1
|
Shen WH, Zhou LL, Li XP, Cong RP, Huang QY, Zheng LP, Wang JW. Bamboo polysaccharides elicit hypocrellin A biosynthesis of a bambusicolous fungus Shiraia sp. S9. World J Microbiol Biotechnol 2023; 39:341. [PMID: 37828354 DOI: 10.1007/s11274-023-03789-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 10/02/2023] [Indexed: 10/14/2023]
Abstract
Hypocrellin A (HA), a fungal perylenequinone from bambusicolous Shiraia species, is a newly developed photosensitizer for photodynamic therapy in cancer and other infectious diseases. The lower yield of HA is an important bottleneck for its biomedical application. This study is the first report of the enhancement of HA production in mycelium culture of Shiraia sp. S9 by the polysaccharides from its host bamboo which serve as a strong elicitor. A purified bamboo polysaccharide (BPSE) with an average molecular weight of 34.2 kDa was found to be the most effective elicitor to enhance fungal HA production and characterized as a polysaccharide fraction mainly composed of arabinose and galactose (53.7: 36.9). When BPSE was added to the culture at 10 mg/L on day 3, the highest HA production of 422.8 mg/L was achieved on day 8, which was about 4.0-fold of the control. BPSE changed the gene expressions mainly responsible for central carbon metabolism and the cellular oxidative stress. The induced generation of H2O2 and nitric oxide was found to be involved in both the permeabilization of cell membrane and HA biosynthesis, leading to enhancements in both intra- and extracellular HA production. Our results indicated the roles of plant polysaccharides in host-fungal interactions and provided a new elicitation technique to improve fungal perylenequinone production in mycelium cultures.
Collapse
Affiliation(s)
- Wen Hao Shen
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Lu Lu Zhou
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Xin Ping Li
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Rui Peng Cong
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Qun Yan Huang
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Li Ping Zheng
- Department of Horticultural Sciences, Soochow University, Suzhou, 215123, China.
| | - Jian Wen Wang
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China.
| |
Collapse
|
2
|
Xu R, Huang QY, Shen WH, Li XP, Zheng LP, Wang JW. Volatiles of Shiraia fruiting body-associated Pseudomonas putida No.24 stimulate fungal hypocrellin production. Synth Syst Biotechnol 2023; 8:427-436. [PMID: 37409170 PMCID: PMC10319174 DOI: 10.1016/j.synbio.2023.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 06/08/2023] [Accepted: 06/08/2023] [Indexed: 07/07/2023] Open
Abstract
Hypocrellins are major bioactive perylenequinones from Shiraia fruiting bodies and have been developed as efficient photosensitizers for photodynamic therapy. Pseudomonas is the second dominant genus inside Shiraia fruiting bodies, but with less known actions on the host fungus. In this work, the effects of bacterial volatiles from the Shiraia-associated Pseudomonas on fungal hypocrellin production were investigated. Pseudomonas putida No.24 was the most active to promote significantly accumulation of Shiraia perylenequinones including hypocrellin A (HA), HC, elsinochrome A (EA) and EC. Headspace analysis of the emitted volatiles revealed dimethyl disulfide as one of active compounds to promote fungal hypocrellin production. The bacterial volatiles induced an apoptosis in Shiraia hyphal cell, which was associated with the generation of reactive oxygen species (ROS). ROS generation was proved to mediate the volatile-induced membrane permeability and up-regulation of gene expressions for hypocrellin biosynthesis. In the submerged volatile co-culture, the bacterial volatiles stimulated not only HA content in mycelia, but also HA secretion into the medium, leading to the enhanced HA production to 249.85 mg/L, about 2.07-fold over the control. This is the first report on the regulation of Pseudomonas volatiles on fungal perylenequinone production. These findings could be helpful to understand the roles of bacterial volatiles in fruiting bodies and also provide new elicitation method using bacterial volatiles to stimulate fungal secondary metabolite production.
Collapse
Affiliation(s)
- Rui Xu
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Qun Yan Huang
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Wen Hao Shen
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Xin Ping Li
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Li Ping Zheng
- Department of Horticultural Sciences, Soochow University, Suzhou, 215123, China
| | - Jian Wen Wang
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| |
Collapse
|
3
|
Yu W, Pei R, Zhou J, Zeng B, Tu Y, He B. Molecular regulation of fungal secondary metabolism. World J Microbiol Biotechnol 2023; 39:204. [PMID: 37209190 DOI: 10.1007/s11274-023-03649-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 05/15/2023] [Indexed: 05/22/2023]
Abstract
Many bioactive secondary metabolites synthesized by fungi have important applications in many fields, such as agriculture, food, medical and others. The biosynthesis of secondary metabolites is a complex process involving a variety of enzymes and transcription factors, which are regulated at different levels. In this review, we describe our current understanding on molecular regulation of fungal secondary metabolite biosynthesis, such as environmental signal regulation, transcriptional regulation and epigenetic regulation. The effects of transcription factors on the secondary metabolites produced by fungi were mainly introduced. It was also discussed that new secondary metabolites could be found in fungi and the production of secondary metabolites could be improved. We also highlight the importance of understanding the molecular regulation mechanisms to activate silent secondary metabolites and uncover their physiological and ecological functions. By comprehensively understanding the regulatory mechanisms involved in secondary metabolite biosynthesis, we can develop strategies to improve the production of these compounds and maximize their potential benefits.
Collapse
Affiliation(s)
- Wenbin Yu
- Jiangxi Key Laboratory of Bioprocess Engineering, College of Life Sciences, Jiangxi Science & Technology Normal University, Nanchang, 330013, Jiangxi, China
| | - Rongqiang Pei
- Jiangxi Key Laboratory of Bioprocess Engineering, College of Life Sciences, Jiangxi Science & Technology Normal University, Nanchang, 330013, Jiangxi, China
| | - Jingyi Zhou
- Zhanjiang Preschool Education College, Zhanjiang, 524084, Guangdong, China
| | - Bin Zeng
- Jiangxi Key Laboratory of Bioprocess Engineering, College of Life Sciences, Jiangxi Science & Technology Normal University, Nanchang, 330013, Jiangxi, China
- College of Pharmacy, Shenzhen Technology University, Shenzhen, 518000, Guangdong, China
| | - Yayi Tu
- Jiangxi Key Laboratory of Bioprocess Engineering, College of Life Sciences, Jiangxi Science & Technology Normal University, Nanchang, 330013, Jiangxi, China.
| | - Bin He
- Jiangxi Key Laboratory of Bioprocess Engineering, College of Life Sciences, Jiangxi Science & Technology Normal University, Nanchang, 330013, Jiangxi, China.
| |
Collapse
|
4
|
Bondzie-Quaye P, Swallah MS, Acheampong A, Elsherbiny SM, Acheampong EO, Huang Q. Advances in the biosynthesis, diversification, and hyperproduction of ganoderic acids in Ganoderma lucidum. Mycol Prog 2023. [DOI: 10.1007/s11557-023-01881-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
5
|
Zhou LL, Shen WH, Ma YJ, Li XP, Wu JY, Wang JW. Structure characterization of an exopolysaccharide from a Shiraia-associated bacterium and its strong eliciting activity on the fungal hypocrellin production. Int J Biol Macromol 2023; 226:423-433. [PMID: 36473526 DOI: 10.1016/j.ijbiomac.2022.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/07/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022]
Abstract
Hypocrellins are fungal perylenequinones (PQs) from Shiraia fruiting bodies and potential photosensitizers for cancer photodynamic therapy. Shiraia fruiting bodies harbor diverse bacterial communities dominated by Pseudomonas. The present study was to characterize the exopolysaccharide (EPS) of P. fulva SB1 which acted as an elicitor to stimulate the PQ accumulation of the host Shiraia. A bacterial EPS named EPS-1 was purified from the culture broth of P. fulva SB1, which consisted of mannose (Man) and glucose (Glc) with an average molecular weight of 9.213 × 104 Da. EPS-1 had (1 → 2)-linked α-mannopyranose (Manp) backbone and side chains of α-D-Manp-(1→ and α-D-Manp-(1 → 6)-β-D-Glcp-(1 → 6)-α-D-Manp(1 → group attached to the O-6 positions of (1 → 2)-α-D-Manp. EPS-1 at 30 mg/L stimulated both intracellular and extracellular hypocrellin A (HA) by about 3-fold of the control group. The EPS-1 treatment up-regulated the expression of key genes for HA biosynthesis. The elicitation of HA biosynthesis by EPS-1 was strongly dependent on the induced reactive oxygen species (ROS) generation. The results may provide new insights on the role of bacterial EPS in bacterium-fungus interactions and effective elicitation strategy for hypocrellin production in mycelial cultures.
Collapse
Affiliation(s)
- Lu Lu Zhou
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Wen Hao Shen
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Yan Jun Ma
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Xin Ping Li
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Jian-Yong Wu
- Research Institute for Future Food, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong.
| | - Jian Wen Wang
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China.
| |
Collapse
|
6
|
Increasing the production of the bioactive compounds in medicinal mushrooms: an omics perspective. Microb Cell Fact 2023; 22:11. [PMID: 36647087 PMCID: PMC9841694 DOI: 10.1186/s12934-022-02013-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 12/28/2022] [Indexed: 01/18/2023] Open
Abstract
Macroscopic fungi, mainly higher basidiomycetes and some ascomycetes, are considered medicinal mushrooms and have long been used in different areas due to their pharmaceutically/nutritionally valuable bioactive compounds. However, the low production of these bioactive metabolites considerably limits the utilization of medicinal mushrooms both in commerce and clinical trials. As a result, many attempts, ranging from conventional methods to novel approaches, have been made to improve their production. The novel strategies include conducting omics investigations, constructing genome-scale metabolic models, and metabolic engineering. So far, genomics and the combined use of different omics studies are the most utilized omics analyses in medicinal mushroom research (both with 31% contribution), while metabolomics (with 4% contribution) is the least. This article is the first attempt for reviewing omics investigations in medicinal mushrooms with the ultimate aim of bioactive compound overproduction. In this regard, the role of these studies and systems biology in elucidating biosynthetic pathways of bioactive compounds and their contribution to metabolic engineering will be highlighted. Also, limitations of omics investigations and strategies for overcoming them will be provided in order to facilitate the overproduction of valuable bioactive metabolites in these valuable organisms.
Collapse
|
7
|
Heme Oxygenase/Carbon Monoxide Participates in the Regulation of Ganoderma lucidum Heat-Stress Response, Ganoderic Acid Biosynthesis, and Cell-Wall Integrity. Int J Mol Sci 2022; 23:ijms232113147. [DOI: 10.3390/ijms232113147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 10/23/2022] [Accepted: 10/27/2022] [Indexed: 11/16/2022] Open
Abstract
Carbon monoxide (CO), a product of organic oxidation processes, arises in vivo principally from the enzymatic reaction of heme oxygenase (HO, transcription gene named HMX1). HO/CO has been found to exert many salutary effects in multiple biological processes, including the stress response. However, whether HO/CO is involved in the regulation of the heat-stress (HS) response of Ganoderma lucidum (G. lucidum) is still poorly understood. In this paper, we reported that under heat stress, the HMX1 transcription level, HO enzyme activity, and CO content increased by 5.2-fold, 6.5-fold and 2-fold, respectively. HMX1 silenced strains showed a 12% increase in ganoderic acid (GA) content under HS as analyzed by HPLC. Furthermore, according to Western blot analysis of the protein phosphorylation levels, HMX1 attenuated the increase in phosphorylation levels of slt2, but the phosphorylation levels were prolonged over a 3 h HS time period. The chitin and glucan content in HMX1 silenced strains increased by 108% and 75%, respectively. In summary, these findings showed that the HO/CO system responds to heat stress and then regulates the HS-induced GA biosynthesis and the cell-wall integrity mediated by the Slt-MAPK phosphorylation level in G. lucidum.
Collapse
|
8
|
Melatonin-Induced Inhibition of Shiraia Hypocrellin A Biosynthesis Is Mediated by Hydrogen Peroxide and Nitric Oxide. J Fungi (Basel) 2022; 8:jof8080836. [PMID: 36012825 PMCID: PMC9410495 DOI: 10.3390/jof8080836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/05/2022] [Accepted: 08/08/2022] [Indexed: 11/21/2022] Open
Abstract
Melatonin (MLT), an evolutionarily conserved pleiotropic molecule, is implicated in numerous physiological processes in plants and animals. However, the effects of MLT on microbes have seldom been reported. In this study, we examined the influence of exogenous MLT on the growth and hypocrellin biosynthesis of bambusicolous fungus Shiraia sp. S9. Hypocrellin A (HA) is a photoactivated and photoinduced perylenequinone (PQ) toxin in Shiraia. Exogenous MLT at 100.00 μM not only decreased fungal conidiation and spore germination but inhibited HA contents significantly in fungal cultures under a light/dark (24 h:24 h) shift. MLT treatment was associated with higher activity of antioxidant enzymes (superoxide dismutase, catalase and peroxidase) and a marked decline in reactive oxygen species (ROS) production in the mycelia. Moreover, MLT induced endogenous nitric oxide (NO) production during the culture. The NO donor sodium nitroprusside (SNP) potentiated MLT-induced inhibition of O2− production, but NO scavenger 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (cPTIO) enhanced O2− production, whereas MLT-induced NO level was increased by the ROS scavenger vitamin C (Vc). The changes in NO and H2O2 were proved to be involved in the MLT-induced downregulation of the expressions of HA biosynthetic genes, leading to the suppression of HA production. This study provides new insight into the regulatory roles of MLT on fungal secondary metabolism activities and a basis for understanding self-resistance in phototoxin-producing fungi.
Collapse
|
9
|
Li XP, Ji HY, Wang WJ, Shen WH, Wang JW. Effects of Blue Light on Hypocrellin A Production in Shiraia Mycelium Cultures. Photochem Photobiol 2022; 98:1343-1354. [PMID: 35506756 DOI: 10.1111/php.13640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 05/01/2022] [Indexed: 11/30/2022]
Abstract
Blue light is a crucial environmental cue for fungi. Hypocrellin A (HA) is a photoactive perylenequinone from Shiraia with strong antimicrobial and anticancer properties. In this study, effects of the illumination of blue light-emitting diode (LED) at 470 nm on Shiraia sp. S8 was investigated. Blue light at 50-200 lx and 4-6 h/day could enhance HA content in the mycelia, but suppress it at 300-400 lx or with longer exposure (8-24 h/day). The intermittent blue light (6 h/day) at 200 lx not only enhanced the fungal conidiation, but stimulated HA production without any growth retardation. The generation of fungal reactive oxygen species (ROS) was induced to up-regulate HA biosynthetic gene expressions. When the culture was maintained under the intermittent blue light for 8 days, HA production reached 242.76 mg/L, 2.27-fold of the dark control. On the other hand, both the degradation of HA and down-regulation of HA biosynthetic genes occurred under long exposure time (8-24 h/day), leading to the suppression of HA production. These results provide a basis for understanding the regulation of blue light on the biosynthesis of fungal photoactivated perylenequinones, and the application of a novel light elicitation to Shiraia mycelium cultures for enhanced HA production.
Collapse
Affiliation(s)
- Xin Ping Li
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Hong Yao Ji
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Wen Juan Wang
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Wen Hao Shen
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Jian Wen Wang
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| |
Collapse
|
10
|
Ahmad MF, Wahab S, Ahmad FA, Ashraf SA, Abullais SS, Saad HH. Ganoderma lucidum: A potential pleiotropic approach of ganoderic acids in health reinforcement and factors influencing their production. FUNGAL BIOL REV 2022; 39:100-125. [DOI: 10.1016/j.fbr.2021.12.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
11
|
Ong CE, Ahmad R, Goh YK, Azizan KA, Baharum SN, Goh KJ. Growth modulation and metabolic responses of Ganoderma boninense to salicylic acid stress. PLoS One 2021; 16:e0262029. [PMID: 34972183 PMCID: PMC8719765 DOI: 10.1371/journal.pone.0262029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 12/15/2021] [Indexed: 12/03/2022] Open
Abstract
Various phenolic compounds have been screened against Ganoderma boninense, the fungal pathogen causing basal stem rot in oil palms. In this study, we focused on the effects of salicylic acid (SA) on the growth of three G. boninense isolates with different levels of aggressiveness. In addition, study on untargeted metabolite profiling was conducted to investigate the metabolomic responses of G. boninense towards salicylic acid. The inhibitory effects of salicylic acid were both concentration- (P < 0.001) and isolate-dependent (P < 0.001). Also, growth-promoting effect was observed in one of the isolates at low concentrations of salicylic acid where it could have been utilized by G. boninense as a source of carbon and energy. Besides, adaptation towards salicylic acid treatment was evident in this study for all isolates, particularly at high concentrations. In other words, inhibitory effect of salicylic acid treatment on the fungal growth declined over time. In terms of metabolomics response to salicylic acid treatment, G. boninense produced several metabolites such as coumarin and azatyrosine, which suggests that salicylic acid modulates the developmental switch in G. boninense towards the defense mode for its survival. Furthermore, the liquid chromatography time-of-flight mass spectrometry (LC-TOF-MS) analysis showed that the growth of G. boninense on potato dextrose agar involved at least four metabolic pathways: amino acid metabolism, lipid pathway, tryptophan pathway and phenylalanine pathway. Overall, there were 17 metabolites that contributed to treatment separation, each with P<0.005. The release of several antimicrobial metabolites such as eudistomin I may enhance G. boninense's competitiveness against other microorganisms during colonisation. Our findings demonstrated the metabolic versatility of G. boninense towards changes in carbon sources and stress factors. G. boninense was shown to be capable of responding to salicylic acid treatment by switching its developmental stage.
Collapse
Affiliation(s)
- Cu Ean Ong
- Advanced Agriecological Research Sdn. Bhd., Kota Damansara, Petaling Jaya, Selangor, Malaysia
| | - Rafidah Ahmad
- Metabolomics Research Laboratory, Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia (UKM), Bangi, Selangor, Malaysia
| | - You Keng Goh
- Advanced Agriecological Research Sdn. Bhd., Kota Damansara, Petaling Jaya, Selangor, Malaysia
| | - Kamalrul Azlan Azizan
- Metabolomics Research Laboratory, Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia (UKM), Bangi, Selangor, Malaysia
| | - Syarul Nataqain Baharum
- Metabolomics Research Laboratory, Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia (UKM), Bangi, Selangor, Malaysia
| | - Kah Joo Goh
- Advanced Agriecological Research Sdn. Bhd., Kota Damansara, Petaling Jaya, Selangor, Malaysia
| |
Collapse
|
12
|
Li XP, Zhou LL, Guo YH, Wang JW. The signaling role of extracellular ATP in co-culture of Shiraia sp. S9 and Pseudomonas fulva SB1 for enhancing hypocrellin A production. Microb Cell Fact 2021; 20:144. [PMID: 34301268 PMCID: PMC8305905 DOI: 10.1186/s12934-021-01637-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 07/16/2021] [Indexed: 12/20/2022] Open
Abstract
Background Adenosine 5′-triphosphate (ATP) plays both a central role as an intracellular energy source, and a crucial extracellular signaling role in diverse physiological processes of animals and plants. However, there are less reports concerning the signaling role of microbial extracellular ATP (eATP). Hypocrellins are effective anticancer photodynamic therapy (PDT) agents from bambusicolous Shiraia fungi. The co-culture of Shiraia sp. S9 and a bacterium Pseudomonas fulva SB1 isolated from Shiraia fruiting bodies was established for enhanced hypocrellin A (HA) production. The signaling roles of eATP to mediate hypocrellin biosynthesis were investigated in the co-culture. Results The co-culture induced release of eATP at 378 nM to the medium around 4 h. The eATP release was interdependent on cytosolic Ca2+ concentration and reactive oxygen species (ROS) production, respectively. The eATP production could be suppressed by the Ca2+ chelator EGTA or abolished by the channel blocker La3+, ROS scavenger vitamin C and NADPH oxidase inhibitor diphenyleneiodonium chloride (DPI). The bacterium-induced H2O2 production was strongly inhibited by reactive blue (RB), a specific inhibitor of membrane purinoceptors, but dependent on the induced Ca2+ influx in the co-culture. On the other hand, the application of exogenous ATP (exATP) at 10–300 µM to Shiraia cultures also promoted fungal conidiation and HA production, both of which were blocked effectively by the purinoceptor inhibitors pyridoxalphosphate-6-azophenyl-2′, 4′-disulfonic acid (PPADS) and RB, and ATP hydrolase apyrase. Both the induced expression of HA biosynthetic genes and HA accumulation were inhibited significantly under the blocking of the eATP or Ca2+ signaling, and the scavenge of ROS in the co-culture. Conclusions Our results indicate that eATP release is an early event during the intimate bacterial–fungal interaction and eATP plays a signaling role in the bacterial elicitation on fungal metabolites. Ca2+ and ROS are closely linked for activation of the induced ATP release and its signal transduction. This is the first report on eATP production in the fungal–bacterial co-culture and its involvement in the induced biosynthesis of fungal metabolites. Graphic abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12934-021-01637-9.
Collapse
Affiliation(s)
- Xin Ping Li
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Lu Lu Zhou
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Yan Hua Guo
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Jian Wen Wang
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China.
| |
Collapse
|
13
|
Ma YJ, Li XP, Wang Y, Wang JW. Nitric oxide donor sodium nitroprusside-induced transcriptional changes and hypocrellin biosynthesis of Shiraia sp. S9. Microb Cell Fact 2021; 20:92. [PMID: 33910564 PMCID: PMC8082767 DOI: 10.1186/s12934-021-01581-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 04/17/2021] [Indexed: 12/22/2022] Open
Abstract
Background Nitric oxide (NO) is a ubiquitous signaling mediator in various physiological processes. However, there are less reports concerning the effects of NO on fungal secondary metabolites. Hypocrellins are effective anticancer photodynamic therapy (PDT) agents from fungal perylenequinone pigments of Shiraia. NO donor sodium nitroprusside (SNP) was used as a chemical elicitor to promote hypocrellin biosynthesis in Shiraia mycelium cultures. Results SNP application at 0.01–0.20 mM was found to stimulate significantly fungal production of perylenequinones including hypocrellin A (HA) and elsinochrome A (EA). SNP application could not only enhance HA content by 178.96% in mycelia, but also stimulate its efflux to the medium. After 4 days of SNP application at 0.02 mM, the highest total production (110.34 mg/L) of HA was achieved without any growth suppression. SNP released NO in mycelia and acted as a pro-oxidant, thereby up-regulating the gene expression and activity of reactive oxygen species (ROS) generating NADPH oxidase (NOX) and antioxidant enzymes, leading to the increased levels of superoxide anion (O2−) and hydrogen peroxide (H2O2). Gene ontology (GO) analysis revealed that SNP treatment could up-regulate biosynthetic genes for hypocrellins and activate the transporter protein major facilitator superfamily (MFS) for the exudation. Moreover, SNP treatment increased the proportion of total unsaturated fatty acids in the hypha membranes and enhanced membrane permeability. Our results indicated both cellular biosynthesis of HA and its secretion could contribute to HA production induced by SNP. Conclusions The results of this study provide a valuable strategy for large-scale hypocrellin production and can facilitate further understanding and exploration of NO signaling in the biosynthesis of the important fungal metabolites. Supplementary Information The online version contains supplementary material available at 10.1186/s12934-021-01581-8.
Collapse
Affiliation(s)
- Yan Jun Ma
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China.,College of Life Sciences, Northwest Normal University, Lanzhou, 730000, China
| | - Xin Ping Li
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Yue Wang
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Jian Wen Wang
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China.
| |
Collapse
|
14
|
Wang Y, Zhang X, Lu C, Li X, Zhou J, Wang J. Lanthanum: A novel inducer for enhancement of fungal laccase production by Shiraia bambusicola. J RARE EARTH 2020. [DOI: 10.1016/j.jre.2020.12.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
15
|
Lian D, Li L, Liu X, Zhong X, Wang H, Zhou S, Gu L. Time-scale dynamics of proteome predicts the central carbon metabolism involved in triterpenoid accumulation responsive to nitrogen limitation in Ganoderma lucidum. Fungal Biol 2020; 125:294-304. [PMID: 33766308 DOI: 10.1016/j.funbio.2020.11.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 10/18/2020] [Accepted: 11/24/2020] [Indexed: 10/22/2022]
Abstract
Central carbon metabolism describes the integration of transport pathway of main carbon sources inside the cell. Nitrogen (N) limitation is a favorable approach to stimulate ganoderic triterpenoid (GT) accumulation in Ganoderma lucidum. In this study, the dynamic regulation of metabolism reassignment towards GT biosynthesis responsive to N limitation was investigated by iTRAQ-based proteome. Physiological data suggested that N limitation slightly affected cell growth but significantly enhanced GT contents in the initial 20 days. From day 10, the protein contents were halted by prolonged N limitation duration. Proteomics-based investigations revealed that the carbon skeletons integrated into GT precursors were regenerated by glycolysis and the tricarboxylic acid (TCA) cycle. Cells strategically reserved nitrogen by barely incorporating it into TCA cycle intermediates to form amino acids, and enzymes involved in protein degradation were up regulated. Furthermore, regulation of proteins in response to abiotic stress and oxidation- reduction processes played a critical role in maintaining cellular homeostasis. These findings indicated that the flux of carbon into GT following N deficiency was a consequence of the remodeling of intermediate metabolism in TCA cycle and glycolysis reactions. This study provides a rationale for genetic engineering of G. lucidum, which may enable synchronized biomass and GT synthesis.
Collapse
Affiliation(s)
- Danhong Lian
- Food and Health Engineering Research Center of State Education Ministry, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Lian Li
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Xin Liu
- Food and Health Engineering Research Center of State Education Ministry, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Xin Zhong
- Food and Health Engineering Research Center of State Education Ministry, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Haizhen Wang
- Food and Health Engineering Research Center of State Education Ministry, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Sha Zhou
- Food and Health Engineering Research Center of State Education Ministry, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Li Gu
- Food and Health Engineering Research Center of State Education Ministry, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China.
| |
Collapse
|
16
|
Yu Z, Wu H, Li Y, Xu Y, Li H, Yang S. Advances in Heterogeneously Catalytic Degradation of Biomass Saccharides with Ordered-Nanoporous Materials. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c01625] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Zhaozhuo Yu
- State Key Laboratory Breeding Base of Green Pesticide & Agricultural Bioengineering, Key Laboratory of Green Pesticide & Agricultural Bioengineering, Ministry of Education, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for Research & Development of Fine Chemicals, Guizhou University, Guiyang, Guizhou 550025, China
| | - Hongguo Wu
- State Key Laboratory Breeding Base of Green Pesticide & Agricultural Bioengineering, Key Laboratory of Green Pesticide & Agricultural Bioengineering, Ministry of Education, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for Research & Development of Fine Chemicals, Guizhou University, Guiyang, Guizhou 550025, China
| | - Yan Li
- State Key Laboratory Breeding Base of Green Pesticide & Agricultural Bioengineering, Key Laboratory of Green Pesticide & Agricultural Bioengineering, Ministry of Education, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for Research & Development of Fine Chemicals, Guizhou University, Guiyang, Guizhou 550025, China
| | - Yufei Xu
- State Key Laboratory Breeding Base of Green Pesticide & Agricultural Bioengineering, Key Laboratory of Green Pesticide & Agricultural Bioengineering, Ministry of Education, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for Research & Development of Fine Chemicals, Guizhou University, Guiyang, Guizhou 550025, China
| | - Hu Li
- State Key Laboratory Breeding Base of Green Pesticide & Agricultural Bioengineering, Key Laboratory of Green Pesticide & Agricultural Bioengineering, Ministry of Education, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for Research & Development of Fine Chemicals, Guizhou University, Guiyang, Guizhou 550025, China
| | - Song Yang
- State Key Laboratory Breeding Base of Green Pesticide & Agricultural Bioengineering, Key Laboratory of Green Pesticide & Agricultural Bioengineering, Ministry of Education, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for Research & Development of Fine Chemicals, Guizhou University, Guiyang, Guizhou 550025, China
| |
Collapse
|
17
|
Darzian Rostami A, Yazdian F, Mirjani R, Soleimani M. Effects of different graphene-based nanomaterials as elicitors on growth and ganoderic acid production by Ganoderma lucidum. Biotechnol Prog 2020; 36:e3027. [PMID: 32432828 DOI: 10.1002/btpr.3027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 05/11/2020] [Accepted: 05/15/2020] [Indexed: 12/14/2022]
Abstract
Graphene-based nanomaterials (GBNs) have attracted considerable interest nowadays due to their wide range of applications. However, very little attention has been paid to the application of nanomaterials as potential elicitors for production of valuable metabolites. Herein, aiming to earn insight into effects of nanomaterials on secondary metabolite biosynthesis by medicinal fungi, we evaluated the influence of GBNs on growth and production of ganoderic acid (GA) by Ganoderma lucidum in submerged culture. Graphene oxide (GO), reduced graphene oxide (rGO), and rGO/Fe3 O4 nanocomposite were synthesized successfully and characterized by X-ray diffraction, Fourier transform infrared spectroscopy, and scanning electron microscopy analysis. The prepared nanomaterials were added to the culture of G. lucidum at final concentrations of 50, 100, and 150 mg/L on Day 5. The results showed that the elicitation of G. lucidum with GO and rGO decreased the cell dry weight and GA production slightly, especially in higher concentrations. However, rGO/Fe3 O4 nanocomposite not negatively affected cell growth and improved GA production. G. lucidum growth rate responded to elicitation experiments differently and depended on the type of nanomaterials and their concentrations, but almost all GBNs caused an increase in GA content (mg/100 mg dry weight). Also, field emission scanning electron microscopy morphological study showed that under elicitation, mycelia were more condensed and tightly stacked together. The findings from this study may suggest that GBNs in low concentrations could be applied as elicitors to secondary metabolites production from higher fungus, but further environmental, physiological, and biological studies required.
Collapse
Affiliation(s)
- Arash Darzian Rostami
- Department of Microbiology, Faculty of Medicine, AJA University of Medical Sciences, Tehran, Iran.,Department of Life Science Engineering, Faculty of New Science and Technologies, University of Tehran, Tehran, Iran
| | - Fatemeh Yazdian
- Department of Life Science Engineering, Faculty of New Science and Technologies, University of Tehran, Tehran, Iran
| | - Rohallah Mirjani
- Department of Genetics and Advanced Technologies, Faculty of Medicine, AJA University of Medical Sciences, Tehran, Iran
| | - Mohammad Soleimani
- Department of Microbiology, Faculty of Medicine, AJA University of Medical Sciences, Tehran, Iran
| |
Collapse
|
18
|
Lu X, Xie C, Wang Y, Liu Y, Han J, Shi L, Zhu J, Yu H, Ren A, Zhao M. Function of ceramide synthases on growth, ganoderic acid biosynthesis and sphingolipid homeostasis in Ganoderma lucidum. PHYTOCHEMISTRY 2020; 172:112283. [PMID: 32032828 DOI: 10.1016/j.phytochem.2020.112283] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 11/03/2019] [Accepted: 01/22/2020] [Indexed: 06/10/2023]
Abstract
Ceramide synthases (CERSs) catalyse an N-acyltransferase reaction using long-chain base (LCB) and fatty acyl-coenzyme A (CoA) as substrates to synthesize ceramide (Cer), which is the backbone of all complex sphingolipids. In the present study, three CERSs (LAG1, LAG2 and LAG3) form Ganoderma lucidum were analysed. The silencing of lag1 by RNA interference reduced ganoderic acid biosynthesis and Cer and complex sphingolipids contents, which contain long-chain-fatty-acids (LCFAs, including C16 and C18). In contrast, the silencing of lag2 or lag3 did not result in obvious phenotypic and sphingolipid homeostasis changes, although the lag2/lag3 double-silenced mutants exhibited increased ganoderic acid biosynthesis as well as reduced growth, reduced Cer and complex sphingolipids contents, which contain very-long-chain fatty acids (VLCFAs, including C22, C24 and C26). The results of the present study indicate that the three assayed CERSs have distinct physiological functions and substrate specificities in G. lucidum.
Collapse
Affiliation(s)
- Xiaoxiao Lu
- Key Laboratory of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, PR China
| | - Chunqin Xie
- Jiangsu Vocational College of Agriculture and Forestry, Jurong, 212400, Jiangsu, PR China
| | - Yunxiao Wang
- Key Laboratory of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, PR China
| | - Yongnan Liu
- Key Laboratory of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, PR China
| | - Jing Han
- Key Laboratory of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, PR China
| | - Liang Shi
- Key Laboratory of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, PR China
| | - Jing Zhu
- Key Laboratory of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, PR China
| | - Hanshou Yu
- Key Laboratory of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, PR China
| | - Ang Ren
- Key Laboratory of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, PR China.
| | - Mingwen Zhao
- Key Laboratory of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, PR China
| |
Collapse
|
19
|
Hu Y, Xu W, Hu S, Lian L, Zhu J, Ren A, Shi L, Zhao MW. Glsnf1-mediated metabolic rearrangement participates in coping with heat stress and influencing secondary metabolism in Ganoderma lucidum. Free Radic Biol Med 2020; 147:220-230. [PMID: 31883976 DOI: 10.1016/j.freeradbiomed.2019.12.041] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 12/15/2019] [Accepted: 12/24/2019] [Indexed: 01/06/2023]
Abstract
The AMP-activated protein kinase (AMPK)/Sucrose-nonfermenting serine-threonine protein kinase 1 (Snf1) plays an important role in metabolic remodelling in response to energy stress. However, the role of AMPK/Snf1 in responding to other environmental stresses and metabolic remodelling in microorganisms was unclear. Heat stress (HS), which is one important environmental factor, could induce the production of reactive oxygen species and the accumulation of ganoderic acids (GAs) in Ganoderma lucidum. Here, the functions of AMPK/Snf1 were analysed under HS condition in G. lucidum. We observed that Glsnf1 was rapidly and strongly activated when G. lucidum was exposed to HS. HS significantly increased intracellular H2O2 levels (by approximately 1.6-fold) and decreased the dry weight of G. lucidum (by approximately 45.6%). The exogenous addition of N-acetyl-l-cysteine (NAC) and ascorbic acid (VC), which function as ROS scavengers, partially inhibited the HS-mediated reduction in biomass. Adding the AMPK/Snf1 inhibitor compound C (20 μM) under HS conditions increased the H2O2 content (by approximately 2.3-fold of that found in the strain without HS treatment and 1.5-fold of that found in the strain under HS treatment without compound C) and decreased the dry weight of G. lucidum (an approximately 28.5% decrease compared with that of the strain under HS conditions without compound C). Similar results were obtained by silencing the Glsnf1 gene. Further study found that Glsnf1 meditated metabolite distribution from respiration to glycolysis, which is considered a protective mechanism against oxidative stress. In addition, Glsnf1 negatively regulated the biosynthesis of GA by removing ROS. In conclusion, our results suggest that Glsnf1-mediated metabolic remodelling is involved in heat stress adaptability and the biosynthesis of secondary metabolites in G. lucidum.
Collapse
Affiliation(s)
- Yanru Hu
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Jiangsu, Nanjing, 210095, People's Republic of China
| | - Wenzhao Xu
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Jiangsu, Nanjing, 210095, People's Republic of China
| | - Shishan Hu
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Jiangsu, Nanjing, 210095, People's Republic of China
| | - Lingdan Lian
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Jiangsu, Nanjing, 210095, People's Republic of China
| | - Jing Zhu
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Jiangsu, Nanjing, 210095, People's Republic of China
| | - Ang Ren
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Jiangsu, Nanjing, 210095, People's Republic of China
| | - Liang Shi
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Jiangsu, Nanjing, 210095, People's Republic of China
| | - Ming Wen Zhao
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Jiangsu, Nanjing, 210095, People's Republic of China.
| |
Collapse
|
20
|
Zhu J, Wu F, Yue S, Chen C, Song S, Wang H, Zhao M. Functions of reactive oxygen species in apoptosis and ganoderic acid biosynthesis in Ganoderma lucidum. FEMS Microbiol Lett 2019; 366:5714084. [PMID: 31967638 DOI: 10.1093/femsle/fnaa015] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Accepted: 01/21/2020] [Indexed: 12/26/2022] Open
Abstract
Ganoderma lucidum is a medicinal fungus that is widely used in traditional medicine. Fungal PacC is recognized as an important transcription factor that functions during adaptation to environmental pH, fungal development and secondary metabolism. Previous studies have revealed that GlPacC plays important roles in mycelial growth, fruiting body development and ganoderic acid (GA) biosynthesis. In this study, using a terminal deoxynucleotidyl transferase-mediated dUTP nick end labelling (TUNEL) assay, we found that the apoptosis level was increased when PacC was silenced. The transcript and activity levels of caspase-like proteins were significantly increased in the PacC-silenced (PacCi) strains compared with the control strains. Silencing PacC also resulted in an increased reactive oxygen species (ROS) levels (∼2-fold) and decreased activity levels of enzymes involved in the antioxidant system. Further, we found that the intracellular ROS levels contributed to apoptosis and GA biosynthesis. Adding N-acetyl-cysteine and vitamin C decreased intracellular ROS and resulted in the inhibition of apoptosis in the PacCi strains. Additionally, the GA biosynthesis was different between the control strains and the PacCi strains after intracellular ROS was eliminated. Taken together, the findings showed that silencing PacC can result in an intracellular ROS burst, which increases cell apoptosis and GA biosynthesis levels. Our study provides novel insight into the functions of PacC in filamentous fungi.
Collapse
Affiliation(s)
- Jing Zhu
- Key Laboratory of Edible Mushroom Processing, Ministry of Agriculture; Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, Jiangsu, P.R. China
| | - Fengli Wu
- Key Laboratory of Edible Mushroom Processing, Ministry of Agriculture; Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, Jiangsu, P.R. China
| | - Sining Yue
- Key Laboratory of Edible Mushroom Processing, Ministry of Agriculture; Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, Jiangsu, P.R. China
| | - Chen Chen
- Key Laboratory of Edible Mushroom Processing, Ministry of Agriculture; Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, Jiangsu, P.R. China
| | - Shuqi Song
- Key Laboratory of Edible Mushroom Processing, Ministry of Agriculture; Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, Jiangsu, P.R. China
| | - Hui Wang
- Key Laboratory of Edible Mushroom Processing, Ministry of Agriculture; Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, Jiangsu, P.R. China
| | - Mingwen Zhao
- Key Laboratory of Edible Mushroom Processing, Ministry of Agriculture; Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, Jiangsu, P.R. China
| |
Collapse
|
21
|
Xu J, Yue T, Yu X, Zhao P, Li T, Li N. Enhanced production of individual ganoderic acids by integrating Vitreoscilla haemoglobin expression and calcium ion induction in liquid static cultures of Ganoderma lingzhi. Microb Biotechnol 2019; 12:1180-1187. [PMID: 30821132 PMCID: PMC6801144 DOI: 10.1111/1751-7915.13381] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 01/18/2019] [Accepted: 02/04/2019] [Indexed: 11/30/2022] Open
Abstract
Ganoderic acids produced by Ganoderma exhibit anticancer and antimetastatic activities. A novel approach by combining Vitreoscilla haemoglobin (VHb) expression and calcium ion induction was developed to enhance ganoderic acid (GA) production in liquid static cultures of G. lingzhi. The maximum contents of GA-O, GA-S and GA-Me were 1451.33 ± 67.50, 1431.23 ± 79.74 and 1283.81 ± 85.13 μg per 100 mg cell weight, respectively under the integrated approach, which are the highest contents as ever reported in Ganoderma. The contents of squalene and lanosterol were increased by 2.0- and 3.0-fold in this case compared with those in the control. The transcription levels of 3-hydroxy-3-methylglutaryl coenzyme A reductase, farnesyl-diphosphate synthase, squalene synthase and cytochrome P450 CYP5150L8 were upregulated by 2.56-, 3.31-, 2.59- and 6.12-fold respectively. Additionally, the expression of VHb improved the ratio of type I to type II GA in liquid static cultivation of G. lingzhi. The transcription levels of cyp512a2, cyp512v2 and cyp512a13, candidate cytochrome P450 genes involved in oxidative modification of the lanostane skeleton in GA biosynthesis, were also increased by 2.28-, 2.65- and 3.54-fold in the VHb-expressing strain respectively. Our results illustrated that the approach described here efficiently improved GA production in G. lingzhi fermentation.
Collapse
Affiliation(s)
- Jun‐Wei Xu
- Faculty of Life Science and TechnologyKunming University of Science and TechnologyKunming650500China
| | - Tong‐Hui Yue
- Faculty of Life Science and TechnologyKunming University of Science and TechnologyKunming650500China
| | - Xuya Yu
- Faculty of Life Science and TechnologyKunming University of Science and TechnologyKunming650500China
| | - Peng Zhao
- Faculty of Life Science and TechnologyKunming University of Science and TechnologyKunming650500China
| | - Tao Li
- Faculty of Life Science and TechnologyKunming University of Science and TechnologyKunming650500China
| | - Na Li
- Faculty of ScienceKunming University of Science and TechnologyKunming650500China
| |
Collapse
|
22
|
Lu C, Ma Y, Wang J. Lanthanum elicitation on hypocrellin A production in mycelium cultures of Shiraia bambusicola is mediated by ROS generation. J RARE EARTH 2019. [DOI: 10.1016/j.jre.2018.10.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
23
|
Enhanced Ganoderic Acids Accumulation and Transcriptional Responses of Biosynthetic Genes in Ganoderma lucidum Fruiting Bodies by Elicitation Supplementation. Int J Mol Sci 2019; 20:ijms20112830. [PMID: 31185659 PMCID: PMC6600565 DOI: 10.3390/ijms20112830] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 06/06/2019] [Accepted: 06/07/2019] [Indexed: 02/07/2023] Open
Abstract
Ganoderic acids (GAs) are a type of highly oxygenated lanostane-type triterpenoids that are responsible for the pharmacological activities of Ganoderma lucidum. They have been investigated for their biological activities, including antibacterial, antiviral, antitumor, anti-HIV-1, antioxidation, and cholesterol reduction functions. Inducer supplementation is viewed as a promising technology for the production of GAs. This study found that supplementation with sodium acetate (4 mM) significantly increased the GAs content of fruiting bodies by 28.63% compared to the control. In order to explore the mechanism of ganoderic acid accumulation, the transcriptional responses of key GAs biosynthetic genes, including the acetyl coenzyme A synthase gene, and the expression levels of genes involved in calcineurin signaling and acetyl-CoA content have been analyzed. The results showed that the expression of three key GAs biosynthetic genes (hmgs, fps, and sqs) were significantly up-regulated. Analysis indicated that the acetate ion increased the expression of genes related to acetic acid assimilation and increased GAs biosynthesis, thereby resulting in the accumulation of GAs. Further investigation of the expression levels of genes involved in calcineurin signaling revealed that Na+ supplementation and the consequent exchange of Na+/Ca2+ induced GAs biosynthesis. Overall, this study indicates a feasible new approach of utilizing sodium acetate elicitation for the enhanced production of valuable GAs content in G. lucidum, and also provided the primary mechanism of GAs accumulation.
Collapse
|
24
|
Ren A, Shi L, Zhu J, Yu H, Jiang A, Zheng H, Zhao M. Shedding light on the mechanisms underlying the environmental regulation of secondary metabolite ganoderic acid in Ganoderma lucidum using physiological and genetic methods. Fungal Genet Biol 2019; 128:43-48. [PMID: 30951869 DOI: 10.1016/j.fgb.2019.03.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 03/13/2019] [Accepted: 03/31/2019] [Indexed: 12/23/2022]
Abstract
The secondary metabolites of fungi are often produced at very low concentrations, and until recently the regulatory mechanisms of secondary metabolite biosynthesis have been unclear. Ganoderma lucidum is a macrofungus that is widely used as a traditional Chinese medicine or medicinal mushroom: ganoderic acid (GA) is one of the main active ingredients. Here, we review research from the last decade on which and how environmental factors regulate GA biosynthesis. These environmental factors are mainly three components: a single chemical/biological or biochemical signal, physical triggers, and nutritional conditions. Because G. lucidum is a non-model Basidiomycete, a combination of physiological and genetic research is needed to determine how those environmental factors regulate GA biosynthesis. The regulation of GA biosynthesis includes ROS, Ca2+, cAMP and phospholipid signaling, and cross-talk between different signaling pathways. The regulatory mechanisms for the synthesis of this secondary metabolite, from the perspective of physiology and genetics, in G. lucidum will provide ideas for studying the regulation of fungal secondary metabolism in other non-model species, especially those fungi with limitations in genetic manipulation.
Collapse
Affiliation(s)
- Ang Ren
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, Nanjing 210095, Jiangsu, PR China
| | - Liang Shi
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, Nanjing 210095, Jiangsu, PR China
| | - Jing Zhu
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, Nanjing 210095, Jiangsu, PR China
| | - Hanshou Yu
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, Nanjing 210095, Jiangsu, PR China
| | - Ailiang Jiang
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, Nanjing 210095, Jiangsu, PR China
| | - Huihua Zheng
- Jiangsu Alphay Bio-technology Co., Ltd./Key Laboratory of Edible Mushroom Processing, Ministry of Agriculture, Nantong 226009, Jiangsu, PR China
| | - Mingwen Zhao
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, Nanjing 210095, Jiangsu, PR China.
| |
Collapse
|
25
|
Kalantari-Dehaghi S, Hatamian-Zarmi A, Ebrahimi-Hosseinzadeh B, Mokhtari-Hosseini ZB, Nojoki F, Hamedi J, Hosseinkhani S. Effects of microbial volatile organic compounds on Ganoderma lucidum growth and ganoderic acids production in Co-v-cultures (volatile co-cultures). Prep Biochem Biotechnol 2019; 49:286-297. [DOI: 10.1080/10826068.2018.1541809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Saeid Kalantari-Dehaghi
- Department of Life Science Engineering, Faculty of New Science and Technology, University of Tehran, Tehran, Iran
| | - Ashrafalsadat Hatamian-Zarmi
- Department of Life Science Engineering, Faculty of New Science and Technology, University of Tehran, Tehran, Iran
| | - Bahman Ebrahimi-Hosseinzadeh
- Department of Life Science Engineering, Faculty of New Science and Technology, University of Tehran, Tehran, Iran
| | - Zahra-Beagom Mokhtari-Hosseini
- Department of Chemical Engineering, Faculty of Petroleum and Petrochemical Engineering, Hakim Sabzevari University, Sabzevar, Iran
| | - Fahimeh Nojoki
- Department of Life Science Engineering, Faculty of New Science and Technology, University of Tehran, Tehran, Iran
| | - Javad Hamedi
- Department of Microbial Biotechnology, School of Biology and Center of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, Tehran, Iran
| | - Saman Hosseinkhani
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
26
|
Ma YJ, Lu CS, Wang JW. Effects of 5-Azacytidine on Growth and Hypocrellin Production of Shiraia bambusicola. Front Microbiol 2018; 9:2508. [PMID: 30405568 PMCID: PMC6200910 DOI: 10.3389/fmicb.2018.02508] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 10/02/2018] [Indexed: 01/24/2023] Open
Abstract
Hypocrellins, fungal perylenequinones of Shiraia bambusicola are developed as important photodynamic therapy agents against cancers and viruses. Due to the limitation of the wild resources, the mycelium culture is a promising alternative for hypocrellin production. As DNA methylation has profound effects on fungal growth, development and secondary metabolism, we used both McrBC cleavage and HPLC analysis to reveal the status of DNA methylation of S. bambusicola mycelium. We found that DNA methylation is absent in mycelia, but DNA methylation inhibitor 5-azacytidine (5-AC) still induced the fluffy phenotype and decreased hypocrellin contents significantly. Simultaneously, a total of 4,046 differentially expressed genes were induced by 5-AC, including up-regulated 2,392 unigenes (59.12%) and down-regulated 1,654 unigenes (40.88%). Gene ontology analysis showed 5-AC treatment changed expression of genes involved in membrane composition and oxidation–reduction process. The fluffy phenotype in 5-AC-treated S. bambusicola was closely related to strong promotion of developmental regulator WetA and the repression of the sexual developmental actor VeA and LaeA. It was a surprise finding that 5-AC reduced reactive oxygen species (ROS) production significantly in the mycelia via the inhibition of NADPH oxidase gene (NOX) expression and NOX activity. With the treatment of vitamin C and H2O2, we found that the reduced ROS generation was involved in the down-regulated expression of key genes for hypocrellin biosynthesis and the decreased hypocrellin production. To our knowledge, this is the first attempt to examine DNA methylation level in S. bambusicola. Our results suggested that the mediation of ROS generation could not be ignored in the study using 5-AC as a specific DNA methylation inhibitor.
Collapse
Affiliation(s)
- Yan Jun Ma
- College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Can Song Lu
- College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Jian Wen Wang
- College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| |
Collapse
|
27
|
From nutraceutical to clinical trial: frontiers in Ganoderma development. Appl Microbiol Biotechnol 2018; 102:9037-9051. [DOI: 10.1007/s00253-018-9326-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 08/11/2018] [Accepted: 08/25/2018] [Indexed: 12/26/2022]
|
28
|
Cross Talk between Calcium and Reactive Oxygen Species Regulates Hyphal Branching and Ganoderic Acid Biosynthesis in Ganoderma lucidum under Copper Stress. Appl Environ Microbiol 2018; 84:AEM.00438-18. [PMID: 29678914 DOI: 10.1128/aem.00438-18] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 04/16/2018] [Indexed: 02/07/2023] Open
Abstract
Ganoderma lucidum is among the best known medicinal basidiomycetes due to its production of many pharmacologically active compounds. To study the regulatory networks involved in its growth and development, we analyzed the relationship between reactive oxygen species (ROS) and Ca2+ signaling in the regulation of hyphal branching and ganoderic acid (GA) biosynthesis after Cu2+ treatment. Our results revealed that Cu2+ treatment decreased the distance between hyphal branches and increased the GA content and the intracellular levels of ROS and Ca2+ Further research revealed that the Cu2+-induced changes in hyphal branch distance, GA content, and cytosolic Ca2+ level were dependent on increases in cytosolic ROS. Our results also showed that increased cytosolic Ca2+ could reduce cytosolic ROS by activating antioxidases and modulating Cu2+ accumulation, resulting in feedback to adjust hyphal growth and GA biosynthesis. These results indicated that cytosolic ROS and Ca2+ levels exert important cross talk in the regulation of hyphal growth and GA biosynthesis induced by Cu2+ Taken together, our results provide a reference for analyzing the interactions among different signal transduction pathways with regard to the regulation of growth and development in other filamentous fungi.IMPORTANCEGanoderma lucidum, which is known as an important medicinal basidiomycete, is gradually becoming a model organism for studying environmental regulation and metabolism. In this study, we analyzed the relationship between reactive oxygen species (ROS) and Ca2+ signaling in the regulation of hyphal branching and ganoderic acid (GA) biosynthesis under Cu2+ stress. The results revealed that the Cu2+-induced changes in the hyphal branch distance, GA content, and cytosolic Ca2+ level were dependent on increases in cytosolic ROS. Furthermore, the results indicated that increased cytosolic Ca2+ could reduce cytosolic ROS levels by activating antioxidases and modulating Cu2+ accumulation. The results in this paper indicate that there was important cross talk between cytosolic ROS and Ca2+ levels in the regulation of hyphal growth and GA biosynthesis induced by Cu2.
Collapse
|
29
|
Gu L, Zheng Y, Lian D, Zhong X, Liu X. Production of triterpenoids from Ganoderma lucidum : Elicitation strategy and signal transduction. Process Biochem 2018. [DOI: 10.1016/j.procbio.2018.03.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
30
|
Improved hypocrellin A production in Shiraia bambusicola by light-dark shift. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2018; 182:100-107. [PMID: 29656218 DOI: 10.1016/j.jphotobiol.2018.04.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Revised: 03/17/2018] [Accepted: 04/03/2018] [Indexed: 01/02/2023]
Abstract
Hypocrellin A (HA) is a major bioactive perylenequinone from the fruiting body of Shiraia bambusicola used for the treatment of skin diseases and developed as a photodynamic therapy (PDT) agent against cancers and viruses. The mycelial culture of S. bambusicola under dark is a biotechnological alternative for HA production but with low yield. In this study, light and dark conditions were investigated to develop effective elicitation on HA production in the cultures. Our results showed the constant light at 200 lx stimulated HA production without any growth retardation of mycelia. A light/dark shift (24: 24 h) not only increased HA content in mycelia by 65%, but stimulated HA release into the medium with the highest total HA production 181.67 mg/L on day 8, about 73% increase over the dark control. Moreover, light/dark shifting induced the formation of smaller and more compact fungal pellets, suggesting a new effective strategy for large-scale production of HA in mycelium cultures. The light/dark shift up-regulated the expression levels of two reactive oxygen species (ROS) related genes including superoxide-generating NADPH oxidase (Nox) and cytochrome c peroxidase (CCP), and induced the generation of ROS. With the treatment of vitamin C, we found that ROS was involved in the up-regulated expression of key biosynthetical genes for hypocrellins and improved HA production. These results provide a basis for understanding the influence of light/dark shift on fungal metabolism and the application of a novel strategy for enhancing HA production in submerged Shiraia cultures.
Collapse
|
31
|
Liu R, Cao P, Ren A, Wang S, Yang T, Zhu T, Shi L, Zhu J, Jiang AL, Zhao MW. SA inhibits complex III activity to generate reactive oxygen species and thereby induces GA overproduction in Ganoderma lucidum. Redox Biol 2018; 16:388-400. [PMID: 29631100 PMCID: PMC5953243 DOI: 10.1016/j.redox.2018.03.018] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 03/27/2018] [Accepted: 03/29/2018] [Indexed: 12/28/2022] Open
Abstract
Ganoderma lucidum has high commercial value because it produces many active compounds, such as ganoderic acids (GAs). Salicylic acid (SA) was previously reported to induce the biosynthesis of GA in G. lucidum. In this study, we found that SA induces GA biosynthesis by increasing ROS production, and further research found that NADPH oxidase-silenced strains exhibited a partial reduction in the response to SA, resulting in the induction of increased ROS production. Furthermore, the localization of ROS shows that mitochondria are sources of ROS production in response to SA treatment. An additional analysis focused on the relationship between SA-induced ROS production and mitochondrial functions, and the results showed that inhibitors of mitochondrial complexes I and II exert approximately 40–50% superimposed inhibitory effects on the respiration rate and H2O2 content when co-administered with SA. However, no obvious superimposed inhibition effects were observed in the sample co-treated with mitochondrial complex III inhibitor and SA, implying that the inhibitor of mitochondrial complex III and SA might act on the same site in mitochondria. Additional experiments revealed that complex III activity was decreased 51%, 62% and 75% after treatment with 100, 200, and 400 µM SA, respectively. Our results highlight the finding that SA inhibits mitochondrial complex III activity to increase ROS generation. In addition, inhibition of mitochondrial complex III caused ROS accumulation, which plays an essential role in SA-mediated GA biosynthesis in G. lucidum. This conclusion was also demonstrated in complex III-silenced strains. To the best of our knowledge, this study provides the first demonstration that SA inhibits complex III activity to increase the ROS levels and thereby regulate secondary metabolite biosynthesis. Mitochondria as a source of salicylic acid (SA) induced reactive oxygen species (ROS) production in Ganoderma lucidum. SA induces the accumulation of ganoderic acids in Ganoderma lucidum by mitochondria ROS overproduction. SA inhibits mitochondrial complex III activity to increase ROS and thereby induces ganoderic acids biosynthesis.
Collapse
Affiliation(s)
- Rui Liu
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture; Microbiology Department, College of Life Sciences, Nanjing Agricultural University, No 1 Weigang, Nanjing 210095, Jiangsu, People's Republic of China
| | - Pengfei Cao
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture; Microbiology Department, College of Life Sciences, Nanjing Agricultural University, No 1 Weigang, Nanjing 210095, Jiangsu, People's Republic of China
| | - Ang Ren
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture; Microbiology Department, College of Life Sciences, Nanjing Agricultural University, No 1 Weigang, Nanjing 210095, Jiangsu, People's Republic of China
| | - Shengli Wang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture; Microbiology Department, College of Life Sciences, Nanjing Agricultural University, No 1 Weigang, Nanjing 210095, Jiangsu, People's Republic of China
| | - Tao Yang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture; Microbiology Department, College of Life Sciences, Nanjing Agricultural University, No 1 Weigang, Nanjing 210095, Jiangsu, People's Republic of China
| | - Ting Zhu
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture; Microbiology Department, College of Life Sciences, Nanjing Agricultural University, No 1 Weigang, Nanjing 210095, Jiangsu, People's Republic of China
| | - Liang Shi
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture; Microbiology Department, College of Life Sciences, Nanjing Agricultural University, No 1 Weigang, Nanjing 210095, Jiangsu, People's Republic of China
| | - Jing Zhu
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture; Microbiology Department, College of Life Sciences, Nanjing Agricultural University, No 1 Weigang, Nanjing 210095, Jiangsu, People's Republic of China
| | - Ai-Liang Jiang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture; Microbiology Department, College of Life Sciences, Nanjing Agricultural University, No 1 Weigang, Nanjing 210095, Jiangsu, People's Republic of China
| | - Ming-Wen Zhao
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture; Microbiology Department, College of Life Sciences, Nanjing Agricultural University, No 1 Weigang, Nanjing 210095, Jiangsu, People's Republic of China.
| |
Collapse
|
32
|
Xu X, Liu T, Yang J, Chen L, Liu B, Wang L, Jin Q. The First Whole-Cell Proteome- and Lysine-Acetylome-Based Comparison between Trichophyton rubrum Conidial and Mycelial Stages. J Proteome Res 2018; 17:1436-1451. [PMID: 29564889 DOI: 10.1021/acs.jproteome.7b00793] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Trichophyton rubrum is the most common fungal pathogen in the world, which has been studied as an important dermatophyte model organism. Despite the prevalence of T. rubrum, the available antifungal therapies are not sufficiently efficient. In this study, we performed the first comparison between the two major growth stages of T. rubrum: conidial and mycelial stages, based on their whole-cell proteomes and lysine acetylomes. In total, 4343 proteins were identified in both stages, and 1879 proteins were identified as differentially expressed between the two stages. The results showed that secretory proteases were more abundant in conidia, while aerobic metabolism and protein synthesis were significantly activated in the mycelial stage. In addition, 386 acetylated sites on 285 proteins and 5414 acetylated sites on 2335 proteins were identified in conidia and mycelia, respectively. The acetylation modifications were highly involved in metabolism and protein synthesis in both stages but differentially involved in Kyoto Encyclopedia of Genes and Genomes pathways and in epigenetic regulation between the two stages. Furthermore, inhibition of acetyltransferases or deacetylases significantly inhibited fungal growth and induced apoptosis. These results will enhance our understanding of the biological and physiological characteristics of T. rubrum and facilitate the development of improved therapies targeting these medically important pathogenic fungi.
Collapse
Affiliation(s)
- Xingye Xu
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology , Chinese Academy of Medical Sciences & Peking Union Medical College , Beijing 100730 , China
| | - Tao Liu
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology , Chinese Academy of Medical Sciences & Peking Union Medical College , Beijing 100730 , China
| | - Jian Yang
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology , Chinese Academy of Medical Sciences & Peking Union Medical College , Beijing 100730 , China
| | - Lihong Chen
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology , Chinese Academy of Medical Sciences & Peking Union Medical College , Beijing 100730 , China
| | - Bo Liu
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology , Chinese Academy of Medical Sciences & Peking Union Medical College , Beijing 100730 , China
| | - Lingling Wang
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology , Chinese Academy of Medical Sciences & Peking Union Medical College , Beijing 100730 , China
| | - Qi Jin
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology , Chinese Academy of Medical Sciences & Peking Union Medical College , Beijing 100730 , China
| |
Collapse
|
33
|
Liu R, Zhang X, Ren A, Shi DK, Shi L, Zhu J, Yu HS, Zhao MW. Heat stress-induced reactive oxygen species participate in the regulation of HSP expression, hyphal branching and ganoderic acid biosynthesis in Ganoderma lucidum. Microbiol Res 2018; 209:43-54. [PMID: 29580621 DOI: 10.1016/j.micres.2018.02.006] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 01/30/2018] [Accepted: 02/17/2018] [Indexed: 11/28/2022]
Abstract
Heat stress (HS) is an important environmental factor that affects the growth and metabolism of edible fungi, but the molecular mechanism of the heat stress response (HSR) remains unclear. We previously reported that HS treatment increased the length between two hyphal branches and induced the accumulation of ganoderic acid biosynthesis and the gene expression of heat shock proteins (HSPs) in Ganoderma lucidum. In this study, we found that HS induced a significant increase in the cytosolic ROS concentration, and exogenously added ROS scavengers NAC, VC and NADPH oxidase (Nox) inhibitor DPI reduce the cytosolic ROS accumulation in G. lucidum. In addition, the phenomena of the increased gene expression and increased length between the two hyphal branches and the accumulation of GA biosynthesis induced by HS were mitigated. Furthermore, we investigated the effects of HS on Nox-silenced strains (NoxABi-10, NoxABi-11 and NoxRi-4, NoxRi-7) and found that the level of ROS concentration was lower than that in wild-type (WT) strains treated with HS. Additionally, Nox silenced strains reduced the HS-induced increase in HSP expression, the length between two hyphal branches and GA biosynthesis compared with the WT strain. These data indicate that HS-induced ROS participate in the regulation of HSP expression, hyphal branching and ganoderic acid biosynthesis in G. lucidum. In addition, these findings identified potential pathways linking ROS networks to HSR, physiological and metabolic processes in fungi and provide a valuable reference for studying the role of ROS in HSR, mycelium growth and secondary metabolites.
Collapse
Affiliation(s)
- Rui Liu
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, Jiangsu, People's Republic of China
| | - Xue Zhang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, Jiangsu, People's Republic of China
| | - Ang Ren
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, Jiangsu, People's Republic of China
| | - Deng-Ke Shi
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, Jiangsu, People's Republic of China
| | - Liang Shi
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, Jiangsu, People's Republic of China
| | - Jing Zhu
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, Jiangsu, People's Republic of China
| | - Han-Shou Yu
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, Jiangsu, People's Republic of China
| | - Ming-Wen Zhao
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, Jiangsu, People's Republic of China.
| |
Collapse
|
34
|
Zhang TJ, Shi L, Chen DD, Liu R, Shi DK, Wu CG, Sun ZH, Ren A, Zhao MW. 14-3-3 proteins are involved in growth, hyphal branching, ganoderic acid biosynthesis, and response to abiotic stress in Ganoderma lucidum. Appl Microbiol Biotechnol 2018; 102:1769-1782. [DOI: 10.1007/s00253-017-8711-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 11/13/2017] [Accepted: 12/11/2017] [Indexed: 12/18/2022]
|
35
|
Zhang G, Ren A, Shi L, Zhu J, Jiang A, Shi D, Zhao M. Functional analysis of an APSES transcription factor (GlSwi6) involved in fungal growth, fruiting body development and ganoderic-acid biosynthesis in Ganoderma lucidum. Microbiol Res 2018; 207:280-288. [PMID: 29458864 DOI: 10.1016/j.micres.2017.12.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 12/13/2017] [Accepted: 12/31/2017] [Indexed: 12/31/2022]
Abstract
The APSES transcription factors have been identified as key regulators of fungal development and other biological processes in fungi. In the present study, the function of Ganoderma lucidum GlSwi6, a homolog of Saccharomyces cerevisiae Swi6, was characterized. RNAi was used to examine the function of GlSwi6 in G. lucidum. Silencing GlSwi6 resulted in multiple developmental defects, including reduced fungal growth and increased hyphal branching, and the GlSwi6-silenced strains did not exhibit primordium or fruiting body formation. In addition, the H2O2 and ganoderic-acid (GA) levels of the GlSwi6-silenced strains decreased approximately 50% and 25%, respectively, compared with those of the WT strain. Furthermore, the addition of H2O2 led to the recovery of the GA levels of GlSwi6-silenced strains, implying that GlSwi6 might regulate GA biosynthesis by regulating the intracellular ROS levels. Taken together, these results indicate that GlSwi6 is involved in fungal growth, development and GA biosynthesis in G. lucidum.
Collapse
Affiliation(s)
- Guang Zhang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Jiangsu, Nanjing 210095, People's Republic of China
| | - Ang Ren
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Jiangsu, Nanjing 210095, People's Republic of China
| | - Liang Shi
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Jiangsu, Nanjing 210095, People's Republic of China
| | - Jing Zhu
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Jiangsu, Nanjing 210095, People's Republic of China
| | - Ailiang Jiang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Jiangsu, Nanjing 210095, People's Republic of China
| | - Dengke Shi
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Jiangsu, Nanjing 210095, People's Republic of China
| | - Mingwen Zhao
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Jiangsu, Nanjing 210095, People's Republic of China.
| |
Collapse
|
36
|
Gu L, Zhong X, Lian D, Zheng Y, Wang H, Liu X. Triterpenoid biosynthesis and the transcriptional response elicited by nitric oxide in submerged fermenting Ganoderma lucidum. Process Biochem 2017. [DOI: 10.1016/j.procbio.2017.05.029] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
37
|
Lei XY, Zhang MY, Ma YJ, Wang JW. Transcriptomic responses involved in enhanced production of hypocrellin A by addition of Triton X-100 in submerged cultures of Shiraia bambusicola. J Ind Microbiol Biotechnol 2017; 44:1415-1429. [PMID: 28685359 DOI: 10.1007/s10295-017-1965-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Accepted: 06/26/2017] [Indexed: 01/20/2023]
Abstract
The addition of surfactant is a useful strategy to enhance the product yield in submerged fermentation process. In this study, we sought to explore the mechanism for the elicitation of Triton X-100 on production of hypocrellin A (HA) in cultures of Shiraia bambusicola through transcriptomic analysis. Triton X-100 at 2.5% (w/v) not only induced HA biosynthesis in mycelia, but also stimulated the release of HA into the medium. We found 23 of 2463 transcripts, possible candidate genes for HA biosynthesis under Triton X-100 induction. Gene ontology (GO) analysis showed Triton X-100 treatment changed expression of genes involved in transmembrane transport and oxidation-reduction process, indicating that enhanced HA production was mainly due to both elicited biosynthesis in mycelium and the increased membrane permeability for HA release. These data provided new insights into elicitation of surfactants in submerged cultures of fungi.
Collapse
Affiliation(s)
- Xiu Yun Lei
- College of Pharmaceutical Sciences, Soochow University, 215123, Suzhou, China
| | - Ming Ye Zhang
- College of Pharmaceutical Sciences, Soochow University, 215123, Suzhou, China
| | - Yan Jun Ma
- College of Pharmaceutical Sciences, Soochow University, 215123, Suzhou, China
| | - Jian Wen Wang
- College of Pharmaceutical Sciences, Soochow University, 215123, Suzhou, China.
| |
Collapse
|
38
|
Zhang DH, Jiang LX, Li N, Yu X, Zhao P, Li T, Xu JW. Overexpression of the Squalene Epoxidase Gene Alone and in Combination with the 3-Hydroxy-3-methylglutaryl Coenzyme A Gene Increases Ganoderic Acid Production in Ganoderma lingzhi. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:4683-4690. [PMID: 28530827 DOI: 10.1021/acs.jafc.7b00629] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The squalene epoxidase (SE) gene from the biosynthetic pathway of ganoderic acid (GA) was cloned and overexpressed in Ganoderma lingzhi. The strain that overexpressed the SE produced approximately 2 times more GA molecules than the wild-type (WT) strain. Moreover, SE overexpression upregulated lanosterol synthase gene expression in the biosynthetic pathway. These results indicated that SE stimulates GA accumulation. Then, the SE and 3-hydroxy-3-methylglutaryl coenzyme A (HMGR) genes were simultaneously overexpressed in G. lingzhi. Compared with the individual overexpression of SE or HMGR, the combined overexpression of the two genes further enhanced individual GA production. The overexpressing strain produced maximum GA-T, GA-S, GA-Mk, and GA-Me contents of 90.4 ± 7.5, 35.9 ± 5.4, 6.2 ± 0.5, and 61.8 ± 5.8 μg/100 mg dry weight, respectively. These values were 5.9, 4.5, 2.4, and 5.8 times higher than those produced by the WT strain. This is the first example of the successful manipulation of multiple biosynthetic genes to improve GA content in G. lingzhi.
Collapse
Affiliation(s)
- De-Huai Zhang
- Faculty of Life Science and Technology, Kunming University of Science and Technology , Kunming, 650500, China
| | - Lu-Xi Jiang
- Faculty of Life Science and Technology, Kunming University of Science and Technology , Kunming, 650500, China
| | - Na Li
- Faculty of Science, Kunming University of Science and Technology , Kunming, 650500, China
| | - Xuya Yu
- Faculty of Life Science and Technology, Kunming University of Science and Technology , Kunming, 650500, China
| | - Peng Zhao
- Faculty of Life Science and Technology, Kunming University of Science and Technology , Kunming, 650500, China
| | - Tao Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology , Kunming, 650500, China
| | - Jun-Wei Xu
- Faculty of Life Science and Technology, Kunming University of Science and Technology , Kunming, 650500, China
| |
Collapse
|
39
|
Hu Y, Ahmed S, Li J, Luo B, Gao Z, Zhang Q, Li X, Hu X. Improved ganoderic acids production in Ganoderma lucidum by wood decaying components. Sci Rep 2017; 7:46623. [PMID: 28422185 PMCID: PMC5395960 DOI: 10.1038/srep46623] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 03/21/2017] [Indexed: 02/02/2023] Open
Abstract
Ganoderma lucidum is a legendary Traditional Chinese Medicine (TCM) over a few thousands of years and one kind of its major active components are Ganoderic acids (GAs). GAs are largely produced in the mushroom primordium and fruiting body but much less in mycelium stage. However, little is known on the underlying regulatory mechanism. As a saprophytic fungus, G. lucidum solely obtains nutrients by wood decaying. Wood in general contains sophisticated chemical components with diverse structural units. To explore a strategy that extensively leads to GAs induction in the submerged liquid fermentation, all chemical components that might be possibly from the wood decaying were tested individually as GAs inducers. It was found that GAs production increased 85.96% by 1.5% microcrystalline cellulose (MCC) and 63.90% by 0.5% D-galactose. The transcription level of a few rate-limiting or chemically diverting enzymes responsible for GAs biosynthesis was greatly induced by MCC and D-galactose. The concentration and time-course titration study indicated that these two chemicals might not be utilized as carbon sources but they played a comprehensive role in the secondary metabolites synthesis. Our data indicated that MCC and D-galactose might be further industrialized for higher GAs production in G. lucidum in submerged fermentation.
Collapse
Affiliation(s)
- Yanru Hu
- Laboratory of Drug Discovery and Molecular Engineering, Department of Medicinal Plants, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070 China.,National-Regional Joint Engineering Research Center in Hubei for Medicinal Plant Breeding and Cultivation, Huazhong Agricultural University, Wuhan, 430070 China.,Medicinal Plant Engineering Research Center of Hubei Province, Huazhong Agricultural University, Wuhan, 430070 China.,Biomedical Center, Huazhong Agricultural University, Wuhan, 430070 China
| | - Shakeel Ahmed
- Laboratory of Drug Discovery and Molecular Engineering, Department of Medicinal Plants, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070 China.,National-Regional Joint Engineering Research Center in Hubei for Medicinal Plant Breeding and Cultivation, Huazhong Agricultural University, Wuhan, 430070 China.,Medicinal Plant Engineering Research Center of Hubei Province, Huazhong Agricultural University, Wuhan, 430070 China.,Biomedical Center, Huazhong Agricultural University, Wuhan, 430070 China
| | - Jiawei Li
- Laboratory of Drug Discovery and Molecular Engineering, Department of Medicinal Plants, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070 China.,National-Regional Joint Engineering Research Center in Hubei for Medicinal Plant Breeding and Cultivation, Huazhong Agricultural University, Wuhan, 430070 China.,Medicinal Plant Engineering Research Center of Hubei Province, Huazhong Agricultural University, Wuhan, 430070 China.,Biomedical Center, Huazhong Agricultural University, Wuhan, 430070 China
| | - Biaobiao Luo
- Laboratory of Drug Discovery and Molecular Engineering, Department of Medicinal Plants, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070 China.,National-Regional Joint Engineering Research Center in Hubei for Medicinal Plant Breeding and Cultivation, Huazhong Agricultural University, Wuhan, 430070 China.,Medicinal Plant Engineering Research Center of Hubei Province, Huazhong Agricultural University, Wuhan, 430070 China.,Biomedical Center, Huazhong Agricultural University, Wuhan, 430070 China
| | - Zengyan Gao
- Laboratory of Drug Discovery and Molecular Engineering, Department of Medicinal Plants, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070 China.,National-Regional Joint Engineering Research Center in Hubei for Medicinal Plant Breeding and Cultivation, Huazhong Agricultural University, Wuhan, 430070 China.,Medicinal Plant Engineering Research Center of Hubei Province, Huazhong Agricultural University, Wuhan, 430070 China.,Biomedical Center, Huazhong Agricultural University, Wuhan, 430070 China
| | - Qiyun Zhang
- Laboratory of Drug Discovery and Molecular Engineering, Department of Medicinal Plants, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070 China.,National-Regional Joint Engineering Research Center in Hubei for Medicinal Plant Breeding and Cultivation, Huazhong Agricultural University, Wuhan, 430070 China.,Medicinal Plant Engineering Research Center of Hubei Province, Huazhong Agricultural University, Wuhan, 430070 China.,Biomedical Center, Huazhong Agricultural University, Wuhan, 430070 China
| | - Xiaohua Li
- Laboratory of Drug Discovery and Molecular Engineering, Department of Medicinal Plants, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070 China.,National-Regional Joint Engineering Research Center in Hubei for Medicinal Plant Breeding and Cultivation, Huazhong Agricultural University, Wuhan, 430070 China.,Medicinal Plant Engineering Research Center of Hubei Province, Huazhong Agricultural University, Wuhan, 430070 China.,Biomedical Center, Huazhong Agricultural University, Wuhan, 430070 China
| | - Xuebo Hu
- Laboratory of Drug Discovery and Molecular Engineering, Department of Medicinal Plants, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070 China.,National-Regional Joint Engineering Research Center in Hubei for Medicinal Plant Breeding and Cultivation, Huazhong Agricultural University, Wuhan, 430070 China.,Medicinal Plant Engineering Research Center of Hubei Province, Huazhong Agricultural University, Wuhan, 430070 China.,Biomedical Center, Huazhong Agricultural University, Wuhan, 430070 China
| |
Collapse
|
40
|
The mitogen-activated protein kinase GlSlt2 regulates fungal growth, fruiting body development, cell wall integrity, oxidative stress and ganoderic acid biosynthesis in Ganoderma lucidum. Fungal Genet Biol 2017; 104:6-15. [PMID: 28435030 DOI: 10.1016/j.fgb.2017.04.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 04/03/2017] [Accepted: 04/17/2017] [Indexed: 01/02/2023]
Abstract
The mitogen-activated protein kinases (MAPKs) are crucial signaling instruments in eukaryotes that play key roles in regulating fungal growth, development, and secondary metabolism and in adapting to the environment. In this study, we characterized an Slt2-type MAPK in Ganoderma lucidum, GlSlt2, which was transcriptionally induced during the primordium and fruiting body stages. RNA interference was used to examine the function of GlSlt2. Knockdown of GlSlt2 caused defects in growth and increased hyphal branching as well as hypersensitivity to cell wall-disturbing substances. Consistently, the chitin and β-1,3-d-glucan contents and the expression of cell wall biosynthesis genes were decreased and down-regulated, respectively, in GlSlt2 knockdown strains compared with those in the wild type (WT). In addition, no primordium or fruiting body could be observed in GlSlt2 knockdown strains. Furthermore, the intracellular reactive oxygen species (ROS) content and ganoderic acid biosynthesis also decreased in GlSlt2 knockdown strains. Addition of H2O2 could recover the decreased ganoderic acid content in GlSlt2 knockdown strains, indicating that GlSlt2 might regulate ganoderic acid biosynthesis via the intracellular ROS level. Overall, GlSlt2 is involved in hyphal growth, fruiting body development, cell wall integrity, oxidative stress and ganoderic acid biosynthesis in G. lucidum.
Collapse
|
41
|
Induction of apoptosis and ganoderic acid biosynthesis by cAMP signaling in Ganoderma lucidum. Sci Rep 2017; 7:318. [PMID: 28336949 PMCID: PMC5428012 DOI: 10.1038/s41598-017-00281-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 02/20/2017] [Indexed: 12/21/2022] Open
Abstract
Apoptosis is an essential physiological process that controls many important biological functions. However, apoptosis signaling in relation to secondary metabolite biosynthesis in plants and fungi remains a mystery. The fungus Ganoderma lucidum is a popular herbal medicine worldwide, but the biosynthetic regulation of its active ingredients (ganoderic acids, GAs) is poorly understood. We investigated the role of 3′,5′-cyclic adenosine monophosphate (cAMP) signaling in fungal apoptosis and GA biosynthesis in G. lucidum. Two phosphodiesterase inhibitors (caffeine and 3-isobutyl-1-methylxanthine, IBMX) and an adenylate cyclase activator (sodium fluoride, NaF) were used to increase intracellular cAMP levels. Fungal apoptosis was identified by terminal deoxynucleotidyl transferase mediated dUTP nick end labeling (TUNEL) assay and a condensed nuclear morphology. Our results showed that GA production and fungal apoptosis were induced when the mycelium was treated with NaF, caffeine, or cAMP/IBMX. Downregulation of squalene synthase and lanosterol synthase gene expression by cAMP was detected in the presence of these chemicals, which indicates that these two genes are not critical for GA induction. Transcriptome analysis indicated that mitochondria might play an important role in cAMP-induced apoptosis and GA biosynthesis. To the best of our knowledge, this is the first report to reveal that cAMP signaling induces apoptosis and secondary metabolite production in fungi.
Collapse
|
42
|
Ethylene promotes mycelial growth and ganoderic acid biosynthesis in Ganoderma lucidum. Biotechnol Lett 2016; 39:269-275. [PMID: 27771819 DOI: 10.1007/s10529-016-2238-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 10/06/2016] [Indexed: 10/20/2022]
Abstract
OBJECTIVE To investigate the effects of ethylene, in the form of ethephon (2-chloroethylphosphonic acid), on mycelial growth and ganoderic acid (GA) accumulation in the higher basidiomycete Ganoderma lucidum. RESULTS Treatment with both 10 and 15 mM ethephon enhanced the growth of G. lucidum on solid CYM plates and in CYM liquid medium. After optimization using response surface methodology, GA reached 33 mg/g dry cell weight (DW), an increase of 90 %, compared with the control. Lanosterol and squalene contents were 31 and 2.4 μg/g DW, being increased by 1.2- and 0.6-fold, respectively, in response to ethephon. Additionally, the transcriptional levels of hydroxymethylglutaryl-CoA reductase, squalene synthase and oxidosqualene cyclase were up-regulated by 2.6-, 4.3- and 3.8-fold, respectively, compared with the control group. CONCLUSIONS This approach provides an efficient strategy for improving GA accumulation in G. lucidum, with potential future applications.
Collapse
|
43
|
Ren A, Liu R, Miao ZG, Zhang X, Cao PF, Chen TX, Li CY, Shi L, Jiang AL, Zhao MW. Hydrogen-rich water regulates effects of ROS balance on morphology, growth and secondary metabolism via glutathione peroxidase in Ganoderma lucidum. Environ Microbiol 2016; 19:566-583. [PMID: 27554678 DOI: 10.1111/1462-2920.13498] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 08/10/2016] [Indexed: 11/28/2022]
Abstract
Ganoderma lucidum is one of the most important medicinal fungi, but the lack of basic study on the fungus has hindered the further development of its value. To investigate the roles of the redox system in G. lucidum, acetic acid (HAc) was applied as a reactive oxygen species (ROS) stress inducer, and hydrogen-rich water (HRW) was used to relieve the ROS stress in this study. Our results demonstrate that the treatment of 5% HRW significantly decreased the ROS content, maintained biomass and polar growth morphology of mycelium, and decreased secondary metabolism under HAc-induced oxidative stress. Furthermore, the roles of HRW were largely dependent on restoring the glutathione system under HAc stress in G. lucidum. To provide further evidence, we used two glutathione peroxidase (GPX)-defective strains, the gpxi strain, the mercaptosuccinic acid (MS, a GPX inhibitor)-treated wide-type (WT) strain, and gpx overexpression strains for further research. The results show that HRW was unable to relieve the HAc-induced ROS overproduction, decreased biomass, mycelium morphology change and increased secondary metabolism biosynthesis in the absence of GPX function. The gpx overexpression strains exhibited resistance to HAc-induced oxidative stress. Thus, we propose that HRW regulates morphology, growth and secondary metabolism via glutathione peroxidase under HAc stress in the fungus G. lucidum. Furthermore, our research also provides a method to study the ROS system in other fungi.
Collapse
Affiliation(s)
- Ang Ren
- Key Laboratory of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, P.R. China
| | - Rui Liu
- Key Laboratory of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, P.R. China
| | - Zhi-Gang Miao
- Key Laboratory of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, P.R. China
| | - Xue Zhang
- Key Laboratory of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, P.R. China
| | - Peng-Fei Cao
- Key Laboratory of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, P.R. China
| | - Tian-Xi Chen
- Key Laboratory of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, P.R. China
| | - Chen-Yang Li
- Key Laboratory of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, P.R. China
| | - Liang Shi
- Key Laboratory of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, P.R. China
| | - Ai-Liang Jiang
- Key Laboratory of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, P.R. China
| | - Ming-Wen Zhao
- Key Laboratory of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, P.R. China
| |
Collapse
|
44
|
Li HJ, He YL, Zhang DH, Yue TH, Jiang LX, Li N, Xu JW. Enhancement of ganoderic acid production by constitutively expressing Vitreoscilla hemoglobin gene in Ganoderma lucidum. J Biotechnol 2016; 227:35-40. [DOI: 10.1016/j.jbiotec.2016.04.017] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2016] [Revised: 04/05/2016] [Accepted: 04/08/2016] [Indexed: 11/26/2022]
|
45
|
Dresch P, D´Aguanno MN, Rosam K, Grienke U, Rollinger JM, Peintner U. Fungal strain matters: colony growth and bioactivity of the European medicinal polypores Fomes fomentarius, Fomitopsis pinicola and Piptoporus betulinus.. AMB Express 2015; 5:4. [PMID: 25642401 PMCID: PMC4305089 DOI: 10.1186/s13568-014-0093-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 12/27/2014] [Indexed: 11/10/2022] Open
Abstract
Polypores have been applied in traditional Chinese medicine up to the present day, and are becoming more and more popular worldwide. They show a wide range of bioactivities including anti-cancer, anti-inflammatory, antiviral and immuno-enhancing effects. Their secondary metabolites have been the focus of many studies, but the importance of fungal strain for bioactivity and metabolite production has not been investigated so far for these Basidiomycetes. Therefore, we screened several strains from three medicinal polypore species from traditional European medicine: Fomes fomentarius, Fomitopsis pinicola and Piptoporus betulinus. A total of 22 strains were compared concerning their growth rates, optimum growth temperatures, as well as antimicrobial and antifungal properties of ethanolic fruit body extracts. The morphological identification of strains was confirmed based on rDNA ITS phylogenetic analyses. Our results showed that species delimitation is critical due to the presence of several distinct lineages, e.g. within the Fomes fomentarius species complex. Fungal strains within one lineage showed distinct differences in optimum growth temperatures, in secondary metabolite production, and accordingly, in their bioactivities. In general, F. pinicola and P. betulinus extracts exerted distinct antibiotic activities against Bacillus subtilis and Staphylococcus aureus at minimum inhibitory concentrations (MIC) ranging from 31-125 μg mL−1; The antifungal activities of all three polypores against Aspergillus flavus, A. fumigatus, Absidia orchidis and Candida krusei were often strain-specific, ranging from 125-1000 μg mL−1. Our results highlight that a reliable species identification, followed by an extensive screening for a ‘best strain’ is an essential prerequisite for the proper identification of bioactive material.
Collapse
|
46
|
Further improvement in ganoderic acid production in static liquid culture of Ganoderma lucidum by integrating nitrogen limitation and calcium ion addition. Bioprocess Biosyst Eng 2015; 39:75-80. [DOI: 10.1007/s00449-015-1491-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2015] [Accepted: 10/14/2015] [Indexed: 12/26/2022]
|
47
|
Shi L, Gong L, Zhang X, Ren A, Gao T, Zhao M. The regulation of methyl jasmonate on hyphal branching and GA biosynthesis in Ganoderma lucidum partly via ROS generated by NADPH oxidase. Fungal Genet Biol 2015; 81:201-11. [DOI: 10.1016/j.fgb.2014.12.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 12/03/2014] [Accepted: 12/06/2014] [Indexed: 12/26/2022]
|
48
|
Li C, Shi L, Chen D, Ren A, Gao T, Zhao M. Functional analysis of the role of glutathione peroxidase (GPx) in the ROS signaling pathway, hyphal branching and the regulation of ganoderic acid biosynthesis in Ganoderma lucidum. Fungal Genet Biol 2015. [PMID: 26216672 DOI: 10.1016/j.fgb.2015.07.008] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Ganoderma lucidum, a hallmark of traditional Chinese medicine, has been widely used as a pharmacologically active compound. Although numerous research studies have focused on the pharmacological mechanism, fewer studies have explored the basic biological features of this species, restricting the further development and application of this important mushroom. Because of the ability of this mushroom to reduce and detoxify the compounds produced by various metabolic pathways, glutathione peroxidase (GPx) is one of the most important antioxidant enzymes with respect to ROS. Although studies in both animals and plants have suggested many important physiological functions of GPx, there are few systematic research studies concerning the role of this enzyme in fungi, particularly in large basidiomycetes. In the present study, we cloned the GPx gene and created GPx-silenced strains by the down-regulation of GPx gene expression using RNA interference. The results indicated an essential role for GPx in controlling the intracellular H2O2 content, hyphal branching, antioxidant stress tolerance, cytosolic Ca(2+) content and ganoderic acid biosynthesis. Further mechanistic investigation revealed that GPx is regulated by intracellular H2O2 levels and suggested that crosstalk occurs between GPx and intracellular H2O2. Moreover, evidence was obtained indicating that GPx regulation of hyphal branching via ROS might occur independently of the cytosolic Ca(2+) content. Further mechanistic investigation also revealed that the effects of GPx on ganoderic acid synthesis via ROS are regulated by the cytosolic Ca(2+) content. Taken together, these findings indicate that ROS have a complex influence on growth, development and secondary metabolism in fungi and that GPx serves an important function. The present study provides an excellent framework to identify GPx functions and highlights a role for this enzyme in ROS regulation.
Collapse
Affiliation(s)
- Chenyang Li
- College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, Nanjing 210095, Jiangsu, People's Republic of China
| | - Liang Shi
- College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, Nanjing 210095, Jiangsu, People's Republic of China
| | - Dongdong Chen
- College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, Nanjing 210095, Jiangsu, People's Republic of China
| | - Ang Ren
- College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, Nanjing 210095, Jiangsu, People's Republic of China
| | - Tan Gao
- College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, Nanjing 210095, Jiangsu, People's Republic of China
| | - Mingwen Zhao
- College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, Nanjing 210095, Jiangsu, People's Republic of China.
| |
Collapse
|
49
|
Baby S, Johnson AJ, Govindan B. Secondary metabolites from Ganoderma. PHYTOCHEMISTRY 2015; 114:66-101. [PMID: 25975187 DOI: 10.1016/j.phytochem.2015.03.010] [Citation(s) in RCA: 236] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Revised: 03/02/2015] [Accepted: 03/28/2015] [Indexed: 06/04/2023]
Abstract
Ganoderma is a genus of medicinal mushrooms. This review deals with secondary metabolites isolated from Ganoderma and their biological significance. Phytochemical studies over the last 40years led to the isolation of 431 secondary metabolites from various Ganoderma species. The major secondary compounds isolated are (a) C30 lanostanes (ganoderic acids), (b) C30 lanostanes (aldehydes, alcohols, esters, glycosides, lactones, ketones), (c) C27 lanostanes (lucidenic acids), (d) C27 lanostanes (alcohols, lactones, esters), (e) C24, C25 lanostanes (f) C30 pentacyclic triterpenes, (g) meroterpenoids, (h) farnesyl hydroquinones (meroterpenoids), (i) C15 sesquiterpenoids, (j) steroids, (k) alkaloids, (l) prenyl hydroquinone (m) benzofurans, (n) benzopyran-4-one derivatives and (o) benzenoid derivatives. Ganoderma lucidum is the species extensively studied for its secondary metabolites and biological activities. Ganoderma applanatum, Ganoderma colossum, Ganoderma sinense, Ganoderma cochlear, Ganoderma tsugae, Ganoderma amboinense, Ganoderma orbiforme, Ganoderma resinaceum, Ganoderma hainanense, Ganoderma concinna, Ganoderma pfeifferi, Ganoderma neo-japonicum, Ganoderma tropicum, Ganoderma australe, Ganoderma carnosum, Ganoderma fornicatum, Ganoderma lipsiense (synonym G. applanatum), Ganoderma mastoporum, Ganoderma theaecolum, Ganoderma boninense, Ganoderma capense and Ganoderma annulare are the other Ganoderma species subjected to phytochemical studies. Further phytochemical studies on Ganoderma could lead to the discovery of hitherto unknown biologically active secondary metabolites.
Collapse
Affiliation(s)
- Sabulal Baby
- Phytochemistry and Phytopharmacology Division, Jawaharlal Nehru Tropical Botanic Garden and Research Institute, Pacha-Palode, Thiruvananthapuram 695 562, Kerala, India.
| | - Anil John Johnson
- Phytochemistry and Phytopharmacology Division, Jawaharlal Nehru Tropical Botanic Garden and Research Institute, Pacha-Palode, Thiruvananthapuram 695 562, Kerala, India
| | - Balaji Govindan
- Phytochemistry and Phytopharmacology Division, Jawaharlal Nehru Tropical Botanic Garden and Research Institute, Pacha-Palode, Thiruvananthapuram 695 562, Kerala, India
| |
Collapse
|
50
|
Ren A, Li XB, Miao ZG, Shi L, Jaing AL, Zhao MW. Transcript and metabolite alterations increase ganoderic acid content in Ganoderma lucidum using acetic acid as an inducer. Biotechnol Lett 2014; 36:2529-36. [DOI: 10.1007/s10529-014-1636-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2014] [Accepted: 08/06/2014] [Indexed: 12/31/2022]
|