1
|
Polyak P, Kwak J, Kertai MD, Anton JM, Assaad S, Dacosta ME, Dimitrova G, Gao WD, Henderson RA, Hollon MM, Jones N, Kucharski D, Low Y, Moriarty A, Neuburger P, Ngai JY, Cole SP, Rhee A, Richter E, Shapeton A, Sutherland L, Turner K, Wanat-Hawthorne AM, Wu IY, Shore-Lesserson L. Vasoplegic Syndrome in Cardiac Surgery: A Narrative Review of Etiologic Mechanisms and Therapeutic Options. J Cardiothorac Vasc Anesth 2025:S1053-0770(25)00192-2. [PMID: 40157894 DOI: 10.1053/j.jvca.2025.02.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 02/23/2025] [Accepted: 02/26/2025] [Indexed: 04/01/2025]
Abstract
Vasoplegic syndrome, a form of distributive shock that may manifest during or after cardiopulmonary bypass, is a serious complication that increases morbidity and mortality after cardiac surgery. No consensus definition exists, but vasoplegic syndrome is generally described as a state of pathologic vasodilation causing hypotension refractory to fluid resuscitation and vasopressor therapy, and resulting in organ malperfusion despite a normal or increased cardiac output. Diagnosis can be complex as there is a broad differential diagnosis for low systemic vascular resistance in the cardiac surgical patient. Interpretation of hemodynamic data can also be challenging in the setting of mixed shock states and mechanical support. This narrative review summarizes the pathophysiology of vasoplegic syndrome, the literature concerning its incidence and risk factors, the hemodynamic parameters important to the diagnosis of vasoplegic syndrome, a consensus definition of the syndrome, and a proposed goal-directed treatment framework.
Collapse
Affiliation(s)
| | - Jenny Kwak
- Loyola University Medical Center, Maywood, IL
| | | | | | - Sherif Assaad
- Cleveland Clinic Lerner College of Medicine, Cleveland, OH
| | | | | | - Wei Dong Gao
- Johns Hopkins University School of Medicine, Baltimore, MD
| | | | | | - Nathan Jones
- Lahey Hospital, Tufts Medical Center, Boston, MA
| | | | | | - Allison Moriarty
- Keck School of Medicine, University of Southern California, Los Angeles, CA
| | | | | | | | - Amanda Rhee
- Mount Sinai Health System, Icahn School of Medicine, New York, NY
| | | | - Alexander Shapeton
- Veterans Affairs Boston Healthcare System, Tufts University School of Medicine, West Roxbury, MA
| | | | - Katja Turner
- Wexner Medical Center at The Ohio State University, Columbus, OH
| | | | - Isaac Y Wu
- University of Rochester Medical Center, Rochester, NY
| | | |
Collapse
|
2
|
Cantalupo A, Asano K, Dikalov S, Gordon D, Ramirez F. Fibrillin-1 Deficiency Perturbs Aortic Cholinergic Relaxation and Adrenergic Contraction in a Mouse Model of Early Onset Progressively Severe Marfan Syndrome. J Vasc Res 2025; 62:96-108. [PMID: 39827863 PMCID: PMC11961321 DOI: 10.1159/000542481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 11/03/2024] [Indexed: 01/22/2025] Open
Abstract
INTRODUCTION The pathogenic role of nitric oxide (NO) signaling during development of thoracic aortic aneurysm (TAA) in Marfan syndrome (MFS) is currently unclear. We characterized vasomotor function and its relationship to the activity of the NO-generating enzymes in mice with early onset progressively severe MFS. METHODS Wire myography, immunoblotting, measurements of aortic NO, and superoxide levels were used to compare vasomotor function, contractile protein levels, and the activity of endothelial and inducible NO synthase (eNOS and iNOS, respectively) in ascending thoracic aortas of Fbn1mgR/mgR mice relative to wild-type littermates. RESULTS Isometric force measurements of aortic rings from 16-day-old male Fbn1mgR/mgR mice revealed a significant reduction in acetylcholine-induced relaxation and increased phenylephrine (PE)-promoted contractility, associated with abnormally low eNOSSer1177 phosphorylation, decreased NO production, and augmented superoxide levels. Greater aortic contractility was associated with α1-adrenoceptor upregulation and normal levels of contractile proteins. While iNOS inhibition had no effect on vasomotor functions, mutant aortic rings preincubated with a nonspecific NOS inhibitor yielded a greater PE response, implying a significant contribution of endothelial dysfunction to aortic hypercontractility. CONCLUSION Impaired eNOS signaling disrupts aortic cholinergic relaxation and adrenergic contraction in MFS mice with dissecting TAA. INTRODUCTION The pathogenic role of nitric oxide (NO) signaling during development of thoracic aortic aneurysm (TAA) in Marfan syndrome (MFS) is currently unclear. We characterized vasomotor function and its relationship to the activity of the NO-generating enzymes in mice with early onset progressively severe MFS. METHODS Wire myography, immunoblotting, measurements of aortic NO, and superoxide levels were used to compare vasomotor function, contractile protein levels, and the activity of endothelial and inducible NO synthase (eNOS and iNOS, respectively) in ascending thoracic aortas of Fbn1mgR/mgR mice relative to wild-type littermates. RESULTS Isometric force measurements of aortic rings from 16-day-old male Fbn1mgR/mgR mice revealed a significant reduction in acetylcholine-induced relaxation and increased phenylephrine (PE)-promoted contractility, associated with abnormally low eNOSSer1177 phosphorylation, decreased NO production, and augmented superoxide levels. Greater aortic contractility was associated with α1-adrenoceptor upregulation and normal levels of contractile proteins. While iNOS inhibition had no effect on vasomotor functions, mutant aortic rings preincubated with a nonspecific NOS inhibitor yielded a greater PE response, implying a significant contribution of endothelial dysfunction to aortic hypercontractility. CONCLUSION Impaired eNOS signaling disrupts aortic cholinergic relaxation and adrenergic contraction in MFS mice with dissecting TAA.
Collapse
MESH Headings
- Animals
- Marfan Syndrome/physiopathology
- Marfan Syndrome/genetics
- Marfan Syndrome/metabolism
- Marfan Syndrome/complications
- Fibrillin-1/deficiency
- Fibrillin-1/genetics
- Male
- Disease Models, Animal
- Nitric Oxide Synthase Type III/metabolism
- Aorta, Thoracic/physiopathology
- Aorta, Thoracic/metabolism
- Aorta, Thoracic/drug effects
- Nitric Oxide/metabolism
- Vasodilation/drug effects
- Vasoconstriction/drug effects
- Nitric Oxide Synthase Type II/metabolism
- Aortic Aneurysm, Thoracic/physiopathology
- Aortic Aneurysm, Thoracic/metabolism
- Aortic Aneurysm, Thoracic/genetics
- Aortic Aneurysm, Thoracic/etiology
- Acetylcholine/pharmacology
- Superoxides/metabolism
- Receptors, Adrenergic, alpha-1/metabolism
- Receptors, Adrenergic, alpha-1/drug effects
- Signal Transduction
- Phosphorylation
- Mice, Inbred C57BL
- Adrenergic alpha-1 Receptor Agonists/pharmacology
- Severity of Illness Index
- Phenylephrine/pharmacology
- Mice
- Vasodilator Agents/pharmacology
- Disease Progression
- Adipokines
Collapse
Affiliation(s)
- Anna Cantalupo
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Keiichi Asano
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sergey Dikalov
- Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Dylan Gordon
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Francesco Ramirez
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
3
|
Jang H, Ha J, Choi I. Anti-dyslipidemic effects of Pueraria lobata root and Glycine max ( L.) Merrill extracts fermented with Lactiplantibacillus plantarum in ovariectomized mice. Food Sci Nutr 2024; 12:7544-7551. [PMID: 39479634 PMCID: PMC11521700 DOI: 10.1002/fsn3.4356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/05/2024] [Accepted: 07/10/2024] [Indexed: 11/02/2024] Open
Abstract
Pueraria lobata root and Glycine max (L.) Merrill are rich in phytoestrogens. However, these bioactive ingredients have limited bioavailability due to their high molecular weight. In this study, we extracted two natural products and fermented with Lactiplantibacillus plantarum before mixing the fermented extracts (FPE-FGE). To understand whether FPE-FGE could alleviate menopause with dyslipidemia, we examined their effects on ovariectomy (OVX)-induced dyslipidemia in mice. Oral administration of the FPE-FGE (1:9, 3:7, and 9:1) did not affect safety-related biomarkers, such as uterus index (%), vagina index (%), aspartate aminotransferase, alanine aminotransferase, blood urea nitrogen, and creatinine. Furthermore, FPE-FGE (1:9, 3:7, and 9:1) increased the levels of 17β-estradiol (E2) and expression of uterus estrogen receptor β (ERβ); there was little effect on the expression of uterus estrogen receptor α (ERα), and reduced the levels of gonadotropins, such as luteinizing hormone (LH) and follicle-stimulating hormone (FSH). However, only the FPE-FGE (3:7) reduced the levels of blood lipids, including total cholesterol (TC) and LDL-cholesterol (LDL-C). Accordingly, FPE-FGE (3:7) upregulated endothelial nitric oxide synthase (eNOS), nitric oxide (NO), cyclic guanosine monophosphate (cGMP), and protein kinase G (PKG). In conclusion, FPE-FGE (3:7) attenuated the menopausal dyslipidemia by upregulating eNOS-NO-cGMP signaling pathway.
Collapse
Affiliation(s)
- Hyo‐Min Jang
- The 2nd Research InstituteCMG Pharmaceutical Co., Ltd.SeongnamKorea
| | - Jimyeong Ha
- Center for Consumer Health 1 ResearchCHA Advanced Research InstituteSeongnamKorea
| | - Insuk Choi
- The 2nd Research InstituteCMG Pharmaceutical Co., Ltd.SeongnamKorea
- Center for Consumer Health 1 ResearchCHA Advanced Research InstituteSeongnamKorea
| |
Collapse
|
4
|
Jin Y, Yuan H, Liu Y, Zhu Y, Wang Y, Liang X, Gao W, Ren Z, Ji X, Wu D. Role of hydrogen sulfide in health and disease. MedComm (Beijing) 2024; 5:e661. [PMID: 39156767 PMCID: PMC11329756 DOI: 10.1002/mco2.661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 06/24/2024] [Accepted: 06/26/2024] [Indexed: 08/20/2024] Open
Abstract
In the past, hydrogen sulfide (H2S) was recognized as a toxic and dangerous gas; in recent years, with increased research, we have discovered that H2S can act as an endogenous regulatory transmitter. In mammals, H2S-catalyzing enzymes, such as cystathionine-β-synthase, cystathionine-γ-lyase, and 3-mercaptopyruvate sulfurtransferase, are differentially expressed in a variety of tissues and affect a variety of biological functions, such as transcriptional and posttranslational modification of genes, activation of signaling pathways in the cell, and metabolic processes in tissues, by producing H2S. Various preclinical studies have shown that H2S affects physiological and pathological processes in the body. However, a detailed systematic summary of these roles in health and disease is lacking. Therefore, this review provides a thorough overview of the physiological roles of H2S in different systems and the diseases associated with disorders of H2S metabolism, such as ischemia-reperfusion injury, hypertension, neurodegenerative diseases, inflammatory bowel disease, and cancer. Meanwhile, this paper also introduces H2S donors and novel release modes, as well as the latest preclinical experimental results, aiming to provide researchers with new ideas to discover new diagnostic targets and therapeutic options.
Collapse
Affiliation(s)
- Yu‐Qing Jin
- Henan International Joint Laboratory for Nuclear Protein RegulationSchool of Basic Medical Sciences, School of StomatologyHenan UniversityKaifengHenanChina
| | - Hang Yuan
- Henan International Joint Laboratory for Nuclear Protein RegulationSchool of Basic Medical Sciences, School of StomatologyHenan UniversityKaifengHenanChina
| | - Ya‐Fang Liu
- Henan International Joint Laboratory for Nuclear Protein RegulationSchool of Basic Medical Sciences, School of StomatologyHenan UniversityKaifengHenanChina
| | - Yi‐Wen Zhu
- School of Clinical MedicineHenan UniversityKaifengHenanChina
| | - Yan Wang
- Henan International Joint Laboratory for Nuclear Protein RegulationSchool of Basic Medical Sciences, School of StomatologyHenan UniversityKaifengHenanChina
| | - Xiao‐Yi Liang
- Henan International Joint Laboratory for Nuclear Protein RegulationSchool of Basic Medical Sciences, School of StomatologyHenan UniversityKaifengHenanChina
| | - Wei Gao
- Henan International Joint Laboratory for Nuclear Protein RegulationSchool of Basic Medical Sciences, School of StomatologyHenan UniversityKaifengHenanChina
| | - Zhi‐Guang Ren
- Henan International Joint Laboratory for Nuclear Protein RegulationSchool of Basic Medical Sciences, School of StomatologyHenan UniversityKaifengHenanChina
| | - Xin‐Ying Ji
- Henan International Joint Laboratory for Nuclear Protein RegulationSchool of Basic Medical Sciences, School of StomatologyHenan UniversityKaifengHenanChina
- Faculty of Basic Medical SubjectsShu‐Qing Medical College of ZhengzhouZhengzhouHenanChina
| | - Dong‐Dong Wu
- Henan International Joint Laboratory for Nuclear Protein RegulationSchool of Basic Medical Sciences, School of StomatologyHenan UniversityKaifengHenanChina
- School of StomatologyHenan UniversityKaifengHenanChina
- Department of StomatologyHuaihe Hospital of Henan UniversityKaifengHenanChina
| |
Collapse
|
5
|
Pernomian L, Blascke de Mello MM, Parente JM, Sanches-Lopes JM, Tanus-Santos JE, Parreiras E Silva LT, Antunes-Rodrigues J, da Conceição Dos Santos R, Elias LLK, Fabro AT, Silva CAA, Fazan R, de Castro MM. The hydrogen sulfide donor 4-carboxyphenyl-isothiocyanate decreases blood pressure and promotes cardioprotective effect through reduction of oxidative stress and nuclear factor kappa B/matrix metalloproteinase (MMP)-2 axis in hypertension. Life Sci 2024; 351:122819. [PMID: 38857651 DOI: 10.1016/j.lfs.2024.122819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/30/2024] [Accepted: 06/07/2024] [Indexed: 06/12/2024]
Abstract
AIMS Our aim was to evaluate whether the hydrogen sulfide (H2S) donor, 4-carboxyphenyl-isothiocyanate (4-CPI), exerts cardioprotective effect in the two kidney- one clip (2K-1C) rats through oxidative stress and MMP-2 activity attenuation and compare it with the classical H2S donor, Sodium Hydrosulfide (NaHS). MATERIALS AND METHODS Renovascular hypertension (two kidneys-one clip; 2K-1C) was surgically induced in male Wistar rats. After two weeks, normotensive (2K) and hypertensive rats were intraperitoneally treated with vehicle (0.6 % dimethyl sulfoxide), NaHS (0.24 mg/Kg/day) or with 4-CPI (0.24 mg/Kg/day), for more 4 weeks. Systolic blood pressure (SBP) was evaluated weekly by tail-cuff plethysmography. Heart function was assessed by using the Millar catheter. Cardiac hypertrophy and fibrosis were evaluated by hematoxylin and eosin, and Picrosirius Red staining, respectively. The H2S was analyzed using WSP-1 fluorimetry and the cardiac oxidative stress was measured by lucigenin chemiluminescence and Amplex Red. MMP-2 activity was measured by in-gel gelatin or in situ zymography assays. Nox1, gp91phox, MMP-2 and the phospho-p65 subunit (Serine 279) nuclear factor kappa B (NF-κB) levels were evaluated by Western blotting. KEY FINDINGS 4-CPI reduced blood pressure in hypertensive rats, decreased cardiac remodeling and promoted cardioprotection through the enhancement of cardiac H2S levels. An attenuation of oxidative stress, with inactivation of the p65-NF-κB/MMP-2 axis was similarly observed after NaHS or 4-CPI treatment in 2K-1C hypertension. SIGNIFICANCE H2S is a mediator that promotes cardioprotective effects and decreases blood pressure, and 4-CPI seems to be a good candidate to reverse the maladaptive remodeling and cardiac dysfunction in renovascular hypertension.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Alexandre Todorovic Fabro
- Department of Pathology and Legal Medicine, Ribeirao Preto Medical School, University of Sao Paulo, Sao Paulo, Brazil
| | | | | | | |
Collapse
|
6
|
Smimmo M, Casale V, Casillo GM, Mitidieri E, d'Emmanuele di Villa Bianca R, Bello I, Schettino A, Montanaro R, Brancaleone V, Indolfi C, Cirino G, Di Lorenzo A, Bucci M, Panza E, Vellecco V. Hydrogen sulfide dysfunction in metabolic syndrome-associated vascular complications involves cGMP regulation through soluble guanylyl cyclase persulfidation. Biomed Pharmacother 2024; 174:116466. [PMID: 38552439 DOI: 10.1016/j.biopha.2024.116466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/14/2024] [Accepted: 03/15/2024] [Indexed: 05/01/2024] Open
Abstract
Here, by using in vitro and ex vivo approaches, we elucidate the impairment of the hydrogen sulfide (H2S) pathway in vascular complications associated with metabolic syndrome (MetS). In the in vitro model simulating hyperlipidemic/hyperglycemic conditions, we observe significant hallmarks of endothelial dysfunction, including eNOS/NO signaling impairment, ROS overproduction, and a reduction in CSE-derived H2S. Transitioning to an ex vivo model using db/db mice, a genetic MetS model, we identify a downregulation of CBS and CSE expression in aorta, coupled with a diminished L-cysteine-induced vasorelaxation. Molecular mechanisms of eNOS/NO signaling impairment, dissected using pharmacological and molecular approaches, indicate an altered eNOS/Cav-1 ratio, along with reduced Ach- and Iso-induced vasorelaxation and increased L-NIO-induced contraction. In vivo treatment with the H2S donor Erucin ameliorates vascular dysfunction observed in db/db mice without impacting eNOS, further highlighting a specific action on smooth muscle component rather than the endothelium. Analyzing the NO signaling pathway in db/db mice aortas, reduced cGMP levels were detected, implicating a defective sGC/cGMP signaling. In vivo Erucin administration restores cGMP content. This beneficial effect involves an increased sGC activity, due to enzyme persulfidation observed in sGC overexpressed cells, coupled with PDE5 inhibition. In conclusion, our study demonstrates a pivotal role of reduced cGMP levels in impaired vasorelaxation in a murine model of MetS involving an impairment of both H2S and NO signaling. Exogenous H2S supplementation through Erucin represents a promising alternative in MetS therapy, targeting smooth muscle cells and supporting the importance of lifestyle and nutrition in managing MetS.
Collapse
Affiliation(s)
- M Smimmo
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - V Casale
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - G M Casillo
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - E Mitidieri
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | | | - I Bello
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - A Schettino
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - R Montanaro
- Department of Science, University of Basilicata, Potenza, Italy
| | - V Brancaleone
- Department of Science, University of Basilicata, Potenza, Italy
| | - C Indolfi
- Department of Molecular Medicine and Medical Biotechnology, School of Medicine and Surgery, University of Naples Federico II, Naples 80131, Italy
| | - G Cirino
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - A Di Lorenzo
- Department of Pathology and Laboratory Medicine Center for Vascular Biology, Weill Cornell Medical College, Cornell University, New York, USA
| | - M Bucci
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy.
| | - E Panza
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - V Vellecco
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| |
Collapse
|
7
|
Martelli A, d'Emmanuele di Villa Bianca R, Cirino G, Sorrentino R, Calderone V, Bucci M. Hydrogen sulfide and sulfaceutic or sulfanutraceutic agents: Classification, differences and relevance in preclinical and clinical studies. Pharmacol Res 2023; 196:106947. [PMID: 37797660 DOI: 10.1016/j.phrs.2023.106947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/01/2023] [Accepted: 10/02/2023] [Indexed: 10/07/2023]
Abstract
Hydrogen sulfide (H2S) has been extensively studied as a signal molecule in the body for the past 30 years. Researchers have conducted studies using both natural and synthetic sources of H2S, known as H2S donors, which have different characteristics in terms of how they release H2S. These donors can be inorganic salts or have various organic structures. In recent years, certain types of sulfur compounds found naturally in foods have been characterized as H2S donors and explored for their potential health benefits. These compounds are referred to as "sulfanutraceuticals," a term that combines "nutrition" and "pharmaceutical". It is used to describe products derived from food sources that offer additional health advantages. By introducing the terms "sulfaceuticals" and "sulfanutraceuticals," we categorize sulfur-containing substances based on their origin and their use in both preclinical and clinical research, as well as in dietary supplements.
Collapse
Affiliation(s)
- A Martelli
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy; Interdepartmental Research Center "Nutrafood: Nutraceutica e Alimentazione per la Salute", University of Pisa, 56126 Pisa, Italy; Interdepartmental Research Center "Biology and Pathology of Ageing", University of Pisa, 56126 Pisa, Italy
| | - R d'Emmanuele di Villa Bianca
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy
| | - G Cirino
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy
| | - R Sorrentino
- Department of Molecular Medicine and Medical Biotechnologies, School of Medicine, University of Naples, Federico II, Via Pansini, 5, 80131 Naples, Italy
| | - V Calderone
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy; Interdepartmental Research Center "Nutrafood: Nutraceutica e Alimentazione per la Salute", University of Pisa, 56126 Pisa, Italy; Interdepartmental Research Center "Biology and Pathology of Ageing", University of Pisa, 56126 Pisa, Italy.
| | - M Bucci
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy
| |
Collapse
|
8
|
Zhao S, Deslarzes-Dubuis C, Urfer S, Lambelet M, Déglise S, Allagnat F. Cystathionine Gamma Lyase Is Regulated by Flow and Controls Smooth Muscle Migration in Human Saphenous Vein. Antioxidants (Basel) 2023; 12:1731. [PMID: 37760034 PMCID: PMC10525225 DOI: 10.3390/antiox12091731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/28/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
The saphenous vein is the conduit of choice for bypass grafting. Unfortunately, the hemodynamic stress associated with the arterial environment of the bypass vein graft leads to the development of intimal hyperplasia (IH), an excessive cellular growth and collagen deposition that results in restenosis and secondary graft occlusion. Hydrogen sulfide (H2S) is a ubiquitous redox-modifying gasotransmitter that inhibits IH. H2S is produced via the reverse trans-sulfuration pathway by three enzymes: cystathionine γ-lyase (CSE), cystathionine β-synthase (CBS) and 3-mercaptopyruvate sulfurtransferase (3-MST). However, the expression and regulation of these enzymes in the human vasculature remains unclear. Here, we investigated the expression of CSE, CBS and 3-MST in segments of native human saphenous vein and large arteries. Furthermore, we evaluated the regulation of these enzymes in vein segments cultured under static, venous (7 mmHg pressure) or arterial (100 mmHg pressure) pressure. CSE was expressed in the media, neointima and intima of the vessels and was negatively regulated by arterial shear stress. Adenoviral-mediated CSE overexpression or RNA interference-mediated CSE knock-down revealed that CSE inhibited primary human VSMC migration but not proliferation. We propose that high shear stress in arteriovenous bypass grafts inhibits CSE expression in both the media and endothelium, which may contribute to increased VSMC migration in the context of IH.
Collapse
|
9
|
Katsouda A, Markou M, Zampas P, Varela A, Davos CH, Vellecco V, Cirino G, Bucci M, Papapetropoulos A. CTH/MPST double ablation results in enhanced vasorelaxation and reduced blood pressure via upregulation of the eNOS/sGC pathway. Front Pharmacol 2023; 14:1090654. [PMID: 36860295 PMCID: PMC9969096 DOI: 10.3389/fphar.2023.1090654] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 01/30/2023] [Indexed: 02/15/2023] Open
Abstract
Hydrogen sulfide (H2S), a gasotransmitter with protective effects in the cardiovascular system, is endogenously generated by three main enzymatic pathways: cystathionine gamma lyase (CTH), cystathionine beta synthase (CBS) and 3-mercaptopyruvate sulfurtransferase (MPST) enzymes. CTH and MPST are the predominant sources of H2S in the heart and blood vessels, exhibiting distinct effects in the cardiovascular system. To better understand the impact of H2S in cardiovascular homeostasis, we generated a double Cth/Mpst knockout (Cth/Mpst -/- ) mouse and characterized its cardiovascular phenotype. CTH/MPST-deficient mice were viable, fertile and exhibited no gross abnormalities. Lack of both CTH and MPST did not affect the levels of CBS and H2S-degrading enzymes in the heart and the aorta. Cth/Mpst -/- mice also exhibited reduced systolic, diastolic and mean arterial blood pressure, and presented normal left ventricular structure and fraction. Aortic ring relaxation in response to exogenously applied H2S was similar between the two genotypes. Interestingly, an enhanced endothelium-dependent relaxation to acetylcholine was observed in mice in which both enzymes were deleted. This paradoxical change was associated with upregulated levels of endothelial nitric oxide synthase (eNOS) and soluble guanylate cyclase (sGC) α1 and β1 subunits and increased NO-donor-induced vasorelaxation. Administration of a NOS-inhibitor, increased mean arterial blood pressure to a similar extent in wild-type and Cth/Mpst -/- mice. We conclude that chronic elimination of the two major H2S sources in the cardiovascular system, leads to an adaptive upregulation of eNOS/sGC signaling, revealing novel ways through which H2S affects the NO/cGMP pathway.
Collapse
Affiliation(s)
- Antonia Katsouda
- Clinical, Experimental Surgery and Translational Research Center, Biomedical Research Foundation of the Academy of Athens, Athens, Greece,Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Maria Markou
- Clinical, Experimental Surgery and Translational Research Center, Biomedical Research Foundation of the Academy of Athens, Athens, Greece,Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Paraskevas Zampas
- Clinical, Experimental Surgery and Translational Research Center, Biomedical Research Foundation of the Academy of Athens, Athens, Greece,Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Aimilia Varela
- Clinical, Experimental Surgery and Translational Research Center, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Constantinos H. Davos
- Clinical, Experimental Surgery and Translational Research Center, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Valentina Vellecco
- Department of Pharmacy, School of Medicine and Surgery, University of Naples, Federico II, Naples, Italy
| | - Giuseppe Cirino
- Department of Pharmacy, School of Medicine and Surgery, University of Naples, Federico II, Naples, Italy
| | - Mariarosaria Bucci
- Department of Pharmacy, School of Medicine and Surgery, University of Naples, Federico II, Naples, Italy
| | - Andreas Papapetropoulos
- Clinical, Experimental Surgery and Translational Research Center, Biomedical Research Foundation of the Academy of Athens, Athens, Greece,Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece,*Correspondence: Andreas Papapetropoulos,
| |
Collapse
|
10
|
Comparative Study of Different H 2S Donors as Vasodilators and Attenuators of Superoxide-Induced Endothelial Damage. Antioxidants (Basel) 2023; 12:antiox12020344. [PMID: 36829903 PMCID: PMC9951978 DOI: 10.3390/antiox12020344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 01/25/2023] [Accepted: 01/30/2023] [Indexed: 02/04/2023] Open
Abstract
In the last years, research proofs have confirmed that hydrogen sulfide (H2S) plays an important role in various physio-pathological processes, such as oxidation, inflammation, neurophysiology, and cardiovascular protection; in particular, the protective effects of H2S in cardiovascular diseases were demonstrated. The interest in H2S-donating molecules as tools for biological and pharmacological studies has grown, together with the understanding of H2S importance. Here we performed a comparative study of a series of H2S donor molecules with different chemical scaffolds and H2S release mechanisms. The compounds were tested in human serum for their stability and ability to generate H2S. Their vasorelaxant properties were studied on rat aorta strips, and the capacity of the selected compounds to protect NO-dependent endothelium reactivity in an acute oxidative stress model was tested. H2S donors showed different H2S-releasing kinetic and produced amounts and vasodilating profiles; in particular, compound 6 was able to attenuate the dysfunction of relaxation induced by pyrogallol exposure, showing endothelial protective effects. These results may represent a useful basis for the rational development of promising H2S-releasing agents also conjugated with other pharmacophores.
Collapse
|
11
|
Kolluru GK, Shackelford RE, Shen X, Dominic P, Kevil CG. Sulfide regulation of cardiovascular function in health and disease. Nat Rev Cardiol 2023; 20:109-125. [PMID: 35931887 PMCID: PMC9362470 DOI: 10.1038/s41569-022-00741-6] [Citation(s) in RCA: 88] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/21/2022] [Indexed: 01/21/2023]
Abstract
Hydrogen sulfide (H2S) has emerged as a gaseous signalling molecule with crucial implications for cardiovascular health. H2S is involved in many biological functions, including interactions with nitric oxide, activation of molecular signalling cascades, post-translational modifications and redox regulation. Various preclinical and clinical studies have shown that H2S and its synthesizing enzymes - cystathionine γ-lyase, cystathionine β-synthase and 3-mercaptosulfotransferase - can protect against cardiovascular pathologies, including arrhythmias, atherosclerosis, heart failure, myocardial infarction and ischaemia-reperfusion injury. The bioavailability of H2S and its metabolites, such as hydropersulfides and polysulfides, is substantially reduced in cardiovascular disease and has been associated with single-nucleotide polymorphisms in H2S synthesis enzymes. In this Review, we highlight the role of H2S, its synthesizing enzymes and metabolites, their roles in the cardiovascular system, and their involvement in cardiovascular disease and associated pathologies. We also discuss the latest clinical findings from the field and outline areas for future study.
Collapse
Affiliation(s)
- Gopi K Kolluru
- Department of Pathology, Louisiana State University Health Sciences Center, Shreveport, LA, USA
- Center of Excellence for Cardiovascular Diseases & Sciences, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - Rodney E Shackelford
- Department of Pathology, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - Xinggui Shen
- Department of Pathology, Louisiana State University Health Sciences Center, Shreveport, LA, USA
- Center of Excellence for Cardiovascular Diseases & Sciences, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - Paari Dominic
- Center of Excellence for Cardiovascular Diseases & Sciences, Louisiana State University Health Sciences Center, Shreveport, LA, USA
- Department of Medicine, Louisiana State University Health Sciences Center, Shreveport, LA, USA
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - Christopher G Kevil
- Department of Pathology, Louisiana State University Health Sciences Center, Shreveport, LA, USA.
- Center of Excellence for Cardiovascular Diseases & Sciences, Louisiana State University Health Sciences Center, Shreveport, LA, USA.
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center, Shreveport, LA, USA.
- Cellular Biology and Anatomy, Louisiana State University Health Sciences Center, Shreveport, LA, USA.
| |
Collapse
|
12
|
Bełtowski J, Kowalczyk-Bołtuć J. Hydrogen sulfide in the experimental models of arterial hypertension. Biochem Pharmacol 2023; 208:115381. [PMID: 36528069 DOI: 10.1016/j.bcp.2022.115381] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 12/07/2022] [Accepted: 12/08/2022] [Indexed: 12/15/2022]
Abstract
Hydrogen sulfide (H2S) is the third member of gasotransmitter family together with nitric oxide and carbon monoxide. H2S is involved in the regulation of blood pressure by controlling vascular tone, sympathetic nervous system activity and renal sodium excretion. Moderate age-dependent hypertension and endothelial dysfunction develop in mice with knockout of cystathionine γ-lyase (CSE), the enzyme involved in H2S production in the cardiovascular system. Decreased H2S concentration as well as the expression and activities of H2S-producing enzymes have been observed in most commonly used animal models of hypertension such as spontaneously hypertensive rats, Dahl salt-sensitive rats, chronic administration of NO synthase inhibitors, angiotensin II infusion and two-kidney-one-clip hypertension, the model of renovascular hypertension. Administration of H2S donors decreases blood pressure in these models but has no major effects on blood pressure in normotensive animals. H2S donors not only reduce blood pressure but also end-organ injury such as vascular and myocardial hypertrophy and remodeling, hypertension-associated kidney injury or erectile dysfunction. H2S level and signaling are modulated by some antihypertensive medications as well as natural products with antihypertensive activity such as garlic polysulfides or plant-derived isothiocyanates as well as non-pharmacological interventions. Modifying H2S signaling is the potential novel therapeutic approach for the management of hypertension, however, more experimental clinical studies about the role of H2S in hypertension are required.
Collapse
Affiliation(s)
- Jerzy Bełtowski
- Department of Pathophysiology, Medical University of Lublin, Lublin, Poland.
| | - Jolanta Kowalczyk-Bołtuć
- Endocrinology and Metabolism Clinic, Internal Medicine Clinic with Hypertension Department, Medical Institute of Rural Health, Lublin, Poland.
| |
Collapse
|
13
|
Zhang Y, Jing M, Cai C, Zhu S, Zhang C, Wang Q, Zhai Y, Ji X, Wu D. Role of hydrogen sulphide in physiological and pathological angiogenesis. Cell Prolif 2022; 56:e13374. [PMID: 36478328 PMCID: PMC9977675 DOI: 10.1111/cpr.13374] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 11/08/2022] [Accepted: 11/21/2022] [Indexed: 12/12/2022] Open
Abstract
The role of hydrogen sulphide (H2 S) in angiogenesis has been widely demonstrated. Vascular endothelial growth factor (VEGF) plays an important role in H2 S-induced angiogenesis. H2 S promotes angiogenesis by upregulating VEGF via pro-angiogenic signal transduction. The involved signalling pathways include the mitogen-activated protein kinase pathway, phosphoinositide-3 kinase pathway, nitric oxide (NO) synthase/NO pathway, signal transducer and activator of transcription 3 (STAT3) pathway, and adenosine triphosphate (ATP)-sensitive potassium (KATP ) channels. H2 S has been shown to contribute to tumour angiogenesis, diabetic wound healing, angiogenesis in cardiac and cerebral ischaemic tissues, and physiological angiogenesis during the menstrual cycle and pregnancy. Furthermore, H2 S can exert an anti-angiogenic effect by inactivating Wnt/β-catenin signalling or blocking the STAT3 pathway in tumours. Therefore, H2 S plays a double-edged sword role in the process of angiogenesis. The regulation of H2 S production is a promising therapeutic approach for angiogenesis-associated diseases. Novel H2 S donors and/or inhibitors can be developed in the treatment of angiogenesis-dependent diseases.
Collapse
Affiliation(s)
- Yan‐Xia Zhang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical SciencesHenan UniversityKaifengHenanChina,Kaifeng Municipal Key Laboratory of Cell Signal Transduction, Henan Provincial Engineering Centre for Tumor Molecular MedicineHenan UniversityKaifengHenanChina
| | - Mi‐Rong Jing
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical SciencesHenan UniversityKaifengHenanChina,Kaifeng Municipal Key Laboratory of Cell Signal Transduction, Henan Provincial Engineering Centre for Tumor Molecular MedicineHenan UniversityKaifengHenanChina
| | - Chun‐Bo Cai
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical SciencesHenan UniversityKaifengHenanChina,Kaifeng Municipal Key Laboratory of Cell Signal Transduction, Henan Provincial Engineering Centre for Tumor Molecular MedicineHenan UniversityKaifengHenanChina
| | - Shuai‐Gang Zhu
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical SciencesHenan UniversityKaifengHenanChina,Kaifeng Municipal Key Laboratory of Cell Signal Transduction, Henan Provincial Engineering Centre for Tumor Molecular MedicineHenan UniversityKaifengHenanChina
| | - Chao‐Jing Zhang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical SciencesHenan UniversityKaifengHenanChina,Kaifeng Municipal Key Laboratory of Cell Signal Transduction, Henan Provincial Engineering Centre for Tumor Molecular MedicineHenan UniversityKaifengHenanChina
| | - Qi‐Meng Wang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical SciencesHenan UniversityKaifengHenanChina,Kaifeng Municipal Key Laboratory of Cell Signal Transduction, Henan Provincial Engineering Centre for Tumor Molecular MedicineHenan UniversityKaifengHenanChina
| | - Yuan‐Kun Zhai
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical SciencesHenan UniversityKaifengHenanChina,School of StomatologyHenan UniversityKaifengHenanChina
| | - Xin‐Ying Ji
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical SciencesHenan UniversityKaifengHenanChina,Kaifeng Municipal Key Laboratory of Cell Signal Transduction, Henan Provincial Engineering Centre for Tumor Molecular MedicineHenan UniversityKaifengHenanChina,Kaifeng Key Laboratory of Infection and Biological Safety, School of Basic Medical SciencesHenan UniversityKaifengHenanChina
| | - Dong‐Dong Wu
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical SciencesHenan UniversityKaifengHenanChina,Kaifeng Municipal Key Laboratory of Cell Signal Transduction, Henan Provincial Engineering Centre for Tumor Molecular MedicineHenan UniversityKaifengHenanChina,School of StomatologyHenan UniversityKaifengHenanChina
| |
Collapse
|
14
|
Lobov GI. Contractile Function of the Capsule of the Bovine Mesenteric Lymph Nodes at the Early Stage of Inflammation. J EVOL BIOCHEM PHYS+ 2022. [DOI: 10.1134/s0022093022060370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
15
|
Hydrogen sulfide donor GYY4137 attenuates vascular complications in mesenteric bed of streptozotocin-induced diabetic rats. Eur J Pharmacol 2022; 933:175265. [PMID: 36108734 DOI: 10.1016/j.ejphar.2022.175265] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 08/26/2022] [Accepted: 09/06/2022] [Indexed: 01/06/2023]
Abstract
Hydrogen sulfide (H2S) has been reported to have beneficial effects in different pathological conditions. OBJECTIVES the effects of chronic treatment of diabetic rats with GYY4137 (slow releasing H2S donor) or NaHS (fast releasing H2S donor) on the reactivity of the mesenteric bed to vasoactive agonists and the changes in its downstream effectors, ERK1/2 and p38 MAP Kinase have been investigated. In addition, the levels of nitric oxide (NO) and H2S in all groups were measured. METHODS diabetes was induced by a single intraperitoneal (ip) injection of streptozotocin (STZ; 55 mg/kg). Sprague Dawley (SD; n = 10-12/group) rats were randomly divided into six groups: control, STZ-induced diabetic rats, GYY4137-treated control, NaHS-treated control, GYY4137-treated diabetic, and NaHS-treated diabetic. After 28 days of treatment, rats were sacrificed and mesenteric beds were isolated for functional or biochemical studies. The vascular reactivity of the perfused mesenteric bed to norepinephrine, carbachol and sodium nitroprusside were determined by measurement of changes in perfusion pressure. Western blotting was performed to measure the protein expression of ERK1/2, p38, eNOS, and H2S biosynthesizing enzymes cystathionine-β-synthase and cystathionine-γ-lyase. NO and H2S levels were measured in all groups in isolated mesenteric tissues or plasma. RESULTS diabetes resulted in a significant increase in vasoconstrictor responses to norepinephrine (e.g., 129.6 ± 6.77 mmHg in diabetic vs 89.3 ± 8.48 mmHg in control at 10-7 dose), and carbachol-induced vasodilation was significantly reduced in diabetic mesenteric bed (e.g., 68.9 ± 4.8 mmHg in diabetic vs 90.6 ± 2.2 mmHg in control at 10-7 dose). Chronic treatment of the diabetic rats with GYY4137 resulted in a significant improvement in the response to norepinephrine (e.g., 86.66 ± 8.04 mmHg in GYY4137-treated diabetic vs 129.6 ± 6.77 mmHg in untreated diabetic at 10-7 dose) or carbachol (e.g., 84.90 ± 2.48 mmHg in GYY4137-treated diabetic vs 68.9 ± 4.8 mmHg in untreated diabetic at 10-7 dose). The biochemical studies showed a marked reduction of the protein expression of ERK and p38 and a significant upregulation of the expression of eNOS and H2S synthesizing enzymes after chronic treatment with GYY4137. Plasma levels of NO and H2S were significantly elevated after treatment with GYY4137. However, H2S production in the mesenteric bed showed a marginal elevation in diabetic tissues compared to controls. CONCLUSION the results indicate that GYY4137 may be a novel therapeutic tool to prevent diabetes-associated vascular dysfunction.
Collapse
|
16
|
Mhatre S, Opere CA, Singh S. Unmet needs in glaucoma therapy: The potential role of hydrogen sulfide and its delivery strategies. J Control Release 2022; 347:256-269. [PMID: 35526614 DOI: 10.1016/j.jconrel.2022.05.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 04/29/2022] [Accepted: 05/02/2022] [Indexed: 12/26/2022]
Abstract
Glaucoma is an optic neuropathy disorder marked by progressive degeneration of the retinal ganglion cells (RGC). It is a leading cause of blindness worldwide, prevailing in around 2.2% of the global population. The hallmark of glaucoma, intraocular pressure (IOP), is governed by the aqueous humor dynamics which plays a crucial role in the pathophysiology of the diesease. Glaucomatous eye has an IOP of more than 22 mmHg as compared to normotensive pressure of 10-21 mmHg. Currently used treatments focus on reducing the elevated IOP through use of classes of drugs that either increase aqueous humor outflow and/or decrease its production. However, effective treatments should not only reduce IOP, but also offer neuroprotection and regeneration of RGCs. Hydrogen Sulfide (H2S), a gasotransmitter with several endogenous functions in mammalian tissues, is being investigated for its potential application in glaucoma. In addition to decreasing IOP by increasing aqueous humor outflow, it scavenges reactive oxygen species, upregulates the cellular antioxidant glutathione and protects RGCs from excitotoxicity. Despite the potential of H2S in glaucoma, its delivery to anterior and posterior regions of the eye is a challenge due to its unique physicochemical properties. Firstly, development of any delivery system should not require an aqueous environment since many H2S donors are susceptible to burst release of the gas in contact with water, causing potential toxicity and adverse effects owing to its inherent toxicity at higher concentrations. Secondly, the release of the gas from the donor needs to be sustained for a prolonged period of time to reduce dosing frequency as per the requirements of regulatory bodies. Lastly, the delivery system should provide adequate bioavailability throughout its period of application. Hence, an ideal delivery system should aim to tackle all the above challenges related to barriers of ocular delivery and physicochemical properties of H2S itself. This review discusses the therapeutic potential of H2S, its delivery challenges and strategies to overcome the associated chalenges.
Collapse
Affiliation(s)
- Susmit Mhatre
- School of Pharmacy and Health Professions, Creighton University, Omaha, NE 68178, USA.
| | - Catherine A Opere
- School of Pharmacy and Health Professions, Creighton University, Omaha, NE 68178, USA.
| | - Somnath Singh
- School of Pharmacy and Health Professions, Creighton University, Omaha, NE 68178, USA.
| |
Collapse
|
17
|
Cirino G, Szabo C, Papapetropoulos A. Physiological roles of hydrogen sulfide in mammalian cells, tissues and organs. Physiol Rev 2022; 103:31-276. [DOI: 10.1152/physrev.00028.2021] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
H2S belongs to the class of molecules known as gasotransmitters, which also includes nitric oxide (NO) and carbon monoxide (CO). Three enzymes are recognized as endogenous sources of H2S in various cells and tissues: cystathionine g-lyase (CSE), cystathionine β-synthase (CBS) and 3-mercaptopyruvate sulfurtransferase (3-MST). The current article reviews the regulation of these enzymes as well as the pathways of their enzymatic and non-enzymatic degradation and elimination. The multiple interactions of H2S with other labile endogenous molecules (e.g. NO) and reactive oxygen species are also outlined. The various biological targets and signaling pathways are discussed, with special reference to H2S and oxidative posttranscriptional modification of proteins, the effect of H2S on channels and intracellular second messenger pathways, the regulation of gene transcription and translation and the regulation of cellular bioenergetics and metabolism. The pharmacological and molecular tools currently available to study H2S physiology are also reviewed, including their utility and limitations. In subsequent sections, the role of H2S in the regulation of various physiological and cellular functions is reviewed. The physiological role of H2S in various cell types and organ systems are overviewed. Finally, the role of H2S in the regulation of various organ functions is discussed as well as the characteristic bell-shaped biphasic effects of H2S. In addition, key pathophysiological aspects, debated areas, and future research and translational areas are identified A wide array of significant roles of H2S in the physiological regulation of all organ functions emerges from this review.
Collapse
Affiliation(s)
- Giuseppe Cirino
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples, Italy
| | - Csaba Szabo
- Chair of Pharmacology, Section of Medicine, University of Fribourg, Switzerland
| | - Andreas Papapetropoulos
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece & Clinical, Experimental Surgery and Translational Research Center, Biomedical Research Foundation of the Academy of Athens, Greece
| |
Collapse
|
18
|
Sun C, Yu W, lv B, Zhang Y, Du S, Zhang H, Du J, Jin H, Sun Y, Huang Y. Role of hydrogen sulfide in sulfur dioxide production and vascular regulation. PLoS One 2022; 17:e0264891. [PMID: 35298485 PMCID: PMC8929647 DOI: 10.1371/journal.pone.0264891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 02/19/2022] [Indexed: 12/03/2022] Open
Abstract
Both hydrogen sulfide (H2S) and sulfur dioxide (SO2) are produced endogenously from the mammalian metabolic pathway of sulfur-containing amino acids and play important roles in several vascular diseases. However, their interaction during the control of vascular function has not been fully clear. Here, we investigated the potential role of H2S in SO2 production and vascular regulation in vivo and in vitro. Wistar rats were divided into the vehicle, SO2, DL-propargylglycine (PPG) + SO2, β-cyano-L-alanine (BCA) + SO2 and sodium hydrosulfide (NaHS) + SO2 groups. SO2 donor was administered with or without pre-administration of PPG, BCA or NaHS for 30 min after blood pressure was stabilized for 1 h, and then, the change in blood pressure was detected by catheterization via the common carotid artery. Rat plasma SO2 and H2S concentrations were measured by high performance liquid chromatography and sensitive sulfur electrode, respectively. The isolated aortic rings were prepared for the measurement of changes in vasorelaxation stimulated by SO2 after PPG, BCA or NaHS pre-incubation. Results showed that the intravenous injection of SO2 donors caused transient hypotension in rats compared with vehicle group. After PPG or BCA pretreatment, the plasma H2S content decreased but the SO2 content increased markedly, and the hypotensive effect of SO2 was significantly enhanced. Conversely, NaHS pretreatment upregulated the plasma H2S content but reduced SO2 content, and attenuated the hypotensive effect of SO2. After PPG or BCA pre-incubation, the vasorelaxation response to SO2 was enhanced significantly. While NaHS pre-administration weakened the SO2-induced relaxation in aortic rings. In conclusion, our in vivo and in vitro data indicate that H2S negatively controls the plasma content of SO2 and the vasorelaxant effect under physiological conditions.
Collapse
Affiliation(s)
- Chufan Sun
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Wen Yu
- Department of Cardiology, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
| | - Boyang lv
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Yanan Zhang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Shuxu Du
- Department of Pediatrics, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Heng Zhang
- Department of Endocrinology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Junbao Du
- Department of Pediatrics, Peking University First Hospital, Beijing, China
- Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing, China
| | - Hongfang Jin
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Yan Sun
- Department of Pediatrics, Peking University First Hospital, Beijing, China
- * E-mail: (YH); (YS)
| | - Yaqian Huang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
- * E-mail: (YH); (YS)
| |
Collapse
|
19
|
Vellecco V, Panza E, Bibli SI, Casillo GM, Raucci F, Manzo OL, Smimmo M, Villani R, Cavezza MR, Fleming I, d'Emmanuele di Villa Bianca R, Maione F, Cirino G, Bucci M. Phosphodiesterases S-sulfhydration contributes to human skeletal muscle function. Pharmacol Res 2022; 177:106108. [PMID: 35121122 DOI: 10.1016/j.phrs.2022.106108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/26/2022] [Accepted: 01/28/2022] [Indexed: 01/08/2023]
Abstract
The increase in intracellular calcium is influenced by cyclic nucleotides (cAMP and cGMP) content, which rating is governed by phosphodiesterases (PDEs) activity.Despite it has been demonstrated a beneficial effect of PDEs inhibitors in different pathological conditions involving SKM, not much is known on the role exerted by cAMP-cGMP/PDEs axis in human SKM contractility. Here, we show that Ssulfhydration of PDEs modulates human SKM contractility in physiological and pathological conditions. Having previously demonstrated that, in the rare human syndrome Malignant Hyperthermia (MH), there is an overproduction of hydrogen sulfide (H 2S) within SKM contributing to hyper-contractility, here we have used MH negative diagnosed biopsies (MHN) as healthy SKM, and MH susceptible diagnosed biopsies (MHS) as a pathological model of SKM hypercontractility. The study has been performed on MHS and MHN human biopsies after diagnosis has been made and on primary SKM cells derived from both MHN and MHS biopsies. Our data demonstrate that in normal conditions PDEs are S-sulfhydrated in both quadriceps' biopsies and primary SKM cells. This post translational modification (PTM) negatively regulates PDEs activity with consequent increase of both cAMP and cGMP levels. In hypercontractile biopsies, due to an excessive H2S content, there is an enhanced Ssulfhydration of PDEs that further increases cyclic nucleotides levels contributing to SKM hyper-contractility. Thus, the identification of a new endogenous PTM modulating PDEs activity represents an advancement in SKM physiopathology understanding.
Collapse
Affiliation(s)
- Valentina Vellecco
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II-, Via D. Montesano, 49, 80131 Naples, Italy
| | - Elisabetta Panza
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II-, Via D. Montesano, 49, 80131 Naples, Italy
| | - Sofia-Iris Bibli
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Frankfurt am Main, Germany; German Center of Cardiovascular Research (DZHK), Partner site RheinMain, Frankfurt am Main, Germany
| | - Gian Marco Casillo
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II-, Via D. Montesano, 49, 80131 Naples, Italy
| | - Federica Raucci
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II-, Via D. Montesano, 49, 80131 Naples, Italy
| | - Onorina Laura Manzo
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II-, Via D. Montesano, 49, 80131 Naples, Italy; Center for Vascular Biology, Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, Cornell University, New York, New York, USA
| | - Martina Smimmo
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II-, Via D. Montesano, 49, 80131 Naples, Italy
| | - Romolo Villani
- U.O.C. Terapia Intensiva Grandi Ustionati (T.I.G.U.) Azienda Ospedaliera di Rilievo Nazionale "A. Cardarelli"
| | | | - Ingrid Fleming
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Frankfurt am Main, Germany; German Center of Cardiovascular Research (DZHK), Partner site RheinMain, Frankfurt am Main, Germany
| | | | - Francesco Maione
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II-, Via D. Montesano, 49, 80131 Naples, Italy
| | - Giuseppe Cirino
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II-, Via D. Montesano, 49, 80131 Naples, Italy
| | - Mariarosaria Bucci
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II-, Via D. Montesano, 49, 80131 Naples, Italy.
| |
Collapse
|
20
|
Danger perception and stress response through an olfactory sensor for the bacterial metabolite hydrogen sulfide. Neuron 2021; 109:2469-2484.e7. [PMID: 34186026 DOI: 10.1016/j.neuron.2021.05.032] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 03/01/2021] [Accepted: 05/27/2021] [Indexed: 12/11/2022]
Abstract
The olfactory system serves a critical function as a danger detection system to trigger defense responses essential for survival. The cellular and molecular mechanisms that drive such defenses in mammals are incompletely understood. Here, we have discovered an ultrasensitive olfactory sensor for the highly poisonous bacterial metabolite hydrogen sulfide (H2S) in mice. An atypical class of sensory neurons in the main olfactory epithelium, the type B cells, is activated by both H2S and low O2. These two stimuli trigger, respectively, Cnga2- and Trpc2-signaling pathways, which operate in separate subcellular compartments, the cilia and the dendritic knob. This activation drives essential defensive responses: elevation of the stress hormone ACTH, stress-related self-grooming behavior, and conditioned place avoidance. Our findings identify a previously unknown signaling paradigm in mammalian olfaction and define type B cells as chemosensory neurons that integrate distinct danger inputs from the external environment with appropriate defense outputs.
Collapse
|
21
|
Testai L, Brancaleone V, Flori L, Montanaro R, Calderone V. Modulation of EndMT by Hydrogen Sulfide in the Prevention of Cardiovascular Fibrosis. Antioxidants (Basel) 2021; 10:antiox10060910. [PMID: 34205197 PMCID: PMC8229400 DOI: 10.3390/antiox10060910] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/23/2021] [Accepted: 06/01/2021] [Indexed: 02/06/2023] Open
Abstract
Endothelial mesenchymal transition (EndMT) has been described as a fundamental process during embryogenesis; however, it can occur also in adult age, underlying pathological events, including fibrosis. Indeed, during EndMT, the endothelial cells lose their specific markers, such as vascular endothelial cadherin (VE-cadherin), and acquire a mesenchymal phenotype, expressing specific products, such as α-smooth muscle actin (α-SMA) and type I collagen; moreover, the integrity of the endothelium is disrupted, and cells show a migratory, invasive and proliferative phenotype. Several stimuli can trigger this transition, but transforming growth factor (TGF-β1) is considered the most relevant. EndMT can proceed in a canonical smad-dependent or non-canonical smad-independent manner and ultimately regulate gene expression of pro-fibrotic machinery. These events lead to endothelial dysfunction and atherosclerosis at the vascular level as well as myocardial hypertrophy and fibrosis. Indeed, EndMT is the mechanism which promotes the progression of cardiovascular disorders following hypertension, diabetes, heart failure and also ageing. In this scenario, hydrogen sulfide (H2S) has been widely described for its preventive properties, but its role in EndMT is poorly investigated. This review is focused on the evaluation of the putative role of H2S in the EndMT process.
Collapse
Affiliation(s)
- Lara Testai
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy; (L.F.); (V.C.)
- Interdepartmental Center of Ageing, University of Pisa, 56126 Pisa, Italy
- Correspondence:
| | - Vincenzo Brancaleone
- Department of Science, University of Basilicata, 85100 Potenza, Italy; (V.B.); (R.M.)
| | - Lorenzo Flori
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy; (L.F.); (V.C.)
| | - Rosangela Montanaro
- Department of Science, University of Basilicata, 85100 Potenza, Italy; (V.B.); (R.M.)
| | - Vincenzo Calderone
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy; (L.F.); (V.C.)
- Interdepartmental Center of Ageing, University of Pisa, 56126 Pisa, Italy
| |
Collapse
|
22
|
LaPenna KB, Polhemus DJ, Doiron JE, Hidalgo HA, Li Z, Lefer DJ. Hydrogen Sulfide as a Potential Therapy for Heart Failure-Past, Present, and Future. Antioxidants (Basel) 2021; 10:485. [PMID: 33808673 PMCID: PMC8003444 DOI: 10.3390/antiox10030485] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/05/2021] [Accepted: 03/17/2021] [Indexed: 12/12/2022] Open
Abstract
Hydrogen sulfide (H2S) is an endogenous, gaseous signaling molecule that plays a critical role in cardiac and vascular biology. H2S regulates vascular tone and oxidant defenses and exerts cytoprotective effects in the heart and circulation. Recent studies indicate that H2S modulates various components of metabolic syndrome, including obesity and glucose metabolism. This review will discuss studies exhibiting H2S -derived cardioprotective signaling in heart failure with reduced ejection fraction (HFrEF). We will also discuss the role of H2S in metabolic syndrome and heart failure with preserved ejection fraction (HFpEF).
Collapse
Affiliation(s)
- Kyle B. LaPenna
- Cardiovascular Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA; (K.B.L.); (D.J.P.); (J.E.D.); (H.A.H.); (Z.L.)
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - David J. Polhemus
- Cardiovascular Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA; (K.B.L.); (D.J.P.); (J.E.D.); (H.A.H.); (Z.L.)
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Jake E. Doiron
- Cardiovascular Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA; (K.B.L.); (D.J.P.); (J.E.D.); (H.A.H.); (Z.L.)
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Hunter A. Hidalgo
- Cardiovascular Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA; (K.B.L.); (D.J.P.); (J.E.D.); (H.A.H.); (Z.L.)
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Zhen Li
- Cardiovascular Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA; (K.B.L.); (D.J.P.); (J.E.D.); (H.A.H.); (Z.L.)
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - David J. Lefer
- Cardiovascular Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA; (K.B.L.); (D.J.P.); (J.E.D.); (H.A.H.); (Z.L.)
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| |
Collapse
|
23
|
Randi EB, Casili G, Jacquemai S, Szabo C. Selenium-Binding Protein 1 (SELENBP1) Supports Hydrogen Sulfide Biosynthesis and Adipogenesis. Antioxidants (Basel) 2021; 10:antiox10030361. [PMID: 33673622 PMCID: PMC7997437 DOI: 10.3390/antiox10030361] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/19/2021] [Accepted: 02/24/2021] [Indexed: 12/12/2022] Open
Abstract
Hydrogen sulfide (H2S), a mammalian gasotransmitter, is involved in the regulation of a variety of fundamental processes including intracellular signaling, cellular bioenergetics, cell proliferation, and cell differentiation. Cystathionine γ-lyase (CSE), cystathionine β-synthase (CBS), and 3-mercaptopyruvate sulfurtransferase (3-MST) are currently considered the three principal mammalian H2S-generating enzymes. However, recently, a fourth H2S-producing enzyme, selenium-binding-protein 1 (SELENBP1), has also been identified. The cellular regulatory role(s) of SELENBP1 are incompletely understood. The current study investigated whether SELENBP1 plays a role in the regulation of adipocyte differentiation in vitro. 3T3-L1 preadipocytes with or without SELENBP1 knock-down were subjected to differentiation-inducing conditions, and H2S production, cellular lipid accumulation, cell proliferation, and mitochondrial activity were quantified. Adipocyte differentiation was associated with an upregulation of H2S biosynthesis. SELENBP1 silencing decreased cellular H2S levels, suppressed the expression of the three “classical” H2S-producing enzymes (CBS, CSE, and 3-MST) and significantly suppressed adipocyte differentiation. Treatment of SELENBP1 knock-down cells with the H2S donor GYY4137 partially restored lipid accumulation, increased cellular H2S levels, and exerted a bell-shaped effect on cellular bioenergetics (enhancement at 1 and 3 mM, and inhibition at 6 mM). We conclude that SELENBP1 in adipocytes (1) contributes to H2S biosynthesis and (2) acts as an endogenous stimulator of adipocyte differentiation.
Collapse
|
24
|
Szabo C. Hydrogen Sulfide, an Endogenous Stimulator of Mitochondrial Function in Cancer Cells. Cells 2021; 10:cells10020220. [PMID: 33499368 PMCID: PMC7911547 DOI: 10.3390/cells10020220] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 01/20/2021] [Accepted: 01/21/2021] [Indexed: 12/12/2022] Open
Abstract
Hydrogen sulfide (H2S) has a long history as toxic gas and environmental hazard; inhibition of cytochrome c oxidase (mitochondrial Complex IV) is viewed as a primary mode of its cytotoxic action. However, studies conducted over the last two decades unveiled multiple biological regulatory roles of H2S as an endogenously produced mammalian gaseous transmitter. Cystathionine γ-lyase (CSE), cystathionine β-synthase (CBS) and 3-mercaptopyruvate sulfurtransferase (3-MST) are currently viewed as the principal mammalian H2S-generating enzymes. In contrast to its inhibitory (toxicological) mitochondrial effects, at lower (physiological) concentrations, H2S serves as a stimulator of electron transport in mammalian mitochondria, by acting as an electron donor—with sulfide:quinone oxidoreductase (SQR) being the immediate electron acceptor. The mitochondrial roles of H2S are significant in various cancer cells, many of which exhibit high expression and partial mitochondrial localization of various H2S producing enzymes. In addition to the stimulation of mitochondrial ATP production, the roles of endogenous H2S in cancer cells include the maintenance of mitochondrial organization (protection against mitochondrial fission) and the maintenance of mitochondrial DNA repair (via the stimulation of the assembly of mitochondrial DNA repair complexes). The current article overviews the state-of-the-art knowledge regarding the mitochondrial functions of endogenously produced H2S in cancer cells.
Collapse
Affiliation(s)
- Csaba Szabo
- Chair of Pharmacology, Section of Medicine, University of Fribourg, CH-1700 Fribourg, Switzerland
| |
Collapse
|
25
|
Ascenção K, Dilek N, Augsburger F, Panagaki T, Zuhra K, Szabo C. Pharmacological induction of mesenchymal-epithelial transition via inhibition of H2S biosynthesis and consequent suppression of ACLY activity in colon cancer cells. Pharmacol Res 2021; 165:105393. [PMID: 33484818 DOI: 10.1016/j.phrs.2020.105393] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/12/2020] [Accepted: 12/12/2020] [Indexed: 02/07/2023]
Abstract
Hydrogen sulfide (H2S) is an important endogenous gaseous transmitter mediator, which regulates a variety of cellular functions in autocrine and paracrine manner. The enzymes responsible for the biological generation of H2S include cystathionine-β-synthase (CBS), cystathionine-γ-lyase (CSE) and 3-mercaptopyruvate sulfurtransferase (3-MST). Increased expression of these enzymes and overproduction of H2S has been implicated in essential processes of various cancer cells, including the stimulation of metabolism, maintenance of cell proliferation and cytoprotection. Cancer cell identity is characterized by so-called "transition states". The progression from normal (epithelial) to transformed (mesenchymal) state is termed epithelial-to-mesenchymal transition (EMT) whereby epithelial cells lose their cell-to-cell adhesion capacity and gain mesenchymal characteristics. The transition process can also proceed in the opposite direction, and this process is termed mesenchymal-to-epithelial transition (MET). The current project was designed to determine whether inhibition of endogenous H2S production in colon cancer cells affects the EMT/MET balance in vitro. Inhibition of H2S biosynthesis in HCT116 human colon cancer cells was achieved either with aminooxyacetic acid (AOAA) or 2-[(4-hydroxy-6-methylpyrimidin-2-yl)sulfanyl]-1-(naphthalen-1-yl)ethan-1-one (HMPSNE). These inhibitors induced an upregulation of E-cadherin and Zonula occludens-1 (ZO-1) expression and downregulation of fibronectin expression, demonstrating that H2S biosynthesis inhibitors can produce a pharmacological induction of MET in colon cancer cells. These actions were functionally reflected in an inhibition of cell migration, as demonstrated in an in vitro "scratch wound" assay. The mechanisms involved in the action of endogenously produced H2S in cancer cells in promoting (or maintaining) EMT (or tonically inhibiting MET) relate, at least in part, in the induction of ATP citrate lyase (ACLY) protein expression, which occurs via upregulation of ACLY mRNA (via activation of the ACLY promoter). ACLY in turn, regulates the Wnt-β-catenin pathway, an essential regulator of the EMT/MET balance. Taken together, pharmacological inhibition of endogenous H2S biosynthesis in cancer cells induces MET. We hypothesize that this may contribute to anti-cancer / anti-metastatic effects of H2S biosynthesis inhibitors.
Collapse
Affiliation(s)
- Kelly Ascenção
- Chair of Pharmacology, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland.
| | - Nahzli Dilek
- Chair of Pharmacology, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland.
| | - Fiona Augsburger
- Chair of Pharmacology, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland.
| | - Theodora Panagaki
- Chair of Pharmacology, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland.
| | - Karim Zuhra
- Chair of Pharmacology, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland.
| | - Csaba Szabo
- Chair of Pharmacology, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland.
| |
Collapse
|
26
|
Ngowi EE, Sarfraz M, Afzal A, Khan NH, Khattak S, Zhang X, Li T, Duan SF, Ji XY, Wu DD. Roles of Hydrogen Sulfide Donors in Common Kidney Diseases. Front Pharmacol 2020; 11:564281. [PMID: 33364941 PMCID: PMC7751760 DOI: 10.3389/fphar.2020.564281] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 09/30/2020] [Indexed: 12/15/2022] Open
Abstract
Hydrogen sulfide (H2S) plays a key role in the regulation of physiological processes in mammals. The decline in H2S level has been reported in numerous renal disorders. In animal models of renal disorders, treatment with H2S donors could restore H2S levels and improve renal functions. H2S donors suppress renal dysfunction by regulating autophagy, apoptosis, oxidative stress, and inflammation through multiple signaling pathways, such as TRL4/NLRP3, AMP-activated protein kinase/mammalian target of rapamycin, transforming growth factor-β1/Smad3, extracellular signal-regulated protein kinases 1/2, mitogen-activated protein kinase, and nuclear factor kappa B. In this review, we summarize recent developments in the effects of H2S donors on the treatment of common renal diseases, including acute/chronic kidney disease, renal fibrosis, unilateral ureteral obstruction, glomerulosclerosis, diabetic nephropathy, hyperhomocysteinemia, drug-induced nephrotoxicity, metal-induced nephrotoxicity, and urolithiasis. Novel H2S donors can be designed and applied in the treatment of common renal diseases.
Collapse
Affiliation(s)
- Ebenezeri Erasto Ngowi
- School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan International Joint Laboratory for Nuclear Protein Regulation, Henan University, Kaifeng, China
- Department of Biological Sciences, Faculty of Science, Dar es Salaam University College of Education, Dar es Salaam, Tanzania
| | - Muhammad Sarfraz
- School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan International Joint Laboratory for Nuclear Protein Regulation, Henan University, Kaifeng, China
- Kaifeng Municipal Key Laboratory of Cell Signal Transduction, Henan Provincial Engineering Centre for Tumor Molecular Medicine, Henan University, Kaifeng, China
- Faculty of Pharmacy, The University of Lahore, Lahore, Pakistan
| | - Attia Afzal
- School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan International Joint Laboratory for Nuclear Protein Regulation, Henan University, Kaifeng, China
- Faculty of Pharmacy, The University of Lahore, Lahore, Pakistan
| | - Nazeer Hussain Khan
- Henan International Joint Laboratory for Nuclear Protein Regulation, Henan University, Kaifeng, China
- College of Pharmacy, Henan University, Kaifeng, China
| | - Saadullah Khattak
- School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan International Joint Laboratory for Nuclear Protein Regulation, Henan University, Kaifeng, China
| | - Xin Zhang
- College of Pharmacy, Henan University, Kaifeng, China
- Institute for Innovative Drug Design and Evaluation, School of Pharmacy, Henan University, Kaifeng, China
| | - Tao Li
- School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan International Joint Laboratory for Nuclear Protein Regulation, Henan University, Kaifeng, China
| | - Shao-Feng Duan
- Henan International Joint Laboratory for Nuclear Protein Regulation, Henan University, Kaifeng, China
- College of Pharmacy, Henan University, Kaifeng, China
- Institute for Innovative Drug Design and Evaluation, School of Pharmacy, Henan University, Kaifeng, China
| | - Xin-Ying Ji
- School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan International Joint Laboratory for Nuclear Protein Regulation, Henan University, Kaifeng, China
- Diseases and Bio-Safety, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Dong-Dong Wu
- School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan International Joint Laboratory for Nuclear Protein Regulation, Henan University, Kaifeng, China
- School of Stomatology, Henan University, Kaifeng, China
| |
Collapse
|
27
|
Mao YG, Chen X, Zhang Y, Chen G. Hydrogen sulfide therapy: a narrative overview of current research and possible therapeutic implications in future. Med Gas Res 2020; 10:185-188. [PMID: 33380586 PMCID: PMC8092145 DOI: 10.4103/2045-9912.304225] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 11/19/2019] [Accepted: 12/13/2019] [Indexed: 12/16/2022] Open
Abstract
Diabetic nephropathy is one of the most important comorbidities in the diabetic population. In China, more and more young patients are showing an increasing prevalence of diabetes. As a gas molecule, hydrogen sulfide (H2 S) has some unique chemical and physiological functions. In recent years, it has been studied in various fields. These effects are manifested in the induction of renal vasodilation and anti-renal vascular fibrosis. The ball clearing function is improved. Therefore, increasing prospective studies have focused on how H2 S protects diabetic nephropathy and how to obtain H2 S by modern means to treat diabetic nephropathy.
Collapse
Affiliation(s)
- Yi-Guang Mao
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Xiao Chen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Yan Zhang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Gang Chen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| |
Collapse
|
28
|
Xia H, Li Z, Sharp TE, Polhemus DJ, Carnal J, Moles KH, Tao YX, Elrod J, Pfeilschifter J, Beck KF, Lefer DJ. Endothelial Cell Cystathionine γ-Lyase Expression Level Modulates Exercise Capacity, Vascular Function, and Myocardial Ischemia Reperfusion Injury. J Am Heart Assoc 2020; 9:e017544. [PMID: 32990120 PMCID: PMC7792404 DOI: 10.1161/jaha.120.017544] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Background Hydrogen sulfide (H2S) is an important endogenous physiological signaling molecule and exerts protective properties in the cardiovascular system. Cystathionine γ‐lyase (CSE), 1 of 3 H2S producing enzyme, is predominantly localized in the vascular endothelium. However, the regulation of CSE in vascular endothelium remains incompletely understood. Methods and Results We generated inducible endothelial cell‐specific CSE overexpressed transgenic mice (EC‐CSE Tg) and endothelial cell‐specific CSE knockout mice (EC‐CSE KO), and investigated vascular function in isolated thoracic aorta, treadmill exercise capacity, and myocardial injury following ischemia‐reperfusion in these mice. Overexpression of CSE in endothelial cells resulted in increased circulating and myocardial H2S and NO, augmented endothelial‐dependent vasorelaxation response in thoracic aorta, improved exercise capacity, and reduced myocardial‐reperfusion injury. In contrast, genetic deletion of CSE in endothelial cells led to decreased circulating H2S and cardiac NO production, impaired endothelial dependent vasorelaxation response and reduced exercise capacity. However, myocardial‐reperfusion injury was not affected by genetic deletion of endothelial cell CSE. Conclusions CSE‐derived H2S production in endothelial cells is critical in maintaining endothelial function, exercise capacity, and protecting against myocardial ischemia/reperfusion injury. Our data suggest that the endothelial NO synthase—NO pathway is likely involved in the beneficial effects of overexpression of CSE in the endothelium.
Collapse
Affiliation(s)
- Huijing Xia
- Cardiovascular Center of Excellence Louisiana State University Health Sciences Center New Orleans LA
| | - Zhen Li
- Cardiovascular Center of Excellence Louisiana State University Health Sciences Center New Orleans LA
| | - Thomas E Sharp
- Cardiovascular Center of Excellence Louisiana State University Health Sciences Center New Orleans LA
| | - David J Polhemus
- Cardiovascular Center of Excellence Louisiana State University Health Sciences Center New Orleans LA
| | - Jean Carnal
- Cardiovascular Center of Excellence Louisiana State University Health Sciences Center New Orleans LA
| | - Karl H Moles
- Cardiovascular Center of Excellence Louisiana State University Health Sciences Center New Orleans LA
| | - Ya-Xiong Tao
- Department of Anatomy, Physiology, and Pharmacology College of Veterinary Medicine Auburn University Auburn AL
| | - John Elrod
- Center for Translational Medicine Lewis Katz School of Medicine Temple University Philadelphia PA
| | - Josef Pfeilschifter
- Institute of Pharmacology and Toxicology Goethe University Frankfurt am Main Germany
| | - Karl-Friedrich Beck
- Institute of Pharmacology and Toxicology Goethe University Frankfurt am Main Germany
| | - David J Lefer
- Cardiovascular Center of Excellence Louisiana State University Health Sciences Center New Orleans LA
| |
Collapse
|
29
|
Seo MS, Jung HS, An JR, Kang M, Heo R, Li H, Han ET, Yang SR, Cho EH, Bae YM, Park WS. Empagliflozin dilates the rabbit aorta by activating PKG and voltage-dependent K + channels. Toxicol Appl Pharmacol 2020; 403:115153. [PMID: 32717242 DOI: 10.1016/j.taap.2020.115153] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 07/03/2020] [Accepted: 07/18/2020] [Indexed: 01/21/2023]
Abstract
We investigated the vasodilatory effects of empagliflozin (a sodium-glucose co-transporter 2 inhibitor) and the underlying mechanisms using rabbit aorta. Empagliflozin induced vasodilation in a concentration-dependent manner independently of the endothelium. Likewise, pretreatment with the nitric oxide synthase inhibitor L-NAME or the SKca inhibitor apamin together with the IKca inhibitor TRAM-34 did not impact the vasodilatory effects of empagliflozin. Pretreatment with the adenylyl cyclase inhibitor SQ22536 or a guanylyl cyclase inhibitor ODQ or a protein kinase A (PKA) inhibitor KT5720 also did not alter the vasodilatory response of empagliflozin. However, the vasodilatory effects of empagliflozin were significantly reduced by pretreatment with the protein kinase G (PKG) inhibitor KT5823. Although application of the ATP-sensitive K+ (KATP) channel inhibitor glibenclamide, large-conductance Ca2+-activated K+ (BKCa) channel inhibitor paxilline, or inwardly rectifying K+ (Kir) channel inhibitor Ba2+ did not impact the vasodilatory effects of empagliflozin, pretreatment with the voltage-dependent K+ (Kv) channel inhibitor 4-AP reduced the vasodilatory effects of empagliflozin. Pretreatment with DPO-1 (Kv1.5 channel inhibitor), guangxitoxin (Kv2.1 channel inhibitor), or linopirdine (Kv7 channel inhibitor) had little effect on empagliflozin-induced vasodilation. Application of nifedipine (L-type Ca2+ channel inhibitor) or thapsigargin (sarco-endoplasmic reticulum Ca2+-ATPase pump inhibitor) did not impact empagliflozin-induced vasodilation. Therefore, empagliflozin induces vasodilation by activating PKG and Kv channels.
Collapse
Affiliation(s)
- Mi Seon Seo
- Department of Physiology, Kangwon National University School of Medicine, Chuncheon 24341, South Korea
| | - Hee Seok Jung
- Department of Physiology, Kangwon National University School of Medicine, Chuncheon 24341, South Korea
| | - Jin Ryeol An
- Department of Physiology, Kangwon National University School of Medicine, Chuncheon 24341, South Korea
| | - Minji Kang
- Department of Physiology, Kangwon National University School of Medicine, Chuncheon 24341, South Korea
| | - Ryeon Heo
- Department of Physiology, Kangwon National University School of Medicine, Chuncheon 24341, South Korea
| | - Hongliang Li
- Institute of Translational Medicine, Medical College, Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment for Senile Diseases, Yangzhou University, Yangzhou 225001, China
| | - Eun-Taek Han
- Department of Medical Environmental Biology and Tropical Medicine, Kangwon National University School of Medicine, Chuncheon 24341, South Korea
| | - Se-Ran Yang
- Department of Thoracic and Cardiovascular Surgery, Kangwon National University School of Medicine, Chuncheon 24341, South Korea
| | - Eun-Hee Cho
- Department of Internal Medicine, Kangwon National University School of Medicine, Chuncheon 24341, South Korea
| | - Young Min Bae
- Department of Physiology, Konkuk University School of Medicine, Chungju 27478, South Korea
| | - Won Sun Park
- Department of Physiology, Kangwon National University School of Medicine, Chuncheon 24341, South Korea.
| |
Collapse
|
30
|
Searching for novel hydrogen sulfide donors: The vascular effects of two thiourea derivatives. Pharmacol Res 2020; 159:105039. [DOI: 10.1016/j.phrs.2020.105039] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 06/15/2020] [Accepted: 06/16/2020] [Indexed: 12/16/2022]
|
31
|
Abstract
Gastrointestinal disease is a major global threat to public health. In the past few decades, numerous studies have focuses on the application of small molecule gases in the disease treatment. Increasing evidence has shown that hydrogen sulfide (H2S) has anti-inflammatory and anti-oxidative effects, and can regulate gastric mucosal blood flow in the gastric mucosa. After gastric mucosa damage, the level of H2S in the stomach decreases. Administration of H2S can protect and repair the damaged gastric mucosa. Therefore, H2S is a new target for the repair and treatment of gastric mucosa damage. In this review, we introduce the roles of H2S in the treatment of gastric mucosa damage and provide the potential strategies for further clinical treatment.
Collapse
Affiliation(s)
- Fang Shen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Chong-Shun Zhao
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Mei-Fen Shen
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Zhong Wang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Gang Chen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| |
Collapse
|
32
|
Marozkina N, Gaston B. An Update on Thiol Signaling: S-Nitrosothiols, Hydrogen Sulfide and a Putative Role for Thionitrous Acid. Antioxidants (Basel) 2020; 9:antiox9030225. [PMID: 32164188 PMCID: PMC7139563 DOI: 10.3390/antiox9030225] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 02/25/2020] [Accepted: 03/03/2020] [Indexed: 12/18/2022] Open
Abstract
Long considered vital to antioxidant defenses, thiol chemistry has more recently been recognized to be of fundamental importance to cell signaling. S-nitrosothiols—such as S-nitrosoglutathione (GSNO)—and hydrogen sulfide (H2S) are physiologic signaling thiols that are regulated enzymatically. Current evidence suggests that they modify target protein function primarily through post-translational modifications. GSNO is made by NOS and other metalloproteins; H2S by metabolism of cysteine, homocysteine and cystathionine precursors. GSNO generally acts independently of NO generation and has a variety of gene regulatory, immune modulator, vascular, respiratory and neuronal effects. Some of this physiology is shared with H2S, though the mechanisms differ. Recent evidence also suggests that molecules resulting from reactions between GSNO and H2S, such as thionitrous acid (HSNO), could also have a role in physiology. Taken together, these data suggest important new potential targets for thiol-based drug development.
Collapse
Affiliation(s)
- Nadzeya Marozkina
- Herman Wells Center for Pediatric Research, Riley Hospital for Children, School of Medicine, Indiana University, Indianapolis, IN 46202, USA;
- Indiana University, School of Medicine, 1044 W. Walnut Street, R4-474 Indianapolis, IN 46202, USA
- Correspondence: ; Tel.: +317-274-7427
| | - Benjamin Gaston
- Herman Wells Center for Pediatric Research, Riley Hospital for Children, School of Medicine, Indiana University, Indianapolis, IN 46202, USA;
| |
Collapse
|
33
|
Peleli M, Bibli SI, Li Z, Chatzianastasiou A, Varela A, Katsouda A, Zukunft S, Bucci M, Vellecco V, Davos CH, Nagahara N, Cirino G, Fleming I, Lefer DJ, Papapetropoulos A. Cardiovascular phenotype of mice lacking 3-mercaptopyruvate sulfurtransferase. Biochem Pharmacol 2020; 176:113833. [PMID: 32027885 DOI: 10.1016/j.bcp.2020.113833] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 01/30/2020] [Indexed: 12/16/2022]
Abstract
RATIONALE Hydrogen sulfide (H2S) is a physiological mediator that regulates cardiovascular homeostasis. Three major enzymes contribute to the generation of endogenously produced H2S, namely cystathionine γ-lyase (CSE), cystathionine β-synthase (CBS) and 3-mercaptopyruvate sulfurtransferase (3-MST). Although the biological roles of CSE and CBS have been extensively investigated in the cardiovascular system, very little is known about that of 3-MST. In the present study we determined the importance of 3-MST in the heart and blood vessels, using a genetic model with a global 3-MST deletion. RESULTS 3-MST is the most abundant transcript in the mouse heart, compared to CSE and CBS. 3-MST was mainly localized in smooth muscle cells and cardiomyocytes, where it was present in both the mitochondria and the cytosol. Levels of serum and cardiac H2S species were not altered in adult young (2-3 months old) 3-MST-/- mice compared to WT animals. No significant changes in the expression of CSE and CBS were observed. Additionally, 3-MST-/- mice had normal left ventricular structure and function, blood pressure and vascular reactivity. Interestingly, genetic ablation of 3-MST protected mice against myocardial ischemia reperfusion injury, and abolished the protection offered by ischemic pre- and post-conditioning. 3-MST-/- mice showed lower expression levels of thiosulfate sulfurtransferase, lower levels of cellular antioxidants and elevated basal levels of cardiac reactive oxygen species. In parallel, 3-MST-/- mice showed no significant alterations in endothelial NO synthase or downstream targets. Finally, in a separate cohort of older 3-MST-/- mice (18 months old), a hypertensive phenotype associated with cardiac hypertrophy and NO insufficiency was observed. CONCLUSIONS Overall, genetic ablation of 3-MST impacts on the mouse cardiovascular system in an age-dependent manner. Loss of 3-MST exerts a cardioprotective role in young adult mice, while with aging it predisposes them to hypertension and cardiac hypertrophy.
Collapse
Affiliation(s)
- Maria Peleli
- Clinical, Experimental Surgery and Translational Research Center, Biomedical Research Foundation of the Academy of Athens, Greece; Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Greece
| | - Sofia-Iris Bibli
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Frankfurt am Main, German Centre for Cardiovascular Research (DZHK) Partner Site Rhein-Main, Frankfurt am Main, Germany
| | - Zhen Li
- Cardiovascular Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Athanasia Chatzianastasiou
- "George P. Livanos and Marianthi Simou" Laboratories, First Department of Pulmonary and Critical Care Medicine, Evangelismos Hospital, Faculty of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Aimilia Varela
- Clinical, Experimental Surgery and Translational Research Center, Biomedical Research Foundation of the Academy of Athens, Greece
| | - Antonia Katsouda
- Clinical, Experimental Surgery and Translational Research Center, Biomedical Research Foundation of the Academy of Athens, Greece
| | - Sven Zukunft
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Frankfurt am Main, German Centre for Cardiovascular Research (DZHK) Partner Site Rhein-Main, Frankfurt am Main, Germany
| | - Mariarosaria Bucci
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples, Italy
| | - Valentina Vellecco
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples, Italy
| | - Constantinos H Davos
- Clinical, Experimental Surgery and Translational Research Center, Biomedical Research Foundation of the Academy of Athens, Greece
| | | | - Giuseppe Cirino
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples, Italy
| | - Ingrid Fleming
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Frankfurt am Main, German Centre for Cardiovascular Research (DZHK) Partner Site Rhein-Main, Frankfurt am Main, Germany
| | - David J Lefer
- Cardiovascular Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Andreas Papapetropoulos
- Clinical, Experimental Surgery and Translational Research Center, Biomedical Research Foundation of the Academy of Athens, Greece; Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Greece.
| |
Collapse
|
34
|
Vellecco V, Martelli A, Bibli IS, Vallifuoco M, Manzo OL, Panza E, Citi V, Calderone V, de Dominicis G, Cozzolino C, Basso EM, Mariniello M, Fleming I, Mancini A, Bucci M, Cirino G. Anomalous K v 7 channel activity in human malignant hyperthermia syndrome unmasks a key role for H 2 S and persulfidation in skeletal muscle. Br J Pharmacol 2020; 177:810-823. [PMID: 31051045 PMCID: PMC7024712 DOI: 10.1111/bph.14700] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 02/05/2019] [Accepted: 04/16/2019] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND AND PURPOSE Human malignant hyperthermia (MH) syndrome is induced by volatile anaesthetics and involves increased levels of cystathionine β-synthase (CBS)-derived H2 S within skeletal muscle. This increase contributes to skeletal muscle hypercontractility. Kv 7 channels, expressed in skeletal muscle, may be a molecular target for H2 S. Here, we have investigated the role of Kv 7 channels in MH. EXPERIMENTAL APPROACH Skeletal muscle biopsies were obtained from MH-susceptible (MHS) and MH-negative (MHN) patients. Immunohistochemistry, RT-PCR, Western blot, and in vitro contracture test (IVCT) were carried out. Development and characterization of primary human skeletal muscle cells (PHSKMC) and evaluation of cell membrane potential were also performed. The persulfidation state of Kv 7 channels and polysulfide levels were measured. KEY RESULTS Kv 7 channels were similarly expressed in MHN and MHS biopsies. The IVCT revealed an anomalous contractility of MHS biopsies following exposure to the Kv 7 channel opener retigabine. Incubation of negative biopsies with NaHS, prior to retigabine addition, led to an MHS-like positive response. MHS-derived PHSKMC challenged with retigabine showed a paradoxical depolarizing effect, compared with the canonical hyperpolarizing effect. CBS expression and activity were increased in MHS biopsies, resulting in a major polysulfide bioavailability. Persulfidation of Kv 7.4 channels was significantly higher in MHS than in MHN biopsies. CONCLUSIONS AND IMPLICATIONS In skeletal muscle of MHS patients, CBS-derived H2 S induced persulfidation of Kv 7 channels. This post-translational modification switches the hyperpolarizing activity into depolarizing. This mechanism can contribute to the pathological skeletal muscle hypercontractility typical of MH syndrome. LINKED ARTICLES This article is part of a themed section on Hydrogen Sulfide in Biology & Medicine. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v177.4/issuetoc.
Collapse
Affiliation(s)
- Valentina Vellecco
- Department of Pharmacy, School of MedicineUniversity of Naples Federico IINaplesItaly
| | | | - Iris Sofia Bibli
- Institute for Vascular Signalling, Centre for Molecular MedicineGoethe University Frankfurt am MainFrankfurt am MainGermany
- German Center of Cardiovascular Research (DZHK), partner site RheinMainFrankfurt am MainGermany
| | | | - Onorina L. Manzo
- Department of Pharmacy, School of MedicineUniversity of Naples Federico IINaplesItaly
| | - Elisabetta Panza
- Department of Pharmacy, School of MedicineUniversity of Naples Federico IINaplesItaly
| | | | | | | | | | | | | | - Ingrid Fleming
- Institute for Vascular Signalling, Centre for Molecular MedicineGoethe University Frankfurt am MainFrankfurt am MainGermany
- German Center of Cardiovascular Research (DZHK), partner site RheinMainFrankfurt am MainGermany
| | | | - Mariarosaria Bucci
- Department of Pharmacy, School of MedicineUniversity of Naples Federico IINaplesItaly
| | - Giuseppe Cirino
- Department of Pharmacy, School of MedicineUniversity of Naples Federico IINaplesItaly
| |
Collapse
|
35
|
Papapetropoulos A, Wallace JL, Wang R. From primordial gas to the medicine cabinet. Br J Pharmacol 2020; 177:715-719. [PMID: 31726475 PMCID: PMC7024704 DOI: 10.1111/bph.14929] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
LINKED ARTICLES This article is part of a themed section on Hydrogen Sulfide in Biology & Medicine. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v177.4/issuetoc.
Collapse
Affiliation(s)
| | | | - Rui Wang
- York UniversityTorontoOntarioCanada
| |
Collapse
|
36
|
Liu T, Mukosera GT, Blood AB. The role of gasotransmitters in neonatal physiology. Nitric Oxide 2019; 95:29-44. [PMID: 31870965 DOI: 10.1016/j.niox.2019.12.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 11/07/2019] [Accepted: 12/17/2019] [Indexed: 12/12/2022]
Abstract
The gasotransmitters, nitric oxide (NO), hydrogen sulfide (H2S), and carbon monoxide (CO), are endogenously-produced volatile molecules that perform signaling functions throughout the body. In biological tissues, these small, lipid-permeable molecules exist in free gaseous form for only seconds or less, and thus they are ideal for paracrine signaling that can be controlled rapidly by changes in their rates of production or consumption. In addition, tissue concentrations of the gasotransmitters are influenced by fluctuations in the level of O2 and reactive oxygen species (ROS). The normal transition from fetus to newborn involves a several-fold increase in tissue O2 tensions and ROS, and requires rapid morphological and functional adaptations to the extrauterine environment. This review summarizes the role of gasotransmitters as it pertains to newborn physiology. Particular focus is given to the vasculature, ventilatory, and gastrointestinal systems, each of which uniquely illustrate the function of gasotransmitters in the birth transition and newborn periods. Moreover, given the relative lack of studies on the role that gasotransmitters play in the newborn, particularly that of H2S and CO, important gaps in knowledge are highlighted throughout the review.
Collapse
Affiliation(s)
- Taiming Liu
- Department of Pediatrics, Division of Neonatology, Loma Linda University School of Medicine, Loma Linda, CA, 92354, USA
| | - George T Mukosera
- Department of Pediatrics, Division of Neonatology, Loma Linda University School of Medicine, Loma Linda, CA, 92354, USA
| | - Arlin B Blood
- Department of Pediatrics, Division of Neonatology, Loma Linda University School of Medicine, Loma Linda, CA, 92354, USA; Lawrence D. Longo Center for Perinatal Biology, Loma Linda University School of Medicine, Loma Linda, CA, 92354, USA.
| |
Collapse
|
37
|
Hart JL. Vasorelaxation elicited by endogenous and exogenous hydrogen sulfide in mouse mesenteric arteries. Naunyn Schmiedebergs Arch Pharmacol 2019; 393:551-564. [PMID: 31713651 DOI: 10.1007/s00210-019-01752-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 10/16/2019] [Indexed: 12/30/2022]
Abstract
H2S causes vasorelaxation however there is considerable heterogeneity in the reported pharmacological mechanism of this effect. This study examines the contribution of endogenously released H2S in the regulation of vascular tone and the mechanism of H2S-induced vasorelaxation in small resistance-like arteries. Mesenteric arteries from C57 and eNOS-/- mice were mounted in myographs to record isometric force. Vasorelaxation responses to NaHS were examined in the presence of various inhibitors of vasorelaxation pathways. Expression and activity of the H2S-producing enzyme, cystathionine-γ-lyase (CSE), were also examined. CSE was expressed in vascular smooth muscle and perivascular adipose cells from mouse mesenteric artery. The substrate for CSE, L-cysteine, caused a modest vasorelaxation (35%) in arteries from C57 mice and poor vasorelaxation (10%) in arteries from eNOS-/- mice that was sensitive to the CSE inhibitor DL-propargylglycine. The fast H2S donor, NaHS, elicited a full and biphasic vasorelaxation response in mesenteric arteries (EC50 (1) 8.7 μM, EC50 (2) 0.6 mM), which was significantly inhibited in eNOS-/- vessels (P < 0.05), unaffected by endothelial removal, or blockers at any point in the NO via soluble guanylate cyclase and cGMP (NO-sGC-cGMP) vasorelaxation pathway. Vasorelaxation to NaHS was significantly inhibited by blocking K+ channels of the KCa and KV subtypes and the Cl-/HCO3- exchanger (P < 0.05). Further experiments showed that NaHS can significantly inhibit voltage-gated Ca2+ channel function (P < 0.05). The vasorelaxant effect of H2S in small resistance-like arteries is complex, involving eNOS, K+ channels, Cl-/HCO3- exchanger, and voltage-gated Ca2+ channels. CSE is present in the smooth muscle and periadventitial adipose tissue of these resistance-like vessels and can be activated to cause modest vasorelaxation under these in vitro conditions.
Collapse
Affiliation(s)
- Joanne L Hart
- School of Medicine, Faculty of Medicine and Health, University of Sydney, 111B Edward Ford Building, Camperdown, Sydney, NSW, 2006, Australia. .,School of Health and Biomedical Sciences, RMIT University, Melbourne, Australia.
| |
Collapse
|
38
|
Yuan C, Hou HT, Chen HX, Wang J, Wang ZQ, Chen TN, Novakovic A, Marinko M, Yang Q, Liu ZG, He GW. Hydrogen sulfide-mediated endothelial function and the interaction with eNOS and PDE5A activity in human internal mammary arteries. J Int Med Res 2019; 47:3778-3791. [PMID: 31155983 PMCID: PMC6726794 DOI: 10.1177/0300060519847386] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 04/09/2019] [Indexed: 12/20/2022] Open
Abstract
OBJECTIVE To investigate the role of hydrogen sulfide (H2S) in human internal mammary arteries (IMA) and its interaction with endothelial nitric oxide synthase (eNOS) and phosphodiesterase (PDE)5A activity. METHODS Human IMA segments from patients undergoing coronary artery bypass grafting (CABG) were studied by myography for acetylcholine and sodium hydrosulfide (NaHS)-induced relaxation. Locations of 3-mercaptopyruvate sulfurtransferase (3-MPST) and cysteine aminotransferase (CAT) were examined immunohistochemically. Levels of H2S, eNOS, phosphorylated-eNOSser1177, and PDE5A were measured. RESULTS In IMA segments from 47 patients, acetylcholine-induced relaxation (resistant to NG-nitro-L-arginine and indomethacin) was significantly attenuated by aminooxyacetic acid or L-aspartate (CAT inhibitors), iberiotoxin (large-conductance calcium-activated K+ channel blocker), TRAM-34 plus apamin (intermediate- and small-conductance Ca2+-activated K+ channel blockers) or glibenclamide (ATP-sensitive K+ channel blocker). 3-MPST and mitochondrial CAT were found in endothelial and smooth muscle cells while cytosolic CAT was located only in endothelial cells. Acetylcholine significantly increased the H2S levels. The H2S donor, NaHS, increased eNOS phosphorylation and down-regulated PDE5A. CONCLUSIONS Human conduit artery endothelium releases H2S under basal and stimulated conditions, involving the 3-MPST/CAT pathway, eNOS phosphorylation, PDE5A activity, and potassium channels. These findings may provide new therapeutic targets for treating vasospasm in CABG grafts and facilitate the development of new vasodilator drugs.
Collapse
Affiliation(s)
- Chao Yuan
- Center for Basic Medical Research and Department of Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Chinese Academy of Medical Sciences, Tianjin, China
- Postdoctoral Station, Medical College, Nankai University, Tianjin, China
| | - Hai-Tao Hou
- Center for Basic Medical Research and Department of Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Chinese Academy of Medical Sciences, Tianjin, China
- Medical College, Zhejiang University, Hangzhou, China
| | - Huan-Xin Chen
- Center for Basic Medical Research and Department of Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Chinese Academy of Medical Sciences, Tianjin, China
| | - Jun Wang
- Center for Basic Medical Research and Department of Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Chinese Academy of Medical Sciences, Tianjin, China
| | - Zheng-Qing Wang
- Center for Basic Medical Research and Department of Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Chinese Academy of Medical Sciences, Tianjin, China
| | - Tie-Nan Chen
- Center for Basic Medical Research and Department of Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Chinese Academy of Medical Sciences, Tianjin, China
| | - Aleksandra Novakovic
- Department of Pharmacology, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| | - Marija Marinko
- Department of Pharmacology, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| | - Qin Yang
- Center for Basic Medical Research and Department of Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Chinese Academy of Medical Sciences, Tianjin, China
| | - Zhi-Gang Liu
- Center for Basic Medical Research and Department of Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Chinese Academy of Medical Sciences, Tianjin, China
| | - Guo-Wei He
- Center for Basic Medical Research and Department of Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Chinese Academy of Medical Sciences, Tianjin, China
- Medical College, Zhejiang University, Hangzhou, China
- School of Pharmacy, Wannan Medical College, Wuhu, Anhui, China
- Department of Surgery, Oregon Health and Science University, Portland, Oregon, USA
| |
Collapse
|
39
|
Zochio GP, Possomato-Vieira JS, Chimini JS, da Silva MLS, Dias-Junior CA. Effects of fast versus slow-releasing hydrogen sulfide donors in hypertension in pregnancy and fetoplacental growth restriction. Naunyn Schmiedebergs Arch Pharmacol 2019; 392:1561-1568. [PMID: 31363805 DOI: 10.1007/s00210-019-01697-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 07/15/2019] [Indexed: 12/16/2022]
Abstract
Hydrogen sulfide (H2S) is a vasorelaxant gas with therapeutic potential in several diseases. However, effects of H2S donors in hypertensive pregnancy complicated by feto-placental growth restriction are unclear. Therefore, we aimed to examine and compare the effects of fast-releasing H2S donor (sodium hydrosulfide-NaHS) and slow-releasing H2S donor (GYY4137) in hypertension-in-pregnancy. Pregnant rats were distributed into four groups: normal pregnancy (Norm-Preg), hypertensive pregnancy (HTN-Preg), hypertensive pregnancy + NaHS (HTN-Preg + NaHS), and hypertensive pregnancy + GYY4137 (HTN-Preg + GYY). Systolic blood pressure, plasma H2S levels, fetal and placental weights, number of viable fetuses, litter size, and endothelium-dependent vasodilation were examined. Also, oxidative stress was assessed in placenta. We found that GYY4137 attenuated hypertension on gestational days 16 and 18, while NaHS presented antihypertensive effect only on gestational day 18. GYY4137, but not NaHS, increased plasma H2S levels. Greater fetal and placental weights were found with GYY4137 than NaHS treatment. Also, HTN-Preg + NaHS presented further reductions in placental weights when compared to HTN-Preg group. Number of viable fetuses and litter size presented no significant changes. GYY4137 reduced placental oxidative stress caused by hypertension, while greater increases in oxidative stress were found in HTN-Preg + NaHS than HTN-Preg group. Hypertensive pregnancy caused impaired endothelium-dependent vasodilation, while GYY4137 and NaHS treatments blunted endothelial dysfunction. Endothelium-dependent vasodilation was completely blocked by the nitric oxide synthase inhibitor. We conclude that slow-releasing H2S donor GYY4137 is advantageous compared with fast-releasing H2S-donor NaHS to attenuate hypertension-in-pregnancy and to protect against feto-placental growth restriction and oxidative stress.
Collapse
Affiliation(s)
- Gabriela Palma Zochio
- Department of Pharmacology, Biosciences Institute of Botucatu, Sao Paulo State University-UNESP, Distrito de Rubiao Junior, S/N,, Botucatu, SP, 18.618-689, Brazil
| | - Jose Sergio Possomato-Vieira
- Department of Pharmacology, Biosciences Institute of Botucatu, Sao Paulo State University-UNESP, Distrito de Rubiao Junior, S/N,, Botucatu, SP, 18.618-689, Brazil
| | - Jessica Sabbatine Chimini
- Department of Pharmacology, Biosciences Institute of Botucatu, Sao Paulo State University-UNESP, Distrito de Rubiao Junior, S/N,, Botucatu, SP, 18.618-689, Brazil
| | - Maria Luiza Santos da Silva
- Department of Pharmacology, Biosciences Institute of Botucatu, Sao Paulo State University-UNESP, Distrito de Rubiao Junior, S/N,, Botucatu, SP, 18.618-689, Brazil
| | - Carlos Alan Dias-Junior
- Department of Pharmacology, Biosciences Institute of Botucatu, Sao Paulo State University-UNESP, Distrito de Rubiao Junior, S/N,, Botucatu, SP, 18.618-689, Brazil.
| |
Collapse
|
40
|
Abstract
Dr. Hideo Kimura is recognized as a redox pioneer because he has published an article in the field of antioxidant and redox biology that has been cited >1000 times, and 29 articles that have been cited >100 times. Since the first description of hydrogen sulfide (H2S) as a toxic gas 300 years ago, most studies have been devoted to its toxicity. In 1996, Dr. Kimura demonstrated a physiological role of H2S as a mediator of cognitive function and cystathionine β-synthase as an H2S-producing enzyme. In the following year, he showed H2S as a vascular smooth muscle relaxant in synergy with nitric oxide and its production by cystathionine γ-lyase in vasculature. Subsequently he reported the cytoprotective effect of H2S on neurons against oxidative stress. Since then, studies on H2S have unveiled numerous physiological roles such as the regulation of inflammation, cell growth, oxygen sensing, and senescence. He also discovered polysulfides (H2Sn), which have a higher number of sulfur atoms than H2S and are one of the active forms of H2S, as potent signaling molecules produced by 3-mercaptopyruvate sulfurtransferase. H2Sn regulate ion channels and transcription factors to upregulate antioxidant genes, tumor suppressors, and protein kinases to, in turn, regulate blood pressure. These findings led to the re-evaluation of other persulfurated molecules such as cysteine persulfide and glutathione persulfide. Dr. Kimura is a pioneer of studies on H2S and H2Sn as signaling molecules. It is fortunate to come across a secret of nature and pick it up. -Prof. Hideo Kimura.
Collapse
Affiliation(s)
- David Lefer
- CV Center of Excellence, Louisiana State University Health Sciences Center , New Orleans, Louisiana
| |
Collapse
|
41
|
Mitidieri E, Gurgone D, Caiazzo E, Tramontano T, Cicala C, Sorrentino R, d'Emmanuele di Villa Bianca R. L-cysteine/cystathionine-β-synthase-induced relaxation in mouse aorta involves a L-serine/sphingosine-1-phosphate/NO pathway. Br J Pharmacol 2019; 177:734-744. [PMID: 30835815 DOI: 10.1111/bph.14654] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 12/20/2018] [Accepted: 01/30/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND AND PURPOSE Among the three enzymes involved in the transsulfuration pathway, only cystathionine β-synthase (CBS) converts L-cysteine into L-serine and H2 S. L-serine is also involved in the de novo sphingolipid biosynthesis through a condensation with palmitoyl-CoA by the action of serine palmitoyltransferase (SPT). Here, we have investigated if L-serine contributes to the vasorelaxant effect. EXPERIMENTAL APPROACH The presence of CBS in mouse vascular endothelium was assessed by immunohistochemistry and immunofluorescence. The relaxant activity of L-serine (0.1-300 μM) and L-cysteine (0.1-300 μM) was estimated on mouse aorta rings, with or without endothelium. A pharmacological modulation study evaluated NO and sphingosine-1-phosphate (S1P) involvement. Levels of NO and S1P were also measured following incubation of aorta tissue with either L-serine (1, 10, and 100 μM) or L-cysteine (10, 100 μM, and 1 mM). KEY RESULTS L-serine relaxed aorta rings in an endothelium-dependent manner. The vascular effect was reduced by L-NG-nitro-arginine methyl ester and wortmaninn. A similar pattern was obtained with L-cysteine. The S1P1 receptor antagonist (W146) or the SPT inhibitor (myriocin) reduced either L-serine or L-cysteine relaxant effect. L-serine or L-cysteine incubation increased NO and S1P levels in mouse aorta. CONCLUSIONS AND IMPLICATIONS L-serine, a by-product formed within the transsulfuration pathway starting from L-cysteine via CBS, contributes to the vasodilator action of L-cysteine. The L-serine effect involves both NO and S1P. This mechanism could be involved in the marked dysregulation of vascular tone in hyperhomocysteinemic patients (CBS deficiency) and may represent a feasible therapeutic target. LINKED ARTICLES This article is part of a themed section on Hydrogen Sulfide in Biology & Medicine. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v177.4/issuetoc.
Collapse
Affiliation(s)
- Emma Mitidieri
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples, Italy
| | - Danila Gurgone
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples, Italy
| | - Elisabetta Caiazzo
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples, Italy
| | - Teresa Tramontano
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples, Italy
| | - Carla Cicala
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples, Italy
| | - Raffaella Sorrentino
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples, Italy
| | | |
Collapse
|
42
|
Zhao Y, Ge J, Li X, Guo Q, Zhu Y, Song J, Zhang L, Ding S, Yang X, Li R. Vasodilatory effect of formaldehyde via the NO/cGMP pathway and the regulation of expression of K ATP, BK Ca and L-type Ca 2+ channels. Toxicol Lett 2019; 312:55-64. [PMID: 30974163 DOI: 10.1016/j.toxlet.2019.04.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 03/28/2019] [Accepted: 04/06/2019] [Indexed: 12/12/2022]
Abstract
Formaldehyde (FA), a well-known toxic gas molecule similar to nitric oxide (NO), carbon monoxide (CO), and hydrogen sulfide (H2S), is widely produced endogenously via numerous biochemical pathways, and has a number of physiological roles in the biosystem. We attempted to investigate the vasorelaxant effects of FA and their underlying mechanisms. We found that FA induced vasorelaxant effects on rat aortic rings in a concentration-dependent manner. The NO/cyclic guanosine 5' monophosphate (cGMP) pathway was up-regulated when the rat aortas were treated with FA. The expression of large-conductance Ca2+-activated K+ (BKCa) channel subunits α and β of the rat aortas was increased by FA. Similarly, the levels of ATP-sensitive K+ (KATP) channel subunits Kir6.1 and Kir6.2 were also up-regulated when the rat aortas were incubated with FA. In contrast, levels of the L-type Ca2+ channel (LTCC) subunits, Cav1.2 and Cav1.3, decreased dramatically with increasing concentrations of FA. We demonstrated that the regulation of FA on vascular contractility may be via the up-regulation of the NO/cGMP pathway and the modulation of ion channels, including the upregulated expression of the KATP and BKCa channels and the inhibited expression of LTCCs. Further study is needed to explore the in-depth mechanisms of FA induced vasorelaxation.
Collapse
Affiliation(s)
- Yun Zhao
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, 152 Luoyu Road, Wuhan 430079, PR China
| | - Jing Ge
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, 152 Luoyu Road, Wuhan 430079, PR China
| | - Xiaoxiao Li
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, 152 Luoyu Road, Wuhan 430079, PR China
| | - Qing Guo
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, 152 Luoyu Road, Wuhan 430079, PR China; School of Public Health, Huazhong University of Science and Technology, Hangkong Road, Wuhan, 430030, PR China
| | - Yuqing Zhu
- Centre of Stem Cell and Regenerative medicine, School of Medicine, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, PR China
| | - Jing Song
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, 152 Luoyu Road, Wuhan 430079, PR China
| | - Luoping Zhang
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, CA, 94720, USA
| | - Shumao Ding
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, 152 Luoyu Road, Wuhan 430079, PR China
| | - Xu Yang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, 152 Luoyu Road, Wuhan 430079, PR China.
| | - Rui Li
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, 152 Luoyu Road, Wuhan 430079, PR China.
| |
Collapse
|
43
|
Garcia V, Sessa WC. Endothelial NOS: perspective and recent developments. Br J Pharmacol 2019; 176:189-196. [PMID: 30341769 PMCID: PMC6295413 DOI: 10.1111/bph.14522] [Citation(s) in RCA: 123] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 10/04/2018] [Indexed: 02/06/2023] Open
Abstract
Endothelial NOS (eNOS), and its product NO, are vital components of the control of vasomotor function and cardiovascular homeostasis. In the present review, we will take a deep dive into eNOS enzymology, function and mechanisms regulating endothelial NO. The mechanisms regulating eNOS and NO synthesis discussed here include alterations to transcriptional, post-translational modifications and protein-protein regulations. Also, we will discuss the phenotypes associated with various eNOS mutants and the consequences of a disrupted eNOS/NO cascade, highlighting the importance of eNOS function and vascular homeostasis. LINKED ARTICLES: This article is part of a themed section on Nitric Oxide 20 Years from the 1998 Nobel Prize. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.2/issuetoc.
Collapse
Affiliation(s)
- Victor Garcia
- Vascular Biology and Therapeutics Program, Department of PharmacologyYale University School of MedicineNew HavenCTUSA
| | - William C Sessa
- Vascular Biology and Therapeutics Program, Department of PharmacologyYale University School of MedicineNew HavenCTUSA
| |
Collapse
|
44
|
Alleviation of impaired reactivity in the corpus cavernosum of STZ-diabetic rats by slow-release H2S donor GYY4137. Int J Impot Res 2018; 31:111-118. [DOI: 10.1038/s41443-018-0083-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 08/19/2018] [Accepted: 09/20/2018] [Indexed: 11/08/2022]
|
45
|
Vellecco V, Armogida C, Bucci M. Hydrogen sulfide pathway and skeletal muscle: an introductory review. Br J Pharmacol 2018; 175:3090-3099. [PMID: 29767441 PMCID: PMC6031874 DOI: 10.1111/bph.14358] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 04/18/2018] [Accepted: 04/30/2018] [Indexed: 12/13/2022] Open
Abstract
The presence of the H2 S pathway in skeletal muscle (SKM) has recently been established. SKM expresses the three constitutive H2 S-generating enzymes in animals and humans, and it actively produces H2 S. The main, recognized molecular targets of H2 S, that is, potassium channels and PDEs, have been evaluated in SKM physiology in order to hypothesize a role for H2 S signalling. SKM dysfunctions, including muscular dystrophy and malignant hyperthermia, have also been evaluated as conditions in which the H2 S and transsulfuration pathways have been suggested to be involved. The intrinsic complexity of the molecular mechanisms involved in excitation-contraction (E-C) coupling together with the scarcity of preclinical models of SKM-related disorders have hampered any advances in the knowledge of SKM function. Here, we have addressed the role of the H2 S pathway in E-C coupling and the relative importance of cystathionine β-synthase, cistathionine γ-lyase and 3-mercaptopyruvate sulfurtransferase in SKM diseases.
Collapse
Affiliation(s)
- Valentina Vellecco
- Department of Pharmacy, School of Medicine, University of Naples 'Federico II', Naples, 80131, Italy
| | - Chiara Armogida
- Department of Pharmacy, School of Medicine, University of Naples 'Federico II', Naples, 80131, Italy
| | - Mariarosaria Bucci
- Department of Pharmacy, School of Medicine, University of Naples 'Federico II', Naples, 80131, Italy
| |
Collapse
|
46
|
Nalli AD, Wang H, Bhattacharya S, Blakeney BA, Murthy KS. Inhibition of RhoA/Rho kinase pathway and smooth muscle contraction by hydrogen sulfide. Pharmacol Res Perspect 2018; 5. [PMID: 28971603 PMCID: PMC5625153 DOI: 10.1002/prp2.343] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Revised: 06/26/2017] [Accepted: 06/27/2017] [Indexed: 12/22/2022] Open
Abstract
Hydrogen sulfide (H2 S) plays an important role in smooth muscle relaxation. Here, we investigated the expression of enzymes in H2 S synthesis and the mechanism regulating colonic smooth muscle function by H2 S. Expression of cystathionine-γ-lyase (CSE), but not cystathionine-β-synthase (CBS), was identified in the colonic smooth muscle of rabbit, mouse, and human. Carbachol (CCh)-induced contraction in rabbit muscle strips and isolated muscle cells was inhibited by l-cysteine (substrate of CSE) and NaHS (an exogenous H2 S donor) in a concentration-dependent fashion. H2 S induced S-sulfhydration of RhoA that was associated with inhibition of RhoA activity. CCh-induced Rho kinase activity also was inhibited by l-cysteine and NaHS in a concentration-dependent fashion. Inhibition of CCh-induced contraction by l-cysteine was blocked by the CSE inhibitor, dl-propargylglycine (DL-PPG) in dispersed muscle cells. Inhibition of CCh-induced Rho kinase activity by l-cysteine was blocked by CSE siRNA in cultured cells and DL-PPG in dispersed muscle cells. Stimulation of Rho kinase activity and muscle contraction in response to CCh was also inhibited by l-cysteine or NaHS in colonic muscle cells from mouse and human. Collectively, our studies identified the expression of CSE in colonic smooth muscle and determined that sulfhydration of RhoA by H2 S leads to inhibition of RhoA and Rho kinase activities and muscle contraction. The mechanism identified may provide novel therapeutic approaches to mitigate gastrointestinal motility disorders.
Collapse
Affiliation(s)
- Ancy D Nalli
- Department of Physiology and Biophysics, VCU Program in Enteric Neuromuscular Sciences, Virginia Commonwealth University, Richmond, Virginia
| | - Hongxia Wang
- Department of Physiology and Biophysics, VCU Program in Enteric Neuromuscular Sciences, Virginia Commonwealth University, Richmond, Virginia
| | - Sayak Bhattacharya
- Department of Physiology and Biophysics, VCU Program in Enteric Neuromuscular Sciences, Virginia Commonwealth University, Richmond, Virginia
| | - Bryan A Blakeney
- Department of Physiology and Biophysics, VCU Program in Enteric Neuromuscular Sciences, Virginia Commonwealth University, Richmond, Virginia
| | - Karnam S Murthy
- Department of Physiology and Biophysics, VCU Program in Enteric Neuromuscular Sciences, Virginia Commonwealth University, Richmond, Virginia
| |
Collapse
|
47
|
Imbrogno S, Filice M, Cerra MC, Gattuso A. NO, CO and H 2 S: What about gasotransmitters in fish and amphibian heart? Acta Physiol (Oxf) 2018; 223:e13035. [PMID: 29338122 DOI: 10.1111/apha.13035] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 01/08/2018] [Accepted: 01/08/2018] [Indexed: 12/25/2022]
Abstract
The gasotransmitters nitric oxide (NO), carbon monoxide (CO), and hydrogen sulphide (H2 S), long considered only toxicant, are produced in vivo during the catabolism of common biological molecules and are crucial for a large variety of physiological processes. Mounting evidence is emerging that in poikilotherm vertebrates, as in mammals, they modulate the basal performance of the heart and the response to stress challenges. In this review, we will focus on teleost fish and amphibians to highlight the evolutionary importance in vertebrates of the cardiac control elicited by NO, CO and H2 S, and the conservation of the intracellular cascades they activate. Although many gaps are still present due to discontinuous information, we will use examples obtained by studies from our and other laboratories to illustrate the complexity of the mechanisms that, by involving gasotransmitters, allow beat-to-beat, short-, medium- and long-term cardiac homoeostasis. By presenting the latest data, we will also provide a framework in which the peculiar morpho-functional arrangement of the teleost and amphibian heart can be considered as a reference tool to decipher cardiac regulatory networks which are difficult to explore using more conventional vertebrates, such as mammals.
Collapse
Affiliation(s)
- S. Imbrogno
- Department of Biology, Ecology and Earth Sciences; University of Calabria; Arcavacata di Rende; Italy
| | - M. Filice
- Department of Biology, Ecology and Earth Sciences; University of Calabria; Arcavacata di Rende; Italy
| | - M. C. Cerra
- Department of Biology, Ecology and Earth Sciences; University of Calabria; Arcavacata di Rende; Italy
| | - A. Gattuso
- Department of Biology, Ecology and Earth Sciences; University of Calabria; Arcavacata di Rende; Italy
| |
Collapse
|
48
|
Sun Y, Huang Y, Yu W, Chen S, Yao Q, Zhang C, Bu D, Tang C, Du J, Jin H. Sulfhydration-associated phosphodiesterase 5A dimerization mediates vasorelaxant effect of hydrogen sulfide. Oncotarget 2018; 8:31888-31900. [PMID: 28404873 PMCID: PMC5458256 DOI: 10.18632/oncotarget.16649] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Accepted: 03/16/2017] [Indexed: 12/23/2022] Open
Abstract
The study was designed to examine if the vasorelaxant effect of hydrogen sulfide was mediated by sulfhydration-associated phosphodiesterase (PDE) 5A dimerization. The thoracic aorta of rat was separated and the vasorelaxant effects were examined with in vitro vascular perfusion experiments. The dimerization and sulfhydration of PDE 5A and soluble guanylatecyclase (sGC) were measured. PDE 5A and protein kinase G (PKG) activities were tested. Intracellular cGMP content was detected by enzyme-linked immunosorbent assay (ELISA). The results showed that NaHS relaxed isolated rat vessel rings at an EC50 of (1.79 ± 0.31)×10-5mol/L, associated with significantly increased PKG activity and cGMP content in vascular tissues. Sulfhydration of sGC β1 was increased, while the levels of sGC αβ1 dimers were apparently decreased after incubation with NaHS in vascular tissues. Moreover, PDE 5A homodimers were markedly decreased, and accordingly the PDE 5A activity demonstrated by the content of 5'-GMP was significantly decreased after incubation with NaHS or GYY4137. Mechanistically, both NaHS and GYY4137 significantly enhanced the PDE 5A sulfhydration in vascular tissues. DTT partially abolished the effects of NaHS on PDE 5A activity, cGMP content and vasorelaxation. Therefore, the present study for the first time suggested that H2S exerted vasorelaxant effect probably via sulfhydration-associated PDE 5A dimerization.
Collapse
Affiliation(s)
- Yan Sun
- Department of Pediatrics, Peking University First Hospital, Beijing, 100034, China
| | - Yaqian Huang
- Department of Pediatrics, Peking University First Hospital, Beijing, 100034, China
| | - Wen Yu
- Department of Pediatrics, Peking University First Hospital, Beijing, 100034, China
| | - Siyao Chen
- Department of Cardiac Surgery, Guangdong General Hospital, Guangzhou, 510000, China
| | - Qiuyu Yao
- Department of Pediatrics, Peking University First Hospital, Beijing, 100034, China
| | - Chunyu Zhang
- Department of Pediatrics, Peking University First Hospital, Beijing, 100034, China
| | - Dingfang Bu
- Centre Laboratory of Peking University First Hospital, Beijing, 100034, China
| | - Chaoshu Tang
- Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing, 100034, China
| | - Junbao Du
- Department of Pediatrics, Peking University First Hospital, Beijing, 100034, China.,Key Laboratory of Cardiovascular Sciences, Ministry of Education, Beijing, 100034, China
| | - Hongfang Jin
- Department of Pediatrics, Peking University First Hospital, Beijing, 100034, China
| |
Collapse
|
49
|
Gheibi S, Jeddi S, Kashfi K, Ghasemi A. Regulation of vascular tone homeostasis by NO and H 2S: Implications in hypertension. Biochem Pharmacol 2018; 149:42-59. [PMID: 29330066 PMCID: PMC5866223 DOI: 10.1016/j.bcp.2018.01.017] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 01/05/2018] [Indexed: 02/09/2023]
Abstract
Nitric oxide (NO) and hydrogen sulfide (H2S) are two gasotransmitters that are produced in the vasculature and contribute to the regulation of vascular tone. NO and H2S are synthesized in both vascular smooth muscle and endothelial cells; NO functions primarily through the sGC/cGMP pathway, and H2S mainly through activation of the ATP-dependent potassium channels; both leading to relaxation of vascular smooth muscle cells. A deficit in the NO/H2S homeostasis is involved in the pathogenesis of various cardiovascular diseases, especially hypertension. It is now becoming increasingly clear that there are important interactions between NO and H2S and that have a profound impact on vascular tone and this may provide insights into the new therapeutic interventions. The aim of this review is to provide a better understanding of individual and interactive roles of NO and H2S in vascular biology. Overall, available data indicate that both NO and H2S contribute to vascular (patho)physiology and in regulating blood pressure. In addition, boosting NO and H2S using various dietary sources or donors could be a hopeful therapeutic strategy in the management of hypertension.
Collapse
Affiliation(s)
- Sevda Gheibi
- Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Neurophysiology Research Center and Department of Physiology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sajad Jeddi
- Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Khosrow Kashfi
- Department of Molecular, Cellular and Biomedical Sciences, Sophie Davis School of Biomedical Education, City University of New York School of Medicine, NY, USA
| | - Asghar Ghasemi
- Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
50
|
Magierowski M, Magierowska K, Hubalewska-Mazgaj M, Surmiak M, Sliwowski Z, Wierdak M, Kwiecien S, Chmura A, Brzozowski T. Cross-talk between hydrogen sulfide and carbon monoxide in the mechanism of experimental gastric ulcers healing, regulation of gastric blood flow and accompanying inflammation. Biochem Pharmacol 2018; 149:131-142. [PMID: 29203367 DOI: 10.1016/j.bcp.2017.11.020] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Accepted: 11/29/2017] [Indexed: 12/26/2022]
Abstract
Hydrogen sulfide (H2S) and carbon monoxide (CO) exert gastroprotection against acute gastric lesions. We determined the cross-talk between H2S and CO in gastric ulcer healing process and regulation of gastric blood flow (GBF) at ulcer margin. Male Wistar rats with acetic acid-induced gastric ulcers were treated i.g. throughout 9 days with vehicle (control), NaHS (0.1-10 mg/kg) +/- zinc protoporphyrin (ZnPP, 10 mg/kg), d,l-propargylglycine (PAG, 30 mg/kg), CO-releasing CORM-2 (2.5 mg/kg) +/- PAG. GBF was assessed by laser flowmetry, ulcer area was determined by planimetry/histology. Gastric mucosal H2S production was analysed spectrophotometrically. Protein and/or mRNA expression at ulcer margin for vascular endothelial growth factor (VEGF)A, epidermal growth factor receptor (EGFr), cystathionine-γ-lyase (CSE), cystathionine-β-synthase (CBS), 3-mercaptopyruvate sulfurtransferase (3-MST), heme oxygenases (HOs), nuclear factor (erythroid-derived 2)-like 2 (Nrf-2), cyclooxygenase (COX)-2, inducible nitric oxide synthase (iNOS), IL-1β, TNF-α and hypoxia inducible factor (HIF)-1α were determined by real-time PCR or western blot. IL-1α, IL-1β, IL-2, IL-4, IL-5, IL-6, IL-10, IL-12, IL-13, IFN-γ, TNF-α, GM-CSF plasma concentration was assessed using Luminex platform. NaHS dose-dependently decreased ulcer area and increased GBF but ZnPP attenuated these effects. PAG decreased H2S production but failed to affect CORM-2-mediated ulcer healing and vasodilation. NaHS increased Nrf-2, EGFr, VEGFA and decreased pro-inflammatory markers expression and IL-1β, IL-2, IL-13, TNF-α, GM-CSF plasma concentration. CORM-2 decreased IL-1β and GM-CSF plasma levels. We conclude that NaHS accelerates gastric ulcer healing increasing microcirculation and Nrf-2, EGFr, VEGFA expression. H2S-mediated ulcer healing involves endogenous CO activity while CO does not require H2S. NaHS decreases systemic inflammation more effectively than CORM-2.
Collapse
Affiliation(s)
- Marcin Magierowski
- Department of Physiology, Jagiellonian University Medical College, 16 Grzegorzecka Street 31-531 Cracow, Poland.
| | - Katarzyna Magierowska
- Department of Physiology, Jagiellonian University Medical College, 16 Grzegorzecka Street 31-531 Cracow, Poland
| | - Magdalena Hubalewska-Mazgaj
- Department of Physiology, Jagiellonian University Medical College, 16 Grzegorzecka Street 31-531 Cracow, Poland
| | - Marcin Surmiak
- Department of Physiology, Jagiellonian University Medical College, 16 Grzegorzecka Street 31-531 Cracow, Poland
| | - Zbigniew Sliwowski
- Department of Physiology, Jagiellonian University Medical College, 16 Grzegorzecka Street 31-531 Cracow, Poland
| | - Mateusz Wierdak
- Department of Physiology, Jagiellonian University Medical College, 16 Grzegorzecka Street 31-531 Cracow, Poland
| | - Slawomir Kwiecien
- Department of Physiology, Jagiellonian University Medical College, 16 Grzegorzecka Street 31-531 Cracow, Poland
| | - Anna Chmura
- Department of Physiology, Jagiellonian University Medical College, 16 Grzegorzecka Street 31-531 Cracow, Poland
| | - Tomasz Brzozowski
- Department of Physiology, Jagiellonian University Medical College, 16 Grzegorzecka Street 31-531 Cracow, Poland
| |
Collapse
|