult cardiac progenitor cells (CPCs), but only miR-133a expression was enhanced under in vitro oxidative stress. miR-1 was demonstrated to favor differentiation of CPCs, whereas miR-133a overexpression protected CPCs against cell death, targeting, among others, the proapoptotic genes Bim and Bmf. miR-133a-CPCs clearly improved cardiac function in a rat myocardial infarction model by reducing fibrosis and hypertrophy and increasing vascularization and cardiomyocyte proliferation. The beneficial effects of miR-133a-CPCs seem to correlate with the upregulated expression of several relevant paracrine factors and the plausible cooperative secretion of miR-133a via exosomal transport. Finally, an in vitro heart muscle model confirmed the antiapoptotic effects of miR-133a-CPCs, favoring the structuration and contractile functionality of the artificial tissue. miR-1 and miR-133a have a role in adult cardiac progenitor cells (CPCs) miR-133a-CPCs protect cardiac function miR-133a-CPCs increase vascularization and protect against hypertrophy miR-133a is enriched in CPCs-derived exosomes
Collapse
Affiliation(s)
- Alberto Izarra
- Immunology and Oncology Department, National Center for Biotechnology, CSIC, 28049 Madrid, Spain; Department of Cardiovascular Development and Repair, Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III, 28029 Madrid, Spain
| | - Isabel Moscoso
- Department of Cardiovascular Development and Repair, Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III, 28029 Madrid, Spain; Cardiovascular Area, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, 15706 Santiago de Compostela, Spain
| | - Elif Levent
- Institute of Pharmacology, Heart Research Center Göttingen, University Medical Center, Georg-August University Göttingen and DZHK (German Center for Cardiovascular Research), 37075 Göttingen, Germany
| | - Susana Cañón
- Immunology and Oncology Department, National Center for Biotechnology, CSIC, 28049 Madrid, Spain; Department of Cardiovascular Development and Repair, Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III, 28029 Madrid, Spain
| | - Inmaculada Cerrada
- Instituto de Investigación Sanitaria INCLIVA, 46010 Valencia, Spain; Unidad de Cardioregeneración, Hospital La Fe, 46009 Valencia, Spain
| | - Antonio Díez-Juan
- Department of Cardiovascular Development and Repair, Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III, 28029 Madrid, Spain; Instituto de Investigación Sanitaria INCLIVA, 46010 Valencia, Spain
| | - Vanessa Blanca
- Department of Cardiovascular Development and Repair, Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III, 28029 Madrid, Spain
| | - Iván-J Núñez-Gil
- Servicio de Cardiología, Hospital Clínico San Carlos, 28040 Madrid, Spain
| | - Iñigo Valiente
- Department of Cardiovascular Development and Repair, Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III, 28029 Madrid, Spain
| | - Amparo Ruíz-Sauri
- Departamento de Patología, Facultad de Medicina, Universidad de Valencia, 46010 Valencia, Spain
| | - Pilar Sepúlveda
- Instituto de Investigación Sanitaria INCLIVA, 46010 Valencia, Spain
| | - Malte Tiburcy
- Institute of Pharmacology, Heart Research Center Göttingen, University Medical Center, Georg-August University Göttingen and DZHK (German Center for Cardiovascular Research), 37075 Göttingen, Germany
| | - Wolfram-H Zimmermann
- Institute of Pharmacology, Heart Research Center Göttingen, University Medical Center, Georg-August University Göttingen and DZHK (German Center for Cardiovascular Research), 37075 Göttingen, Germany
| | - Antonio Bernad
- Immunology and Oncology Department, National Center for Biotechnology, CSIC, 28049 Madrid, Spain; Department of Cardiovascular Development and Repair, Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III, 28029 Madrid, Spain.
| |
Collapse
|
22
|
Zhang WJ, Guo Y, Yin CJ, Li Y, Yao JF, Gong CJ. Role of NF-κB in hepatic oval cell proliferation: Implications for mechanism underlying protective effects of baicalin against liver injury. Shijie Huaren Xiaohua Zazhi 2014; 22:3736-3743. [DOI: 10.11569/wcjd.v22.i25.3736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To explore the role of nuclear factor kappa B (NF-κB) in hepatic oval cell proliferation and the possible mechanism underlying the therapeutic effect of baicalin against liver injury.
METHODS: 64 SD rats were randomly divided into 4 groups: a sham operation group, a model group, a low-dose baicalin group and a high-dose baicalin group. 2-acetylaminofluorene plus 2/3 partial hepatectomy (2-AAF+2/3PH) was used to establish the hepatic oval cell (HOC) proliferation model. The two baicalin groups were given 50 and 100 mg/kg of baicalin daily by lavage when modeling, respectively. The rats were killed on 1, 7, 14 and 21 d after PH in each group, and serum and liver tissue samples were collected. Hepatic pathological changes were observed by hematoxylin and eosin (HE) staining. Immunofluorescence, immunohistochemical staining, reverse transcription-polymerase chain reaction (RT-PCR) and Western blot were used to evaluate the proliferation and differentiation of HOCs and the expression of NF-κB.
RESULTS: The HOC proliferation model was successfully established. HOC proliferation began to increase after PH, peaked on the 14th day and decreased on the 21st day. The expression pattern of NF-κB was consistent with the proliferation pattern of HOCs, and they were both reduced by baicalin intervention.
CONCLUSION: HOC proliferation is related to the activation of NF-κB. Baicalin could inhibit HOC proliferation possibly through the NF-κB signaling pathway, and this may be a possible mechanism for the therapeutic effect of baicalin against liver injury.
Collapse
|
23
|
The attenuation of Moutan Cortex on oxidative stress for renal injury in AGEs-induced mesangial cell dysfunction and streptozotocin-induced diabetic nephropathy rats. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2014; 2014:463815. [PMID: 24876912 PMCID: PMC4021834 DOI: 10.1155/2014/463815] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2013] [Revised: 03/25/2014] [Accepted: 04/02/2014] [Indexed: 02/07/2023]
Abstract
Oxidative stress (OS) has been regarded as one of the major pathogeneses of diabetic nephropathy (DN) through damaging kidney which is associated with renal cells dysfunction. The aim of this study was to investigate whether Moutan Cortex (MC) could protect kidney function against oxidative stress in vitro or in vivo. The compounds in MC extract were analyzed by HPLC-ESI-MS. High-glucose-fat diet and STZ (30 mg kg−1) were used to induce DN rats model, while 200 μg mL−1 AGEs were for HBZY-1 mesangial cell damage. The treatment with MC could significantly increase the activity of SOD, glutathione peroxidase (GSH-PX), and catalase (CAT). However, lipid peroxidation malondialdehyde (MDA) was reduced markedly in vitro or in vivo. Furthermore, MC decreased markedly the levels of blood glucose, serum creatinine, and urine protein in DN rats. Immunohistochemical assay showed that MC downregulated significantly transforming growth factor beta 2 (TGF-β2) protein expression in renal tissue. Our data provided evidence to support this fact that MC attenuated OS in AGEs-induced mesangial cell dysfunction and also in high-glucose-fat diet and STZ-induced DN rats.
Collapse
|
24
|
Usatyuk PV, Fu P, Mohan V, Epshtein Y, Jacobson JR, Gomez-Cambronero J, Wary KK, Bindokas V, Dudek SM, Salgia R, Garcia JGN, Natarajan V. Role of c-Met/phosphatidylinositol 3-kinase (PI3k)/Akt signaling in hepatocyte growth factor (HGF)-mediated lamellipodia formation, reactive oxygen species (ROS) generation, and motility of lung endothelial cells. J Biol Chem 2014; 289:13476-91. [PMID: 24634221 DOI: 10.1074/jbc.m113.527556] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Hepatocyte growth factor (HGF) mediated signaling promotes cell proliferation and migration in a variety of cell types and plays a key role in tumorigenesis. As cell migration is important to angiogenesis, we characterized HGF-mediated effects on the formation of lamellipodia, a pre-requisite for migration using human lung microvascular endothelial cells (HLMVECs). HGF, in a dose-dependent manner, induced c-Met phosphorylation (Tyr-1234/1235, Tyr-1349, Ser-985, Tyr-1003, and Tyr-1313), activation of PI3k (phospho-Yp85) and Akt (phospho-Thr-308 and phospho-Ser-473) and potentiated lamellipodia formation and HLMVEC migration. Inhibition of c-Met kinase by SU11274 significantly attenuated c-Met, PI3k, and Akt phosphorylation, suppressed lamellipodia formation and endothelial cell migration. LY294002, an inhibitor of PI3k, abolished HGF-induced PI3k (Tyr-458), and Akt (Thr-308 and Ser-473) phosphorylation and suppressed lamellipodia formation. Furthermore, HGF stimulated p47(phox)/Cortactin/Rac1 translocation to lamellipodia and ROS generation. Moreover, inhibition of c-Met/PI3k/Akt signaling axis and NADPH oxidase attenuated HGF- induced lamellipodia formation, ROS generation and cell migration. Ex vivo experiments with mouse aortic rings revealed a role for c-Met signaling in HGF-induced sprouting and lamellipodia formation. Taken together, these data provide evidence in support of a significant role for HGF-induced c-Met/PI3k/Akt signaling and NADPH oxidase activation in lamellipodia formation and motility of lung endothelial cells.
Collapse
|
25
|
Zhuang Z, Yang D, Huang Y, Wang S. Study on the apoptosis mechanism induced by T-2 toxin. PLoS One 2013; 8:e83105. [PMID: 24386148 PMCID: PMC3873290 DOI: 10.1371/journal.pone.0083105] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2013] [Accepted: 10/30/2013] [Indexed: 12/28/2022] Open
Abstract
T-2 toxin is known to induce apoptosis in mammalian cells. The mechanism of apoptosis induced by T-2 toxin has been proposed to be linked with oxidative stress and mitochondrial pathway. In the current study, the toxic effect of T-2 on Hela, Bel-7402, and Chang liver cells was examined in dose-dependent and time-dependent manner by MTT assay. Caspase-3 was found to be up-regulated under T-2 toxin stress, which suggested that T-2 toxin induced cell apoptosis. Endogenous GSH and MDA levels in all three cell lines were found down- and up-regulated respectively, which indicated the link between toxic effect of T-2 toxin and intracellular oxidative stress. It was also found by MTT assay that NAC, which maintained the level of GSH in cells, could protect cells from death. Western-blot result showed that the level of both activated Caspase-8 and Caspase-9 increased when cells were treated by T-2 toxin. Caspase-9 was found to be activated earlier than Caspase-8. It was also found that p53 was up-regulated under T-2 toxin stress in the study. These results implied that the effect of T-2 toxin on cells was apoptosis rather than necrosis, and it was probably induced through mitochondrial pathway. To the best of our knowledge, the present study is the first to show that JunD is down-regulated in T-2 toxin induced apoptosis. By construction of an over-expression vector for the JunD gene, we observed that the survival ratio of JunD over-expressed cells obviously increased under T-2 toxin stress. These results suggested that the mechanism of T-2 induced cell death was closely connected with oxidative stress, and that JunD plays an important role in the defensive process against T-2 toxin stress.
Collapse
Affiliation(s)
- Zhenhong Zhuang
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology, Ministry of Education, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Daibin Yang
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology, Ministry of Education, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yaling Huang
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology, Ministry of Education, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shihua Wang
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology, Ministry of Education, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- * E-mail:
| |
Collapse
|