1
|
Rasouli M, Safari F, Roudi R, Sobhani N. Investigation of mesenchymal stem cell secretome on breast cancer gene expression: A bioinformatic approach to identify differentially expressed genes, functional networks, and potential therapeutic targets. Comput Biol Chem 2025; 115:108331. [PMID: 39752852 DOI: 10.1016/j.compbiolchem.2024.108331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 12/11/2024] [Accepted: 12/24/2024] [Indexed: 02/26/2025]
Abstract
The mesenchymal stem cell (MSC) secretome plays a pivotal role in shaping the tumor microenvironment, influencing both cancer progression and potential therapeutic outcomes. In this research, by using publicly available dataset GSE196312, we investigated the role of MSC secretome on breast cancer cell gene expression. Our results raveled differentially expressed genes, including the upregulation of Phosphatidylinositol-3,4,5-Trisphosphate Dependent Rac Exchange Factor 1 (PREX1), C-C Motif Chemokine Ligand 28 (CCL28), and downregulation of Collagen Type I Alpha 1 Chain (COL1A1), Collagen Type I Alpha 3 Chain (COL1A3), Collagen Type III Alpha 1 Chain (COL3A1), which contributing to extra cellular matrix (ECM) weakening and promoting cell migration. Functional enrichment analyses also highlighted suppression of ECM remodeling pathways, and activation of calcium ion binding and Rap1 signaling pathway. We proposed that Ca2 + medicated activation of Ras-related protein 1 (Rap1) through its its downstream pathways such as Matrix Metalloprotease (MMP), PI3K/Akt, and MEK/ERK signaling pathway contribute to promotion of cell migration. However, the co-culture model by reducing Fibronectin 1 (FN1) and Secreted Protein Acidic and Cysteine Rich (SPARC) gene expression in cancer cells, emphasized on therapeutical aspects of MSC secretome. These findings emphasize on the dual edge sword nature of MSC secretome on cancer cell behaviors, while our major results emphasize on the cancer progression through ECM remodeling, the therapeutic aspects should not be underscored.
Collapse
Affiliation(s)
- Mohammad Rasouli
- Department of Biology, Faculty of Science, University of Guilan, Rasht, Iran
| | - Fatemeh Safari
- Department of Biology, Faculty of Science, University of Guilan, Rasht, Iran.
| | - Raheleh Roudi
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology, Stanford University, Stanford, CA 94305, USA.
| | - Navid Sobhani
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| |
Collapse
|
2
|
Beltrán-Navarro YM, Reyes-Cruz G, Vázquez-Prado J. P-Rex1 Signaling Hub in Lower Grade Glioma Patients, Found by In Silico Data Mining, Correlates With Reduced Survival and Augmented Immune Tumor Microenvironment. Front Oncol 2022; 12:922025. [PMID: 35875157 PMCID: PMC9300953 DOI: 10.3389/fonc.2022.922025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 06/02/2022] [Indexed: 11/21/2022] Open
Abstract
Systematic analysis of tumor transcriptomes, combined with deep genome sequencing and detailed clinical assessment of hundreds of patients, constitutes a powerful strategy aimed to identify potential biomarkers and therapeutic targets to guide personalized treatments. Oncogenic signaling cascades are integrated by multidomain effector proteins such as P-Rex1, a guanine nucleotide exchange factor for the Rac GTPase (RacGEF), known to promote metastatic dissemination of cancer cells. We hypothesized that patients with high P-Rex1 expression and reduced survival might be characterized by a particular set of signaling proteins co-expressed with this effector of cell migration as a central component of a putative signaling hub indicative of poor prognosis. High P-Rex1 expression correlated with reduced survival of TCGA Lower Grade Glioma (LGG) patients. Thus, guided by PREX1 expression, we searched for signaling partners of this RacGEF by applying a systematic unbiased in silico data mining strategy. We identified 30 putative signaling partners that also correlated with reduced patient survival. These included GPCRs such as CXCR3, GPR82, FZD6, as well as MAP3K1, MAP2K3, NEK8, DYRK3 and RPS6KA3 kinases, and PTPN2 and PTPN22 phosphatases, among other transcripts of signaling proteins and phospho-substrates. This PREX1 signaling hub signature correlated with increased risk of shorter survival of LGG patients from independent datasets and coincided with immune and endothelial transcriptomic signatures, indicating that myeloid infiltration and tumor angiogenesis might contribute to worsen brain tumor pathology. In conclusion, P-Rex1 and its putative signaling partners in LGG are indicative of a signaling landscape of the tumor microenvironment that correlates with poor prognosis and might guide the characterization of signaling targets leading the eventual development of immunotherapeutic strategies.
Collapse
Affiliation(s)
| | | | - José Vázquez-Prado
- Department of Pharmacology, Cinvestav-IPN, Mexico City, Mexico
- *Correspondence: José Vázquez-Prado,
| |
Collapse
|
3
|
Hildebrand S, Ibrahim M, Schlitzer A, Maegdefessel L, Röll W, Pfeifer A. PDGF regulates guanylate cyclase expression and cGMP signaling in vascular smooth muscle. Commun Biol 2022; 5:197. [PMID: 35241778 PMCID: PMC8894477 DOI: 10.1038/s42003-022-03140-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 02/08/2022] [Indexed: 11/17/2022] Open
Abstract
The nitric oxide-cGMP (NO-cGMP) pathway is of outstanding importance for vascular homeostasis and has multiple beneficial effects in vascular disease. Neointimal hyperplasia after vascular injury is caused by increased proliferation and migration of vascular smooth muscle cells (VSMCs). However, the role of NO-cGMP signaling in human VSMCs in this process is still not fully understood. Here, we investigate the interaction between platelet derived growth factor (PDGF)-signaling, one of the major contributors to neointimal hyperplasia, and the cGMP pathway in vascular smooth muscle, focusing on NO-sensitive soluble guanylyl cyclase (sGC). We show that PDGF reduces sGC expression by activating PI3K and Rac1, which in turn alters Notch ligand signaling. These data are corroborated by gene expression analysis in human atheromas, as well as immunohistological analysis of diseased and injured arteries. Collectively, our data identify the crosstalk between PDGF and NO/sGC signaling pathway in human VSMCs as a potential target to tackle neointimal hyperplasia. PDGF reduces expression of nitric oxide-sensitive soluble guanylyl cyclase (NO-sGC) through PI3K-P-Rex1-Rac1 signaling in vascular smooth muscle cells. These insights provide possible avenues to prevent dysregulation of NO/cGMP signaling in vascular disease.
Collapse
Affiliation(s)
- Staffan Hildebrand
- Institute of Pharmacology and Toxicology, University Hospital, University of Bonn, Bonn, Germany.
| | - Mohamed Ibrahim
- Quantitative Systems Biology, LIMES-Institute (Life and Medical Sciences Bonn), University of Bonn, Bonn, Germany
| | - Andreas Schlitzer
- Quantitative Systems Biology, LIMES-Institute (Life and Medical Sciences Bonn), University of Bonn, Bonn, Germany
| | - Lars Maegdefessel
- Experimental Vascular Surgery and Medicine, Department of Vascular and Endovascular Surgery, Klinikum rechts der Isar - Technical University Munich, Munich, Germany.,Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Wilhelm Röll
- Department of Cardiac Surgery, University of Bonn, Bonn, Germany
| | - Alexander Pfeifer
- Institute of Pharmacology and Toxicology, University Hospital, University of Bonn, Bonn, Germany.
| |
Collapse
|
4
|
P-Rex1 Controls Sphingosine 1-Phosphate Receptor Signalling, Morphology, and Cell-Cycle Progression in Neuronal Cells. Cells 2021; 10:cells10092474. [PMID: 34572121 PMCID: PMC8469755 DOI: 10.3390/cells10092474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 09/15/2021] [Indexed: 11/30/2022] Open
Abstract
P-Rex1 is a guanine-nucleotide exchange factor (GEF) that activates Rac-type small G proteins in response to the stimulation of a range of receptors, particularly G protein-coupled receptors (GPCRs), to control cytoskeletal dynamics and other Rac-dependent cell responses. P-Rex1 is mainly expressed in leukocytes and neurons. Whereas its roles in leukocytes have been studied extensively, relatively little is known about its functions in neurons. Here, we used CRISPR/Cas9-mediated P-Rex1 deficiency in neuronal PC12 cells that stably overexpress the GPCR S1PR1, a receptor for sphingosine 1-phosphate (S1P), to investigate the role of P-Rex1 in neuronal GPCR signalling and cell responses. We show that P-Rex1 is required for the S1P-stimulated activation of Rac1 and Akt, basal Rac3 activity, and constitutive cAMP production in PC12-S1PR1 cells. The constitutive cAMP production was not due to increased expression levels of major neuronal adenylyl cyclases, suggesting that P-Rex1 may regulate adenylyl cyclase activity. P-Rex1 was required for maintenance of neurite protrusions and spreading in S1P-stimulated PC12-S1PR1 cells, as well as for cell-cycle progression and proliferation. In summary, we identified novel functional roles of P-Rex1 in neuronal Rac, Akt and cAMP signalling, as well as in neuronal cell-cycle progression and proliferation.
Collapse
|
5
|
Liang Q, Chang Y, Liu J, Yu Y, Qiu W, Li J, Yang X, Sun G. P-Rex1 Cooperates With TGFβR2 to Drive Lung Fibroblast Migration in Pulmonary Fibrosis. Front Pharmacol 2021; 12:678733. [PMID: 34349645 PMCID: PMC8326510 DOI: 10.3389/fphar.2021.678733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 06/21/2021] [Indexed: 11/13/2022] Open
Abstract
Pulmonary fibrosis is a kind of interstitial lung disease with progressive pulmonary scar formation, leading to irreversible loss of lung functions. The TGF-β1/Smad signaling pathway plays a key role in fibrogenic processes. It is associated with the increased synthesis of extracellular matrix, enhanced proliferation of fibroblasts, and transformation of alveolar epithelial cells into interstitial cells. We investigated P-Rex1, a PIP3-Gβγ-dependent guanine nucleotide exchange factor (GEF) for Rac, for its potential role in TGF-β1-induced pulmonary fibrosis. A high expression level of P-Rex1 was identified in the lung tissue of patients with pulmonary fibrosis than that from healthy donors. Using the P-Rex1 knockdown and overexpression system, we established a novel player of P-Rex1 in mouse lung fibroblast migration. P-Rex1 contributed to fibrogenic processes in lung fibroblasts by targeting the TGF-β type Ⅱ receptor (TGFβR2). The RNA-seq analysis for expression profiling confirmed the modulation of P-Rex1 in cell migration and the involvement of P-Rex1 in TGF-β1 signaling. These results identified P-Rex1 as a signaling molecule involved in TGF-β1-induced pulmonary fibrosis, suggesting that P-Rex1 may be a potential target for pulmonary fibrosis treatment.
Collapse
Affiliation(s)
- Qing Liang
- Department of Pharmacy, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Yanhua Chang
- Department of Pathology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, China
| | - Jing Liu
- Department of Pharmacy, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Yan Yu
- Department of Pharmacy, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Wancheng Qiu
- Department of Pharmacy, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Jiajia Li
- Department of Pharmacy, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Xu Yang
- Department of Pharmacy, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Guangchun Sun
- Department of Pharmacy, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| |
Collapse
|
6
|
Qiu W, Chang Y, Liu J, Yang X, Yu Y, Li J, Liang Q, Sun G. Identification of P-Rex1 in the Regulation of Liver Cancer Cell Proliferation and Migration via HGF/c-Met/Akt Pathway. Onco Targets Ther 2020; 13:9481-9495. [PMID: 33061433 PMCID: PMC7522411 DOI: 10.2147/ott.s265592] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 08/21/2020] [Indexed: 12/19/2022] Open
Abstract
Background Rho-GTPases and their activators, guanine nucleotide exchange factors (GEFs), are increasingly being recognized as essential mediators of oncogenic signaling. Although it is known that P-Rex1, a member of the Dbl family of GEFs for the Rac small GTPase, contributes to the migration of cancer cells, its exact role in liver cancer and the underlying mechanisms remain unclear. Materials and Methods Public datasets from the Gene Expression Omnibus database (GEO) and clinical liver cancer samples were analyzed to explore the expression of P-Rex1. P-Rex1 knockdown and overexpression cell lines were established using a recombinant lentiviral transfection system. BrdU and colony formation assays were performed to determine cell viability. Migratory capacity was analyzed using a transwell migration assay and an in vitro wound-healing assay. Nude mice bearing subcutaneous xenograft tumors were established to determine the effects of P-Rex1 on tumorigenesis in vivo. The role of P-Rex1 in hepatocarcinogenesis was determined through Western blot and co-immunoprecipitation. Results Induced expression of endogenous P-Rex1 was identified in liver cancer tumors when compared with adjacent nonmalignant tissues from clinical data. In response to HGF treatment, P-Rex1-knockdown cells displayed reduced proliferation and migration in vitro as well as reduced xenograft tumor growth in vivo. Overexpression of P-Rex1 promoted liver cancer cell proliferation and migration. P-Rex1 primarily acts as a downstream effector of GPCR signaling. This study demonstrated that downregulation of P-Rex1 led to a significant decrease in the phosphorylation of Akt and Erk1/2 by reducing the phosphorylation of the tyrosine kinase receptor c-Met. Furthermore, a physical association between P-Rex1 and c-Met was observed after HGF treatment, suggesting that P-Rex1 may be involved in the HGF/c-Met signaling pathway. Conclusion These results support the role of P-Rex1 as a novel player in liver cancer, which suggest that targeting P-Rex1 may provide a potential strategy for liver cancer treatment.
Collapse
Affiliation(s)
- Wancheng Qiu
- Department of Pharmacy, Shanghai Fifth People's Hospital, Fudan University, Shanghai, People's Republic of China
| | - Yanhua Chang
- Department of Pathology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, Jiangsu Province, People's Republic of China
| | - Jing Liu
- Department of Pharmacy, Shanghai Fifth People's Hospital, Fudan University, Shanghai, People's Republic of China
| | - Xu Yang
- Department of Pharmacy, Shanghai Fifth People's Hospital, Fudan University, Shanghai, People's Republic of China
| | - Yan Yu
- Department of Pharmacy, Shanghai Fifth People's Hospital, Fudan University, Shanghai, People's Republic of China
| | - Jiajia Li
- Department of Pharmacy, Shanghai Fifth People's Hospital, Fudan University, Shanghai, People's Republic of China
| | - Qing Liang
- Department of Pharmacy, Shanghai Fifth People's Hospital, Fudan University, Shanghai, People's Republic of China
| | - Guangchun Sun
- Department of Pharmacy, Shanghai Fifth People's Hospital, Fudan University, Shanghai, People's Republic of China
| |
Collapse
|
7
|
Shao Q, Chen ZM. Feedback regulation between phosphatidylinositol-3,4,5-trisphosphate dependent Rac exchange factor 1 and transforming growth factor β1 and prognostic value in gastric cancer. World J Gastroenterol 2020; 26:21-34. [PMID: 31933512 PMCID: PMC6952301 DOI: 10.3748/wjg.v26.i1.21] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 12/15/2019] [Accepted: 12/22/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Phosphatidylinositol-3,4,5-trisphosphate dependent Rac exchange factor 1 (PREX1) was reported to be overexpressed in some cancers and involved in cancer development, but its expression and significance in gastric cancer remain unclear.
AIM To evaluate the expression of PREX1 in gastric cancer and its significance in the development of gastric cancer, especially to evaluate the potential mechanism of PREX1 in gastric cancer.
METHODS Bioinformatic analysis was performed in order to examine the expression of PREX1 in gastric cancer. The relationship between the survival rate of gastric cancer patients and PREX1 expression was assessed by Kaplan Meier portal. The Gene Set Enrichment Analysis and the correlation between PREX1 and transforming growth factor (TGF) β1 pathway-related mediators were evaluated by cBioPortal for Cancer Genomics. Western blotting and reverse transcriptase polymerase chain reaction assay were used to test the role of TGFβ1 on the expression of PREX1. Western blotting and dual-luciferase reporter system was used to evaluate the effect of PREX1 on the activation of TGFβ1 pathway. Wound healing and Transwell assay were used to assess the effect of PREX1 on the metastasis activity of gastric cancer cells.
RESULTS PREX1 was overexpressed in the gastric tumors, and the expression levels were positively associated with the development of gastric cancer. Also, the high expression of PREX1 revealed poor prognosis, especially for those advanced and specific intestinal gastric cancer patients. PREX1 was closely involved in the positive regulation of cell adhesion and positively correlated with TGFβ1-related mediators. Furthermore, TGFβ1 could induce the expression of PREX1 at both the protein and mRNA level. Also, PREX1 could activate the TGFβ1 pathway. The induced PREX1 could increase the migration and invasion activity of gastric cancer cells.
CONCLUSION PREX1 is overexpressed in gastric cancer, and the high level of PREX1 predicts poor prognosis. PREX1 is closely associated with TGFβ signaling and promotes the metastasis of gastric cancer cells.
Collapse
Affiliation(s)
- Qi Shao
- Department of Chemotherapy/Radiotherapy, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu Province, China
| | - Zhi-Ming Chen
- Department of Chemotherapy/Radiotherapy, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu Province, China
| |
Collapse
|
8
|
Williams ML, Solnica-Krezel L. Cellular and molecular mechanisms of convergence and extension in zebrafish. Curr Top Dev Biol 2020; 136:377-407. [DOI: 10.1016/bs.ctdb.2019.08.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
9
|
Zhong Y, Zhang J, Zhou Y, Mao F, Lin Y, Xu Y, Guan J, Shen S, Pan B, Wang C, Peng L, Huang X, Li Y, Cao X, Sun Q. Phosphatidylinositol-3,4,5-Trisphosphate Dependent Rac Exchange Factor 1 (PREX1) is a Novel Predictor of Prognosis for Breast Cancer Patients: A Retrospective Case Series. Med Sci Monit 2019; 25:6554-6562. [PMID: 31473760 PMCID: PMC6738004 DOI: 10.12659/msm.915845] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Background In previous studies, higher expression of PREX1 (PtdIns (3,4,5)P3-dependent Rac exchanger 1) has been detected in some subsets of breast cancer, and activation of PREX1 has been associated with tumor progression in vivo. However, an association between PREX1 and breast cancer prognosis has not been examined. Material/Methods In this study, we investigated the expression and correlation of PREX1 with important clinical factors and prognosis of patients with breast cancer. Immunohistochemical staining was performed for 121 tumor tissue specimens obtained from primary breast cancer lesions. Results We found that 55 tissues exhibited positive staining for PREX1. Moreover, tumors positive for PREX1 were found to have significant association with recurrence rate (P=0.000) and metastasis rate (P=0.001). Univariate and multivariate regression analyses also identified PREX1 expression as an independent variable of disease-free survival. Our analyses indicate that high levels of PREX1 expression were related to longer disease-free survival in patients with breast cancer (P=0.013). Conclusions PREX1 is a favorable variable of prognosis for breast cancer patients, these study results need to be confirmed in larger research studies.
Collapse
Affiliation(s)
- Ying Zhong
- Department of Breast Disease, Peking Union Medical College Hospital, Beijing, China (mainland)
| | - Jing Zhang
- Department of Pathology, Peking Union Medical College Hospital, Beijing, China (mainland)
| | - Yidong Zhou
- Department of Breast Disease, Peking Union Medical College Hospital, Beijing, China (mainland)
| | - Feng Mao
- Department of Breast Disease, Peking Union Medical College Hospital, Beijing, China (mainland)
| | - Yan Lin
- Department of Breast Disease, Peking Union Medical College Hospital, Beijing, China (mainland)
| | - Yali Xu
- Department of Breast Disease, Peking Union Medical College Hospital, Beijing, China (mainland)
| | - Jinghong Guan
- Department of Breast Disease, Peking Union Medical College Hospital, Beijing, China (mainland)
| | - Songjie Shen
- Department of Breast Disease, Peking Union Medical College Hospital, Beijing, China (mainland)
| | - Bo Pan
- Department of Breast Disease, Peking Union Medical College Hospital, Beijing, China (mainland)
| | - Changjun Wang
- Department of Breast Disease, Peking Union Medical College Hospital, Beijing, China (mainland)
| | - Li Peng
- Department of Breast Disease, Peking Union Medical College Hospital, Beijing, China (mainland)
| | - Xin Huang
- Department of Breast Disease, Peking Union Medical College Hospital, Beijing, China (mainland)
| | - Yan Li
- Department of Breast Disease, Peking Union Medical College Hospital, Beijing, China (mainland)
| | - Xi Cao
- Department of Breast Disease, Peking Union Medical College Hospital, Beijing, China (mainland)
| | - Qiang Sun
- Department of Breast Disease, Peking Union Medical College Hospital, Beijing, China (mainland)
| |
Collapse
|
10
|
Huang Y, Xie Y, Jiang H, Abel PW, Panettieri RA, Casale TB, Tu Y. Upregulated P-Rex1 exacerbates human airway smooth muscle hyperplasia in asthma. J Allergy Clin Immunol 2018; 143:778-781.e5. [PMID: 30312708 DOI: 10.1016/j.jaci.2018.09.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 09/06/2018] [Accepted: 09/28/2018] [Indexed: 02/08/2023]
Affiliation(s)
- Yapei Huang
- Department of Pharmacology, Creighton University School of Medicine, Omaha, Neb
| | - Yan Xie
- Department of Pharmacology, Creighton University School of Medicine, Omaha, Neb
| | - Haihong Jiang
- Department of Pharmacology, Creighton University School of Medicine, Omaha, Neb
| | - Peter W Abel
- Department of Pharmacology, Creighton University School of Medicine, Omaha, Neb
| | - Reynold A Panettieri
- Rutgers Institute for Translational Medicine and Science, Rutgers Biomedical and Health Sciences, Rutgers University, New Brunswick, NJ
| | - Thomas B Casale
- Department of Internal Medicine, University of South Florida School of Medicine, Tampa, Fla.
| | - Yaping Tu
- Department of Pharmacology, Creighton University School of Medicine, Omaha, Neb.
| |
Collapse
|
11
|
Barrio-Real L, Wertheimer E, Garg R, Abba MC, Kazanietz MG. Characterization of a P-Rex1 gene signature in breast cancer cells. Oncotarget 2018; 7:51335-51348. [PMID: 27351228 PMCID: PMC5239479 DOI: 10.18632/oncotarget.10285] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 06/12/2016] [Indexed: 01/29/2023] Open
Abstract
The Rac nucleotide Exchange Factor (Rac-GEF) P-Rex1 is highly expressed in breast cancer, specifically in the luminal subtype, and is an essential mediator of actin cytoskeleton reorganization and cell migratory responses induced by stimulation of ErbB and other tyrosine-kinase receptors. Heregulin (HRG), a growth factor highly expressed in mammary tumors, causes the activation of P-Rex1 and Rac1 in breast cancer cells via ErbB3, leading to a motile response. Since there is limited information about P-Rex1 downstream effectors, we carried out a microarray analysis to identify genes regulated by this Rac-GEF after stimulation of ErbB3 with HRG. In T-47D breast cancer cells, HRG treatment caused major changes in gene expression, including genes associated with motility, adhesion, invasiveness and metastasis. Silencing P-Rex1 expression from T-47D cells using RNAi altered the induction and repression of a subset of HRG-regulated genes, among them genes associated with extracellular matrix organization, migration, and chemotaxis. HRG induction of MMP10 (matrix metalloproteinase 10) was found to be highly sensitive both to P-Rex1 depletion and inhibition of Rac1 function by the GTPase Activating Protein (GAP) β2-chimaerin, suggesting the dependence of the P-Rex1/Rac1 pathway for the induction of genes critical for breast cancer invasiveness. Notably, there is a significant association in the expression of P-Rex1 and MMP10 in human luminal breast cancer, and their co-expression is indicative of poor prognosis.
Collapse
Affiliation(s)
- Laura Barrio-Real
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - Eva Wertheimer
- Centro de Estudios Farmacológicos y Botánicos (CEFYBO), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Rachana Garg
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - Martin C Abba
- Centro de Investigaciones Inmunológicas Básicas y Aplicadas (CINIBA), Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Marcelo G Kazanietz
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| |
Collapse
|
12
|
P-Rex1 and P-Rex2 RacGEFs and cancer. Biochem Soc Trans 2017; 45:963-77. [PMID: 28710285 DOI: 10.1042/bst20160269] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 06/01/2017] [Accepted: 06/05/2017] [Indexed: 12/15/2022]
Abstract
Phosphatidylinositol 3,4,5-trisphosphate-dependent Rac exchanger (P-Rex) proteins are RacGEFs that are synergistically activated by phosphatidylinositol 3,4,5-trisphosphate and Gβγ subunits of G-protein-coupled receptors. P-Rex1 and P-Rex2 share similar amino acid sequence homology, domain structure, and catalytic function. Recent evidence suggests that both P-Rex proteins may play oncogenic roles in human cancers. P-Rex1 and P-Rex2 are altered predominantly via overexpression and mutation, respectively, in various cancer types, including breast cancer, prostate cancer, and melanoma. This review compares the similarities and differences between P-Rex1 and P-Rex2 functions in human cancers in terms of cellular effects and signalling mechanisms. Emerging clinical data predict that changes in expression or mutation of P-Rex1 and P-Rex2 may lead to changes in tumour outcome, particularly in breast cancer and melanoma.
Collapse
|
13
|
Marei H, Carpy A, Macek B, Malliri A. Proteomic analysis of Rac1 signaling regulation by guanine nucleotide exchange factors. Cell Cycle 2016; 15:1961-74. [PMID: 27152953 PMCID: PMC4968972 DOI: 10.1080/15384101.2016.1183852] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 04/13/2016] [Accepted: 04/22/2016] [Indexed: 10/30/2022] Open
Abstract
The small GTPase Rac1 is implicated in various cellular processes that are essential for normal cell function. Deregulation of Rac1 signaling has also been linked to a number of diseases, including cancer. The diversity of Rac1 functioning in cells is mainly attributed to its ability to bind to a multitude of downstream effectors following activation by Guanine nucleotide Exchange Factors (GEFs). Despite the identification of a large number of Rac1 binding partners, factors influencing downstream specificity are poorly defined, thus hindering the detailed understanding of both Rac1's normal and pathological functions. In a recent study, we demonstrated a role for 2 Rac-specific GEFs, Tiam1 and P-Rex1, in mediating Rac1 anti- versus pro-migratory effects, respectively. Importantly, via conducting a quantitative proteomic screen, we identified distinct changes in the Rac1 interactome following activation by either GEF, indicating that these opposing effects are mediated through GEF modulation of the Rac1 interactome. Here, we present the full list of identified Rac1 interactors together with functional annotation of the differentially regulated Rac1 binding partners. In light of this data, we also provide additional insights into known and novel signaling cascades that might account for the GEF-mediated Rac1-driven cellular effects.
Collapse
Affiliation(s)
- Hadir Marei
- Cell Signaling Group, Cancer Research UK Manchester Institute, The University of Manchester, Manchester, UK
| | - Alejandro Carpy
- Proteome Center Tuebingen, Interfaculty Institute for Cell Biology, University of Tuebingen, Tuebingen, Germany
| | - Boris Macek
- Proteome Center Tuebingen, Interfaculty Institute for Cell Biology, University of Tuebingen, Tuebingen, Germany
| | - Angeliki Malliri
- Cell Signaling Group, Cancer Research UK Manchester Institute, The University of Manchester, Manchester, UK
| |
Collapse
|
14
|
Ryan MB, Finn AJ, Pedone KH, Thomas NE, Der CJ, Cox AD. ERK/MAPK Signaling Drives Overexpression of the Rac-GEF, PREX1, in BRAF- and NRAS-Mutant Melanoma. Mol Cancer Res 2016; 14:1009-1018. [PMID: 27418645 DOI: 10.1158/1541-7786.mcr-16-0184] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 07/01/2016] [Indexed: 12/14/2022]
Abstract
Recently, we identified that PREX1 overexpression is critical for metastatic but not tumorigenic growth in a mouse model of NRAS-driven melanoma. In addition, a PREX1 gene signature correlated with and was dependent on ERK MAPK activation in human melanoma cell lines. In the current study, the underlying mechanism of PREX1 overexpression in human melanoma was assessed. PREX1 protein levels were increased in melanoma tumor tissues and cell lines compared with benign nevi and normal melanocytes, respectively. Suppression of PREX1 by siRNA impaired invasion but not proliferation in vitro PREX1-dependent invasion was attributable to PREX1-mediated activation of the small GTPase RAC1 but not the related small GTPase CDC42. Pharmacologic inhibition of ERK signaling reduced PREX1 gene transcription and additionally regulated PREX1 protein stability. This ERK-dependent upregulation of PREX1 in melanoma, due to both increased gene transcription and protein stability, contrasts with the mechanisms identified in breast and prostate cancers, in which PREX1 overexpression was driven by gene amplification and HDAC-mediated gene transcription, respectively. Thus, although PREX1 expression is aberrantly upregulated and regulates RAC1 activity and invasion in these three different tumor types, the mechanisms of its upregulation are distinct and context dependent. IMPLICATIONS This study identifies an ERK-dependent mechanism that drives PREX1 upregulation and subsequent RAC1-dependent invasion in BRAF- and NRAS-mutant melanoma. Mol Cancer Res; 14(10); 1009-18. ©2016 AACR.
Collapse
Affiliation(s)
- Meagan B Ryan
- Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Alexander J Finn
- Department of Dermatology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Katherine H Pedone
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Nancy E Thomas
- Department of Dermatology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Channing J Der
- Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina. Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.
| | - Adrienne D Cox
- Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina. Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina. Department of Radiation Oncology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.
| |
Collapse
|
15
|
Liu HJ, Ooms LM, Srijakotre N, Man J, Vieusseux J, Waters JE, Feng Y, Bailey CG, Rasko JEJ, Price JT, Mitchell CA. PtdIns(3,4,5)P3-dependent Rac Exchanger 1 (PREX1) Rac-Guanine Nucleotide Exchange Factor (GEF) Activity Promotes Breast Cancer Cell Proliferation and Tumor Growth via Activation of Extracellular Signal-regulated Kinase 1/2 (ERK1/2) Signaling. J Biol Chem 2016; 291:17258-70. [PMID: 27358402 DOI: 10.1074/jbc.m116.743401] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2016] [Indexed: 12/20/2022] Open
Abstract
PtdIns(3,4,5)P3-dependent Rac exchanger 1 (PREX1) is a Rac-guanine nucleotide exchange factor (GEF) overexpressed in a significant proportion of human breast cancers that integrates signals from upstream ErbB2/3 and CXCR4 membrane surface receptors. However, the PREX1 domains that facilitate its oncogenic activity and downstream signaling are not completely understood. We identify that ERK1/2 MAPK acts downstream of PREX1 and contributes to PREX1-mediated anchorage-independent cell growth. PREX1 overexpression increased but its shRNA knockdown decreased ERK1/2 phosphorylation in response to EGF/IGF-1 stimulation, resulting in induction of the cell cycle regulators cyclin D1 and p21(WAF1/CIP1) PREX1-mediated ERK1/2 phosphorylation, anchorage-independent cell growth, and cell migration were suppressed by inhibition of MEK1/2/ERK1/2 signaling. PREX1 overexpression reduced staurosporine-induced apoptosis whereas its shRNA knockdown promoted apoptosis in response to staurosporine or the anti-estrogen drug tamoxifen. Expression of wild-type but not GEF-inactive PREX1 increased anchorage-independent cell growth. In addition, mouse xenograft studies revealed that expression of wild-type but not GEF-dead PREX1 resulted in the formation of larger tumors that displayed increased phosphorylation of ERK1/2 but not AKT. The impaired anchorage-independent cell growth, apoptosis, and ERK1/2 signaling observed in stable PREX1 knockdown cells was restored by expression of wild-type but not GEF-dead-PREX1. Therefore, PREX1-Rac-GEF activity is critical for PREX1-dependent anchorage-independent cell growth and xenograft tumor growth and may represent a possible therapeutic target for breast cancers that exhibit PREX1 overexpression.
Collapse
Affiliation(s)
- Heng-Jia Liu
- From the Cancer Program, Monash Biomedicine Discovery Institute, and Department of Biochemistry and Molecular Biology, Monash University, Victoria 3800, Australia
| | - Lisa M Ooms
- From the Cancer Program, Monash Biomedicine Discovery Institute, and Department of Biochemistry and Molecular Biology, Monash University, Victoria 3800, Australia
| | - Nuthasuda Srijakotre
- From the Cancer Program, Monash Biomedicine Discovery Institute, and Department of Biochemistry and Molecular Biology, Monash University, Victoria 3800, Australia
| | - Joey Man
- From the Cancer Program, Monash Biomedicine Discovery Institute, and Department of Biochemistry and Molecular Biology, Monash University, Victoria 3800, Australia
| | - Jessica Vieusseux
- From the Cancer Program, Monash Biomedicine Discovery Institute, and Department of Biochemistry and Molecular Biology, Monash University, Victoria 3800, Australia
| | - JoAnne E Waters
- From the Cancer Program, Monash Biomedicine Discovery Institute, and Department of Biochemistry and Molecular Biology, Monash University, Victoria 3800, Australia
| | - Yue Feng
- the Centenary Institute of Cancer Medicine and Cell Biology, New South Wales 2050, Australia
| | - Charles G Bailey
- the Centenary Institute of Cancer Medicine and Cell Biology, New South Wales 2050, Australia, Sydney Medical School, University of Sydney, Sydney, New South Wales 2006, Australia
| | - John E J Rasko
- From the Cancer Program, Monash Biomedicine Discovery Institute, and Department of Biochemistry and Molecular Biology, Monash University, Victoria 3800, Australia, Sydney Medical School, University of Sydney, Sydney, New South Wales 2006, Australia, Cell and Molecular Therapies, Royal Prince Alfred Hospital, Camperdown, New South Wales 2050, Australia, and
| | - John T Price
- From the Cancer Program, Monash Biomedicine Discovery Institute, and Department of Biochemistry and Molecular Biology, Monash University, Victoria 3800, Australia, the Centre for Chronic Disease, College of Health and Biomedicine, Victoria University, Victoria 8001, Australia
| | - Christina A Mitchell
- From the Cancer Program, Monash Biomedicine Discovery Institute, and Department of Biochemistry and Molecular Biology, Monash University, Victoria 3800, Australia,
| |
Collapse
|
16
|
Cash JN, Davis EM, Tesmer JJG. Structural and Biochemical Characterization of the Catalytic Core of the Metastatic Factor P-Rex1 and Its Regulation by PtdIns(3,4,5)P3. Structure 2016; 24:730-740. [PMID: 27150042 DOI: 10.1016/j.str.2016.02.022] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Revised: 02/17/2016] [Accepted: 02/23/2016] [Indexed: 11/20/2022]
Abstract
Phosphatidylinositol 3,4,5-trisphosphate (PIP3)-dependent Rac exchanger 1 (P-Rex1) is a Rho guanine nucleotide exchange factor synergistically activated by PIP3 and Gβγ that plays an important role in the metastasis of breast, prostate, and skin cancer, making it an attractive therapeutic target. However, the molecular mechanisms behind P-Rex1 regulation are poorly understood. We determined structures of the P-Rex1 pleckstrin homology (PH) domain bound to the headgroup of PIP3 and resolved that PIP3 binding to the PH domain is required for P-Rex1 activity in cells but not for membrane localization, which points to an allosteric activation mechanism by PIP3. We also determined structures of the P-Rex1 tandem Dbl homology/PH domains in complexes with two of its substrate GTPases, Rac1 and Cdc42. Collectively, this study provides important molecular insights into P-Rex1 regulation and tools for targeting the PIP3-binding pocket of P-Rex1 with a new generation of cancer chemotherapeutic agents.
Collapse
Affiliation(s)
- Jennifer N Cash
- Departments of Pharmacology and Biological Chemistry, Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109-2216, USA
| | - Ellen M Davis
- Departments of Pharmacology and Biological Chemistry, Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109-2216, USA
| | - John J G Tesmer
- Departments of Pharmacology and Biological Chemistry, Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109-2216, USA.
| |
Collapse
|
17
|
Marei H, Carpy A, Woroniuk A, Vennin C, White G, Timpson P, Macek B, Malliri A. Differential Rac1 signalling by guanine nucleotide exchange factors implicates FLII in regulating Rac1-driven cell migration. Nat Commun 2016; 7:10664. [PMID: 26887924 PMCID: PMC4759627 DOI: 10.1038/ncomms10664] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 01/08/2016] [Indexed: 01/22/2023] Open
Abstract
The small GTPase Rac1 has been implicated in the formation and dissemination of tumours. Upon activation by guanine nucleotide exchange factors (GEFs), Rac1 associates with a variety of proteins in the cell thereby regulating various functions, including cell migration. However, activation of Rac1 can lead to opposing migratory phenotypes raising the possibility of exacerbating tumour progression when targeting Rac1 in a clinical setting. This calls for the identification of factors that influence Rac1-driven cell motility. Here we show that Tiam1 and P-Rex1, two Rac GEFs, promote Rac1 anti- and pro-migratory signalling cascades, respectively, through regulating the Rac1 interactome. In particular, we demonstrate that P-Rex1 stimulates migration through enhancing the interaction between Rac1 and the actin-remodelling protein flightless-1 homologue, to modulate cell contraction in a RhoA-ROCK-independent manner.
Collapse
Affiliation(s)
- Hadir Marei
- Cell Signalling Group, Cancer Research UK Manchester Institute, The University of Manchester, Manchester M204BX, UK
| | - Alejandro Carpy
- Proteome Center Tuebingen, Interfaculty Institute for Cell Biology, University of Tuebingen, Tuebingen 72026, Germany
| | - Anna Woroniuk
- Cell Signalling Group, Cancer Research UK Manchester Institute, The University of Manchester, Manchester M204BX, UK
| | - Claire Vennin
- Invasion and Metastasis Group, Garvan Institute of Medical Research, The Kinghorn Cancer Centre, Faculty of Medicine, St Vincent's Clinical School, University of New South Wales, Darlinghurst, New South Wales 2010, Australia
| | - Gavin White
- Cell Signalling Group, Cancer Research UK Manchester Institute, The University of Manchester, Manchester M204BX, UK
| | - Paul Timpson
- Invasion and Metastasis Group, Garvan Institute of Medical Research, The Kinghorn Cancer Centre, Faculty of Medicine, St Vincent's Clinical School, University of New South Wales, Darlinghurst, New South Wales 2010, Australia
| | - Boris Macek
- Proteome Center Tuebingen, Interfaculty Institute for Cell Biology, University of Tuebingen, Tuebingen 72026, Germany
| | - Angeliki Malliri
- Cell Signalling Group, Cancer Research UK Manchester Institute, The University of Manchester, Manchester M204BX, UK
| |
Collapse
|
18
|
Chávez-Vargas L, Adame-García SR, Cervantes-Villagrana RD, Castillo-Kauil A, Bruystens JGH, Fukuhara S, Taylor SS, Mochizuki N, Reyes-Cruz G, Vázquez-Prado J. Protein Kinase A (PKA) Type I Interacts with P-Rex1, a Rac Guanine Nucleotide Exchange Factor: EFFECT ON PKA LOCALIZATION AND P-Rex1 SIGNALING. J Biol Chem 2016; 291:6182-99. [PMID: 26797121 DOI: 10.1074/jbc.m115.712216] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Indexed: 12/15/2022] Open
Abstract
Morphology of migrating cells is regulated by Rho GTPases and fine-tuned by protein interactions and phosphorylation. PKA affects cell migration potentially through spatiotemporal interactions with regulators of Rho GTPases. Here we show that the endogenous regulatory (R) subunit of type I PKA interacts with P-Rex1, a Rac guanine nucleotide exchange factor that integrates chemotactic signals. Type I PKA holoenzyme interacts with P-Rex1 PDZ domains via the CNB B domain of RIα, which when expressed by itself facilitates endothelial cell migration. P-Rex1 activation localizes PKA to the cell periphery, whereas stimulation of PKA phosphorylates P-Rex1 and prevents its activation in cells responding to SDF-1 (stromal cell-derived factor 1). The P-Rex1 DEP1 domain is phosphorylated at Ser-436, which inhibits the DH-PH catalytic cassette by direct interaction. In addition, the P-Rex1 C terminus is indirectly targeted by PKA, promoting inhibitory interactions independently of the DEP1-PDZ2 region. A P-Rex1 S436A mutant construct shows increased RacGEF activity and prevents the inhibitory effect of forskolin on sphingosine 1-phosphate-dependent endothelial cell migration. Altogether, these results support the idea that P-Rex1 contributes to the spatiotemporal localization of type I PKA, which tightly regulates this guanine exchange factor by a multistep mechanism, initiated by interaction with the PDZ domains of P-Rex1 followed by direct phosphorylation at the first DEP domain and putatively indirect regulation of the C terminus, thus promoting inhibitory intramolecular interactions. This reciprocal regulation between PKA and P-Rex1 might represent a key node of integration by which chemotactic signaling is fine-tuned by PKA.
Collapse
Affiliation(s)
| | - Sendi Rafael Adame-García
- Cell Biology, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Mexico City, 07360 Mexico
| | | | - Alejandro Castillo-Kauil
- Cell Biology, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Mexico City, 07360 Mexico
| | | | - Shigetomo Fukuhara
- Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute (NCVC), Osaka, 565-8565 Japan, and
| | - Susan S Taylor
- Departments of Chemistry and Biochemistry and Pharmacology, University of California San Diego, La Jolla, California 92093
| | - Naoki Mochizuki
- Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute (NCVC), Osaka, 565-8565 Japan, and
| | - Guadalupe Reyes-Cruz
- Cell Biology, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Mexico City, 07360 Mexico
| | | |
Collapse
|
19
|
Pan D, Barber MA, Hornigold K, Baker MJ, Toth JM, Oxley D, Welch HCE. Norbin Stimulates the Catalytic Activity and Plasma Membrane Localization of the Guanine-Nucleotide Exchange Factor P-Rex1. J Biol Chem 2016; 291:6359-75. [PMID: 26792863 PMCID: PMC4813545 DOI: 10.1074/jbc.m115.686592] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Indexed: 12/15/2022] Open
Abstract
P-Rex1 is a guanine-nucleotide exchange factor (GEF) that activates the small G protein (GTPase) Rac1 to control Rac1-dependent cytoskeletal dynamics, and thus cell morphology. Three mechanisms of P-Rex1 regulation are currently known: (i) binding of the phosphoinositide second messenger PIP3, (ii) binding of the Gβγ subunits of heterotrimeric G proteins, and (iii) phosphorylation of various serine residues. Using recombinant P-Rex1 protein to search for new binding partners, we isolated the G-protein-coupled receptor (GPCR)-adaptor protein Norbin (Neurochondrin, NCDN) from mouse brain fractions. Coimmunoprecipitation confirmed the interaction between overexpressed P-Rex1 and Norbin in COS-7 cells, as well as between endogenous P-Rex1 and Norbin in HEK-293 cells. Binding assays with purified recombinant proteins showed that their interaction is direct, and mutational analysis revealed that the pleckstrin homology domain of P-Rex1 is required. Rac-GEF activity assays with purified recombinant proteins showed that direct interaction with Norbin increases the basal, PIP3- and Gβγ-stimulated Rac-GEF activity of P-Rex1. Pak-CRIB pulldown assays demonstrated that Norbin promotes the P-Rex1-mediated activation of endogenous Rac1 upon stimulation of HEK-293 cells with lysophosphatidic acid. Finally, immunofluorescence microscopy and subcellular fractionation showed that coexpression of P-Rex1 and Norbin induces a robust translocation of both proteins from the cytosol to the plasma membrane, as well as promoting cell spreading, lamellipodia formation, and membrane ruffling, cell morphologies generated by active Rac1. In summary, we have identified a novel mechanism of P-Rex1 regulation through the GPCR-adaptor protein Norbin, a direct P-Rex1 interacting protein that promotes the Rac-GEF activity and membrane localization of P-Rex1.
Collapse
Affiliation(s)
| | | | | | | | | | - David Oxley
- the Mass Spectrometry Facility, Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, United Kingdom
| | | |
Collapse
|
20
|
Jean L, Yang L, Majumdar D, Gao Y, Shi M, Brewer BM, Li D, Webb DJ. The Rho family GEF Asef2 regulates cell migration in three dimensional (3D) collagen matrices through myosin II. Cell Adh Migr 2015; 8:460-7. [PMID: 25517435 DOI: 10.4161/19336918.2014.983778] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Cell migration is fundamental to a variety of physiological processes, including tissue development, homeostasis, and regeneration. Migration has been extensively studied with cells on 2-dimensional (2D) substrates, but much less is known about cell migration in 3D environments. Tissues and organs are 3D, which is the native environment of cells in vivo, pointing to a need to understand migration and the mechanisms that regulate it in 3D environments. To investigate cell migration in 3D environments, we developed microfluidic devices that afford a controlled, reproducible platform for generating 3D matrices. Using these devices, we show that the Rho family guanine nucleotide exchange factor (GEF) Asef2 inhibits cell migration in 3D type I collagen (collagen I) matrices. Treatment of cells with the myosin II (MyoII) inhibitor blebbistatin abolished the decrease in migration by Asef2. Moreover, Asef2 enhanced MyoII activity as shown by increased phosphorylation of serine 19 (S19). Furthermore, Asef2 increased activation of Rac, which is a Rho family small GTPase, in 3D collagen I matrices. Inhibition of Rac activity by treatment with the Rac-specific inhibitor NSC23766 abrogated the Asef2-promoted increase in S19 MyoII phosphorylation. Thus, our results indicate that Asef2 regulates cell migration in 3D collagen I matrices through a Rac-MyoII-dependent mechanism.
Collapse
Key Words
- 2D, 2-dimensional
- 3D, 3-dimensional
- Collagen I, type I collagen
- DMEM, Dulbecco's Modified Eagle Medium
- ECM, extracellular matrix
- GEF, guanine nucleotide exchange factor
- MyoII, non-muscle myosin II
- PAK, p21-activated kinase
- PBD, p21-binding domain
- PBS, phosphate buffer saline
- PDMS, polydimethylsiloxane
- Rac
- Rho family GTPases
- UV, ultra-violet
- guanine nucleotide exchange factor
- microfluidics
- myosin II
- type I collagen
Collapse
Affiliation(s)
- Léolène Jean
- a Department of Biological Sciences and Vanderbilt Kennedy Center for Research on Human Development ; Vanderbilt University ; Nashville , TN USA
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Barrows D, Schoenfeld SM, Hodakoski C, Silkov A, Honig B, Couvillon A, Shymanets A, Nürnberg B, Asara JM, Parsons R. p21-activated Kinases (PAKs) Mediate the Phosphorylation of PREX2 Protein to Initiate Feedback Inhibition of Rac1 GTPase. J Biol Chem 2015; 290:28915-31. [PMID: 26438819 DOI: 10.1074/jbc.m115.668244] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Indexed: 11/06/2022] Open
Abstract
Phosphatidylinositol 3,4,5-trisphosphate (PIP3)-dependent Rac exchanger 2 (PREX2) is a guanine nucleotide exchange factor (GEF) for the Ras-related C3 botulinum toxin substrate 1 (Rac1) GTPase, facilitating the exchange of GDP for GTP on Rac1. GTP-bound Rac1 then activates its downstream effectors, including p21-activated kinases (PAKs). PREX2 and Rac1 are frequently mutated in cancer and have key roles within the insulin-signaling pathway. Rac1 can be inactivated by multiple mechanisms; however, negative regulation by insulin is not well understood. Here, we show that in response to being activated after insulin stimulation, Rac1 initiates its own inactivation by decreasing PREX2 GEF activity. Following PREX2-mediated activation of Rac1 by the second messengers PIP3 or Gβγ, we found that PREX2 was phosphorylated through a PAK-dependent mechanism. PAK-mediated phosphorylation of PREX2 reduced GEF activity toward Rac1 by inhibiting PREX2 binding to PIP3 and Gβγ. Cell fractionation experiments also revealed that phosphorylation prevented PREX2 from localizing to the cellular membrane. Furthermore, the onset of insulin-induced phosphorylation of PREX2 was delayed compared with AKT. Altogether, we propose that second messengers activate the Rac1 signal, which sets in motion a cascade whereby PAKs phosphorylate and negatively regulate PREX2 to decrease Rac1 activation. This type of regulation would allow for transient activation of the PREX2-Rac1 signal and may be relevant in multiple physiological processes, including diseases such as diabetes and cancer when insulin signaling is chronically activated.
Collapse
Affiliation(s)
- Douglas Barrows
- From the Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, the Department of Pharmacology, Columbia University, New York, New York 10032
| | - Sarah M Schoenfeld
- From the Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Cindy Hodakoski
- From the Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Antonina Silkov
- the Department of Biochemistry and Molecular Biophysics, Howard Hughes Medical Institute, Columbia University, New York, New York 10032
| | - Barry Honig
- the Department of Biochemistry and Molecular Biophysics, Howard Hughes Medical Institute, Columbia University, New York, New York 10032
| | | | - Aliaksei Shymanets
- the Department of Pharmacology and Experimental Therapy, Institute of Experimental and Clinical Pharmacology and Toxicology, Eberhard Karls University Hospitals and Clinics, and Interfaculty Center of Pharmacogenomics and Pharmaceutical Research, University of Tübingen, 72074 Tübingen, Germany
| | - Bernd Nürnberg
- the Department of Pharmacology and Experimental Therapy, Institute of Experimental and Clinical Pharmacology and Toxicology, Eberhard Karls University Hospitals and Clinics, and Interfaculty Center of Pharmacogenomics and Pharmaceutical Research, University of Tübingen, 72074 Tübingen, Germany
| | - John M Asara
- the Division of Signal Transduction, Beth Israel Deaconess Medical Center, Boston, Massachusetts 02115, and the Department of Medicine, Harvard Medical School, Boston, Massachusetts 02115
| | - Ramon Parsons
- From the Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029,
| |
Collapse
|
22
|
Genome-wide association study of colorectal cancer identifies six new susceptibility loci. Nat Commun 2015; 6:7138. [PMID: 26151821 DOI: 10.1038/ncomms8138] [Citation(s) in RCA: 130] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 04/10/2015] [Indexed: 12/21/2022] Open
Abstract
Genetic susceptibility to colorectal cancer is caused by rare pathogenic mutations and common genetic variants that contribute to familial risk. Here we report the results of a two-stage association study with 18,299 cases of colorectal cancer and 19,656 controls, with follow-up of the most statistically significant genetic loci in 4,725 cases and 9,969 controls from two Asian consortia. We describe six new susceptibility loci reaching a genome-wide threshold of P<5.0E-08. These findings provide additional insight into the underlying biological mechanisms of colorectal cancer and demonstrate the scientific value of large consortia-based genetic epidemiology studies.
Collapse
|
23
|
Lucato CM, Halls ML, Ooms LM, Liu HJ, Mitchell CA, Whisstock JC, Ellisdon AM. The Phosphatidylinositol (3,4,5)-Trisphosphate-dependent Rac Exchanger 1·Ras-related C3 Botulinum Toxin Substrate 1 (P-Rex1·Rac1) Complex Reveals the Basis of Rac1 Activation in Breast Cancer Cells. J Biol Chem 2015; 290:20827-20840. [PMID: 26112412 DOI: 10.1074/jbc.m115.660456] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Indexed: 12/16/2022] Open
Abstract
The P-Rex (phosphatidylinositol (3,4,5)-trisphosphate (PIP3)-dependent Rac exchanger) family (P-Rex1 and P-Rex2) of the Rho guanine nucleotide exchange factors (Rho GEFs) activate Rac GTPases to regulate cell migration, invasion, and metastasis in several human cancers. The family is unique among Rho GEFs, as their activity is regulated by the synergistic binding of PIP3 and Gβγ at the plasma membrane. However, the molecular mechanism of this family of multi-domain proteins remains unclear. We report the 1.95 Å crystal structure of the catalytic P-Rex1 DH-PH tandem domain in complex with its cognate GTPase, Rac1 (Ras-related C3 botulinum toxin substrate-1). Mutations in the P-Rex1·Rac1 interface revealed a critical role for this complex in signaling downstream of receptor tyrosine kinases and G protein-coupled receptors. The structural data indicated that the PIP3/Gβγ binding sites are on the opposite surface and markedly removed from the Rac1 interface, supporting a model whereby P-Rex1 binding to PIP3 and/or Gβγ releases inhibitory C-terminal domains to expose the Rac1 binding site.
Collapse
Affiliation(s)
- Christina M Lucato
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Clayton, Victoria 3800, Australia; Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria 3800, Australia
| | - Michelle L Halls
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Lisa M Ooms
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Clayton, Victoria 3800, Australia
| | - Heng-Jia Liu
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Clayton, Victoria 3800, Australia
| | - Christina A Mitchell
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Clayton, Victoria 3800, Australia.
| | - James C Whisstock
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Clayton, Victoria 3800, Australia; Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria 3800, Australia.
| | - Andrew M Ellisdon
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Clayton, Victoria 3800, Australia; Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria 3800, Australia.
| |
Collapse
|
24
|
Abstract
The P-Rex family are Dbl-type guanine-nucleotide exchange factors for Rac family small G proteins. They are distinguished from other Rac-GEFs through their synergistic mode of activation by the lipid second messenger phosphatidyl inositol (3,4,5) trisphosphate and the Gβγ subunits of heterotrimeric G proteins, thus acting as coincidence detectors for phosphoinositide 3-kinase and G protein coupled receptor signaling. Work in genetically-modified mice has shown that P-Rex1 has physiological importance in the inflammatory response and the migration of melanoblasts during development, whereas P-Rex2 controls the dendrite morphology of cerebellar Purkinje neurons as well as glucose homeostasis in liver and adipose tissue. Deregulation of P-Rex1 and P-Rex2 expression occurs in many types of cancer, and P-Rex2 is frequently mutated in melanoma. Both GEFs promote tumor growth or metastasis. This review critically evaluates the P-Rex literature and tools available and highlights exciting recent developments and open questions.
Collapse
|
25
|
Barrio-Real L, Benedetti LG, Engel N, Tu Y, Cho S, Sukumar S, Kazanietz MG. Subtype-specific overexpression of the Rac-GEF P-REX1 in breast cancer is associated with promoter hypomethylation. Breast Cancer Res 2014; 16:441. [PMID: 25248717 PMCID: PMC4303123 DOI: 10.1186/s13058-014-0441-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Accepted: 09/01/2014] [Indexed: 01/30/2023] Open
Abstract
Introduction The Rac-GEF P-REX1 is a key mediator of ErbB signaling in breast cancer recently implicated in mammary tumorigenesis and metastatic dissemination. Although P-REX1 is essentially undetectable in normal human mammary epithelial tissue, this Rac-GEF is markedly upregulated in human breast carcinomas, particularly of the luminal subtype. The mechanisms underlying P-REX1 upregulation in breast cancer are unknown. Toward the goal of dissecting the mechanistic basis of P-REX1 overexpression in breast cancer, in this study we focused on the analysis of methylation of the PREX1 gene promoter. Methods To determine the methylation status of the PREX1 promoter region, we used bisulfite genomic sequencing and pyrosequencing approaches. Re-expression studies in cell lines were carried out by treatment of breast cancer cells with the demethylating agent 5-aza-2′-deoxycitidine. PREX1 gene methylation in different human breast cancer subtypes was analyzed from the TCGA database. Results We found that the human PREX1 gene promoter has a CpG island located between -1.2 kb and +1.4 kb, and that DNA methylation in this region inversely correlates with P-REX1 expression in human breast cancer cell lines. A comprehensive analysis of human breast cancer cell lines and tumors revealed significant hypomethylation of the PREX1 promoter in ER-positive, luminal subtype, whereas hypermethylation occurs in basal-like breast cancer. Treatment of normal MCF-10A or basal-like cancer cells, MDA-MB-231 with the demethylating agent 5-aza-2′-deoxycitidine in combination with the histone deacetylase inhibitor trichostatin A restores P-REX1 levels to those observed in luminal breast cancer cell lines, suggesting that aberrant expression of P-REX1 in luminal breast cancer is a consequence of PREX1 promoter demethylation. Unlike PREX1, the pro-metastatic Rho/Rac-GEF, VAV3, is not regulated by methylation. Notably, PREX1 gene promoter hypomethylation is a prognostic marker of poor patient survival. Conclusions Our study identified for the first time gene promoter hypomethylation as a distinctive subtype-specific mechanism for controlling the expression of a key regulator of Rac-mediated motility and metastasis in breast cancer. Electronic supplementary material The online version of this article (doi:10.1186/s13058-014-0441-7) contains supplementary material, which is available to authorized users.
Collapse
|
26
|
Mar VJ, Wong SQ, Logan A, Nguyen T, Cebon J, Kelly JW, Wolfe R, Dobrovic A, McLean C, McArthur GA. Clinical and pathological associations of the activating RAC1 P29S mutation in primary cutaneous melanoma. Pigment Cell Melanoma Res 2014; 27:1117-25. [PMID: 25043693 DOI: 10.1111/pcmr.12295] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Accepted: 07/16/2014] [Indexed: 01/12/2023]
Abstract
Activating mutations in the GTPase RAC1 are a recurrent event in cutaneous melanoma. We investigated the clinical and pathological associations of RAC1(P29S) in a cohort of 814 primary cutaneous melanomas with known BRAF and NRAS mutation status. The RAC1(P29S) mutation had a prevalence of 3.3% and was associated with increased thickness (OR=1.6 P = 0.001), increased mitotic rate (OR=1.3 P = 0.03), ulceration (OR=2.4 P = 0.04), nodular subtype (OR=3.4 P = 0.004), and nodal disease at diagnosis (OR=3.3 P = 0.006). BRAF mutant tumors were also associated with nodal metastases (OR=1.9 P = 0.004), despite being thinner at diagnosis than BRAF WT (median 1.2 mm versus 1.6 mm, P < 0.001). Immunohistochemical analysis of 51 melanomas revealed that 47% were immunoreactive for RAC1. Melanomas were more likely to show RAC1 immunoreactivity if they were BRAF mutant (OR=5.2 P = 0.01). RAC1 may therefore be important in regulating the early migration of BRAF mutant tumors. RAC1 mutations are infrequent in primary melanomas but may accelerate disease progression.
Collapse
Affiliation(s)
- Victoria J Mar
- Victorian Melanoma Service, Alfred Hospital, Melbourne, Vic., Australia; Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, Vic., Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Vic., Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Exploring the miRNA-mRNA regulatory network in clear cell renal cell carcinomas by next-generation sequencing expression profiles. BIOMED RESEARCH INTERNATIONAL 2014; 2014:948408. [PMID: 24977165 PMCID: PMC4054612 DOI: 10.1155/2014/948408] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2014] [Accepted: 04/22/2014] [Indexed: 12/15/2022]
Abstract
Altered microRNA (miRNA) expression is a hallmark of many cancer types. The combined analysis of miRNA and messenger RNA (mRNA) expression profiles is crucial to identifying links between deregulated miRNAs and oncogenic pathways. Therefore, we investigated the small non-coding (snc) transcriptomes of nine clear cell renal cell carcinomas (ccRCCs) and adjacent normal tissues for alterations in miRNA expression using a publicly available small RNA-Sequencing (sRNA-Seq) raw-dataset. We constructed a network of deregulated miRNAs and a set of differentially expressed genes publicly available from an independent study to in silico determine miRNAs that contribute to clear cell renal cell carcinogenesis. From a total of 1,672 sncRNAs, 61 were differentially expressed across all ccRCC tissue samples. Several with known implications in ccRCC development, like the upregulated miR-21-5p, miR-142-5p, as well as the downregulated miR-106a-5p, miR-135a-5p, or miR-206. Additionally, novel promising candidates like miR-3065, which i.a. targets NRP2 and FLT1, were detected in this study. Interaction network analysis revealed pivotal roles for miR-106a-5p, whose loss might contribute to the upregulation of 49 target mRNAs, miR-135a-5p (32 targets), miR-206 (28 targets), miR-363-3p (22 targets), and miR-216b (13 targets). Among these targets are the angiogenesis, metastasis, and motility promoting oncogenes c-MET, VEGFA, NRP2, and FLT1, the latter two coding for VEGFA receptors.
Collapse
|
28
|
Insall R. The interaction between pseudopods and extracellular signalling during chemotaxis and directed migration. Curr Opin Cell Biol 2013; 25:526-31. [PMID: 23747069 DOI: 10.1016/j.ceb.2013.04.009] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Accepted: 04/30/2013] [Indexed: 12/22/2022]
Abstract
Eukaryotic chemotaxis is extremely complex. Cells can sense a wide range of stimuli, and many intracellular pathways are simultaneously involved. Recent genetic analyses of the steps between receptors and cytoskeleton, and how the cell controls actin and pseudopod behaviour, have yielded exciting new data but still no coherent understanding of chemotaxis. However, concentrating on pseudopods themselves and the physical processes that regulate them, rather than the internal signalling pathways, can simplify the data and help resolve the underlying mechanism. Direct action of electric fields and physical forces on cell migration suggest that mechanical forces and force-generating proteins like actin and myosin are centrally important in steering cells during chemotaxis.
Collapse
Affiliation(s)
- Robert Insall
- CRUK Beatson Institute for Cancer Research, Switchback Road, Bearsden, Glasgow G61 1BD, UK.
| |
Collapse
|
29
|
Abstract
P-Rex proteins are Rho/Rac guanine nucleotide exchange factors that participate in the regulation of several cancer-related cellular functions such as proliferation, motility, and invasion. Expectedly, a significant portion of these actions of P-Rex proteins must be related to their Rac regulatory properties. In addition, P-Rex proteins control signaling by the phosphoinositide 3-kinase (PI3K) route by interacting with PTEN and mTOR. The interaction with PTEN inhibits its phosphatase activity, leading to AKT activation. The interaction with mTOR may be important in nutrient-stimulated Rac activation and migration. In humans, several studies have implicated P-Rex proteins in the pathophysiology of various neoplasias. Thus, overexpression of P-Rex proteins has been linked to poor patient outcome in breast cancer and may facilitate metastatic dissemination of prostate cancer cells. In addition, whole-genome sequencing described P-Rex2 as a significantly mutated gene in melanoma. Furthermore, expression in melanocytes of mutated forms of P-Rex2 found in patients with melanoma showed the protumorigenic role of these P-Rex mutations in melanoma genesis. These findings open interesting opportunities for P-Rex targeting in cancer. Moreover, the implication of P-Rex partner proteins such as Rac, mTOR, or PTEN in cancer has opened the possibility of acting on P-Rex to restrict protumorigenic signaling through these pathways.
Collapse
Affiliation(s)
- Atanasio Pandiella
- Instituto de Biología Molecular y Celular del Cáncer, Centro de Investigación del Cáncer, CSIC-Universidad de Salamanca, Spain.
| | | |
Collapse
|