1
|
O'Donoghue L, Smolenski A. Roles of G proteins and their GTPase-activating proteins in platelets. Biosci Rep 2024; 44:BSR20231420. [PMID: 38808367 PMCID: PMC11139668 DOI: 10.1042/bsr20231420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 04/30/2024] [Accepted: 05/02/2024] [Indexed: 05/30/2024] Open
Abstract
Platelets are small anucleate blood cells supporting vascular function. They circulate in a quiescent state monitoring the vasculature for injuries. Platelets adhere to injury sites and can be rapidly activated to secrete granules and to form platelet/platelet aggregates. These responses are controlled by signalling networks that include G proteins and their regulatory guanine nucleotide exchange factors (GEFs) and GTPase-activating proteins (GAPs). Recent proteomics studies have revealed the complete spectrum of G proteins, GEFs, and GAPs present in platelets. Some of these proteins are specific for platelets and very few have been characterised in detail. GEFs and GAPs play a major role in setting local levels of active GTP-bound G proteins in response to activating and inhibitory signals encountered by platelets. Thus, GEFs and GAPs are highly regulated themselves and appear to integrate G protein regulation with other cellular processes. This review focuses on GAPs of small G proteins of the Arf, Rab, Ras, and Rho families, as well as of heterotrimeric G proteins found in platelets.
Collapse
Affiliation(s)
- Lorna O'Donoghue
- UCD School of Medicine, University College Dublin, UCD Conway Institute, Belfield, Dublin 4, Ireland
- Irish Centre for Vascular Biology, Royal College of Surgeons in Ireland, 123 St. Stephen’s Green 123, Dublin 2, Ireland
| | - Albert Smolenski
- UCD School of Medicine, University College Dublin, UCD Conway Institute, Belfield, Dublin 4, Ireland
- Irish Centre for Vascular Biology, Royal College of Surgeons in Ireland, 123 St. Stephen’s Green 123, Dublin 2, Ireland
| |
Collapse
|
2
|
Hou Y, Zi J, Ge Z. High Expression of RhoF Predicts Worse Overall Survival: A Potential Therapeutic Target for non-M3 Acute Myeloid Leukemia. J Cancer 2021; 12:5530-5542. [PMID: 34405015 PMCID: PMC8364661 DOI: 10.7150/jca.52648] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 07/15/2021] [Indexed: 01/11/2023] Open
Abstract
Rho GTPases are involved in multiple human malignancies and diverse biological functions. However, the patterns and prognostic significance of the expression of RhoD subfamily in acute myeloid leukemia (AML) remain unknown. Here, we detected the expressions of RhoD subfamily genes in AML on the basis of several published datasets and analyzed the survival of RhoD subfamily across the TCGA profiles and in a GEO series. We found that the expression of RhoF, but not RhoD, increased in AML patients in TCGA and GEO (all P<0.001); the survival analysis of two independent cohorts demonstrated that higher RhoF expression was significantly associated with poorer overall survival (OS) (P<0.001), whereas RhoD expression had no significant effect on OS in patients with AML (P>0.05); the subgroup analysis showed that high RhoF expression was correlated with poor 1-, 3-, and 5-year OS (P<0.05 for all); upregulated RhoF expression had a more significant prognostic value for OS in the younger patients (age<60), the intensive chemotherapy group, and wild-type groups (IDH1, NRAS, and TP53) (P<0.05 for all). Multivariate analysis indicated high RhoF expression as a strongly independent unfavorable prognostic factor for OS in patients without transplantation (P<0.05). Furthermore, a higher RhoF expression was closely associated with an older age, intermediate-/poor-risk cytogenetics and mutations in IDH1, NRAS, and TP53. RhoF expression was negatively correlated with BM blasts (P=0.020) and WBC (P=0.003). These findings suggest that high RhoF expression is associated with worsening OS in AML patients and is a potential therapeutic target for the treatment of AML.
Collapse
Affiliation(s)
- Yue Hou
- Department of Hematology, Zhongda Hospital, Medical School of Southeast University, Institute of Hematology Southeast University, Nanjing 210009, China
| | - Jie Zi
- Department of Hematology, Zhongda Hospital, Medical School of Southeast University, Institute of Hematology Southeast University, Nanjing 210009, China
| | - Zheng Ge
- Department of Hematology, Zhongda Hospital, Medical School of Southeast University, Institute of Hematology Southeast University, Nanjing 210009, China
| |
Collapse
|
3
|
Heib T, Hermanns HM, Manukjan G, Englert M, Kusch C, Becker IC, Gerber A, Wackerbarth LM, Burkard P, Dandekar T, Balkenhol J, Jahn D, Beck S, Meub M, Dütting S, Stigloher C, Sauer M, Cherpokova D, Schulze H, Brakebusch C, Nieswandt B, Nagy Z, Pleines I. RhoA/Cdc42 signaling drives cytoplasmic maturation but not endomitosis in megakaryocytes. Cell Rep 2021; 35:109102. [PMID: 33979620 DOI: 10.1016/j.celrep.2021.109102] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 02/20/2021] [Accepted: 04/18/2021] [Indexed: 12/15/2022] Open
Abstract
Megakaryocytes (MKs), the precursors of blood platelets, are large, polyploid cells residing mainly in the bone marrow. We have previously shown that balanced signaling of the Rho GTPases RhoA and Cdc42 is critical for correct MK localization at bone marrow sinusoids in vivo. Using conditional RhoA/Cdc42 double-knockout (DKO) mice, we reveal here that RhoA/Cdc42 signaling is dispensable for the process of polyploidization in MKs but essential for cytoplasmic MK maturation. Proplatelet formation is virtually abrogated in the absence of RhoA/Cdc42 and leads to severe macrothrombocytopenia in DKO animals. The MK maturation defect is associated with downregulation of myosin light chain 2 (MLC2) and β1-tubulin, as well as an upregulation of LIM kinase 1 and cofilin-1 at both the mRNA and protein level and can be linked to impaired MKL1/SRF signaling. Our findings demonstrate that MK endomitosis and cytoplasmic maturation are separately regulated processes, and the latter is critically controlled by RhoA/Cdc42.
Collapse
Affiliation(s)
- Tobias Heib
- Institute of Experimental Biomedicine, University Hospital, University of Würzburg, 97080 Würzburg, Germany; Rudolf Virchow Center, University of Würzburg, 97080 Würzburg, Germany
| | - Heike M Hermanns
- Department of Internal Medicine II, Hepatology Research Laboratory, University Hospital Würzburg, 97080 Würzburg, Germany
| | - Georgi Manukjan
- Institute of Experimental Biomedicine, University Hospital, University of Würzburg, 97080 Würzburg, Germany; Rudolf Virchow Center, University of Würzburg, 97080 Würzburg, Germany
| | - Maximilian Englert
- Institute of Experimental Biomedicine, University Hospital, University of Würzburg, 97080 Würzburg, Germany; Rudolf Virchow Center, University of Würzburg, 97080 Würzburg, Germany
| | - Charly Kusch
- Institute of Experimental Biomedicine, University Hospital, University of Würzburg, 97080 Würzburg, Germany; Rudolf Virchow Center, University of Würzburg, 97080 Würzburg, Germany
| | - Isabelle Carlotta Becker
- Institute of Experimental Biomedicine, University Hospital, University of Würzburg, 97080 Würzburg, Germany; Rudolf Virchow Center, University of Würzburg, 97080 Würzburg, Germany
| | - Annika Gerber
- Institute of Experimental Biomedicine, University Hospital, University of Würzburg, 97080 Würzburg, Germany; Rudolf Virchow Center, University of Würzburg, 97080 Würzburg, Germany
| | - Lou Martha Wackerbarth
- Institute of Experimental Biomedicine, University Hospital, University of Würzburg, 97080 Würzburg, Germany; Rudolf Virchow Center, University of Würzburg, 97080 Würzburg, Germany
| | - Philipp Burkard
- Institute of Experimental Biomedicine, University Hospital, University of Würzburg, 97080 Würzburg, Germany; Rudolf Virchow Center, University of Würzburg, 97080 Würzburg, Germany
| | - Thomas Dandekar
- Department of Bioinformatics, Biocenter, University of Würzburg, 97074 Würzburg, Germany
| | - Johannes Balkenhol
- Department of Internal Medicine II, Hepatology Research Laboratory, University Hospital Würzburg, 97080 Würzburg, Germany; Department of Bioinformatics, Biocenter, University of Würzburg, 97074 Würzburg, Germany
| | - Daniel Jahn
- Department of Internal Medicine II, Hepatology Research Laboratory, University Hospital Würzburg, 97080 Würzburg, Germany
| | - Sarah Beck
- Institute of Experimental Biomedicine, University Hospital, University of Würzburg, 97080 Würzburg, Germany; Rudolf Virchow Center, University of Würzburg, 97080 Würzburg, Germany
| | - Mara Meub
- Department of Biotechnology and Biophysics, Biocenter, University of Würzburg, 97074 Würzburg, Germany
| | - Sebastian Dütting
- Institute of Experimental Biomedicine, University Hospital, University of Würzburg, 97080 Würzburg, Germany; Rudolf Virchow Center, University of Würzburg, 97080 Würzburg, Germany
| | - Christian Stigloher
- Imaging Core Facility, Biocenter, University of Würzburg, 97074 Würzburg, Germany
| | - Markus Sauer
- Department of Biotechnology and Biophysics, Biocenter, University of Würzburg, 97074 Würzburg, Germany
| | - Deya Cherpokova
- Institute of Experimental Biomedicine, University Hospital, University of Würzburg, 97080 Würzburg, Germany; Rudolf Virchow Center, University of Würzburg, 97080 Würzburg, Germany
| | - Harald Schulze
- Institute of Experimental Biomedicine, University Hospital, University of Würzburg, 97080 Würzburg, Germany; Rudolf Virchow Center, University of Würzburg, 97080 Würzburg, Germany
| | - Cord Brakebusch
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, 2200 Copenhagen, Denmark
| | - Bernhard Nieswandt
- Institute of Experimental Biomedicine, University Hospital, University of Würzburg, 97080 Würzburg, Germany; Rudolf Virchow Center, University of Würzburg, 97080 Würzburg, Germany.
| | - Zoltan Nagy
- Institute of Experimental Biomedicine, University Hospital, University of Würzburg, 97080 Würzburg, Germany; Rudolf Virchow Center, University of Würzburg, 97080 Würzburg, Germany
| | - Irina Pleines
- Institute of Experimental Biomedicine, University Hospital, University of Würzburg, 97080 Würzburg, Germany; Rudolf Virchow Center, University of Würzburg, 97080 Würzburg, Germany.
| |
Collapse
|
4
|
Kammers K, Taub MA, Rodriguez B, Yanek LR, Ruczinski I, Martin J, Kanchan K, Battle A, Cheng L, Wang ZZ, Johnson AD, Leek JT, Faraday N, Becker LC, Mathias RA. Transcriptional profile of platelets and iPSC-derived megakaryocytes from whole-genome and RNA sequencing. Blood 2021; 137:959-968. [PMID: 33094331 PMCID: PMC7918180 DOI: 10.1182/blood.2020006115] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 09/29/2020] [Indexed: 01/04/2023] Open
Abstract
Genome-wide association studies have identified common variants associated with platelet-related phenotypes, but because these variants are largely intronic or intergenic, their link to platelet biology is unclear. In 290 normal subjects from the GeneSTAR Research Study (110 African Americans [AAs] and 180 European Americans [EAs]), we generated whole-genome sequence data from whole blood and RNA sequence data from extracted nonribosomal RNA from 185 induced pluripotent stem cell-derived megakaryocyte (MK) cell lines (platelet precursor cells) and 290 blood platelet samples from these subjects. Using eigenMT software to select the peak single-nucleotide polymorphism (SNP) for each expressed gene, and meta-analyzing the results of AAs and EAs, we identify (q-value < 0.05) 946 cis-expression quantitative trait loci (eQTLs) in derived MKs and 1830 cis-eQTLs in blood platelets. Among the 57 eQTLs shared between the 2 tissues, the estimated directions of effect are very consistent (98.2% concordance). A high proportion of detected cis-eQTLs (74.9% in MKs and 84.3% in platelets) are unique to MKs and platelets compared with peak-associated SNP-expressed gene pairs of 48 other tissue types that are reported in version V7 of the Genotype-Tissue Expression Project. The locations of our identified eQTLs are significantly enriched for overlap with several annotation tracks highlighting genomic regions with specific functionality in MKs, including MK-specific DNAse hotspots, H3K27-acetylation marks, H3K4-methylation marks, enhancers, and superenhancers. These results offer insights into the regulatory signature of MKs and platelets, with significant overlap in genes expressed, eQTLs detected, and enrichment within known superenhancers relevant to platelet biology.
Collapse
Affiliation(s)
- Kai Kammers
- Division of Biostatistics and Bioinformatics, Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Margaret A Taub
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD
| | - Benjamin Rodriguez
- National Heart, Lung, and Blood Institute, Population Sciences Branch, The Framingham Heart Study, Framingham, MA; and
| | | | - Ingo Ruczinski
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD
| | | | | | | | - Linzhao Cheng
- Division of Hematology and Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Zack Z Wang
- Division of Hematology and Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Andrew D Johnson
- National Heart, Lung, and Blood Institute, Population Sciences Branch, The Framingham Heart Study, Framingham, MA; and
| | - Jeffrey T Leek
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD
| | | | | | - Rasika A Mathias
- The GeneSTAR Research Program
- Division of Allergy and Clinical Immunology
| |
Collapse
|
5
|
Walsh TG, Wersäll A, Poole AW. Characterisation of the Ral GTPase inhibitor RBC8 in human and mouse platelets. Cell Signal 2019; 59:34-40. [PMID: 30880223 PMCID: PMC6510928 DOI: 10.1016/j.cellsig.2019.03.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 03/13/2019] [Accepted: 03/13/2019] [Indexed: 01/28/2023]
Abstract
The Ral GTPases, RalA and RalB, have been implicated in numerous cellular processes, but are most widely known for having regulatory roles in exocytosis. Recently, we demonstrated that deletion of both Ral genes in a platelet-specific mouse gene knockout caused a substantial defect in surface exposure of P-selectin, with only a relatively weak defect in platelet dense granule secretion that did not alter platelet functional responses such as aggregation or thrombus formation. We sought to investigate the function of Rals in human platelets using the recently described Ral inhibitor, RBC8. Initial studies in human platelets confirmed that RBC8 could effectively inhibit Ral GTPase activation, with an IC50 of 2.2 μM and 2.3 μM for RalA and RalB, respectively. Functional studies using RBC8 revealed significant, dose-dependent inhibition of platelet aggregation, secretion (α- and dense granule), integrin activation and thrombus formation, while α-granule release of platelet factor 4, Ca2+ signalling or phosphatidylserine exposure were unaltered. Subsequent studies in RalAB-null mouse platelets pretreated with RBC8 showed dose-dependent decreases in integrin activation and dense granule secretion, with significant inhibition of platelet aggregation and P-selectin exposure at 10 μM RBC8. This study strongly suggests therefore that although RBC8 is useful as a Ral inhibitor in platelets, it is likely also to have off-target effects in the same concentration range as for Ral inhibition. So, whilst clearly useful as a Ral inhibitor, interpretation of data needs to take this into account when assessing roles for Rals using RBC8.
Collapse
Affiliation(s)
- Tony G Walsh
- From the School of Physiology, Pharmacology & Neuroscience, University of Bristol, Bristol BS8 1TD, United Kingdom.
| | - Andreas Wersäll
- From the School of Physiology, Pharmacology & Neuroscience, University of Bristol, Bristol BS8 1TD, United Kingdom
| | - Alastair W Poole
- From the School of Physiology, Pharmacology & Neuroscience, University of Bristol, Bristol BS8 1TD, United Kingdom
| |
Collapse
|
6
|
Barlow HR, Cleaver O. Building Blood Vessels-One Rho GTPase at a Time. Cells 2019; 8:cells8060545. [PMID: 31174284 PMCID: PMC6627795 DOI: 10.3390/cells8060545] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 06/01/2019] [Accepted: 06/03/2019] [Indexed: 01/09/2023] Open
Abstract
Blood vessels are required for the survival of any organism larger than the oxygen diffusion limit. Blood vessel formation is a tightly regulated event and vessel growth or changes in permeability are linked to a number of diseases. Elucidating the cell biology of endothelial cells (ECs), which are the building blocks of blood vessels, is thus critical to our understanding of vascular biology and to the development of vascular-targeted disease treatments. Small GTPases of the Rho GTPase family are known to regulate several processes critical for EC growth and maintenance. In fact, many of the 21 Rho GTPases in mammals are known to regulate EC junctional remodeling, cell shape changes, and other processes. Rho GTPases are thus an attractive target for disease treatments, as they often have unique functions in specific vascular cell types. In fact, some Rho GTPases are even expressed with relative specificity in diseased vessels. Interestingly, many Rho GTPases are understudied in ECs, despite their known expression in either developing or mature vessels, suggesting an even greater wealth of knowledge yet to be gleaned from these complex signaling pathways. This review aims to provide an overview of Rho GTPase signaling contributions to EC vasculogenesis, angiogenesis, and mature vessel barrier function. A particular emphasis is placed on so-called "alternative" Rho GTPases, as they are largely understudied despite their likely important contributions to EC biology.
Collapse
Affiliation(s)
- Haley Rose Barlow
- Department of Molecular Biology and Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| | - Ondine Cleaver
- Department of Molecular Biology and Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
7
|
Shaverdashvili K, Padlo J, Weinblatt D, Jia Y, Jiang W, Rao D, Laczkó D, Whelan KA, Lynch JP, Muir AB, Katz JP. KLF4 activates NFκB signaling and esophageal epithelial inflammation via the Rho-related GTP-binding protein RHOF. PLoS One 2019; 14:e0215746. [PMID: 30998758 PMCID: PMC6472825 DOI: 10.1371/journal.pone.0215746] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 04/08/2019] [Indexed: 12/12/2022] Open
Abstract
Understanding the regulatory mechanisms within esophageal epithelia is essential to gain insight into the pathogenesis of esophageal diseases, which are among the leading causes of morbidity and mortality throughout the world. The zinc-finger transcription factor Krüppel-like factor (KLF4) is implicated in a large number of cellular processes, such as proliferation, differentiation, and inflammation in esophageal epithelia. In murine esophageal epithelia, Klf4 overexpression causes chronic inflammation which is mediated by activation of NFκB signaling downstream of KLF4, and this esophageal inflammation produces epithelial hyperplasia and subsequent esophageal squamous cell cancer. Yet, while NFκB activation clearly promotes esophageal inflammation, the mechanisms by which NFκB signaling is activated in esophageal diseases are not well understood. Here, we demonstrate that the Rho-related GTP-binding protein RHOF is activated by KLF4 in esophageal keratinocytes, leading to the induction of NFκB signaling. Moreover, RHOF is required for NFκB activation by KLF4 in esophageal keratinocytes and is also important for esophageal keratinocyte proliferation and migration. Finally, we find that RHOF is upregulated in eosinophilic esophagitis, an important esophageal inflammatory disease in humans. Thus, RHOF activation of NFκB in esophageal keratinocytes provides a potentially important and clinically-relevant mechanism for esophageal inflammation and inflammation-mediated esophageal squamous cell cancer.
Collapse
Affiliation(s)
- Khvaramze Shaverdashvili
- Division of Gastroenterology, University of Pennsylvania Perelman School of Medicine, Philadelphia, United States of America
| | - Jennie Padlo
- Division of Gastroenterology, University of Pennsylvania Perelman School of Medicine, Philadelphia, United States of America
| | - Daniel Weinblatt
- Division of Gastroenterology, University of Pennsylvania Perelman School of Medicine, Philadelphia, United States of America
| | - Yang Jia
- Division of Gastroenterology, University of Pennsylvania Perelman School of Medicine, Philadelphia, United States of America
| | - Wenpeng Jiang
- Division of Gastroenterology, University of Pennsylvania Perelman School of Medicine, Philadelphia, United States of America
| | - Divya Rao
- Division of Gastroenterology, University of Pennsylvania Perelman School of Medicine, Philadelphia, United States of America
| | - Dorottya Laczkó
- Division of Gastroenterology, University of Pennsylvania Perelman School of Medicine, Philadelphia, United States of America
| | - Kelly A. Whelan
- Division of Gastroenterology, University of Pennsylvania Perelman School of Medicine, Philadelphia, United States of America
| | - John P. Lynch
- Division of Gastroenterology, University of Pennsylvania Perelman School of Medicine, Philadelphia, United States of America
| | - Amanda B. Muir
- Division of Gastroenterology, Hepatology and Nutrition, The Children’s Hospital of Philadelphia, Philadelphia, United States of America
| | - Jonathan P. Katz
- Division of Gastroenterology, University of Pennsylvania Perelman School of Medicine, Philadelphia, United States of America
- * E-mail:
| |
Collapse
|
8
|
Sugawara R, Ueda H, Honda R. Structural and functional characterization of fast-cycling RhoF GTPase. Biochem Biophys Res Commun 2019; 513:522-527. [PMID: 30981505 DOI: 10.1016/j.bbrc.2019.04.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 04/03/2019] [Indexed: 11/18/2022]
Abstract
Ras superfamily GTPases are molecular switches that cycle between GDP-bound inactive state and GTP-bound active state to control many signaling pathways. Emerging evidence suggests that several Ras superfamily GTPases, including RhoF, do not follow the classical GDP/GTP exchange cycle; they act as constitutively active GTP-bound proteins due to their fast activities of GDP/GTP exchange (termed as 'fast-cycling' GTPases). To understand the molecular basis of the fast-cycling GTPases, we generated a GTPase active recombinant RhoF and examined its function and structure. Two point mutations in the switch I/II regions (Q77L and P45S, corresponding to Q61L and P29S of Rac1) significantly reduced the GTPase activity of RhoF, suggesting a conserved mechanism of GTP hydrolysis between RhoF and other RAS superfamily GTPases. However, in contrary to the previous evidence, RhoF represented a slow GDP/GTP exchange activity that dissociates GDP very slowly on a day-to-week time scale, in our experiment using fluorescently labeled GDP. The slow GDP dissociation was accelerated by Mg2+ chelation and canonical fast-cycling mutations, F44L (corresponding to F28L of Rac1) and P45S. NMR and dynamic light scattering data revealed a multimeric structure of RhoF that can switch between different conformations depending on the GTP/GDP-bound state. Overall, our study suggests that (1) RhoF shares a conserved mechanism of GTP hydrolysis with other RAS superfamily GTPases, but (2) RhoF adopts a unique multimeric structure. Our study also argues that (3) the emerging concept of the fast-cycling GTPases for RhoF should be validated using an alternative assay that does not rely on fluorescently labeled GDP (251 words).
Collapse
Affiliation(s)
- Ryota Sugawara
- Department of Life Science and Chemistry, Graduate School of Natural Science and Technology, Gifu University, Gifu 501-1193, Japan
| | - Hiroshi Ueda
- Department of Life Science and Chemistry, Graduate School of Natural Science and Technology, Gifu University, Gifu 501-1193, Japan; United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Gifu 501-1193, Japan.
| | - Ryo Honda
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Gifu 501-1193, Japan.
| |
Collapse
|
9
|
Alterations in Platelet Alpha-Granule Secretion and Adhesion on Collagen under Flow in Mice Lacking the Atypical Rho GTPase RhoBTB3. Cells 2019; 8:cells8020149. [PMID: 30754723 PMCID: PMC6406922 DOI: 10.3390/cells8020149] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 01/31/2019] [Accepted: 02/07/2019] [Indexed: 12/23/2022] Open
Abstract
Typical Rho GTPases, such as Rac1, Cdc42, and RhoA, act as molecular switches regulating various aspects of platelet cytoskeleton reorganization. The loss of these enzymes results in reduced platelet functionality. Atypical Rho GTPases of the RhoBTB subfamily are characterized by divergent domain architecture. One family member, RhoBTB3, is expressed in platelets, but its function is unclear. In the present study we examined the role of RhoBTB3 in platelet function using a knockout mouse model. We found the platelet count, size, numbers of both alpha and dense granules, and surface receptor profile in these mice were comparable to wild-type mice. Deletion of Rhobtb3 had no effect on aggregation and dense granule secretion in response to a range of agonists including thrombin, collagen, and adenosine diphosphate (ADP). By contrast, alpha-granule secretion increased in mice lacking RhoBTB3 in response to thrombin, collagen related peptide (CRP) and U46619/ADP. Integrin activation and spreading on fibrinogen and collagen under static conditions were also unimpaired; however, we observed reduced platelet accrual on collagen under flow conditions. These defects did not translate into alterations in tail bleeding time. We conclude that genetic deletion of Rhobtb3 leads to subtle alterations in alpha-granule secretion and adhesion to collagen without significant effects on hemostasis in vivo.
Collapse
|
10
|
Ueyama T. Rho-Family Small GTPases: From Highly Polarized Sensory Neurons to Cancer Cells. Cells 2019; 8:cells8020092. [PMID: 30696065 PMCID: PMC6406560 DOI: 10.3390/cells8020092] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 01/19/2019] [Accepted: 01/23/2019] [Indexed: 12/22/2022] Open
Abstract
The small GTPases of the Rho-family (Rho-family GTPases) have various physiological functions, including cytoskeletal regulation, cell polarity establishment, cell proliferation and motility, transcription, reactive oxygen species (ROS) production, and tumorigenesis. A relatively large number of downstream targets of Rho-family GTPases have been reported for in vitro studies. However, only a small number of signal pathways have been established at the in vivo level. Cumulative evidence for the functions of Rho-family GTPases has been reported for in vivo studies using genetically engineered mouse models. It was based on different cell- and tissue-specific conditional genes targeting mice. In this review, we introduce recent advances in in vivo studies, including human patient trials on Rho-family GTPases, focusing on highly polarized sensory organs, such as the cochlea, which is the primary hearing organ, host defenses involving reactive oxygen species (ROS) production, and tumorigenesis (especially associated with RAC, novel RAC1-GSPT1 signaling, RHOA, and RHOBTB2).
Collapse
Affiliation(s)
- Takehiko Ueyama
- Laboratory of Molecular Pharmacology, Biosignal Research Center, Kobe University, Kobe 657-8501, Japan.
| |
Collapse
|
11
|
Pleines I, Cherpokova D, Bender M. Rho GTPases and their downstream effectors in megakaryocyte biology. Platelets 2018; 30:9-16. [DOI: 10.1080/09537104.2018.1478071] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Irina Pleines
- Institute of Experimental Biomedicine I, University Hospital and Rudolf Virchow Center, University of Würzburg, Würzburg, Germany
| | - Deya Cherpokova
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, and Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Markus Bender
- Institute of Experimental Biomedicine I, University Hospital and Rudolf Virchow Center, University of Würzburg, Würzburg, Germany
| |
Collapse
|
12
|
Affiliation(s)
- Joseph E. Aslan
- Knight Cardiovascular Institute, School of Medicine, Oregon Health & Science University, Portland, Oregon, USA
- Department of Biochemistry and Molecular Biology, School of Medicine, Oregon Health & Science University, Portland, Oregon, USA
- Department of Biomedical Engineering, School of Medicine, Oregon Health & Science University, Portland, Oregon, USA
| |
Collapse
|
13
|
Wersäll A, Williams CM, Brown E, Iannitti T, Williams N, Poole AW. Mouse Platelet Ral GTPases Control P-Selectin Surface Expression, Regulating Platelet-Leukocyte Interaction. Arterioscler Thromb Vasc Biol 2018; 38:787-800. [PMID: 29437579 DOI: 10.1161/atvbaha.117.310294] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 01/25/2018] [Indexed: 01/28/2023]
Abstract
OBJECTIVE RalA and RalB GTPases are important regulators of cell growth, cancer metastasis, and granule secretion. The purpose of this study was to determine the role of Ral GTPases in platelets with the use of platelet-specific gene-knockout mouse models. APPROACH AND RESULTS This study shows that platelets from double knockout mice, in which both GTPases have been deleted, show markedly diminished (≈85% reduction) P-selectin translocation to the surface membrane, suggesting a critical role in α-granule secretion. Surprisingly, however, there were only minor effects on stimulated release of soluble α- and δ-granule content, with no alteration in granule count, morphology, or content. In addition, their expression was not essential for platelet aggregation or thrombus formation. However, absence of surface P-selectin caused a marked reduction (≈70%) in platelet-leukocyte interactions in blood from RalAB double knockout mice, suggesting a role for platelet Rals in platelet-mediated inflammation. CONCLUSIONS Platelet Ral GTPases primarily control P-selectin surface expression, in turn regulating platelet-leukocyte interaction. Ral GTPases could therefore be important novel targets for the selective control of platelet-mediated immune cell recruitment and inflammatory disease.
Collapse
Affiliation(s)
- Andreas Wersäll
- From the School of Physiology, Pharmacology and Neuroscience, University of Bristol, United Kingdom (A.W., C.M.W., E.B., A.W.P.); and KWS Biotest, Portishead, Bristol, United Kingdom (T.I., N.W.).
| | - Chris M Williams
- From the School of Physiology, Pharmacology and Neuroscience, University of Bristol, United Kingdom (A.W., C.M.W., E.B., A.W.P.); and KWS Biotest, Portishead, Bristol, United Kingdom (T.I., N.W.)
| | - Edward Brown
- From the School of Physiology, Pharmacology and Neuroscience, University of Bristol, United Kingdom (A.W., C.M.W., E.B., A.W.P.); and KWS Biotest, Portishead, Bristol, United Kingdom (T.I., N.W.)
| | - Tommaso Iannitti
- From the School of Physiology, Pharmacology and Neuroscience, University of Bristol, United Kingdom (A.W., C.M.W., E.B., A.W.P.); and KWS Biotest, Portishead, Bristol, United Kingdom (T.I., N.W.)
| | - Neil Williams
- From the School of Physiology, Pharmacology and Neuroscience, University of Bristol, United Kingdom (A.W., C.M.W., E.B., A.W.P.); and KWS Biotest, Portishead, Bristol, United Kingdom (T.I., N.W.)
| | - Alastair W Poole
- From the School of Physiology, Pharmacology and Neuroscience, University of Bristol, United Kingdom (A.W., C.M.W., E.B., A.W.P.); and KWS Biotest, Portishead, Bristol, United Kingdom (T.I., N.W.)
| |
Collapse
|
14
|
Abstract
The Rho GTPases were discovered more than 30 years ago, and they were for a long time considered to follow simple cycling between GDP-bound and GTP-bound conformations, as for the Ras subfamily of small GTPases. The Rho GTPases consist of 20 members, but at least 10 of these do not follow this classical GTPase cycle. Thus, based on their kinetic properties, these Rho GTPases can instead be classified as atypical. Some of these atypical Rho GTPases do not hydrolyze GTP, and some have significantly increased intrinsic GDP/GTP exchange activity. This review focuses on this latter category of atypical Rho GTPases, the so-called 'fast-cycling' Rho GTPases. The different members of these fast-cycling atypical Rho GTPases are described in more detail here, along with their potential regulatory mechanisms. Finally, some insights are provided into the involvement of the atypical Rho GTPases in human pathologies.
Collapse
Affiliation(s)
- Pontus Aspenström
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Nobels väg 16 , Box 280, SE, Stockholm, Sweden
| |
Collapse
|
15
|
Jiang YL, Bai WW, Qu FW, Ma H, Jiang RS, Shen BS. Construction and characterization of HIV type 1 CRF07_BC infectious molecular clone from men who have sex with men. J Virol Methods 2016; 229:70-7. [PMID: 26751801 DOI: 10.1016/j.jviromet.2015.12.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 12/30/2015] [Accepted: 12/30/2015] [Indexed: 11/16/2022]
Abstract
This study aimed to investigate the biological characterization of HIV type 1 (HIV-1) CRF07_BC infection among men who have sex with men (MSM). From November 2011 to November 2013, a total of 66 blood samples were collected from MSM with acute HIV-1 infection with CRF07_BC subgroup strains. Deletion in the gag p6 region was detected by sequence alignment and comparative analysis. Peripheral blood mononuclear cells (PBMCs) of HNXX1301-1307 samples were separated by density gradient centrifugation. Nested polymerase chain reaction (nPCR) was used to amplify the viral DNA. The near full-length HIV-1 DNA products were ligated to the long terminal repeat (LTR) vector plasmid (07BCLTR) to construct a full-length HIV clone. The molecular clone was transfected into HEK-293T cells, TZM-b1 cells and patients' PBMCs. The pregenome of an infectious molecular clone of HIV-1 (pNL4-3) was amplified, and a subclone with CRF07_BC was developed to construct the full-length chimeric molecular clone pNL4-3/07BCLTR. Detection of p24 antigen and luciferase activity was used to measure the in vitro infectivity of pNL4-3/07BCLTR. Among the 66 MSM patients infected with CRF07_BC strains, deletion mutations of the Gag P6 proteins were found in 7 of 18CRF07_BC strains; deletion mutations of 2-13 amino acids in different regions were discovered in 6 strains; and the remaining 42 strains did not show deletions. Seven strains with amino acids deficiency in the P6 protein accounted for 27% of all strains and 75% of all deletion genotype strains. A total of 186 full-length molecular clones of CRF07_BC were constructed. There were 5, 9, 10 and 11 clones of HNXX1302, HNXX1304, HNXX1305 and HNXX1306 that resulted in p24-positive supernatant when transfected into HEK-293T cells. Full-length clones of HNXX1302, HNXX1304, HNXX1305 and HNXX1306 showed slight infection in the transfected TZM-b1 cells, as judged by the fluorescence values of TZM-b1 cells 48h post-transfection. However, we were unable to transfect the patients' PMBCs with the above four clones. The phylogenetic tree of the C2V3 segment of the Env gene showed that a significant gene cluster was formed by all of the chimeric full-length HNXX1306 clones, and the bootstrap value for this cluster was 97.5%. Patients' PBMCs could be infected by 1306N6, 1306N13 and 1306N22 chimeric full-length clones. The CRF07_BC subtype (6889-7407 nucleotide residues of HXB2) is one of the most prevalent epidemic HIV-1 virus strains among the MSM population. The full-length chimeric molecular clone pNL4-3/07BCLTR may significantly improve the in vitro infectivity of the CRF07_BC strain.
Collapse
Affiliation(s)
- Yan-Ling Jiang
- Youth League Committee, The Second Affiliated Hospital of Kunming Medical University, Kunming 650500, PR China
| | - Wen-Wei Bai
- Department of Internal Medicine-Cardiovascular, The Second Affiliated Hospital of Kunming Medical University, Kunming 650500, PR China
| | - Fan-Wei Qu
- International College, Kunming Medical University, Kunming 650500, PR China
| | - Hua Ma
- Students' Affairs Division, Kunming Medical University, Kunming 650500, PR China
| | - Run-Sheng Jiang
- Public Health Hospital, Kunming Medical University, Kunming 650500, PR China.
| | - Bao-Sheng Shen
- Public Health Hospital, Kunming Medical University, Kunming 650500, PR China
| |
Collapse
|
16
|
Williams CM, Harper MT, Goggs R, Walsh TG, Offermanns S, Poole AW. Leukemia-associated Rho guanine-nucleotide exchange factor is not critical for RhoA regulation, yet is important for platelet activation and thrombosis in mice. J Thromb Haemost 2015; 13:2102-7. [PMID: 26334261 PMCID: PMC4755168 DOI: 10.1111/jth.13129] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Accepted: 08/12/2015] [Indexed: 12/20/2022]
Abstract
BACKGROUND RhoA is an important regulator of platelet responses downstream of Gα13 , yet we still know little about its regulation in platelets. Leukemia-associated Rho guanine-nucleotide exchange factor (GEF [LARG]), a RhoA GEF, is highly expressed in platelets and may constitute a major upstream activator of RhoA. To this end, it is important to determine the role of LARG in platelet function and thrombosis. METHODS AND RESULTS Using a platelet-specific gene knockout, we show that the absence of LARG results in a marked reduction in aggregation and dense-granule secretion in response to the thromboxane mimetic U46619 and proteinase-activated receptor 4-activating peptide, AYPGKF, but not to adenosine diphosphate. In a ferric chloride thrombosis model in vivo, this translated into a defect, under mild injury conditions. Importantly, agonist-induced RhoA activation was not affected by the absence of LARG, although basal activity was reduced, suggesting that LARG may play a housekeeper role in regulating constitutive RhoA activity. CONCLUSIONS LARG plays an important role in platelet function and thrombosis in vivo. However, although LARG may have a role in regulating the resting activation state of RhoA, its role in regulating platelet function may principally be through RhoA-independent pathways, possibly through other Rho family members.
Collapse
Affiliation(s)
- C M Williams
- School of Physiology & Pharmacology, University of Bristol, Bristol, UK
| | - M T Harper
- School of Physiology & Pharmacology, University of Bristol, Bristol, UK
| | - R Goggs
- School of Physiology & Pharmacology, University of Bristol, Bristol, UK
| | - T G Walsh
- School of Physiology & Pharmacology, University of Bristol, Bristol, UK
| | - S Offermanns
- Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - A W Poole
- School of Physiology & Pharmacology, University of Bristol, Bristol, UK
| |
Collapse
|
17
|
Yao W, Yang H, Huang G, Yan Y, Wang H, Sun D. Massive localized malignant pleural mesothelioma (LMPM): manifestations on computed tomography in 6 cases. Int J Clin Exp Med 2015; 8:18367-18374. [PMID: 26770440 PMCID: PMC4694340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 10/13/2015] [Indexed: 06/05/2023]
Abstract
OBJECTIVE Our study analyzed the clinical symptoms and computed tomography (CT) manifestations of massive localized malignant pleural mesothelioma (LMPM) patients to improve the knowledge and diagnosis of this disease. METHODS Our study collected 6 massive LMPM patients pathologically confirmed by CT in the department of Radiology of the People's Hospital of Yuyao, Zhejiang Province, from January, 2007 to June, 2013; data of patients were also collected. The clinical symptoms, clinicopathological characteristics, CT manifestations, treatments and prognosis of enrolled patients were analyzed. RESULTS Our study enrolled 6 LMPM patients (2 males; 4 females) classified to epitheliated type (n = 4) and sarcomatous type (n = 2) with mean age of 62.7 ± 7.4, and 5 of them had a history of asbestos exposure. CT manifestations revealed that large soft-tissue mass close to pleura, which was smooth and lobulated, was discovered in all patients with maximum diameter of 10~15 cm and mean diameter of 13.67 ± 1.15 cm; The mean value of CT was 36.29 ± 2.62 HU; after enhancement, the mean value was increased to 76.36 ± 7.73 HU; patients showed zones of small patchy necrosis and large patchy necrosis. The following presentations were founded: enlargement of tumor vessel which showed arborization (2 patients), mass wrap around the descending aorta in left lower chest (1 patient), strips of fat density in mediastinum superior (1 patient), pleural tail sign (3 patients). Among 6 patients, pleural effusion (n = 4), mediastinal lymph node enlargement (n = 3), invasion and destruction of local ribs (n = 2). Median survival time of patients were 20 months (2 cases conducted operation), 24 (2 cases chose combined radiotherapy and chemotherapy) and less than 6 months (2 cases underwent chemotherapy). CONCLUSION To sum up, CT showed important diagnostic values on massive LMPM patients; patients with a history of asbestos exposure, large soft-tissue mass of pleura with an abundant blood supply and wrap around large vessels might increase the risk of massive LMPM.
Collapse
Affiliation(s)
- Weigen Yao
- Department of Radiology, The People's Hospital of Yuyao Yuyao 315400, P. R. China
| | - Hanqing Yang
- Department of Radiology, The People's Hospital of Yuyao Yuyao 315400, P. R. China
| | - Guolai Huang
- Department of Radiology, The People's Hospital of Yuyao Yuyao 315400, P. R. China
| | - Yang Yan
- Department of Radiology, The People's Hospital of Yuyao Yuyao 315400, P. R. China
| | - Honglin Wang
- Department of Radiology, The People's Hospital of Yuyao Yuyao 315400, P. R. China
| | - Dongfang Sun
- Department of Radiology, The People's Hospital of Yuyao Yuyao 315400, P. R. China
| |
Collapse
|
18
|
Poulter NS, Pollitt AY, Davies A, Malinova D, Nash GB, Hannon MJ, Pikramenou Z, Rappoport JZ, Hartwig JH, Owen DM, Thrasher AJ, Watson SP, Thomas SG. Platelet actin nodules are podosome-like structures dependent on Wiskott-Aldrich syndrome protein and ARP2/3 complex. Nat Commun 2015; 6:7254. [PMID: 26028144 PMCID: PMC4458878 DOI: 10.1038/ncomms8254] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 04/21/2015] [Indexed: 11/09/2022] Open
Abstract
The actin nodule is a novel F-actin structure present in platelets during early spreading. However, only limited detail is known regarding nodule organization and function. Here we use electron microscopy, SIM and dSTORM super-resolution, and live-cell TIRF microscopy to characterize the structural organization and signalling pathways associated with nodule formation. Nodules are composed of up to four actin-rich structures linked together by actin bundles. They are enriched in the adhesion-related proteins talin and vinculin, have a central core of tyrosine phosphorylated proteins and are depleted of integrins at the plasma membrane. Nodule formation is dependent on Wiskott–Aldrich syndrome protein (WASp) and the ARP2/3 complex. WASp−/− mouse blood displays impaired platelet aggregate formation at arteriolar shear rates. We propose actin nodules are platelet podosome-related structures required for platelet–platelet interaction and their absence contributes to the bleeding diathesis of Wiskott–Aldrich syndrome. During early platelet spreading a novel F-actin structure forms, called the actin nodule. Here Poulter et al. demonstrate that actin nodule formation depends on WASp and the Arp2/3 complex, and using super-resolution microscopy they show that nodules bear a structural resemblance to podosomes.
Collapse
Affiliation(s)
- Natalie S Poulter
- Centre for Cardiovascular Sciences, The Medical School, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Alice Y Pollitt
- Centre for Cardiovascular Sciences, The Medical School, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Amy Davies
- PSIBS doctoral training centre, School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Dessislava Malinova
- Molecular Immunology Unit, UCL Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK
| | - Gerard B Nash
- Centre for Cardiovascular Sciences, The Medical School, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Mike J Hannon
- PSIBS doctoral training centre, School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Zoe Pikramenou
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Joshua Z Rappoport
- The Center for Advanced Microscopy and Nikon Imaging Center, Morton 2-681, Northwestern University Feinberg School of Medicine, 303 E. Chicago Avenue, Chicago, Illinois 60611, USA
| | - John H Hartwig
- Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Dylan M Owen
- Randall Division of Cell and Molecular Biophysics, New Hunt's House, King's College London, Guy's Campus, London SE1 1UL, UK
| | - Adrian J Thrasher
- Molecular Immunology Unit, UCL Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK
| | - Stephen P Watson
- Centre for Cardiovascular Sciences, The Medical School, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Steven G Thomas
- Centre for Cardiovascular Sciences, The Medical School, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| |
Collapse
|
19
|
Abstract
Rho GTPases are critical for platelet function. Although the roles of RhoA, Rac and Cdc42 are characterized, platelets express other Rho GTPases, whose activities are less well understood. This review summarizes our understanding of the roles of platelet Rho GTPases and focuses particularly on the functions of Rif and RhoG. In human platelets, Rif interacts with cytoskeleton regulators including formins mDia1 and mDia3, whereas RhoG binds SNARE-complex proteins and cytoskeletal regulators ELMO and DOCK1. Knockout mouse studies suggest that Rif plays no critical functions in platelets, likely due to functional overlap with other Rho GTPases. In contrast, RhoG is essential for normal granule secretion downstream of the collagen receptor GPVI. The central defect in RhoG-/- platelets is reduced dense granule secretion, which impedes integrin activation and aggregation and limits platelet recruitment to growing thrombi under shear, translating into reduced thrombus formation in vivo. Potential avenues for future work on Rho GTPases in platelets are also highlighted, including identification of the key regulator for platelet filopodia formation and investigation of the role of the many Rho GTPase regulators in platelet function in both health and disease.
Collapse
|
20
|
Elvers M. RhoGAPs and Rho GTPases in platelets. Hamostaseologie 2015; 36:168-77. [PMID: 25639730 DOI: 10.5482/hamo-14-09-0046] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 01/13/2015] [Indexed: 01/03/2023] Open
Abstract
Platelet cytoskeletal reorganization is essential for platelet adhesion and thrombus formation in hemostasis and thrombosis. The Rho GTPases RhoA, Rac1 and Cdc42 are the main players in cytoskeletal dynamics of platelets responsible for the formation of filopodia and lamellipodia to strongly increase the platelet surface upon activation. They are involved in platelet activation and aggregate formation including platelet secretion, integrin activation and arterial thrombus formation. The activity of Rho GTPases is tightly controlled by different proteins such as GTPase-activating proteins (GAPs). GAPs stimulate GTP hydrolysis to terminate Rho signaling. The role and impact of GAPs in platelets is not well-defined and many of the RhoGAPs identified are not known to be present in platelets or to have any function in platelets. The recently identified RhoGAPs Oligophrenin1 (OPHN1) and Nadrin regulate the activity of RhoA, Rac1 and Cdc42 and subsequent platelet cytoskeletal reorganization, platelet activation and thrombus formation. In the last years, the analysis of genetically modified mice helped to gain the understanding of Rho GTPases and their regulators in cytoskeletal rearrangements and other Rho mediated cellular processes in platelets.
Collapse
Affiliation(s)
- Margitta Elvers
- Margitta Elvers, Ph.D., Department of Clinical and Experimental Hemostasis, Hemotherapy and Transfusion Medicine, Heinrich-Heine-University Duesseldorf, Moorenstr. 5, 40225 Duesseldorf, Germany, Tel. +49/(0)211/81-08851, Fax -17498., E-mail:
| |
Collapse
|
21
|
Golebiewska EM, Harper MT, Williams CM, Savage JS, Goggs R, Fischer von Mollard G, Poole AW. Syntaxin 8 regulates platelet dense granule secretion, aggregation, and thrombus stability. J Biol Chem 2014; 290:1536-45. [PMID: 25404741 PMCID: PMC4340400 DOI: 10.1074/jbc.m114.602615] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Platelet secretion not only drives thrombosis and hemostasis, but also mediates a variety of other physiological and pathological processes. The ubiquitous SNARE machinery and a number of accessory proteins have been implicated in regulating secretion in platelet. Although several platelet SNAREs have been identified, further members of the SNARE family may be needed to fine-tune platelet secretion. In this study we identified expression of the t-SNARE syntaxin 8 (STX8) (Qc SNARE) in mouse and human platelets. In mouse studies, whereas STX8 was not essential for α-granule or lysosome secretion, Stx8−/− platelets showed a significant defect in dense granule secretion in response to thrombin and CRP. This was most pronounced at intermediate concentrations of agonists. They also showed an aggregation defect that could be rescued with exogenous ADP and increased embolization in Stx8−/− mice in vivo consistent with an important autocrine and paracrine role for ADP in aggregation and thrombus stabilization. STX8 therefore specifically contributes to dense granule secretion and represents another member of a growing family of genes that play distinct roles in regulating granule release from platelets and thus platelet function in thrombosis and hemostasis.
Collapse
Affiliation(s)
- Ewelina M Golebiewska
- From the School of Physiology and Pharmacology, Medical Sciences Building, University Walk, Bristol BS8 1TD, United Kingdom
| | - Matthew T Harper
- From the School of Physiology and Pharmacology, Medical Sciences Building, University Walk, Bristol BS8 1TD, United Kingdom
| | - Christopher M Williams
- From the School of Physiology and Pharmacology, Medical Sciences Building, University Walk, Bristol BS8 1TD, United Kingdom
| | - Joshua S Savage
- the School of Cancer Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Robert Goggs
- the Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York 14853, and
| | | | - Alastair W Poole
- From the School of Physiology and Pharmacology, Medical Sciences Building, University Walk, Bristol BS8 1TD, United Kingdom,
| |
Collapse
|
22
|
KISHIMOTO MAYUKO, MATSUDA TAKENORI, YANASE SHOUGO, KATSUMI AKIRA, SUZUKI NOBUAKI, IKEJIRI MAKOTO, TAKAGI AKIRA, IKAWA MASAHITO, KOJIMA TETSUHITO, KUNISHIMA SHINJI, KIYOI HITOSHI, NAOE TOMOKI, MATSUSHITA TADASHI, MARUYAMA MITSUO. Rhof promotes murine marginal zone B cell development. NAGOYA JOURNAL OF MEDICAL SCIENCE 2014; 76:293-305. [PMID: 25741038 PMCID: PMC4345693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Accepted: 06/12/2014] [Indexed: 11/03/2022]
Abstract
RhoF is a member of the Rho GTPase family that has been implicated in various cell functions including long filopodia formation, adhesion, and migration of cells. Although RhoF is expressed in lymphoid tissues, the roles of RhoF in B cell development remain largely unclear. On the other hand, other members of the Rho GTPase family, such as Cdc42, RhoA, and Rac, have been intensively studied and are known to be required for B cell development in the bone marrow and spleen. We hypothesized that RhoF is also involved in B cell development. To examine our hypothesis, we analyzed B cell development in RhoF knockout (KO) mice and found a significant reduction in marginal zone (MZ) B cells in the spleen, although T cell development in the thymus and spleen was not affected. Consistent with these results, the width of the MZ B cell region in the spleen was significantly reduced in the RhoF KO mice. However, the antigen-specific antibody titer of IgM and IgG3 after MZ B cell-specific antigen (T cell-independent antigen, type I) stimulation was not affected by RhoF deletion. Furthermore, we demonstrated that RhoF was dispensable for stromal cell-derived factor-1α- and B lymphocyte chemoattractant-induced B cell migration. These results suggest that RhoF promotes MZ B cell development in the spleen.
Collapse
Affiliation(s)
- MAYUKO KISHIMOTO
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, Japan,Department of Mechanism of Aging, Research Institute, National Center for Geriatrics and Gerontology, Obu, Japan,Department of Clinical Laboratory Medicine, Nagoya University Hospital, Nagoya, Japan
| | - TAKENORI MATSUDA
- Department of Mechanism of Aging, Research Institute, National Center for Geriatrics and Gerontology, Obu, Japan
| | - SHOUGO YANASE
- Department of Mechanism of Aging, Research Institute, National Center for Geriatrics and Gerontology, Obu, Japan
| | - AKIRA KATSUMI
- Department of Clinical Oncology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - NOBUAKI SUZUKI
- Department of Clinical Laboratory Medicine, Nagoya University Hospital, Nagoya, Japan
| | - MAKOTO IKEJIRI
- Department of Molecular and Laboratory Medicine, Mie University Graduate School of Medicine, Tsu, Japan
| | - AKIRA TAKAGI
- Department of Medical Technology, Nagoya University School of Health Sciences, Nagoya, Japan
| | - MASAHITO IKAWA
- Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - TETSUHITO KOJIMA
- Department of Medical Technology, Nagoya University School of Health Sciences, Nagoya, Japan
| | - SHINJI KUNISHIMA
- Department of Advanced Diagnosis, Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya, Japan
| | - HITOSHI KIYOI
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - TOMOKI NAOE
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, Japan,National Hospital Organization Nagoya Medical Center, Nagoya, Japan
| | - TADASHI MATSUSHITA
- Department of Transfusion Medicine, Nagoya University Hospital, Nagoya, Japan
| | - MITSUO MARUYAMA
- Department of Mechanism of Aging, Research Institute, National Center for Geriatrics and Gerontology, Obu, Japan,Department of Aging Research, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
23
|
Goggs R, Harper MT, Pope RJ, Savage JS, Williams CM, Mundell SJ, Heesom KJ, Bass M, Mellor H, Poole AW. RhoG protein regulates platelet granule secretion and thrombus formation in mice. J Biol Chem 2013; 288:34217-34229. [PMID: 24106270 PMCID: PMC3837162 DOI: 10.1074/jbc.m113.504100] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Revised: 09/30/2013] [Indexed: 12/28/2022] Open
Abstract
Rho GTPases such as Rac, RhoA, and Cdc42 are vital for normal platelet function, but the role of RhoG in platelets has not been studied. In other cells, RhoG orchestrates processes integral to platelet function, including actin cytoskeletal rearrangement and membrane trafficking. We therefore hypothesized that RhoG would play a critical role in platelets. Here, we show that RhoG is expressed in human and mouse platelets and is activated by both collagen-related peptide (CRP) and thrombin stimulation. We used RhoG(-/-) mice to study the function of RhoG in platelets. Integrin activation and aggregation were reduced in RhoG(-/-) platelets stimulated by CRP, but responses to thrombin were normal. The central defect in RhoG(-/-) platelets was reduced secretion from α-granules, dense granules, and lysosomes following CRP stimulation. The integrin activation and aggregation defects could be rescued by ADP co-stimulation, indicating that they are a consequence of diminished dense granule secretion. Defective dense granule secretion in RhoG(-/-) platelets limited recruitment of additional platelets to growing thrombi in flowing blood in vitro and translated into reduced thrombus formation in vivo. Interestingly, tail bleeding times were normal in RhoG(-/-) mice, suggesting that the functions of RhoG in platelets are particularly relevant to thrombotic disorders.
Collapse
Affiliation(s)
- Robert Goggs
- School of Physiology and Pharmacology, University of Bristol, Bristol BS8 1TD, United Kingdom
| | - Matthew T Harper
- School of Physiology and Pharmacology, University of Bristol, Bristol BS8 1TD, United Kingdom
| | - Robert J Pope
- School of Physiology and Pharmacology, University of Bristol, Bristol BS8 1TD, United Kingdom
| | - Joshua S Savage
- School of Physiology and Pharmacology, University of Bristol, Bristol BS8 1TD, United Kingdom
| | - Christopher M Williams
- School of Physiology and Pharmacology, University of Bristol, Bristol BS8 1TD, United Kingdom
| | - Stuart J Mundell
- School of Physiology and Pharmacology, University of Bristol, Bristol BS8 1TD, United Kingdom
| | - Kate J Heesom
- Proteomics Facility, University of Bristol, Bristol BS8 1TD, United Kingdom
| | - Mark Bass
- School of Biochemistry, University of Bristol, Bristol BS8 1TD, United Kingdom
| | - Harry Mellor
- School of Biochemistry, University of Bristol, Bristol BS8 1TD, United Kingdom
| | - Alastair W Poole
- School of Physiology and Pharmacology, University of Bristol, Bristol BS8 1TD, United Kingdom.
| |
Collapse
|