1
|
Kaur J, Sharma A, Passi G, Dey P, Khajuria A, Alajangi HK, Jaiswal PK, Barnwal RP, Singh G. Nanomedicine at the Pulmonary Frontier: Immune-Centric Approaches for Respiratory Disease Treatment. Immunol Invest 2024; 53:295-347. [PMID: 38206610 DOI: 10.1080/08820139.2023.2298398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
Respiratory diseases (RD) are a group of common ailments with a rapidly increasing global prevalence, posing a significant threat to humanity, especially the elderly population, and imposing a substantial burden on society and the economy. RD represents an unmet medical need that requires the development of viable pharmacotherapies. While various promising strategies have been devised to advance potential treatments for RD, their implementation has been hindered by difficulties in drug delivery, particularly in critically ill patients. Nanotechnology offers innovative solutions for delivering medications to the inflamed organ sites, such as the lungs. Although this approach is enticing, delivering nanomedicine to the lungs presents complex challenges that require sophisticated techniques. In this context, we review the potential of novel nanomedicine-based immunomodulatory strategies that could offer therapeutic benefits in managing this pressing health condition.
Collapse
Affiliation(s)
- Jatinder Kaur
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | - Akanksha Sharma
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
- Department of Biophysics, Panjab University, Chandigarh, India
| | - Gautam Passi
- Department of Biophysics, Panjab University, Chandigarh, India
| | - Piyush Dey
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
- Department of Biophysics, Panjab University, Chandigarh, India
| | - Akhil Khajuria
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | - Hema Kumari Alajangi
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
- Department of Biophysics, Panjab University, Chandigarh, India
| | - Pradeep Kumar Jaiswal
- Department of Biochemistry and Biophysics, Texas A & M University, College Station, Texas, USA
| | | | - Gurpal Singh
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| |
Collapse
|
2
|
Huynh DT, Chathuranga WG, Chathuranga K, Lee JS, Kim CJ. Mucosal Administration of Lactobacillus casei Surface-Displayed HA1 Induces Protective Immune Responses against Avian Influenza A Virus in Mice. J Microbiol Biotechnol 2024; 34:735-745. [PMID: 37915251 PMCID: PMC11016770 DOI: 10.4014/jmb.2307.07040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/12/2023] [Accepted: 10/18/2023] [Indexed: 11/03/2023]
Abstract
Avian influenza is a serious threat to both public health and the poultry industry worldwide. This respiratory virus can be combated by eliciting robust immune responses at the site of infection through mucosal immunization. Recombinant probiotics, specifically lactic acid bacteria, are safe and effective carriers for mucosal vaccines. In this study, we engineered recombinant fusion protein by fusing the hemagglutinin 1 (HA1) subunit of the A/Aquatic bird/Korea/W81/2005 (H5N2) with the Bacillus subtilis poly γ-glutamic acid synthetase A (pgsA) at the surface of Lactobacillus casei (pgsA-HA1/L. casei). Using subcellular fractionation and flow cytometry we confirmed the surface localization of this fusion protein. Mucosal administration of pgsA-HA1/L. casei in mice resulted in significant levels of HA1-specific serum IgG, mucosal IgA and neutralizing antibodies against the H5N2 virus. Additionally, pgsA-HA1/L. casei-induced systemic and local cell-mediated immune responses specific to HA1, as evidenced by an increased number of IFN-γ and IL-4 secreting cells in the spleens and higher levels of IL-4 in the local lymphocyte supernatants. Finally, mice inoculated with pgsA-HA1/L. casei were protected against a 10LD50 dose of the homologous mouse-adapted H5N2 virus. These results suggest that mucosal immunization with L. casei displaying HA1 on its surface could be a potential strategy for developing a mucosal vaccine against other H5 subtype viruses.
Collapse
Affiliation(s)
- Dung T. Huynh
- College of Veterinary Medicine, Chungnam National University, Daejeon 34314, Republic of Korea
| | - W.A. Gayan Chathuranga
- College of Veterinary Medicine, Chungnam National University, Daejeon 34314, Republic of Korea
| | - Kiramage Chathuranga
- College of Veterinary Medicine, Chungnam National University, Daejeon 34314, Republic of Korea
| | - Jong-Soo Lee
- College of Veterinary Medicine, Chungnam National University, Daejeon 34314, Republic of Korea
| | - Chul-Joong Kim
- College of Veterinary Medicine, Chungnam National University, Daejeon 34314, Republic of Korea
| |
Collapse
|
3
|
Han X, Cai Z, Dai Y, Huang H, Cao X, Wang Y, Fang Y, Liu G, Zhang M, Zhang Y, Yang B, Xue W, Zhao G, Tai W, Li M. Re-burying Artificially Exposed Surface of Viral Subunit Vaccines Through Oligomerization Enhances Vaccine Efficacy. Front Cell Infect Microbiol 2022; 12:927674. [PMID: 35846760 PMCID: PMC9278648 DOI: 10.3389/fcimb.2022.927674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 06/02/2022] [Indexed: 12/02/2022] Open
Abstract
Viral subunit vaccines often suffer low efficacy. We recently showed that when taken out of the context of whole virus particles, recombinant subunit vaccines contain artificially exposed surface regions that are non-neutralizing and reduce their efficacy, and thus these regions need to be re-buried in vaccine design. Here we used the envelope protein domain III (EDIII) of Japanese encephalitis virus (JEV), a subunit vaccine candidate, to further validate this important concept for subunit vaccine designs. We constructed monomeric EDIII, dimeric EDIII via a linear space, dimeric EDIII via an Fc tag, and trimeric EDIII via a foldon tag. Compared to monomeric EDIII or linearly linked dimeric EDIII, tightly packed EDIII oligomers via the Fc or foldon tag induce higher neutralizing antibody titers in mice and also protect mice more effectively from lethal JEV challenge. Structural analyses demonstrate that part of the artificially exposed surface areas on recombinant EDIII becomes re-buried in Fc or foldon-mediated oligomers. This study further establishes the artificially exposed surfaces as an intrinsic limitation of subunit vaccines, and suggests that re-burying these surfaces through tightly packed oligomerization is a convenient and effective approach to overcome this limitation.
Collapse
Affiliation(s)
- Xuelian Han
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, China
| | - Zhuming Cai
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen, China
| | - Yulong Dai
- Institute of Hemu Biotechnology, Beijing Hemu Biotechnology Co., Ltd, Beijing, China
| | - He Huang
- Institute of Hemu Biotechnology, Beijing Hemu Biotechnology Co., Ltd, Beijing, China
| | - Xiangwen Cao
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, China.,Public Health School, Mudanjiang Medical University, Mudanjiang, China
| | - Yuan Wang
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, China
| | - Yingying Fang
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, China.,School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Gang Liu
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, China
| | - Min Zhang
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, China
| | - Yuhang Zhang
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, China
| | - Binhui Yang
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, China
| | - Wei Xue
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, China
| | - Guangyu Zhao
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, China.,Public Health School, Mudanjiang Medical University, Mudanjiang, China
| | - Wanbo Tai
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen, China
| | - Min Li
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, China
| |
Collapse
|
4
|
Tarrahimofrad H, Rahimnahal S, Zamani J, Jahangirian E, Aminzadeh S. Designing a multi-epitope vaccine to provoke the robust immune response against influenza A H7N9. Sci Rep 2021; 11:24485. [PMID: 34966175 PMCID: PMC8716528 DOI: 10.1038/s41598-021-03932-2] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 12/13/2021] [Indexed: 12/12/2022] Open
Abstract
A new strain of Influenza A Virus (IAV), so-called "H7N9 Avian Influenza", is the first strain of this virus in which a human is infected by transmitting the N9 of influenza virus. Although continuous human-to-human transmission has not been reported, the occurrence of various H7N9-associated epidemics and the lack of production of strong antibodies against H7N9 in humans warn of the potential for H7N9 to become a new pandemic. Therefore, the need for effective vaccination against H7N9 as a life-threatening viral pathogen has become a major concern. The current study reports the design of a multi-epitope vaccine against Hemagglutinin (HA) and Neuraminidase (NA) proteins of H7N9 Influenza A virus by prediction of Cytotoxic T lymphocyte (CTL), Helper T lymphocyte (HTL), IFN-γ and B-cell epitopes. Human β-defensin-3 (HβD-3) and pan HLA DR-binding epitope (PADRE) sequence were considered as adjuvant. EAAAK, AAY, GPGPG, HEYGAEALERAG, KK and RVRR linkers were used as a connector for epitopes. The final construct contained 777 amino acids that are expected to be a recombinant protein of about ~ 86.38 kDa with antigenic and non-allergenic properties after expression. Modeled protein analysis based on the tertiary structure validation, docking studies, and molecular dynamics simulations results like Root-mean-square deviation (RMSD), Gyration, Root-mean-square fluctuation (RMSF) and Molecular Mechanics Poisson-Boltzmann Surface Area (MM/PBSA) showed that this protein has a stable construct and capable of being in interaction with Toll-like receptor 7 (TLR7), TLR8 and m826 antibody. Analysis of the obtained data the demonstrates that suggested vaccine has the potential to induce the immune response by stimulating T and Bcells, and may be utilizable for prevention purposes against Avian Influenza A (H7N9).
Collapse
Affiliation(s)
- Hossein Tarrahimofrad
- Bioprocess Engineering Group, Institute of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Somayyeh Rahimnahal
- Department of Animal Science, Faculty of Agriculture, Ilam University, Ilam, Iran
| | - Javad Zamani
- Bioprocess Engineering Group, Institute of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Ehsan Jahangirian
- Bioprocess Engineering Group, Institute of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Saeed Aminzadeh
- Bioprocess Engineering Group, Institute of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran.
| |
Collapse
|
5
|
Li J, Hou G, Wang Y, Wang S, Peng C, Yu X, Jiang W. Influenza Viral Vectors Expressing Two Kinds of HA Proteins as Bivalent Vaccine Against Highly Pathogenic Avian Influenza Viruses of Clade 2.3.4.4 H5 and H7N9. Front Microbiol 2018; 9:604. [PMID: 29670587 PMCID: PMC5893818 DOI: 10.3389/fmicb.2018.00604] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 03/15/2018] [Indexed: 11/30/2022] Open
Abstract
The H5 and H7N9 subtypes of highly pathogenic avian influenza viruses (HPAIVs) in China pose a serious challenge to public health and the poultry industry. In this study, a replication competent recombinant influenza A virus of the Í5N1 subtype expressing the H7 HA1 protein from a tri-cistronic NS segment was constructed. A heterologous dimerization domain was used to combine with the truncated NS1 protein of 73 amino acids to increase protein stability. H7 HA1, nuclear export protein coding region, and the truncated NS1 were fused in-frame into a single open reading frame via 2A self-cleaving peptides. The resulting PR8-H5-NS1(73)H7 stably expressed the H5 HA and H7 HA1 proteins, and exhibited similar growth kinetics as the parental PR8-H5 virus in vitro. PR8-H5-NS1(73)H7 induced specific hemagglutination inhibition (HI) antibody against H5, which was comparable to that of the combination vaccine of PR8-H5 and PR8-H7. The HI antibody titers against H7 virus were significantly lower than that by the combination vaccine. PR8-H5-NS1(73)H7 completely protected chickens from challenge with both H5 and H7 HPAIVs. These results suggest that PR8-H5-NS1(73)H7 is highly immunogenic and efficacious against both H5 and H7N9 HPAIVs in chickens. Highlights: - PR8-H5-NS1(73)H7 simultaneously expressed two HA proteins of different avian influenza virus subtypes. - PR8-H5-NS1(73)H7 was highly immunogenic in chickens. - PR8-H5-NS1(73)H7 provided complete protection against challenge with both H5 and H7N9 HPAIVs.
Collapse
Affiliation(s)
- Jinping Li
- China Animal Health and Epidemiology Center, Qingdao, China
| | - Guangyu Hou
- China Animal Health and Epidemiology Center, Qingdao, China
| | - Yan Wang
- Shanghai Entry-Exit Inspection and Quarantine Bureau, Shanghai, China
| | - Suchun Wang
- China Animal Health and Epidemiology Center, Qingdao, China
| | - Cheng Peng
- China Animal Health and Epidemiology Center, Qingdao, China
| | - Xiaohui Yu
- China Animal Health and Epidemiology Center, Qingdao, China
| | - Wenming Jiang
- China Animal Health and Epidemiology Center, Qingdao, China
| |
Collapse
|
6
|
Pham NB, Ho TT, Nguyen GT, Le TT, Le NT, Chang HC, Pham MD, Conrad U, Chu HH. Nanodiamond enhances immune responses in mice against recombinant HA/H7N9 protein. J Nanobiotechnology 2017; 15:69. [PMID: 28982373 PMCID: PMC5629800 DOI: 10.1186/s12951-017-0305-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 09/23/2017] [Indexed: 12/31/2022] Open
Abstract
Background The continuing spread of the newly emerged H7N9 virus among poultry in China, as well as the possibility of human-to-human transmission, has attracted numerous efforts to develop an effective vaccine against H7N9. The use of nanoparticles in vaccinology is inspired by the fact that most pathogens have a dimension within the nano-size range and therefore can be processed efficiently by the immune system, which leads to a potent immune response. Herein, we report a facile approach to increase antigen size to achieve not only fast but also effective responses against the recombinant HA/H7N9 protein via a simple conjugation of the protein onto the surface of nanodiamond particles. Results In this study, trimeric Haemagglutinin (H7) that is transiently expressed in N. benthamiana was purified using affinity chromatography, and its trimeric state was revealed successfully by the cross-linking reaction. The trimeric H7 solution was subsequently mixed with a nanodiamond suspension in different ratios. The successful conjugation of the trimeric H7 onto the surface of nanodiamond particles was demonstrated by the changes in size and Zeta-potential of the particles before and after protein coating, Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), and Western-blot analysis. Next, biofunction of the protein-nanodiamond conjugates was screened using a haemagglutination assay. A mixture containing 5 µg of trimeric H7 and 60 µg of nanodiamond corresponds to a ratio of 1:12 (w/w) of agglutinated chicken red blood cells at HA titer of 1024, which is 512-fold higher than the HA titer of free trimeric H7. After the 2nd and 3rd immunization in mice, ELISA and Western blot analyses demonstrated that the physical mixture of trimeric H7 protein and nanodiamond (1:12, w/w) elicited statistically significant stronger H7-specific-IgG response demonstrated by higher amounts of H7N9-specific IgG (over 15.4-fold with P < 0.05 after the second immunization). Conclusions These results indicated a potential effect inherent to nanodiamond towards modulating immune systems, which should be further evaluated and broadly applied in nanovaccine development.
Collapse
Affiliation(s)
- Ngoc Bich Pham
- Institute of Biotechnology, Vietnam Academy of Science and Technology, Ha Noi, Vietnam.,Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Ha Noi, Vietnam
| | - Thuong Thi Ho
- Institute of Biotechnology, Vietnam Academy of Science and Technology, Ha Noi, Vietnam
| | - Giang Thu Nguyen
- Institute of Biotechnology, Vietnam Academy of Science and Technology, Ha Noi, Vietnam
| | - Thuy Thi Le
- Institute of Biotechnology, Vietnam Academy of Science and Technology, Ha Noi, Vietnam
| | - Ngoc Thu Le
- Institute of Biotechnology, Vietnam Academy of Science and Technology, Ha Noi, Vietnam
| | - Huan-Cheng Chang
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, 10617, Taiwan, ROC
| | - Minh Dinh Pham
- Institute of Biotechnology, Vietnam Academy of Science and Technology, Ha Noi, Vietnam.,Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, 10617, Taiwan, ROC
| | - Udo Conrad
- Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany
| | - Ha Hoang Chu
- Institute of Biotechnology, Vietnam Academy of Science and Technology, Ha Noi, Vietnam. .,Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Ha Noi, Vietnam.
| |
Collapse
|
7
|
Wang Y, Tai W, Yang J, Zhao G, Sun S, Tseng CTK, Jiang S, Zhou Y, Du L, Gao J. Receptor-binding domain of MERS-CoV with optimal immunogen dosage and immunization interval protects human transgenic mice from MERS-CoV infection. Hum Vaccin Immunother 2017; 13:1615-1624. [PMID: 28277821 DOI: 10.1080/21645515.2017.1296994] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Middle East respiratory syndrome (MERS) continues to raise worldwide concerns due to its pandemic potential. Increased MERS cases and no licensed MERS vaccines highlight the need to develop safe and effective vaccines against MERS. We have previously demonstrated that a receptor-binding domain (RBD) fragment containing residues 377-588 of MERS-coronavirus (MERS-CoV) spike protein is a critical neutralizing domain and an important vaccine target. Nevertheless, its optimal immunogen dosage and immunization interval, key factors for human-used vaccines that induce protective immunity, have never been investigated. In this study, we optimized these criteria using a recombinant MERS-CoV RBD protein fused with Fc (S377-588-Fc) and utilized the optimal immunization schedule to evaluate the protective efficacy of RBD against MERS-CoV infection in human dipeptidyl peptidase 4 transgenic (hDPP4-Tg) mice. Compared with one dose and 2 doses at 1-, 2-, and 3-week intervals, a regimen of 2 doses of this protein separated by an interval of 4 weeks induced the strongest antibody response and neutralizing antibodies against MERS-CoV infection, and maintained at a high level during the detection period. Notably, RBD protein at the optimal dosage and interval protected hDPP4-Tg mice against lethal MERS-CoV challenge, and the protection was positively correlated with serum neutralizing antibodies. Taken together, the optimal immunogen dosage and immunization interval identified in this study will provide useful guidelines for further development of MERS-CoV RBD-based vaccines for human use.
Collapse
Affiliation(s)
- Yufei Wang
- a School of Medical Laboratory Science , Wenzhou Medical University , Wenzhou , Zhejiang , China.,b Lindsley F. Kimball Research Institute , New York Blood Center , New York , NY , USA.,c State Key Laboratory of Pathogen and Biosecurity , Beijing Institute of Microbiology and Epidemiology , Beijing , China
| | - Wanbo Tai
- b Lindsley F. Kimball Research Institute , New York Blood Center , New York , NY , USA.,c State Key Laboratory of Pathogen and Biosecurity , Beijing Institute of Microbiology and Epidemiology , Beijing , China
| | - Jie Yang
- b Lindsley F. Kimball Research Institute , New York Blood Center , New York , NY , USA
| | - Guangyu Zhao
- c State Key Laboratory of Pathogen and Biosecurity , Beijing Institute of Microbiology and Epidemiology , Beijing , China
| | - Shihui Sun
- c State Key Laboratory of Pathogen and Biosecurity , Beijing Institute of Microbiology and Epidemiology , Beijing , China
| | - Chien-Te K Tseng
- d Department of Microbiology and Immunology and Center for Biodefense and Emerging Disease , University of Texas Medical Branch , Galveston , TX , USA
| | - Shibo Jiang
- b Lindsley F. Kimball Research Institute , New York Blood Center , New York , NY , USA.,e Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, Basic Medical College and Institute of Medical Microbiology , Fudan University , Shanghai , China
| | - Yusen Zhou
- a School of Medical Laboratory Science , Wenzhou Medical University , Wenzhou , Zhejiang , China.,c State Key Laboratory of Pathogen and Biosecurity , Beijing Institute of Microbiology and Epidemiology , Beijing , China
| | - Lanying Du
- b Lindsley F. Kimball Research Institute , New York Blood Center , New York , NY , USA
| | - Jimin Gao
- a School of Medical Laboratory Science , Wenzhou Medical University , Wenzhou , Zhejiang , China
| |
Collapse
|
8
|
Recombinant Lactococcus lactis Expressing Haemagglutinin from a Polish Avian H5N1 Isolate and Its Immunological Effect in Preliminary Animal Trials. BIOMED RESEARCH INTERNATIONAL 2017; 2017:6747482. [PMID: 28321412 PMCID: PMC5340954 DOI: 10.1155/2017/6747482] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 01/20/2017] [Accepted: 01/24/2017] [Indexed: 11/18/2022]
Abstract
Lactic acid bacteria (LAB) are Gram-positive, nonpathogenic microorganisms that are gaining much interest as antigen producers for development of live vaccine vectors. Heterologous proteins of different origin have been successfully expressed in various LAB species, including Lactococcus lactis. Recombinant L. lactis strains have been shown to induce specific local and systemic immune responses against various antigens. Our study aimed at constructing a L. lactis strain expressing haemagglutinin of a Polish avian H5H1 influenza isolate and examining its effect on animals. Expression of the cloned H5 gene was achieved using the nisin-controlled gene expression system. Detection of the intracellular H5 antigen produced in L. lactis was performed by Western blot analysis and confirmed using mass spectrometry. The potential of L. lactis recombinant cells to induce an immune response was examined by setting up preliminary immunization trials on chickens and mice. Obtained sera were tested for specific antibodies by ELISA assays. The results of these studies are a promising step toward developing a vaccine against the bird flu using Lactococcus lactis cells as bioreactors for efficient antigen production and delivery to the mucosal surface.
Collapse
|
9
|
A recombinant receptor-binding domain of MERS-CoV in trimeric form protects human dipeptidyl peptidase 4 (hDPP4) transgenic mice from MERS-CoV infection. Virology 2016; 499:375-382. [PMID: 27750111 PMCID: PMC5167628 DOI: 10.1016/j.virol.2016.10.005] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 10/04/2016] [Accepted: 10/06/2016] [Indexed: 11/24/2022]
Abstract
Middle East respiratory syndrome (MERS) coronavirus (MERS-CoV) was first identified in 2012, and it continues to threaten human health worldwide. No MERS vaccines are licensed for human use, reinforcing the urgency to develop safe and efficacious vaccines to prevent MERS. MERS-CoV spike protein forms a trimer, and its receptor-binding domain (RBD) serves as a vaccine target. Nevertheless, the protective efficacy of RBD in its native trimeric form has never been evaluated. In this study, a trimeric protein, RBD-Fd, was generated by fusing RBD with foldon trimerization motif. It bound strongly to the receptor of MERS-CoV, dipeptidyl peptidase 4 (DPP4), and elicited robust RBD-specific neutralizing antibodies in mice, maintaining long-term neutralizing activity against MERS-CoV infection. RBD-Fd potently protected hDPP4 transgenic mice from lethal MERS-CoV challenge. These results suggest that MERS-CoV RBD in its trimeric form maintains native conformation and induces protective neutralizing antibodies, making it a candidate for further therapeutic development. A trimeric MERS-CoV protein (RBD-Fd) was constructed by fusing viral RBD with foldon trimerization motif. RBD-Fd bound strongly to dipeptidyl peptidase 4 (DPP4), the receptor of MERS-CoV, and RBD-specific neutralizing antibodies. RBD-Fd induced robust and long-term neutralizing antibodies, cross-neutralizing MERS pseudovirus of divergent strains. RBD-Fd potently protected hDPP4 transgenic mice from lethal MERS-CoV challenge.
Collapse
|
10
|
Yu F, Li Y, Guo Y, Wang L, Yang J, Zhao G, Zhou Y, Du L, Jiang S. Intranasal vaccination of recombinant H5N1 HA1 proteins fused with foldon and Fc induces strong mucosal immune responses with neutralizing activity: Implication for developing novel mucosal influenza vaccines. Hum Vaccin Immunother 2016; 11:2831-8. [PMID: 26260706 DOI: 10.1080/21645515.2015.1074363] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The highly pathogenic avian influenza (HPAI) H5N1 virus remains a threat to public health because of its continued spread in poultry in some countries and its ability to infect humans with high mortality rate, calling for the development of effective and safe vaccines against H5N1 infection. Here, we constructed 4 candidate vaccines by fusing H5N1 hemagglutinin 1 (HA1) with foldon (HA1-Fd), human IgG Fc (HA1-Fc), foldon and Fc (HA1-FdFc) or His-tag (HA1-His). We then compared their ability to induce mucosal immune responses and neutralizing antibodies in the presence or absence of Poly(I:C) and CpG adjuvants via the intranasal route. Without an adjuvant, HA1-FdFc could elicit appreciable humoral immune responses and local mucosal IgA antibodies in immunized mice, while other vaccine candidates only induced background immune responses. In the presence of Poly(I:C) and CpG, both HA1-Fd and HA1-Fc elicited much higher levels of serum IgG and local mucosal IgA antibodies than HA1-His. Poly(I:C) and CpG could also augment the neutralizing antibody responses induced by these 4 vaccine candidates in the order of HA1-FdFc > HA1-Fc > HA1-Fd > HA1-His. These results suggest that both Fd and Fc potentiate the immunogenicity of the recombinant HA1 protein and that Poly(I:C) and CpG serve as efficient mucosal adjuvants in promoting efficacy of these vaccine candidates to induce strong systemic and local antibody responses and potent neutralizing antibodies, providing a useful strategy to develop effective and safe mucosal H5N1 vaccines.
Collapse
Affiliation(s)
- Fei Yu
- a Lindsley F. Kimball Research Institute; New York Blood Center ; New York , NY USA.,b Key Laboratory of Medical Molecular Virology of Ministries of Education and Health; Shanghai Medical College and Institute of Medical Microbiology; Fudan University ; Shanghai , China
| | - Ye Li
- a Lindsley F. Kimball Research Institute; New York Blood Center ; New York , NY USA
| | - Yan Guo
- c State Key Laboratory of Pathogen and Biosecurity; Beijing Institute of Microbiology and Epidemiology ; Beijing , China
| | - Lili Wang
- a Lindsley F. Kimball Research Institute; New York Blood Center ; New York , NY USA
| | - Jie Yang
- a Lindsley F. Kimball Research Institute; New York Blood Center ; New York , NY USA.,d Key Lab of New Drug Screening of Guangdong Province; School of Pharmaceutical Sciences; Southern Medical University ; Guangzhou , China
| | - Guangyu Zhao
- c State Key Laboratory of Pathogen and Biosecurity; Beijing Institute of Microbiology and Epidemiology ; Beijing , China
| | - Yusen Zhou
- c State Key Laboratory of Pathogen and Biosecurity; Beijing Institute of Microbiology and Epidemiology ; Beijing , China
| | - Lanying Du
- a Lindsley F. Kimball Research Institute; New York Blood Center ; New York , NY USA
| | - Shibo Jiang
- a Lindsley F. Kimball Research Institute; New York Blood Center ; New York , NY USA.,b Key Laboratory of Medical Molecular Virology of Ministries of Education and Health; Shanghai Medical College and Institute of Medical Microbiology; Fudan University ; Shanghai , China
| |
Collapse
|
11
|
Tang J, Zhang N, Tao X, Zhao G, Guo Y, Tseng CTK, Jiang S, Du L, Zhou Y. Optimization of antigen dose for a receptor-binding domain-based subunit vaccine against MERS coronavirus. Hum Vaccin Immunother 2016; 11:1244-50. [PMID: 25874632 PMCID: PMC4514392 DOI: 10.1080/21645515.2015.1021527] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Middle East respiratory syndrome (MERS) is an emerging infectious disease caused by MERS coronavirus (MERS-CoV). The continuous increase of MERS cases has posed a serious threat to public health worldwide, calling for development of safe and effective MERS vaccines. We have previously shown that a recombinant protein containing residues 377-588 of MERS-CoV receptor-binding domain (RBD) fused with human Fc (S377-588-Fc) induced highly potent anti-MERS-CoV neutralizing antibodies in the presence of MF59 adjuvant. Here we optimized the doses of S377-588-Fc using MF59 as an adjuvant in order to elicit strong immune responses with minimal amount of antigen. Our results showed that S377-588-Fc at 1 μg was able to induce in the immunized mice potent humoral and cellular immune responses. Particularly, S377-588-Fc at 1 μg elicited strong neutralizing antibody responses against both pseudotyped and live MERS-CoV similar to those induced at 5 and 20 μg, respectively. These results suggest that this RBD-based subunit MERS vaccine candidate at the dose as low as one μg is sufficiently potent to induce strong humoral and cellular immune responses, including neutralizing antibodies, against MERS-CoV infection, thus providing guidance for determining the optimal dosage of RBD-based MERS vaccines in the future clinical trials and for applying the dose-sparing strategy in other subunit vaccine trials.
Collapse
Affiliation(s)
- Jian Tang
- a Xiang-Ya Medical College; Central South University; , Changsha , China
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Renukaradhya GJ, Narasimhan B, Mallapragada SK. Respiratory nanoparticle-based vaccines and challenges associated with animal models and translation. J Control Release 2015; 219:622-631. [PMID: 26410807 PMCID: PMC4760633 DOI: 10.1016/j.jconrel.2015.09.047] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 09/21/2015] [Accepted: 09/23/2015] [Indexed: 12/14/2022]
Abstract
Vaccine development has had a huge impact on human health. However, there is a significant need to develop efficacious vaccines for several existing as well as emerging respiratory infectious diseases. Several challenges need to be overcome to develop efficacious vaccines with translational potential. This review focuses on two aspects to overcome some barriers - 1) the development of nanoparticle-based vaccines, and 2) the choice of suitable animal models for respiratory infectious diseases that will allow for translation. Nanoparticle-based vaccines, including subunit vaccines involving synthetic and/or natural polymeric adjuvants and carriers, as well as those based on virus-like particles offer several key advantages to help overcome the barriers to effective vaccine development. These include the ability to deliver combinations of antigens, target the vaccine formulation to specific immune cells, enable cross-protection against divergent strains, act as adjuvants or immunomodulators, allow for sustained release of antigen, enable single dose delivery, and potentially obviate the cold chain. While mouse models have provided several important insights into the mechanisms of infectious diseases, they are often a limiting step in translation of new vaccines to the clinic. An overview of different animal models involved in vaccine research for respiratory infections, with advantages and disadvantages of each model, is discussed. Taken together, advances in nanotechnology, combined with the right animal models for evaluating vaccine efficacy, has the potential to revolutionize vaccine development for respiratory infections.
Collapse
Affiliation(s)
- Gourapura J Renukaradhya
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH 44691, United States
| | - Balaji Narasimhan
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50011, United States
| | - Surya K Mallapragada
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50011, United States.
| |
Collapse
|
13
|
He B, Xia S, Yu F, Fu Y, Li W, Wang Q, Lu L, Jiang S. Putative suppressing effect of IgG Fc-conjugated haemagglutinin (HA) stalk of influenza virus H7N9 on the neutralizing immunogenicity of Fc-conjugated HA head: implication for rational design of HA-based influenza vaccines. J Gen Virol 2015; 97:327-333. [PMID: 26653217 DOI: 10.1099/jgv.0.000365] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The emergence of influenza A H7N9 in infection has posed a great threat to public health globally. Poor immunogenicity of H7N9 haemagglutinin (HA) is a major obstacle to the development of an effective H7N9 vaccine. Here, we found that the vaccine containing the H7HA head conjugated with IgG Fc (Hd-Fc) induced strong neutralizing antibody responses and protection against H7N9 infection, whilst the Fc-conjugated H7HA stalk (St-Fc)-based vaccine could not induce neutralizing antibodies, although the St-Fc-immunized mice were partially protected. The vaccines containing the full-length extracellular domain of HA conjugated with Fc and the mixture of Hd-Fc plus St-Fc induced significantly lower neutralizing antibody and haemagglutination inhibition titres than the Hd-Fc-based vaccine. These results suggest that the St-Fc may have inhibitory effects on the neutralizing immunogenicity of Hd-Fc. Therefore, the neutralizing domain(s), such as the receptor-binding domain, in the HA head should be kept and the non-neutralizing domain(s) in the HA stalk with the ability to potentially suppress the neutralizing immunogenicity of HA head should be removed from Fc-conjugated HA-based influenza vaccines to increase the neutralizing antibody response.
Collapse
Affiliation(s)
- B He
- Key Laboratory of Medical Molecular Virology of MOE/MOH, School of Basic Medical Sciences and, Shanghai Public Health Clinical Center, Fudan University, Xuhui District, Shanghai 200032, PR China
| | - S Xia
- Key Laboratory of Medical Molecular Virology of MOE/MOH, School of Basic Medical Sciences and, Shanghai Public Health Clinical Center, Fudan University, Xuhui District, Shanghai 200032, PR China
| | - F Yu
- Key Laboratory of Medical Molecular Virology of MOE/MOH, School of Basic Medical Sciences and, Shanghai Public Health Clinical Center, Fudan University, Xuhui District, Shanghai 200032, PR China
| | - Y Fu
- Key Laboratory of Medical Molecular Virology of MOE/MOH, School of Basic Medical Sciences and, Shanghai Public Health Clinical Center, Fudan University, Xuhui District, Shanghai 200032, PR China
| | - W Li
- Key Laboratory of Medical Molecular Virology of MOE/MOH, School of Basic Medical Sciences and, Shanghai Public Health Clinical Center, Fudan University, Xuhui District, Shanghai 200032, PR China
| | - Q Wang
- Key Laboratory of Medical Molecular Virology of MOE/MOH, School of Basic Medical Sciences and, Shanghai Public Health Clinical Center, Fudan University, Xuhui District, Shanghai 200032, PR China
| | - L Lu
- Key Laboratory of Medical Molecular Virology of MOE/MOH, School of Basic Medical Sciences and, Shanghai Public Health Clinical Center, Fudan University, Xuhui District, Shanghai 200032, PR China
| | - S Jiang
- Key Laboratory of Medical Molecular Virology of MOE/MOH, School of Basic Medical Sciences and, Shanghai Public Health Clinical Center, Fudan University, Xuhui District, Shanghai 200032, PR China.,Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY 10065, USA
| |
Collapse
|
14
|
Li X, Pushko P, Tretyakova I. Recombinant Hemagglutinin and Virus-Like Particle Vaccines for H7N9 Influenza Virus. ACTA ACUST UNITED AC 2015; 6. [PMID: 26523241 DOI: 10.4172/2157-7560.1000287] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cases of H7N9 human infection were caused by a novel, avian-origin H7N9 influenza A virus that emerged in eastern China in 2013. Clusters of human disease were identified in many cities in China, with mortality rates approaching 30%. Pandemic concerns were raised, as historically, influenza pandemics were caused by introduction of novel influenza A viruses into immunologically naïve human population. Currently, there are no approved human vaccines for H7N9 viruses. Recombinant protein vaccine approaches have advantages in safety and manufacturing. In this review, we focused on evaluation of the expression of recombinant hemagglutinin (rHA) proteins as candidate vaccines for H7N9 influenza, with the emphasis on the role of oligomeric and particulate structures in immunogenicity and protection. Challenges in preparation of broadly protective influenza vaccines are discussed, and examples of broadly protective vaccines are presented including rHA stem epitope vaccines, as well as recently introduced experimental multi-HA VLP vaccines.
Collapse
Affiliation(s)
- Xiaohui Li
- Shanghai Jiaotong University, 800 Dongchuan Road, Shanghai, PR China 200240 ; Genor Biopharma Co., Ltd. 1690 Zhangheng Road, Shanghai, PR China 201203
| | - Peter Pushko
- Medigen, Inc., 8420 Gas House Pike, Suite S, Frederick, MD, U.S.A
| | - Irina Tretyakova
- Medigen, Inc., 8420 Gas House Pike, Suite S, Frederick, MD, U.S.A
| |
Collapse
|
15
|
Zhang N, Channappanavar R, Ma C, Wang L, Tang J, Garron T, Tao X, Tasneem S, Lu L, Tseng CTK, Zhou Y, Perlman S, Jiang S, Du L. Identification of an ideal adjuvant for receptor-binding domain-based subunit vaccines against Middle East respiratory syndrome coronavirus. Cell Mol Immunol 2015; 13:180-90. [PMID: 25640653 PMCID: PMC4786625 DOI: 10.1038/cmi.2015.03] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Revised: 01/06/2015] [Accepted: 01/07/2015] [Indexed: 11/09/2022] Open
Abstract
Middle East respiratory syndrome (MERS), an emerging infectious disease caused by MERS coronavirus (MERS-CoV), has garnered worldwide attention as a consequence of its continuous spread and pandemic potential, making the development of effective vaccines a high priority. We previously demonstrated that residues 377–588 of MERS-CoV spike (S) protein receptor-binding domain (RBD) is a very promising MERS subunit vaccine candidate, capable of inducing potent neutralization antibody responses. In this study, we sought to identify an adjuvant that optimally enhanced the immunogenicity of S377–588 protein fused with Fc of human IgG (S377–588-Fc). Specifically, we compared several commercially available adjuvants, including Freund's adjuvant, aluminum, Monophosphoryl lipid A, Montanide ISA51 and MF59 with regard to their capacity to enhance the immunogenicity of this subunit vaccine. In the absence of adjuvant, S377–588-Fc alone induced readily detectable neutralizing antibody and T-cell responses in immunized mice. However, incorporating an adjuvant improved its immunogenicity. Particularly, among the aforementioned adjuvants evaluated, MF59 is the most potent as judged by its superior ability to induce the highest titers of IgG, IgG1 and IgG2a subtypes, and neutralizing antibodies. The addition of MF59 significantly augmented the immunogenicity of S377–588-Fc to induce strong IgG and neutralizing antibody responses as well as protection against MERS-CoV infection in mice, suggesting that MF59 is an optimal adjuvant for MERS-CoV RBD-based subunit vaccines.
Collapse
Affiliation(s)
- Naru Zhang
- Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY, USA
| | | | - Cuiqing Ma
- Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY, USA
| | - Lili Wang
- Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY, USA
| | - Jian Tang
- Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY, USA.,State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China.,Xiang-Ya Medical College, Central South University, Changsha, China
| | - Tania Garron
- Department of Microbiology and Immunology and Center for Biodefense and Emerging Disease, University of Texas Medical Branch, Galveston, TX, USA
| | - Xinrong Tao
- Department of Microbiology and Immunology and Center for Biodefense and Emerging Disease, University of Texas Medical Branch, Galveston, TX, USA
| | - Sumaiya Tasneem
- Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY, USA
| | - Lu Lu
- Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, Shanghai, Medical College and Institute of Medical Microbiology, Fudan University, Shanghai, China
| | - Chien-Te K Tseng
- Department of Microbiology and Immunology and Center for Biodefense and Emerging Disease, University of Texas Medical Branch, Galveston, TX, USA
| | - Yusen Zhou
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China.,Xiang-Ya Medical College, Central South University, Changsha, China
| | - Stanley Perlman
- Department of Microbiology, University of Iowa, Iowa City, IA, USA
| | - Shibo Jiang
- Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY, USA.,Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, Shanghai, Medical College and Institute of Medical Microbiology, Fudan University, Shanghai, China
| | - Lanying Du
- Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY, USA
| |
Collapse
|
16
|
Zhang N, Zheng BJ, Lu L, Zhou Y, Jiang S, Du L. Advancements in the development of subunit influenza vaccines. Microbes Infect 2014; 17:123-34. [PMID: 25529753 DOI: 10.1016/j.micinf.2014.12.006] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Revised: 12/07/2014] [Accepted: 12/08/2014] [Indexed: 12/19/2022]
Abstract
The ongoing threat of influenza epidemics and pandemics has emphasized the importance of developing safe and effective vaccines against infections from divergent influenza viruses. In this review, we first introduce the structure and life cycle of influenza A viruses, describing major influenza A virus-caused pandemics. We then compare different types of influenza vaccines and discuss current advancements in the development of subunit influenza vaccines, particularly those based on nucleoprotein (NP), extracellular domain of matrix protein 2 (M2e) and hemagglutinin (HA) proteins. We also illustrate potential strategies for improving the efficacy of subunit influenza vaccines.
Collapse
Affiliation(s)
- Naru Zhang
- Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY, USA
| | - Bo-Jian Zheng
- Department of Microbiology, University of Hong Kong, Pokfulam, Hong Kong
| | - Lu Lu
- Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, Shanghai Medical College and Institute of Medical Microbiology, Fudan University, Shanghai, China
| | - Yusen Zhou
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Shibo Jiang
- Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY, USA; Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, Shanghai Medical College and Institute of Medical Microbiology, Fudan University, Shanghai, China.
| | - Lanying Du
- Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY, USA.
| |
Collapse
|
17
|
Zhang N, Tang J, Lu L, Jiang S, Du L. Receptor-binding domain-based subunit vaccines against MERS-CoV. Virus Res 2014; 202:151-9. [PMID: 25445336 PMCID: PMC4439384 DOI: 10.1016/j.virusres.2014.11.013] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Revised: 11/10/2014] [Accepted: 11/12/2014] [Indexed: 12/23/2022]
Abstract
Development of effective vaccines, in particular, subunit-based vaccines, against emerging Middle East respiratory syndrome (MERS) caused by the MERS coronavirus (MERS-CoV) will provide the safest means of preventing the continuous spread of MERS in humans and camels. This review briefly describes the structure of the MERS-CoV spike (S) protein and its receptor-binding domain (RBD), discusses the current status of MERS vaccine development and illustrates the strategies used to develop RBD-based subunit vaccines against MERS. It also summarizes currently available animal models for MERS-CoV and proposes a future direction for MERS vaccines. Taken together, this review will assist researchers working to develop effective and safe subunit vaccines against MERS-CoV and any other emerging coronaviruses that might cause future pandemics.
Collapse
Affiliation(s)
- Naru Zhang
- Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY, USA
| | - Jian Tang
- Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY, USA
| | - Lu Lu
- Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, Shanghai Medical College and Institute of Medical Microbiology, Fudan University, Shanghai, China
| | - Shibo Jiang
- Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY, USA; Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, Shanghai Medical College and Institute of Medical Microbiology, Fudan University, Shanghai, China.
| | - Lanying Du
- Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY, USA.
| |
Collapse
|
18
|
Ma C, Wang L, Tao X, Zhang N, Yang Y, Tseng CTK, Li F, Zhou Y, Jiang S, Du L. Searching for an ideal vaccine candidate among different MERS coronavirus receptor-binding fragments--the importance of immunofocusing in subunit vaccine design. Vaccine 2014; 32:6170-6176. [PMID: 25240756 PMCID: PMC4194190 DOI: 10.1016/j.vaccine.2014.08.086] [Citation(s) in RCA: 107] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2014] [Revised: 07/20/2014] [Accepted: 08/22/2014] [Indexed: 11/17/2022]
Abstract
The newly emerged Middle East respiratory syndrome coronavirus (MERS-CoV) is currently spreading among humans, making development of effective MERS vaccines a high priority. A defined receptor-binding domain (RBD) in MERS-CoV spike protein can potentially serve as a subunit vaccine candidate against MERS-CoV infections. To identify an ideal vaccine candidate, we have constructed five different versions of RBD fragments, S350-588-Fc, S358-588-Fc, S367-588-Fc, S367-606-Fc, and S377-588-Fc (their names indicate their residue range in the spike protein and their C-terminal Fc tag), and further investigated their receptor binding affinity, antigenicity, immunogenicity, and neutralizing potential. The results showed that S377-588-Fc is among the RBD fragments that demonstrated the highest DPP4-binding affinity and induced the highest-titer IgG antibodies in mice. In addition, S377-588-Fc elicited higher-titer neutralizing antibodies than all the other RBD fragments in mice, and also induced high-titer neutralizing antibodies in immunized rabbits. Structural analysis suggests that S377-588-Fc contains the stably folded RBD structure, the full receptor-binding site, and major neutralizing epitopes, such that additional structures to this fragment introduce non-neutralizing epitopes and may also alter the tertiary structure of the RBD. Taken together, our data suggest that the RBD fragment encompassing spike residues 377-588 is a critical neutralizing receptor-binding fragment and an ideal candidate for development of effective MERS vaccines, and that adding non-neutralizing structures to this RBD fragment diminishes its neutralizing potential. Therefore, in viral vaccine design, it is important to identify the most stable and neutralizing viral RBD fragment, while eliminating unnecessary and non-neutralizing structures, as a means of "immunofocusing".
Collapse
Affiliation(s)
- Cuiqing Ma
- Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY, USA
| | - Lili Wang
- Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY, USA
| | - Xinrong Tao
- Department of Microbiology and Immunology and Center for Biodefense and Emerging Disease, University of Texas Medical Branch, Galveston, TX, USA
| | - Naru Zhang
- Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY, USA
| | - Yang Yang
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Chien-Te K Tseng
- Department of Microbiology and Immunology and Center for Biodefense and Emerging Disease, University of Texas Medical Branch, Galveston, TX, USA
| | - Fang Li
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Yusen Zhou
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Shibo Jiang
- Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY, USA.,Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, Shanghai Medical College and Institute of Medical Microbiology, Fudan University, Shanghai, China
| | - Lanying Du
- Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY, USA
| |
Collapse
|
19
|
Abstract
Middle East respiratory syndrome (MERS) is a newly emerging infectious disease caused by a novel coronavirus, MERS-coronavirus (MERS-CoV), a new member in the lineage C of β-coronavirus (β-CoV). The increased human cases and high mortality rate of MERS-CoV infection make it essential to develop safe and effective vaccines. In this review, the current advancements and potential strategies in the development of MERS vaccines, particularly subunit vaccines based on MERS-CoV spike (S) protein and its receptor-binding domain (RBD), are discussed. How to improve the efficacy of subunit vaccines through novel adjuvant formulations and routes of administration as well as currently available animal models for evaluating the in vivo efficacy of MERS-CoV vaccines are also addressed. Overall, these strategies may have important implications for the development of effective and safe vaccines for MERS-CoV in the future.
Collapse
Affiliation(s)
- Naru Zhang
- Lindsley F. Kimball Research Institute, New York Blood Center,New York, NY,USA
| | - Shibo Jiang
- Lindsley F. Kimball Research Institute, New York Blood Center,New York, NY,USA
- Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, Shanghai Medical College and Institute of Medical Microbiology, Fudan University,Shanghai,China
| | - Lanying Du
- Lindsley F. Kimball Research Institute, New York Blood Center,New York, NY,USA
| |
Collapse
|
20
|
A conformation-dependent neutralizing monoclonal antibody specifically targeting receptor-binding domain in Middle East respiratory syndrome coronavirus spike protein. J Virol 2014; 88:7045-53. [PMID: 24719424 DOI: 10.1128/jvi.00433-14] [Citation(s) in RCA: 123] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Prophylactic and therapeutic strategies are urgently needed to combat infections caused by the newly emerged Middle East respiratory syndrome coronavirus (MERS-CoV). Here, we have developed a neutralizing monoclonal antibody (MAb), designated Mersmab1, which potently blocks MERS-CoV entry into human cells. Biochemical assays reveal that Mersmab1 specifically binds to the receptor-binding domain (RBD) of the MERS-CoV spike protein and thereby competitively blocks the binding of the RBD to its cellular receptor, dipeptidyl peptidase 4 (DPP4). Furthermore, alanine scanning of the RBD has identified several residues at the DPP4-binding surface that serve as neutralizing epitopes for Mersmab1. These results suggest that if humanized, Mersmab1 could potentially function as a therapeutic antibody for treating and preventing MERS-CoV infections. Additionally, Mersmab1 may facilitate studies of the conformation and antigenicity of MERS-CoV RBD and thus will guide rational design of MERS-CoV subunit vaccines. IMPORTANCE MERS-CoV is spreading in the human population and causing severe respiratory diseases with over 40% fatality. No vaccine is currently available to prevent MERS-CoV infections. Here, we have produced a neutralizing monoclonal antibody with the capacity to effectively block MERS-CoV entry into permissive human cells. If humanized, this antibody may be used as a prophylactic and therapeutic agent against MERS-CoV infections. Specifically, when given to a person (e.g., a patient's family member or a health care worker) either before or after exposure to MERS-CoV, the humanized antibody may prevent or inhibit MERS-CoV infection, thereby stopping the spread of MERS-CoV in humans. This antibody can also serve as a useful tool to guide the design of effective MERS-CoV vaccines.
Collapse
|
21
|
Ma C, Li Y, Wang L, Zhao G, Tao X, Tseng CTK, Zhou Y, Du L, Jiang S. Intranasal vaccination with recombinant receptor-binding domain of MERS-CoV spike protein induces much stronger local mucosal immune responses than subcutaneous immunization: Implication for designing novel mucosal MERS vaccines. Vaccine 2014; 32:2100-8. [PMID: 24560617 PMCID: PMC4194189 DOI: 10.1016/j.vaccine.2014.02.004] [Citation(s) in RCA: 114] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Revised: 12/29/2013] [Accepted: 02/04/2014] [Indexed: 02/06/2023]
Abstract
Middle East respiratory syndrome (MERS) coronavirus (MERS-CoV) was originally identified in Saudi Arabia in 2012. It has caused MERS outbreaks with high mortality in the Middle East and Europe, raising a serious concern about its pandemic potential. Therefore, development of effective vaccines is crucial for preventing its further spread and future pandemic. Our previous study has shown that subcutaneous (s.c.) vaccination of a recombinant protein containing receptor-binding domain (RBD) of MERS-CoV S fused with Fc of human IgG (RBD-Fc) induced strong systemic neutralizing antibody responses in vaccinated mice. Here, we compared local and systemic immune responses induced by RBD-Fc via intranasal (i.n.) and s.c. immunization pathways. We found that i.n. vaccination of MERS-CoV RBD-Fc induced systemic humoral immune responses comparable to those induced by s.c. vaccination, including neutralizing antibodies, but more robust systemic cellular immune responses and significantly higher local mucosal immune responses in mouse lungs. This study suggests the potential of developing MERS-CoV RBD protein into an effective and safe mucosal candidate vaccine for prevention of respiratory tract infections caused by MERS-CoV.
Collapse
Affiliation(s)
- Cuiqing Ma
- Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY, USA; Department of Immunology, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Ye Li
- Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY, USA
| | - Lili Wang
- Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY, USA
| | - Guangyu Zhao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Xinrong Tao
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Chien-Te K Tseng
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA; Center for Biodefense and Emerging Disease, University of Texas Medical Branch, Galveston, TX, USA
| | - Yusen Zhou
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Lanying Du
- Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY, USA.
| | - Shibo Jiang
- Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY, USA; Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, Shanghai Medical College and Institute of Medical Microbiology, Fudan University, Shanghai, China.
| |
Collapse
|
22
|
Chen WH, Du L, Chag SM, Ma C, Tricoche N, Tao X, Seid CA, Hudspeth EM, Lustigman S, Tseng CTK, Bottazzi ME, Hotez PJ, Zhan B, Jiang S. Yeast-expressed recombinant protein of the receptor-binding domain in SARS-CoV spike protein with deglycosylated forms as a SARS vaccine candidate. Hum Vaccin Immunother 2013; 10:648-58. [PMID: 24355931 DOI: 10.4161/hv.27464] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Development of vaccines for preventing a future pandemic of severe acute respiratory syndrome (SARS) caused by SARS coronavirus (SARS-CoV) and for biodefense preparedness is urgently needed. Our previous studies have shown that a candidate SARS vaccine antigen consisting of the receptor-binding domain (RBD) of SARS-CoV spike protein can induce potent neutralizing antibody responses and protection against SARS-CoV challenge in vaccinated animals. To optimize expression conditions for scale-up production of the RBD vaccine candidate, we hypothesized that this could be potentially achieved by removing glycosylation sites in the RBD protein. In this study, we constructed two RBD protein variants: 1) RBD193-WT (193-aa, residues 318-510) and its deglycosylated forms (RBD193-N1, RBD193-N2, RBD193-N3); 2) RBD219-WT (219-aa, residues 318-536) and its deglycosylated forms (RBD219-N1, RBD219-N2, and RBD219-N3). All constructs were expressed as recombinant proteins in yeast. The purified recombinant proteins of these constructs were compared for their antigenicity, functionality and immunogenicity in mice using alum as the adjuvant. We found that RBD219-N1 exhibited high expression yield, and maintained its antigenicity and functionality. More importantly, RBD219-N1 induced significantly stronger RBD-specific antibody responses and a higher level of neutralizing antibodies in immunized mice than RBD193-WT, RBD193-N1, RBD193-N3, or RBD219-WT. These results suggest that RBD219-N1 could be selected as an optimal SARS vaccine candidate for further development.
Collapse
Affiliation(s)
- Wen-Hsiang Chen
- Sabin Vaccine Institute and Texas Children's Hospital Center for Vaccine Development; National School of Tropical Medicine; Baylor College of Medicine; Houston, TX USA
| | - Lanying Du
- Lindsley F Kimball Research Institute; New York Blood Center; New York, NY USA
| | - Shivali M Chag
- Sabin Vaccine Institute and Texas Children's Hospital Center for Vaccine Development; National School of Tropical Medicine; Baylor College of Medicine; Houston, TX USA
| | - Cuiqing Ma
- Lindsley F Kimball Research Institute; New York Blood Center; New York, NY USA
| | - Nancy Tricoche
- Lindsley F Kimball Research Institute; New York Blood Center; New York, NY USA
| | - Xinrong Tao
- Department of Microbiology and Immunology; University of Texas Medical Branch; Galveston, TX USA
| | - Christopher A Seid
- Sabin Vaccine Institute and Texas Children's Hospital Center for Vaccine Development; National School of Tropical Medicine; Baylor College of Medicine; Houston, TX USA
| | - Elissa M Hudspeth
- Sabin Vaccine Institute and Texas Children's Hospital Center for Vaccine Development; National School of Tropical Medicine; Baylor College of Medicine; Houston, TX USA
| | - Sara Lustigman
- Lindsley F Kimball Research Institute; New York Blood Center; New York, NY USA
| | - Chien-Te K Tseng
- Department of Microbiology and Immunology; University of Texas Medical Branch; Galveston, TX USA
| | - Maria Elena Bottazzi
- Sabin Vaccine Institute and Texas Children's Hospital Center for Vaccine Development; National School of Tropical Medicine; Baylor College of Medicine; Houston, TX USA
| | - Peter J Hotez
- Sabin Vaccine Institute and Texas Children's Hospital Center for Vaccine Development; National School of Tropical Medicine; Baylor College of Medicine; Houston, TX USA
| | - Bin Zhan
- Sabin Vaccine Institute and Texas Children's Hospital Center for Vaccine Development; National School of Tropical Medicine; Baylor College of Medicine; Houston, TX USA
| | - Shibo Jiang
- Lindsley F Kimball Research Institute; New York Blood Center; New York, NY USA; Key Laboratory of Medical Molecular Virology of MOE/MOH; Shanghai Medical College and Institute of Medical Microbiology; Fudan University; Shanghai, PR China
| |
Collapse
|
23
|
Du L, Kou Z, Ma C, Tao X, Wang L, Zhao G, Chen Y, Yu F, Tseng CTK, Zhou Y, Jiang S. A truncated receptor-binding domain of MERS-CoV spike protein potently inhibits MERS-CoV infection and induces strong neutralizing antibody responses: implication for developing therapeutics and vaccines. PLoS One 2013; 8:e81587. [PMID: 24324708 PMCID: PMC3852489 DOI: 10.1371/journal.pone.0081587] [Citation(s) in RCA: 134] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2013] [Accepted: 10/22/2013] [Indexed: 01/08/2023] Open
Abstract
An emerging respiratory infectious disease with high mortality, Middle East respiratory syndrome (MERS), is caused by a novel coronavirus (MERS-CoV). It was first reported in 2012 in Saudi Arabia and has now spread to eight countries. Development of effective therapeutics and vaccines is crucial to save lives and halt the spread of MERS-CoV. Here, we show that a recombinant protein containing a 212-amino acid fragment (residues 377-588) in the truncated receptor-binding domain (RBD: residues 367-606) of MERS-CoV spike (S) protein fused with human IgG Fc fragment (S377-588-Fc) is highly expressed in the culture supernatant of transfected 293T cells. The purified S377-588-Fc protein efficiently binds to dipeptidyl peptidase 4 (DPP4), the receptor of MERS-CoV, and potently inhibited MERS-CoV infection, suggesting its potential to be further developed as a therapeutic modality for treating MERS-CoV infection and saving the patients' lives. The recombinant S377-588-Fc is able to induce in the vaccinated mice strong MERS-CoV S-specific antibodies, which blocks the binding of RBD to DPP4 receptor and effectively neutralizes MERS-CoV infection. These findings indicate that this truncated RBD protein shows promise for further development as an effective and safe vaccine for the prevention of MERS-CoV infection.
Collapse
Affiliation(s)
- Lanying Du
- Lindsley F. Kimball Research Institute, New York Blood Center, New York, New York, United States of America
| | - Zhihua Kou
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Cuiqing Ma
- Lindsley F. Kimball Research Institute, New York Blood Center, New York, New York, United States of America
| | - Xinrong Tao
- Departments of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Lili Wang
- Lindsley F. Kimball Research Institute, New York Blood Center, New York, New York, United States of America
| | - Guangyu Zhao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Yaoqing Chen
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
| | - Fei Yu
- Lindsley F. Kimball Research Institute, New York Blood Center, New York, New York, United States of America
| | - Chien-Te K. Tseng
- Departments of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Yusen Zhou
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Shibo Jiang
- Lindsley F. Kimball Research Institute, New York Blood Center, New York, New York, United States of America
- Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, Shanghai Medical College and Institute of Medical Microbi, Fudan University, Shanghai, China
| |
Collapse
|
24
|
Zhao G, Du L, Ma C, Li Y, Li L, Poon VK, Wang L, Yu F, Zheng BJ, Jiang S, Zhou Y. A safe and convenient pseudovirus-based inhibition assay to detect neutralizing antibodies and screen for viral entry inhibitors against the novel human coronavirus MERS-CoV. Virol J 2013; 10:266. [PMID: 23978242 PMCID: PMC3765664 DOI: 10.1186/1743-422x-10-266] [Citation(s) in RCA: 113] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Accepted: 08/23/2013] [Indexed: 11/26/2022] Open
Abstract
Background Evidence points to the emergence of a novel human coronavirus, Middle East respiratory syndrome coronavirus (MERS-CoV), which causes a severe acute respiratory syndrome (SARS)-like disease. In response, the development of effective vaccines and therapeutics remains a clinical priority. To accomplish this, it is necessary to evaluate neutralizing antibodies and screen for MERS-CoV entry inhibitors. Methods In this study, we produced a pseudovirus bearing the full-length spike (S) protein of MERS-CoV in the Env-defective, luciferase-expressing HIV-1 backbone. We then established a pseudovirus-based inhibition assay to detect neutralizing antibodies and anti-MERS-CoV entry inhibitors. Results Our results demonstrated that the generated MERS-CoV pseudovirus allows for single-cycle infection of a variety of cells expressing dipeptidyl peptidase-4 (DPP4), the confirmed receptor for MERS-CoV. Consistent with the results from a live MERS-CoV-based inhibition assay, the antisera of mice vaccinated with a recombinant protein containing receptor-binding domain (RBD, residues 377–662) of MERS-CoV S fused with Fc of human IgG exhibited neutralizing antibody response against infection of MERS-CoV pseudovirus. Furthermore, one small molecule HIV entry inhibitor targeting gp41 (ADS-J1) and the 3-hydroxyphthalic anhydride-modified human serum albumin (HP-HSA) could significantly inhibit MERS-CoV pseudovirus infection. Conclusion Taken together, the established MERS-CoV inhibition assay is a safe and convenient pseudovirus-based alternative to BSL-3 live-virus restrictions and can be used to rapidly screen MERS-CoV entry inhibitors, as well as evaluate vaccine-induced neutralizing antibodies against the highly pathogenic MERS-CoV.
Collapse
Affiliation(s)
- Guangyu Zhao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Du L, Li Y, Zhao G, Wang L, Zou P, Lu L, Zhou Y, Jiang S. Highly pathogenic avian influenza A(H5N1) mutants transmissible by air are susceptible to human and animal neutralizing antibodies. J Infect Dis 2013; 208:1315-9. [PMID: 23868877 DOI: 10.1093/infdis/jit323] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
A laboratory-generated reassortant H5 hemagglutinin (HA)/influenza A(H1N1) strain containing 4 mutations in influenza A(H5N1) HA has become transmissible by air among mammals. Here, we constructed 15 influenza A(H5N1) pseudoviruses containing a single mutation or a combination of mutations and showed that the pseudoviruses were susceptible to neutralizing antibodies from patients with influenza A(H5N1) infection and from mice immunized with a vaccine containing the conserved HA1 sequence of influenza A(H5N1). These results indicate that antibodies in patients currently infected by influenza A(H5N1) and antibodies induced by vaccines containing conserved sequences in HA1 of wild-type influenza A(H5N1) are highly effective in cross-neutralizing future influenza A(H5N1) mutants with airborne transmissibility, suggesting that human influenza pandemics caused by these influenza A(H5N1) variants can be prevented.
Collapse
Affiliation(s)
- Lanying Du
- Lindsley F. Kimball Research Institute, New York Blood Center, New York City
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Identification of a receptor-binding domain in the S protein of the novel human coronavirus Middle East respiratory syndrome coronavirus as an essential target for vaccine development. J Virol 2013; 87:9939-42. [PMID: 23824801 DOI: 10.1128/jvi.01048-13] [Citation(s) in RCA: 155] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
A novel human Middle East respiratory syndrome coronavirus (MERS-CoV) caused outbreaks of severe acute respiratory syndrome (SARS)-like illness with a high mortality rate, raising concerns of its pandemic potential. Dipeptidyl peptidase-4 (DPP4) was recently identified as its receptor. Here we showed that residues 377 to 662 in the S protein of MERS-CoV specifically bound to DPP4-expressing cells and soluble DPP4 protein and induced significant neutralizing antibody responses, suggesting that this region contains the receptor-binding domain (RBD), which has a potential to be developed as a MERS-CoV vaccine.
Collapse
|