1
|
Elolimy AA, Washam C, Byrum S, Chen C, Dawson H, Bowlin AK, Randolph CE, Saraf MK, Yeruva L. Formula Diet Alters the Ileal Metagenome and Transcriptome at Weaning and during the Postweaning Period in a Porcine Model. mSystems 2020; 5:e00457-20. [PMID: 32753508 PMCID: PMC7406227 DOI: 10.1128/msystems.00457-20] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 07/21/2020] [Indexed: 01/05/2023] Open
Abstract
Exclusive breastfeeding impacts the intestinal microbiome and is associated with a better immune function than is seen with milk formula (MF) feeding in infants and yet with mechanisms poorly defined. The porcine model was used to evaluate the impact of MF on ileum microbial communities and gene expression relative to human milk (HM)-fed piglets. Fifty-two Dutch Landrace male piglets were fed an isocaloric diet of either HM (n = 26) or MF (n = 26) from day 2 through day 21 of age and weaned to a solid diet until day 51. Eleven piglets from each group were euthanized at day 21, while the remaining piglets (HM, n = 15; MF, n = 15) were euthanized at day 51 to collect ileal epithelium (EP) scrapings and ileal (IL) tissues. The epithelial mucosa was subjected to shotgun metagenome sequencing, and EP and IL tissues were used for transcriptome analysis. On day 21, transcriptome data revealed that the levels of pathways involved in inflammation and apoptosis were significantly higher in MF piglets than in HM piglets, whereas the levels of tight junctions and pathogen detection systems were lower in MF piglets than in HM piglets. The MF impacts on the small intestine were maintained over the postweaning period (day 51) as indicated by higher levels of Dialister invisus bacteria and higher levels of expression of genes associated with inflammation and apoptosis pathways relative to HM group. The current study demonstrated that MF might impact local intestinal inflammation, apoptosis, and tight junctions and might suppress pathogen recognition in the small intestine compared with HM.IMPORTANCE Exclusive human milk (HM) breastfeeding for the first 6 months of age in infants is recommended to improve health outcomes during early life and beyond. When women are unable to provide sufficient HM, milk formula (MF) is often recommended as a complementary or alternative source of nutrition. Previous studies in piglets demonstrated that MF alters the gut microbiome and induces inflammatory cytokine production. The links between MF feeding, gut microbiome, and inflammation status are unclear due to challenges associated with the collection of intestinal samples from human infants. The current report provides the first insight into MF-microbiome-inflammation connections in the small intestine compared with HM feeding using a porcine model. The present results showed that, compared with HM, MF might impact immune function through the induction of ileal inflammation, apoptosis, and tight junction disruptions and likely compromised immune defense against pathogen detection in the small intestine relative to piglets that were fed HM.
Collapse
Affiliation(s)
- Ahmed A Elolimy
- Arkansas Children's Nutrition Center, Little Rock, Arkansas, USA
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Charity Washam
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Stephanie Byrum
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Celine Chen
- Diet, Genomics & Immunology Laboratory, USDA-ARS Beltsville Human Nutrition Research Center, Beltsville, Maryland, USA
| | - Harry Dawson
- Diet, Genomics & Immunology Laboratory, USDA-ARS Beltsville Human Nutrition Research Center, Beltsville, Maryland, USA
| | - Anne K Bowlin
- Arkansas Children's Nutrition Center, Little Rock, Arkansas, USA
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | | | - Manish K Saraf
- Arkansas Children's Nutrition Center, Little Rock, Arkansas, USA
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Laxmi Yeruva
- Arkansas Children's Nutrition Center, Little Rock, Arkansas, USA
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
- Arkansas Children's Research Institute, Little Rock, Arkansas, USA
| |
Collapse
|
2
|
Huang J, Wang Q, Hu Y, Qi Z, Lin Z, Ying W, Zhou M. Proteomic Profiling for Serum Biomarkers in Mice Exposed to Ionizing Radiation. Dose Response 2019; 17:1559325819894794. [PMID: 31853238 PMCID: PMC6909274 DOI: 10.1177/1559325819894794] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 10/30/2019] [Accepted: 11/06/2019] [Indexed: 12/11/2022] Open
Abstract
In response to large-scale radiological incidents, rapid, accurate, and early triage biodosimeters are urgently required. In this study, we investigated candidate radiation-responsive biomarkers using proteomics approaches in mouse models. A total of 452 dysregulated proteins were identified in the serum samples of mice exposed to 0, 2, 5.5, 7, and 8 Gy at 6, 24, and 72 hours postirradiation. Ninety-eight proteins, including 46 at 6 hours, 36 at 24 hours, and 36 at 72 hours, were identified as radiation-responsive proteins (RRPs). Gene Ontology analysis showed the RRPs were involved in proteolysis, extracellular space, hydrolase activity, and carbohydrate binding. Kyoto Encyclopedia of Genes and Genome enrichment showed the RRPs were regulated in "the pentose phosphate pathway," "the proteasome," and "AGE-RAGE signaling in diabetic complications." There were 3 proteins changed and overlapped at all the 3 time points, 8 proteins changed at 6 and 24 hours, 4 proteins changed at 24 and 72hours, and 2 proteins changed at both 6 and 72 hours. Of these proteins, ORM2, HP, SAA1, SAA2, MBL2, COL1A1, and APCS were identified as candidate biomarkers for biodosimeter-based diagnosis through Pearson correlation analysis.
Collapse
Affiliation(s)
- Jinfeng Huang
- Department of Radiation Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, People’s Republic of China
- Department of Radiobiology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, People’s Republic of China
| | - Qi Wang
- Department of Radiobiology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, People’s Republic of China
| | - Yingchun Hu
- Department of Radiobiology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, People’s Republic of China
| | - Zhenhua Qi
- Department of Radiobiology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, People’s Republic of China
| | - Zhongwu Lin
- Science Research Management Department of the Academy of Military Sciences, Beijing, People’s Republic of China
| | - Wantao Ying
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, People’s Republic of China
| | - Meijuan Zhou
- Department of Radiation Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, People’s Republic of China
| |
Collapse
|
3
|
Hipp JD, Johann DJ, Chen Y, Madabhushi A, Monaco J, Cheng J, Rodriguez-Canales J, Stumpe MC, Riedlinger G, Rosenberg AZ, Hanson JC, Kunju LP, Emmert-Buck MR, Balis UJ, Tangrea MA. Computer-Aided Laser Dissection: A Microdissection Workflow Leveraging Image Analysis Tools. J Pathol Inform 2018; 9:45. [PMID: 30622835 PMCID: PMC6298131 DOI: 10.4103/jpi.jpi_60_18] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 10/16/2018] [Indexed: 01/05/2023] Open
Abstract
Introduction The development and application of new molecular diagnostic assays based on next-generation sequencing and proteomics require improved methodologies for procurement of target cells from histological sections. Laser microdissection can successfully isolate distinct cells from tissue specimens based on visual selection for many research and clinical applications. However, this can be a daunting task when a large number of cells are required for molecular analysis or when a sizeable number of specimens need to be evaluated. Materials and Methods To improve the efficiency of the cellular identification process, we describe a microdissection workflow that leverages recently developed and open source image analysis algorithms referred to as computer-aided laser dissection (CALD). CALD permits a computer algorithm to identify the cells of interest and drive the dissection process. Results We describe several "use cases" that demonstrate the integration of image analytic tools probabilistic pairwise Markov model, ImageJ, spatially invariant vector quantization (SIVQ), and eSeg onto the ThermoFisher Scientific ArcturusXT and Leica LMD7000 microdissection platforms. Conclusions The CALD methodology demonstrates the integration of image analysis tools with the microdissection workflow and shows the potential impact to clinical and life science applications.
Collapse
Affiliation(s)
- Jason D Hipp
- Laboratory of Pathology, National Cancer Institute, Bethesda, MD, USA.,Google Inc., Mountain View, CA, USA
| | - Donald J Johann
- Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Yun Chen
- Laboratory of Pathology, National Cancer Institute, Bethesda, MD, USA.,Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Anant Madabhushi
- Department of Biomedical Engineering, Center for Computational Imaging and Personalized Diagnostics, Case Western Reserve University, Cleveland, OH, USA
| | | | - Jerome Cheng
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Jaime Rodriguez-Canales
- Laboratory of Pathology, National Cancer Institute, Bethesda, MD, USA.,Medimmune, LLC, Gaithersburg, MD, USA
| | | | - Greg Riedlinger
- Laboratory of Pathology, National Cancer Institute, Bethesda, MD, USA.,Division of Translational Pathology, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA
| | - Avi Z Rosenberg
- Laboratory of Pathology, National Cancer Institute, Bethesda, MD, USA.,Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Jeffrey C Hanson
- Laboratory of Pathology, National Cancer Institute, Bethesda, MD, USA
| | - Lakshmi P Kunju
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Michael R Emmert-Buck
- Laboratory of Pathology, National Cancer Institute, Bethesda, MD, USA.,Avoneaux Medical Institute, LLC, Baltimore, MD, USA
| | - Ulysses J Balis
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Michael A Tangrea
- Laboratory of Pathology, National Cancer Institute, Bethesda, MD, USA.,Alvin and Lois Lapidus Cancer Institute, Sinai Hospital of Baltimore, LifeBridge Health, Baltimore, MD, USA
| |
Collapse
|
4
|
Braun A, Martinez C, Schmitteckert S, Röth R, Lasitschka F, Niesler B. Site-specific gene expression analysis from archived human intestine samples combining laser-capture microdissection and multiplexed color-coded probes. Neurogastroenterol Motil 2018; 30:e13261. [PMID: 29193461 DOI: 10.1111/nmo.13261] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 11/07/2017] [Indexed: 02/08/2023]
Abstract
BACKGROUND Alterations of site-specific gene expression profiles in disease-relevant networks within the different layers of the intestinal wall may contribute to the onset and clinical course of gastrointestinal disorders. To date, no systematic analysis has assessed and compared sub-regional gene expression patterns in all distinct layers of the gut using fresh frozen human samples. Our aim was to establish an optimized protocol for site-specific RNA isolation in order to achieve maximum RNA quality and amount for subsequent gene expression analysis combining laser-capture microdissection (LCM) with a probe-based technology, the NanoString nCounter Analysis system. METHODS Four full-thickness colon samples from patients who underwent surgery due to pathological conditions were processed and separated into epithelium, lamina propria, myenteric plexus, submucosa, and tunica muscularis by LCM. Site-specific marker expression by nCounter technology was performed on total RNA from each sub-region, respectively. KEY RESULTS Collecting ~10 mm² (~100 000-250 000 cells) of tissue from the epithelial layer, lamina propria, and myenteric plexus provided sufficient amounts of RNA of appropriate quality for subsequent analyses. In contrast, ~40 mm² (~250 000-650 000 cells) of tissue were dissected from the less cell-rich submucosal and tunica muscularis layer. nCounter analysis revealed a site-specific expression pattern of marker genes in the different layers of the colonic wall which were highly correlating (r > .9). CONCLUSIONS AND INFERENCES LCM in combination with nCounter expression analysis enables site-specific, sensitive, reliable detection, and quantification of mRNA from histologically heterogeneous tissues.
Collapse
Affiliation(s)
- A Braun
- Department of Human Molecular Genetics, Institute of Human Genetics, University of Heidelberg, Heidelberg, Germany
| | - C Martinez
- Department of Human Molecular Genetics, Institute of Human Genetics, University of Heidelberg, Heidelberg, Germany.,Digestive System Research Unit, Department of Gastroenterology, Institut de Recerca Vall d'Hebron, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona (Departamento de Medicina), Barcelona, Spain.,COST Action BM1106 Genes in Irritable Bowel Syndrome Research Network Europe (GENIEUR), Heidelberg, Germany
| | - S Schmitteckert
- Department of Human Molecular Genetics, Institute of Human Genetics, University of Heidelberg, Heidelberg, Germany.,COST Action BM1106 Genes in Irritable Bowel Syndrome Research Network Europe (GENIEUR), Heidelberg, Germany
| | - R Röth
- Department of Human Molecular Genetics, Institute of Human Genetics, University of Heidelberg, Heidelberg, Germany.,nCounter Core Facility, Institute of Human Genetics, University of Heidelberg, Heidelberg, Germany
| | - F Lasitschka
- Institute of Pathology, University of Heidelberg, Heidelberg, Germany
| | - B Niesler
- Department of Human Molecular Genetics, Institute of Human Genetics, University of Heidelberg, Heidelberg, Germany.,COST Action BM1106 Genes in Irritable Bowel Syndrome Research Network Europe (GENIEUR), Heidelberg, Germany.,nCounter Core Facility, Institute of Human Genetics, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
5
|
Jumper N, Hodgkinson T, Paus R, Bayat A. Site-specific gene expression profiling as a novel strategy for unravelling keloid disease pathobiology. PLoS One 2017; 12:e0172955. [PMID: 28257480 PMCID: PMC5336271 DOI: 10.1371/journal.pone.0172955] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 02/13/2017] [Indexed: 12/13/2022] Open
Abstract
Keloid disease (KD) is a fibroproliferative cutaneous tumour characterised by heterogeneity, excess collagen deposition and aggressive local invasion. Lack of a validated animal model and resistance to a multitude of current therapies has resulted in unsatisfactory clinical outcomes of KD management. In order to address KD from a new perspective, we applied for the first time a site-specific in situ microdissection and gene expression profiling approach, through combined laser capture microdissection and transcriptomic array. The aim here was to analyse the utility of this approach compared with established methods of investigation, including whole tissue biopsy and monolayer cell culture techniques. This study was designed to approach KD from a hypothesis-free and compartment-specific angle, using state-of-the-art microdissection and gene expression profiling technology. We sought to characterise expression differences between specific keloid lesional sites and elucidate potential contributions of significantly dysregulated genes to mechanisms underlying keloid pathobiology, thus informing future explorative research into KD. Here, we highlight the advantages of our in situ microdissection strategy in generating expression data with improved sensitivity and accuracy over traditional methods. This methodological approach supports an active role for the epidermis in the pathogenesis of KD through identification of genes and upstream regulators implicated in epithelial-mesenchymal transition, inflammation and immune modulation. We describe dermal expression patterns crucial to collagen deposition that are associated with TGFβ-mediated signalling, which have not previously been examined in KD. Additionally, this study supports the previously proposed presence of a cancer-like stem cell population in KD and explores the possible contribution of gene dysregulation to the resistance of KD to conventional therapy. Through this innovative in situ microdissection gene profiling approach, we provide better-defined gene signatures of distinct KD regions, thereby addressing KD heterogeneity, facilitating differential diagnosis with other cutaneous fibroses via transcriptional fingerprinting, and highlighting key areas for future KD research.
Collapse
Affiliation(s)
- N. Jumper
- Plastic and Reconstructive Surgery Research, University of Manchester, Oxford Rd, Manchester, United Kingdom
| | - T. Hodgkinson
- Plastic and Reconstructive Surgery Research, University of Manchester, Oxford Rd, Manchester, United Kingdom
- Centre for Tissue Injury and Repair, University of Manchester, and MAHSC, Manchester, United Kingdom
| | - R. Paus
- Centre for Dermatology Research, University of Manchester, and MAHSC, Manchester, United Kingdom
| | - A. Bayat
- Plastic and Reconstructive Surgery Research, University of Manchester, Oxford Rd, Manchester, United Kingdom
- Centre for Dermatology Research, University of Manchester, and MAHSC, Manchester, United Kingdom
- * E-mail:
| |
Collapse
|
6
|
McDaniel DK, Eden K, Ringel VM, Allen IC. Emerging Roles for Noncanonical NF-κB Signaling in the Modulation of Inflammatory Bowel Disease Pathobiology. Inflamm Bowel Dis 2016; 22:2265-79. [PMID: 27508514 PMCID: PMC4992436 DOI: 10.1097/mib.0000000000000858] [Citation(s) in RCA: 124] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Crohn's disease and ulcerative colitis are common and debilitating manifestations of inflammatory bowel disease (IBD). IBD is characterized by a radical imbalance in the activation of proinflammatory and anti-inflammatory signaling pathways in the gut. These pathways are controlled by NF-κB, which is a master regulator of gene transcription. In IBD patients, NF-κB signaling is often dysregulated resulting in overzealous inflammation. NF-κB activation occurs through 2 distinct pathways, defined as either canonical or noncanonical. Canonical NF-κB pathway activation is well studied in IBD and is associated with the rapid, acute production of diverse proinflammatory mediators, such as COX-2, IL-1β, and IL-6. In contrast to the canonical pathway, the noncanonical or "alternative" NF-κB signaling cascade is tightly regulated and is responsible for the production of highly specific chemokines that tend to be associated with less acute, chronic inflammation. There is a relative paucity of literature regarding all aspects of noncanonical NF-ĸB signaling. However, it is clear that this alternative signaling pathway plays a considerable role in maintaining immune system homeostasis and likely contributes significantly to the chronic inflammation underlying IBD. Noncanonical NF-κB signaling may represent a promising new direction in the search for therapeutic targets and biomarkers associated with IBD. However, significant mechanistic insight is still required to translate the current basic science findings into effective therapeutic strategies.
Collapse
Affiliation(s)
- Dylan K. McDaniel
- Department of Biomedical Sciences and Pathobiology, Virginia Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24061
| | - Kristin Eden
- Department of Biomedical Sciences and Pathobiology, Virginia Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24061
| | - Veronica M. Ringel
- Graduate Program in Translational Biology, Medicine, and Health, Virginia Tech, Blacksburg, VA 24061
| | - Irving C. Allen
- Department of Biomedical Sciences and Pathobiology, Virginia Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24061
- Graduate Program in Translational Biology, Medicine, and Health, Virginia Tech, Blacksburg, VA 24061
| |
Collapse
|
7
|
Chung YL, Pui NNM. Dynamics of wound healing signaling as a potential therapeutic target for radiation-induced tissue damage. Wound Repair Regen 2016; 23:278-86. [PMID: 25682986 DOI: 10.1111/wrr.12265] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 12/13/2014] [Indexed: 11/30/2022]
Abstract
We hypothesized the histone deacetylase inhibitor phenylbutyrate (PB) has beneficial effects on radiation-induced injury by modulating the expression of DNA repair and wound healing genes. Hamsters received a radiosurgical dose of radiation (40 Gy) to the cheek and were treated with varying PB dosing regimens. Gross alteration of the irradiated cheeks, eating function, histological changes, and gene expression during the course of wound healing were compared between treatment groups. Pathological analysis showed decreased radiation-induced mucositis, facilitated epithelial cell growth, and preventing ulcerative wound formation, after short-term PB treatment, but not after vehicle or sustained PB. The radiation-induced wound healing gene expression profile exhibited a sequential transition from the inflammatory and DNA repair phases to the tissue remodeling phase in the vehicle group. Sustained PB treatment resulted in a prolonged wound healing gene expression profile and delayed the wound healing process. Short-term PB shortened the duration of inflammatory cytokine expression, triggered repeated pulsed expression of cell cycle and DNA repair-regulating genes, and promoted earlier oscillatory expression of tissue remodeling genes. Distinct gene expression patterns between sustained and short-term treatment suggest dynamic profiling of wound healing gene expression can be an important part of a biological therapeutic strategy to mitigate radiation-related tissue injury.
Collapse
Affiliation(s)
- Yih-Lin Chung
- Department of Radiation Oncology, Koo Foundation Sun Yat-Sen Cancer Center, Taipei, Taiwan
| | | |
Collapse
|
8
|
Zheng J, Wang J, Pouliot M, Authier S, Zhou D, Loose DS, Hauer-Jensen M. Gene expression profiling in non-human primate jejunum, ileum and colon after total-body irradiation: a comparative study of segment-specific molecular and cellular responses. BMC Genomics 2015; 16:984. [PMID: 26589571 PMCID: PMC4654820 DOI: 10.1186/s12864-015-2168-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 10/29/2015] [Indexed: 12/26/2022] Open
Abstract
Background Although extensive studies have investigated radiation-induced injuries in particular gastrointestinal (GI) segments, a systematic comparison among the different segments on the basis of mode, magnitude and mechanism has not been reported. Here, a comparative study of segment-specific molecular and cellular responses was performed on jejunum, ileum and colon obtained at three time points (4, 7 and 12 days after irradiation) from non-human primate (Rhesus macaque) models exposed to 6.7 Gy or 7.4 Gy total body irradiation (TBI). Results Pathway analysis on the gene expression profiles identified radiation-induced time-, dose- and segment-dependent activation of tumor necrosis factor α (TNFα) cascade, tight junction, apoptosis, cell cycle control/DNA damage repair and coagulation system signaling. Activation of these signaling pathways suggests that colon sustained the severest mucosal barrier disruption and inflammation, and jejunum the greatest DNA damage, apoptosis and endothelial dysfunction. These more pronounced alterations correlate with the high incidence of macroscopic pathologies that are observed in the colon after TBI. Compared to colon and jejunum, ileum was resistant to radiation injury. In addition to the identification a marked increase of TNFα cascade, this study also identified radiation induced strikingly up-regulated tight junction gene CLDN2 (196-fold after 7.4-Gy TBI), matrix degradation genes such as MMP7 (increased 11- and 41-fold after 6.7-Gy and 7.4-Gy TBI), and anoikis mediated gene EDA2R that mediate mucosal shedding and barrier disruption. Conclusions This is the first systematic comparative study of the molecular and cellular responses to radiation injury in jejunum, ileum and colon. The strongest activation of TNFα cascades and the striking up-regulation of its down-stream matrix-dissociated genes suggest that TNFα modulation could be a target for mitigating radiation-induced mucosal barrier disruption. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-2168-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Junying Zheng
- Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, Arkansas, 72205, USA.
| | - Junru Wang
- Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, Arkansas, 72205, USA.
| | | | - Simon Authier
- CiToxLAB North America, Laval, Quebec, Canada, H7V 4B3.
| | - Daohong Zhou
- Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, Arkansas, 72205, USA.
| | - David S Loose
- Integrative Biology and Pharmacology, University of Texas Medical School at Houston, Houston, TX, 77030, USA.
| | - Martin Hauer-Jensen
- Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, Arkansas, 72205, USA. .,Surgical Service, Central Arkansas Veterans Healthcare System, Little Rock, Arkansas, 72205, USA.
| |
Collapse
|
9
|
Elisa B, B. HE, Lucio C, Douglas CW, Vienna L, B. SM, A. LL, F. PE, Mariaelena P. Impact of upfront cellular enrichment by laser capture microdissection on protein and phosphoprotein drug target signaling activation measurements in human lung cancer: Implications for personalized medicine. Proteomics Clin Appl 2015; 9:928-37. [PMID: 25676683 PMCID: PMC4547918 DOI: 10.1002/prca.201400056] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Revised: 12/17/2014] [Accepted: 02/05/2015] [Indexed: 02/06/2023]
Abstract
PURPOSE The aim of this study was to evaluate whether upfront cellular enrichment via laser capture microdissection (LCM) is necessary for accurately quantifying predictive biomarkers in nonsmall cell lung cancer tumors. EXPERIMENTAL DESIGN Fifteen snap frozen surgical biopsies were analyzed. Whole tissue lysate and matched highly enriched tumor epithelium via LCM were obtained for each patient. The expression and activation/phosphorylation levels of 26 proteins were measured by reverse phase protein microarray. Differences in signaling architecture of dissected and undissected matched pairs were visualized using unsupervised clustering analysis, bar graphs, and scatter plots. RESULTS Overall patient matched LCM and undissected material displayed very distinct and differing signaling architectures with 93% of the matched pairs clustering separately. These differences were seen regardless of the amount of starting tumor epithelial content present in the specimen. CONCLUSIONS AND CLINICAL RELEVANCE These results indicate that LCM driven upfront cellular enrichment is necessary to accurately determine the expression/activation levels of predictive protein signaling markers although results should be evaluated in larger clinical settings. Upfront cellular enrichment of the target cell appears to be an important part of the workflow needed for the accurate quantification of predictive protein signaling biomarkers. Larger independent studies are warranted.
Collapse
Affiliation(s)
- Baldelli Elisa
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA, USA
- Medical Oncology Division, S. Maria della Misericordia Hospital, Perugia, Italy
| | - Haura Eric B.
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Crinò Lucio
- Medical Oncology Division, S. Maria della Misericordia Hospital, Perugia, Italy
| | - Cress W. Douglas
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Ludovini Vienna
- Medical Oncology Division, S. Maria della Misericordia Hospital, Perugia, Italy
| | - Schabath Matthew B.
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Liotta Lance A.
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA, USA
| | - Petricoin Emanuel F.
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA, USA
| | - Pierobon Mariaelena
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA, USA
| |
Collapse
|
10
|
Rodriguez-Palacios A, Kodani T, Kaydo L, Pietropaoli D, Corridoni D, Howell S, Katz J, Xin W, Pizarro TT, Cominelli F. Stereomicroscopic 3D-pattern profiling of murine and human intestinal inflammation reveals unique structural phenotypes. Nat Commun 2015; 6:7577. [PMID: 26154811 PMCID: PMC4510646 DOI: 10.1038/ncomms8577] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 05/15/2015] [Indexed: 02/06/2023] Open
Abstract
Histology is fundamental to assess two-dimensional intestinal inflammation; however, inflammatory bowel diseases (IBDs) are often indistinguishable microscopically on the basis of mucosal biopsies. Here, we use stereomicroscopy (SM) to rapidly profile the entire intestinal topography and assess inflammation. We examine the mucosal surface of >700 mice (encompassing >16 strains and various IBD-models), create a profiling catalogue of 3D-stereomicroscopic abnormalities and demonstrate that mice with comparable histological scores display unique sub-clusters of 3D-structure-patterns of IBD pathology, which we call 3D-stereoenterotypes, and which are otherwise indiscernible histologically. We show that two ileal IBD-stereoenterotypes ('cobblestones' versus 'villous mini-aggregation') cluster separately within two distinct mouse lines of spontaneous ileitis, suggesting that host genetics drive unique and divergent inflammatory 3D-structural patterns in the gut. In humans, stereomicroscopy reveals 'liquefaction' lesions and hierarchical fistulous complexes, enriched with clostridia/segmented filamentous bacteria, running under healthy mucosa in Crohn's disease. We suggest that stereomicroscopic (3D-SMAPgut) profiling can be easily implemented and enable the comprehensive study of inflammatory 3D structures, genetics and flora in IBD.
Collapse
Affiliation(s)
- Alex Rodriguez-Palacios
- Division of Gastroenterology and Liver Disease, Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA
| | - Tomohiro Kodani
- Division of Gastroenterology and Liver Disease, Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA
| | - Lindsey Kaydo
- Division of Gastroenterology and Liver Disease, Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA
| | - Davide Pietropaoli
- Division of Gastroenterology and Liver Disease, Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA
| | - Daniele Corridoni
- Division of Gastroenterology and Liver Disease, Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA
| | - Scott Howell
- Department of Visual Sciences, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA
| | - Jeffry Katz
- Division of Gastroenterology and Liver Disease, Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA
- Department of Digestive Health Institute, University Hospitals Case Medical Center, Cleveland, Ohio 44106, USA
| | - Wei Xin
- Department of Digestive Health Institute, University Hospitals Case Medical Center, Cleveland, Ohio 44106, USA
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA
| | - Theresa T. Pizarro
- Division of Gastroenterology and Liver Disease, Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA
| | - Fabio Cominelli
- Division of Gastroenterology and Liver Disease, Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA
- Department of Digestive Health Institute, University Hospitals Case Medical Center, Cleveland, Ohio 44106, USA
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA
| |
Collapse
|
11
|
Fetal gut laser microdissection in combination with RNA preamplification enables epithelial-specific transcriptional profiling. J Immunol Methods 2015; 416:189-92. [DOI: 10.1016/j.jim.2014.11.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 11/16/2014] [Accepted: 11/17/2014] [Indexed: 01/18/2023]
|
12
|
Hipp JD, Cheng J, Hanson JC, Rosenberg AZ, Emmert-Buck MR, Tangrea MA, Balis UJ. SIVQ-LCM protocol for the ArcturusXT instrument. J Vis Exp 2014. [PMID: 25078867 DOI: 10.3791/51662] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
SIVQ-LCM is a new methodology that automates and streamlines the more traditional, user-dependent laser dissection process. It aims to create an advanced, rapidly customizable laser dissection platform technology. In this report, we describe the integration of the image analysis software Spatially Invariant Vector Quantization (SIVQ) onto the ArcturusXT instrument. The ArcturusXT system contains both an infrared (IR) and ultraviolet (UV) laser, allowing for specific cell or large area dissections. The principal goal is to improve the speed, accuracy, and reproducibility of the laser dissection to increase sample throughput. This novel approach facilitates microdissection of both animal and human tissues in research and clinical workflows.
Collapse
Affiliation(s)
- Jason D Hipp
- Laboratory of Pathology, National Cancer Institute, National Institutes of Health
| | | | - Jeffrey C Hanson
- Laboratory of Pathology, National Cancer Institute, National Institutes of Health
| | - Avi Z Rosenberg
- Laboratory of Pathology, National Cancer Institute, National Institutes of Health
| | | | - Michael A Tangrea
- Laboratory of Pathology, National Cancer Institute, National Institutes of Health;
| | | |
Collapse
|
13
|
Halvorsen AR, Helland A, Fleischer T, Haug KM, Grenaker Alnaes GI, Nebdal D, Syljuåsen RG, Touleimat N, Busato F, Tost J, Saetersdal AB, Børresen-Dale AL, Kristensen V, Edvardsen H. Differential DNA methylation analysis of breast cancer reveals the impact of immune signaling in radiation therapy. Int J Cancer 2014; 135:2085-95. [PMID: 24658971 PMCID: PMC4298788 DOI: 10.1002/ijc.28862] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Revised: 02/27/2014] [Accepted: 03/12/2014] [Indexed: 01/26/2023]
Abstract
Radiotherapy (RT) is a central treatment modality for breast cancer patients. The purpose of our study was to investigate the DNA methylation changes in tumors following RT, and to identify epigenetic markers predicting treatment outcome. Paired biopsies from patients with inoperable breast cancer were collected both before irradiation (n = 20) and after receiving 10-24 Gray (Gy) (n = 19). DNA methylation analysis was performed by using Illumina Infinium 27K arrays. Fourteen genes were selected for technical validation by pyrosequencing. Eighty-two differentially methylated genes were identified in irradiated (n = 11) versus nonirradiated (n = 19) samples (false discovery rate, FDR = 1.1%). Methylation levels in pathways belonging to the immune system were most altered after RT. Based on methylation levels before irradiation, a panel of five genes (H2AFY, CTSA, LTC4S, IL5RA and RB1) were significantly associated with clinical response (p = 0.041). Furthermore, the degree of methylation changes for 2,516 probes correlated with the given radiation dose. Within the 2,516 probes, an enrichment for pathways involved in cellular immune response, proliferation and apoptosis was identified (FDR < 5%). Here, we observed clear differences in methylation levels induced by radiation, some associated with response to treatment. Our study adds knowledge on the molecular mechanisms behind radiation response.
Collapse
Affiliation(s)
- Ann Rita Halvorsen
- Department of Genetics, Institute for Cancer Research, Oslo University Hospital-The Norwegian Radium Hospital, Oslo, Norway
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|