1
|
Kashlan OB, Wang XP, Sheng S, Kleyman TR. Epithelial Na + Channels Function as Extracellular Sensors. Compr Physiol 2024; 14:1-41. [PMID: 39109974 PMCID: PMC11309579 DOI: 10.1002/cphy.c230015] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
The epithelial Na + channel (ENaC) resides on the apical surfaces of specific epithelia in vertebrates and plays a critical role in extracellular fluid homeostasis. Evidence that ENaC senses the external environment emerged well before the molecular identity of the channel was reported three decades ago. This article discusses progress toward elucidating the mechanisms through which specific external factors regulate ENaC function, highlighting insights gained from structural studies of ENaC and related family members. It also reviews our understanding of the role of ENaC regulation by the extracellular environment in physiology and disease. After familiarizing the reader with the channel's physiological roles and structure, we describe the central role protein allostery plays in ENaC's sensitivity to the external environment. We then discuss each of the extracellular factors that directly regulate the channel: proteases, cations and anions, shear stress, and other regulators specific to particular extracellular compartments. For each regulator, we discuss the initial observations that led to discovery, studies investigating molecular mechanism, and the physiological and pathophysiological implications of regulation. © 2024 American Physiological Society. Compr Physiol 14:5407-5447, 2024.
Collapse
Affiliation(s)
- Ossama B. Kashlan
- Department of Medicine, Renal-Electrolyte Division,
University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Computational and Systems Biology, University
of Pittsburgh, Pittsburgh, Pennsylvania
| | - Xue-Ping Wang
- Department of Medicine, Renal-Electrolyte Division,
University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Shaohu Sheng
- Department of Medicine, Renal-Electrolyte Division,
University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Thomas R. Kleyman
- Department of Medicine, Renal-Electrolyte Division,
University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Cell Biology, University of Pittsburgh,
Pittsburgh, Pennsylvania
- Department of Pharmacology and Chemical Biology, University
of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
2
|
Mironova E, Archer CR, Vendrov AE, Runge MS, Madamanchi NR, Arendshorst WJ, Stockand JD, Abd El-Aziz TM. NOXA1-dependent NADPH oxidase 1 signaling mediates angiotensin II activation of the epithelial sodium channel. Am J Physiol Renal Physiol 2022; 323:F633-F641. [PMID: 36201326 PMCID: PMC9705023 DOI: 10.1152/ajprenal.00107.2022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 10/03/2022] [Accepted: 10/04/2022] [Indexed: 12/14/2022] Open
Abstract
The activity of the epithelial Na+ channel (ENaC) in principal cells of the distal nephron fine-tunes renal Na+ excretion. The renin-angiotensin-aldosterone system modulates ENaC activity to control blood pressure, in part, by influencing Na+ excretion. NADPH oxidase activator 1-dependent NADPH oxidase 1 (NOXA1/NOX1) signaling may play a key role in angiotensin II (ANG II)-dependent activation of ENaC. The present study aimed to explore the role of NOXA1/NOX1 signaling in ANG II-dependent activation of ENaC in renal principal cells. Patch-clamp electrophysiology and principal cell-specific Noxa1 knockout (PC-Noxa1 KO) mice were used to determine the role of NOXA1/NOX1 signaling in ANG II-dependent activation of ENaC. The activity of ENaC in the luminal plasma membrane of principal cells was quantified in freshly isolated split-opened tubules using voltage-clamp electrophysiology. ANG II significantly increased ENaC activity. This effect was robust and observed in response to both acute (40 min) and more chronic (48-72 h) ANG II treatment of isolated tubules and mice, respectively. Inhibition of ANG II type 1 receptors with losartan abolished ANG II-dependent stimulation of ENaC. Similarly, treatment with ML171, a specific inhibitor of NOX1, abolished stimulation of ENaC by ANG II. Treatment with ANG II failed to increase ENaC activity in principal cells in tubules isolated from the PC-Noxa1 KO mouse. Tubules from wild-type littermate controls, though, retained their ability to respond to ANG II with an increase in ENaC activity. These results indicate that NOXA1/NOX1 signaling mediates ANG II stimulation of ENaC in renal principal cells. As such, NOXA1/NOX1 signaling in the distal nephron plays a central role in Na+ homeostasis and control of blood pressure, particularly as it relates to regulation by the renin-ANG II axis.NEW & NOTEWORTHY Activity of the epithelial Na+ channel (ENaC) in the distal nephron fine-tunes renal Na+ excretion. Angiotensin II (ANG II) has been reported to enhance ENaC activity. Emerging evidence suggests that NADPH oxidase (NOX) signaling plays an important role in the stimulation of ENaC by ANG II in principal cells. The present findings indicate that NOX activator 1/NOX1 signaling mediates ANG II stimulation of ENaC in renal principal cells.
Collapse
Affiliation(s)
- Elena Mironova
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Crystal R Archer
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | | | | | | | - William J Arendshorst
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina
| | - James D Stockand
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Tarek Mohamed Abd El-Aziz
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, San Antonio, Texas
- Department of Zoology, Minia University, El-Minia, Egypt
| |
Collapse
|
3
|
Deng W, He J, Tang XM, Li CY, Tong J, Qi D, Wang DX. Alcohol inhibits alveolar fluid clearance through the epithelial sodium channel via the A2 adenosine receptor in acute lung injury. Mol Med Rep 2021; 24:725. [PMID: 34396442 PMCID: PMC8404097 DOI: 10.3892/mmr.2021.12364] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 07/26/2021] [Indexed: 12/16/2022] Open
Abstract
Chronic alcohol abuse increases the risk of mortality and poor outcomes in patients with acute respiratory distress syndrome. However, the underlying mechanisms remain to be elucidated. The present study aimed to investigate the effects of chronic alcohol consumption on lung injury and clarify the signaling pathways involved in the inhibition of alveolar fluid clearance (AFC). In order to produce rodent models with chronic alcohol consumption, wild‑type C57BL/6 mice were treated with alcohol. A2a adenosine receptor (AR) small interfering (si)RNA or A2bAR siRNA were transfected into the lung tissue of mice and primary rat alveolar type II (ATII) cells. The rate of AFC in lung tissue was measured during exposure to lipopolysaccharide (LPS). Epithelial sodium channel (ENaC) expression was determined to investigate the mechanisms underlying alcohol‑induced regulation of AFC. In the present study, exposure to alcohol reduced AFC, exacerbated pulmonary edema and worsened LPS‑induced lung injury. Alcohol caused a decrease in cyclic adenosine monophosphate (cAMP) levels and inhibited α‑ENaC, β‑ENaC and γ‑ENaC expression levels in the lung tissue of mice and ATII cells. Furthermore, alcohol decreased α‑ENaC, β‑ENaC and γ‑ENaC expression levels via the A2aAR or A2bAR‑cAMP signaling pathways in vitro. In conclusion, the results of the present study demonstrated that chronic alcohol consumption worsened lung injury by aggravating pulmonary edema and impairing AFC. An alcohol‑induced decrease of α‑ENaC, β‑ENaC and γ‑ENaC expression levels by the A2AR‑mediated cAMP pathway may be responsible for the exacerbated effects of chronic alcohol consumption in lung injury.
Collapse
Affiliation(s)
- Wang Deng
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P.R. China
| | - Jing He
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P.R. China
| | - Xu-Mao Tang
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P.R. China
| | - Chang-Yi Li
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P.R. China
| | - Jin Tong
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P.R. China
| | - Di Qi
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P.R. China
| | - Dao-Xin Wang
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P.R. China
| |
Collapse
|
4
|
Downs CA, Johnson NM, Tsaprailis G, Helms MN. RAGE-induced changes in the proteome of alveolar epithelial cells. J Proteomics 2018; 177:11-20. [PMID: 29448054 DOI: 10.1016/j.jprot.2018.02.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 01/28/2018] [Accepted: 02/05/2018] [Indexed: 12/14/2022]
Abstract
The receptor for advanced glycation end-products (RAGE) is a pattern recognition receptor and member of the immunoglobulin superfamily. RAGE is constitutively expressed in the distal lung where it co-localizes with the alveolar epithelium; RAGE expression is otherwise minimal or absent, except with disease. This suggests RAGE plays a role in lung physiology and pathology. We used proteomics to identify and characterize the effects of RAGE on rat alveolar epithelial (R3/1) cells. LC-MS/MS identified 177 differentially expressed proteins and the PANTHER Classification System further segregated proteins. Proteins involved in gene transcription (RNA and mRNA splicing, mRNA processing) and transport (protein, intracellular protein) were overrepresented; genes involved in a response to stimulus were underrepresented. Immune system processes and response to stimuli were downregulated with RAGE knockdown. Western blot confirmed RAGE-dependent changes in protein expression for NFκB and NLRP3 that was functionally supported by a reduction in IL-1β and phosphorylated p65. We also assessed RAGE's effect on redox regulation and report that RAGE knockdown attenuated oxidant production, decreased protein oxidation, and increased reduced thiol pools. Collectively the data suggest that RAGE is a critical regulator of epithelial cell response and has implications for our understanding of lung disease, specifically acute lung injury. SIGNIFICANCE STATEMENT In the present study, we undertook the first proteomic evaluation of RAGE-dependent processes in alveolar epithelial cells. The alveolar epithelium is a primary target during acute lung injury, and our data support a role for RAGE in gene transcription, protein transport, and response to stimuli. More over our data suggest that RAGE is a critical driver of redox regulation in the alveolar epithelium. The conclusions of the present work assist to unravel the molecular events that underlie the function of RAGE in alveolar epithelial cells and have implications for our understanding of RAGE signaling during lung injury. Our study was the first proteomic comparison showing the effects of RAGE activation from alveolar epithelial cells that constitutively express RAGE and these results can affect a wide field of lung biology, pulmonary therapeutics, and proteomics.
Collapse
Affiliation(s)
- Charles A Downs
- Biobehavioral Health Science Division, College of Nursing & Division of Translational and Regenerative Medicine, College of Medicine, The University of Arizona, Tucson, AZ, United States.
| | - Nicholle M Johnson
- Biobehavioral Health Science Division, College of Nursing & Division of Translational and Regenerative Medicine, College of Medicine, The University of Arizona, Tucson, AZ, United States
| | - George Tsaprailis
- Arizona Research Laboratories, The University of Arizona, Tucson, AZ, United States
| | - My N Helms
- Department of Internal Medicine, School of Medicine, University of Utah, Salt Lake City, UT, United States
| |
Collapse
|
5
|
Li Y, Chang J, Cui Y, Zhao R, Ding Y, Hou Y, Zhou Z, Ji HL, Nie H. Novel mechanisms for crotonaldehyde-induced lung edema. Oncotarget 2017; 8:83509-83522. [PMID: 29137360 PMCID: PMC5663532 DOI: 10.18632/oncotarget.17840] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 04/25/2017] [Indexed: 12/13/2022] Open
Abstract
Background Crotonaldehyde is a highly noxious α,β-unsaturated aldehyde in cigarette smoke that causes edematous acute lung injury. Objective To understand how crotonaldehyde impairs lung function, we examined its effects on human epithelial sodium channels (ENaC), which are major contributors to alveolar fluid clearance. Methods We studied alveolar fluid clearance in C57 mice and ENaC activity was examined in H441 cells. Expression of α- and γ-ENaC was measured at protein and mRNA levels by western blot and real-time PCR, respectively. Intracellular ROS levels were detected by the dichlorofluorescein assay. Heterologous αβγ-ENaC activity was observed in an oocyte model. Results Our results showed that crotonaldehyde reduced transalveolar fluid clearance in mice. Furthermore, ENaC activity in H441 cells was inhibited by crotonaldehyde dose-dependently. Expression of α- and γ-subunits of ENaC was decreased at the protein and mRNA level in H441 cells exposed to crotonaldehyde, which was probably mediated by the increase in phosphorylated extracellular signal-regulated protein kinases 1 and 2. ROS levels increased time-dependently in cells exposed to crotonaldehyde. Heterologous αβγ-ENaC activity was rapidly eliminated by crotonaldehyde. Conclusion Our findings suggest that crotonaldehyde causes edematous acute lung injury by eliminating ENaC activity at least partly via facilitating the phosphorylation of extracellular signal-regulated protein kinases 1 and 2 signal molecules. Long-term exposure may decrease the expression of ENaC subunits and damage the cell membrane integrity, as well as increase the levels of cellular ROS products.
Collapse
Affiliation(s)
- Yue Li
- Institute of Metabolic Disease Research and Drug Development, China Medical University, Shenyang 110122, Liaoning, China
| | - Jianjun Chang
- Institute of Metabolic Disease Research and Drug Development, China Medical University, Shenyang 110122, Liaoning, China
| | - Yong Cui
- Department of Anesthesiology, First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning, China
| | - Runzhen Zhao
- Department of Cellular and Molecular Biology, University of Texas Health Science Center at Tyler, Tyler, Texas 75708, USA
| | - Yan Ding
- Institute of Metabolic Disease Research and Drug Development, China Medical University, Shenyang 110122, Liaoning, China
| | - Yapeng Hou
- Institute of Metabolic Disease Research and Drug Development, China Medical University, Shenyang 110122, Liaoning, China
| | - Zhiyu Zhou
- Institute of Metabolic Disease Research and Drug Development, China Medical University, Shenyang 110122, Liaoning, China
| | - Hong-Long Ji
- Department of Cellular and Molecular Biology, University of Texas Health Science Center at Tyler, Tyler, Texas 75708, USA.,Texas Lung Injury Institute, University of Texas Health Northeast, Tyler, Texas 75708, USA
| | - Hongguang Nie
- Institute of Metabolic Disease Research and Drug Development, China Medical University, Shenyang 110122, Liaoning, China
| |
Collapse
|
6
|
Abstract
Objective: To focus on the asthmatic pathogenesis and clinical manifestations related to epithelial sodium channel (ENaC)/chlorine ion channel. Data Sources: The data analyzed in this review were the English articles from 1980 to 2015 from journal databases, primarily PubMed and Google Scholar. The terms used in the literature search were: (1) ENaCs; cystic fibrosis (CF) transmembrane conductance regulator (CFTR); asthma/asthmatic, (2) ENaC/sodium salt; CF; asthma/asthmatic, (3) CFTR/chlorine ion channels; asthma/asthmatic, (4) ENaC/sodium channel/scnn1a/scnn1b/scnn1g/scnn1d/amiloride-sensitive/amiloride-inhibtable sodium channels/sodium salt; asthma/asthmatic, lung/pulmonary/respiratory/tracheal/alveolar, and (5) CFTR; CF; asthma/asthmatic (ti). Study Selection: These studies included randomized controlled trials or studies covering asthma pathogenesis and clinical manifestations related to ENaC/chlorine ion channels within the last 25 years (from 1990 to 2015). The data involving chronic obstructive pulmonary disease and CF obtained from individual studies were also reviewed by the authors. Results: Airway surface liquid dehydration can cause airway inflammation and obstruction. ENaC and CFTR are closely related to the airway mucociliary clearance. Ion transporters may play a critical role in pathogenesis of asthmatic exacerbations. Conclusions: Ion channels have been the center of many studies aiming to understand asthmatic pathophysiological mechanisms or to identify therapeutic targets for better control of the disease.
Collapse
Affiliation(s)
- Wen Wang
- Department of Respiratory and Critical Care Medicine, Beijing Chaoyang Hospital, Capital Medical University, Beijing Institute of Respiratory Medicine, Beijing Key Laboratory of Respiratory and Pulmonary Circulation Disorders, Beijing 100020, China; Department of Cellular and Molecular Biology, Texas Lung Injury Institute, University of Texas Health Science Center at Tyler, Tyler Texas 75708, USA,
| | | |
Collapse
|
7
|
A. Downs C, A. Alli A, M. Johnson N, N. Helms M. Cigarette smoke extract is a Nox agonist and regulates ENaC in alveolar type 2 cells. AIMS MOLECULAR SCIENCE 2016. [DOI: 10.3934/molsci.2016.3.439] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
|
8
|
Traphagen N, Tian Z, Allen-Gipson D. Chronic Ethanol Exposure: Pathogenesis of Pulmonary Disease and Dysfunction. Biomolecules 2015; 5:2840-53. [PMID: 26492278 PMCID: PMC4693259 DOI: 10.3390/biom5042840] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 09/04/2015] [Accepted: 09/28/2015] [Indexed: 12/18/2022] Open
Abstract
Ethanol (EtOH) is the world’s most commonly used drug, and has been widely recognized as a risk factor for developing lung disorders. Chronic EtOH exposure affects all of the organ systems in the body and increases the risk of developing pulmonary diseases such as acute lung injury and pneumonia, while exacerbating the symptoms and resulting in increased mortality in many other lung disorders. EtOH and its metabolites inhibit the immune response of alveolar macrophages (AMs), increase airway leakage, produce damaging reactive oxygen species (ROS), and disrupt the balance of antioxidants/oxidants within the lungs. In this article, we review the role of EtOH exposure in the pathogenesis and progression of pulmonary disease.
Collapse
Affiliation(s)
- Nicole Traphagen
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida Health, Tampa, FL 33612, USA.
| | - Zhi Tian
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida Health, Tampa, FL 33612, USA.
| | - Diane Allen-Gipson
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida Health, Tampa, FL 33612, USA.
- Department of Internal Medicine, Division of Allergy and Immunology, University of South Florida Health, Tampa, FL 33612, USA.
| |
Collapse
|
9
|
Aeffner F, Bolon B, Davis IC. Mouse Models of Acute Respiratory Distress Syndrome: A Review of Analytical Approaches, Pathologic Features, and Common Measurements. Toxicol Pathol 2015; 43:1074-92. [PMID: 26296628 DOI: 10.1177/0192623315598399] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Acute respiratory distress syndrome (ARDS) is a severe pulmonary reaction requiring hospitalization, which is incited by many causes, including bacterial and viral pneumonia as well as near drowning, aspiration of gastric contents, pancreatitis, intravenous drug use, and abdominal trauma. In humans, ARDS is very well defined by a list of clinical parameters. However, until recently no consensus was available regarding the criteria of ARDS that should be evident in an experimental animal model. This lack was rectified by a 2011 workshop report by the American Thoracic Society, which defined the main features proposed to delineate the presence of ARDS in laboratory animals. These should include histological changes in parenchymal tissue, altered integrity of the alveolar capillary barrier, inflammation, and abnormal pulmonary function. Murine ARDS models typically are defined by such features as pulmonary edema and leukocyte infiltration in cytological preparations of bronchoalveolar lavage fluid and/or lung sections. Common pathophysiological indicators of ARDS in mice include impaired pulmonary gas exchange and histological evidence of inflammatory infiltrates into the lung. Thus, morphological endpoints remain a vital component of data sets assembled from animal ARDS models.
Collapse
Affiliation(s)
- Famke Aeffner
- Flagship Biosciences Inc., Westminster, Colorado, USA
| | - Brad Bolon
- The Ohio State University, College of Veterinary Medicine, Department of Veterinary Biosciences, Columbus, Ohio, USA GEMpath Inc., Longmont, Colorado, USA
| | | |
Collapse
|
10
|
Downs CA, Kreiner L, Zhao XM, Trac P, Johnson NM, Hansen JM, Brown LA, Helms MN. Oxidized glutathione (GSSG) inhibits epithelial sodium channel activity in primary alveolar epithelial cells. Am J Physiol Lung Cell Mol Physiol 2015; 308:L943-52. [PMID: 25713321 PMCID: PMC4888545 DOI: 10.1152/ajplung.00213.2014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 02/15/2015] [Indexed: 11/22/2022] Open
Abstract
Amiloride-sensitive epithelial Na(+) channels (ENaC) regulate fluid balance in the alveoli and are regulated by oxidative stress. Since glutathione (GSH) is the predominant antioxidant in the lungs, we proposed that changes in glutathione redox potential (Eh) would alter cell signaling and have an effect on ENaC open probability (Po). In the present study, we used single channel patch-clamp recordings to examine the effect of oxidative stress, via direct application of glutathione disulfide (GSSG), on ENaC activity. We found a linear decrease in ENaC activity as the GSH/GSSG Eh became less negative (n = 21; P < 0.05). Treatment of 400 μM GSSG to the cell bath significantly decreased ENaC Po from 0.39 ± 0.06 to 0.13 ± 0.05 (n = 8; P < 0.05). Likewise, back-filling recording electrodes with 400 μM GSSG reduced ENaC Po from 0.32 ± 0.08 to 0.17 ± 0.05 (n = 10; P < 0.05), thus implicating GSSG as an important regulatory factor. Biochemical assays indicated that oxidizing potentials promote S-glutathionylation of ENaC and irreversible oxidation of cysteine residues with N-ethylmaleimide blocked the effects of GSSG on ENaC Po. Additionally, real-time imaging studies showed that GSSG impairs alveolar fluid clearance in vivo as opposed to GSH, which did not impair clearance. Taken together, these data show that glutathione Eh is an important determinant of alveolar fluid clearance in vivo.
Collapse
Affiliation(s)
- Charles A Downs
- Nell Hodgson Woodruff School of Nursing, Emory University, Atlanta, Georgia
| | - Lisa Kreiner
- Department Pediatrics, School of Medicine, Emory University, Atlanta, Georgia
| | - Xing-Ming Zhao
- Department of Computer Science, School of Electronics and Information Engineering, Tongji University, Shanghai, China
| | - Phi Trac
- Department Pediatrics, School of Medicine, Emory University, Atlanta, Georgia
| | - Nicholle M Johnson
- Department Pediatrics, School of Medicine, Emory University, Atlanta, Georgia
| | - Jason M Hansen
- Department Pediatrics, School of Medicine, Emory University, Atlanta, Georgia; Center for Cystic Fibrosis and Airways Disease Research at Children's Healthcare of Atlanta Hospital, Atlanta, Georgia; and
| | - Lou Ann Brown
- Department Pediatrics, School of Medicine, Emory University, Atlanta, Georgia; Center for Cystic Fibrosis and Airways Disease Research at Children's Healthcare of Atlanta Hospital, Atlanta, Georgia; and
| | - My N Helms
- Department Pediatrics, School of Medicine, Emory University, Atlanta, Georgia; Center for Cystic Fibrosis and Airways Disease Research at Children's Healthcare of Atlanta Hospital, Atlanta, Georgia; and
| |
Collapse
|
11
|
Ward C, Schlingmann B, Stecenko AA, Guidot DM, Koval M. NF-κB inhibitors impair lung epithelial tight junctions in the absence of inflammation. Tissue Barriers 2015; 3:e982424. [PMID: 25838984 DOI: 10.4161/21688370.2014.982424] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 10/27/2014] [Indexed: 01/11/2023] Open
Abstract
NF-κB (p50/p65) is the best characterized transcription factor known to regulate cell responses to inflammation. However, NF-κB is also constitutively expressed. We used inhibitors of the classical NF-κB signaling pathway to determine whether this transcription factor has a role in regulating alveolar epithelial tight junctions. Primary rat type II alveolar epithelial cells were isolated and cultured on Transwell permeable supports coated with collagen for 5 d to generate a model type I cell monolayer. Treatment of alveolar epithelial monolayers overnight with one of 2 different IκB kinase inhibitors (BAY 11-7082 or BMS-345541) resulted in a dose-dependent decrease in TER at concentrations that did not affect cell viability. In response to BMS-345541 treatment there was an increase in total claudin-4 and claudin-5 along with a decrease in claudin-18, as determined by immunoblot. However, there was little effect on the total amount of cell-associated claudin-7, occludin, junctional adhesion molecule A (JAM-A), zonula occludens (ZO)-1 or ZO-2. Moreover, treatment with BMS-345541 resulted in altered tight junction morphology as assessed by immunofluorescence microscopy. Cells treated with BMS-345541 had an increase in claudin-18 containing projections emanating from tight junctions ("spikes") that were less prominent in control cells. There also were several areas of cell-cell contact which lacked ZO-1 and ZO-2 localization as well as rearrangements to the actin cytoskeleton in response to BMS-345541. Consistent with an anti-inflammatory effect, BMS-345541 antagonized the deleterious effects of lipopolysaccharide (LPS) on alveolar epithelial barrier function. However, BMS-345541 also inhibited the ability of GM-CSF to increase alveolar epithelial TER. These data suggest a dual role for NF-κB in regulating alveolar barrier function and that constitutive NF-κB function is required for the integrity of alveolar epithelial tight junctions.
Collapse
Key Words
- ARDS, Acute Respiratory Distress Syndrome
- GM-CSF, Granulocyte Macrophage Colony Stimulating Factor
- IL, interleukin
- IκB, Inhibitor of κB
- JAM-A, junctional adhesion molecule A
- LPS, lipolysaccharide
- NF-κB, nuclear factor kappa-light-chain-enhancer of activated B cells
- PBS, phosphate buffered saline
- TER, transepithelial resistance
- TNF, Tumor Necrosis Factor
- ZO, zonula occludens
- alveolus
- claudin
- lung barrier
- tight junction
Collapse
Affiliation(s)
- Christina Ward
- Pulmonary Division; Department of Medicine; Emory University School of Medicine ; Atlanta, GA USA
| | - Barbara Schlingmann
- Pulmonary Division; Department of Medicine; Emory University School of Medicine ; Atlanta, GA USA
| | - Arlene A Stecenko
- Department of Pediatrics; Emory University School of Medicine ; Atlanta, GA USA
| | - David M Guidot
- Pulmonary Division; Department of Medicine; Emory University School of Medicine ; Atlanta, GA USA
| | - Michael Koval
- Pulmonary Division; Department of Medicine; Emory University School of Medicine ; Atlanta, GA USA ; Department of Cell Biology; Emory University School of Medicine ; Atlanta, GA USA
| |
Collapse
|
12
|
Downs CA, Kreiner LH, Johnson NM, Brown LA, Helms MN. Receptor for advanced glycation end-products regulates lung fluid balance via protein kinase C-gp91(phox) signaling to epithelial sodium channels. Am J Respir Cell Mol Biol 2015; 52:75-87. [PMID: 24978055 DOI: 10.1165/rcmb.2014-0002oc] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The receptor for advanced glycation end-products (RAGE), a multiligand member of the Ig family, may play a crucial role in the regulation of lung fluid balance. We quantified soluble RAGE (sRAGE), a decoy isoform, and advanced glycation end-products (AGEs) from the bronchoalveolar lavage fluid of smokers and nonsmokers, and tested the hypothesis that AGEs regulate lung fluid balance through protein kinase C (PKC)-gp91(phox) signaling to the epithelial sodium channel (ENaC). Human bronchoalveolar lavage samples from smokers showed increased AGEs (9.02 ± 3.03 μg versus 2.48 ± 0.53 μg), lower sRAGE (1,205 ± 292 pg/ml versus 1,910 ± 263 pg/ml), and lower volume(s) of epithelial lining fluid (97 ± 14 ml versus 133 ± 17 ml). sRAGE levels did not predict ELF volumes in nonsmokers; however, in smokers, higher volumes of ELF were predicted with higher levels of sRAGE. Single-channel patch clamp analysis of rat alveolar epithelial type 1 cells showed that AGEs increased ENaC activity measured as the product of the number of channels (N) and the open probability (Po) (NPo) from 0.19 ± 0.08 to 0.83 ± 0.22 (P = 0.017) and the subsequent addition of 4-hydroxy-2, 2, 6, 6-tetramethylpiperidine-N-oxyl decreased ENaC NPo to 0.15 ± 0.07 (P = 0.01). In type 2 cells, human AGEs increased ENaC NPo from 0.12 ± 0.05 to 0.53 ± 0.16 (P = 0.025) and the addition of 4-hydroxy-2, 2, 6, 6-tetramethylpiperidine-N-oxyl decreased ENaC NPo to 0.10 ± 0.03 (P = 0.013). Using molecular and biochemical techniques, we observed that inhibition of RAGE and PKC activity attenuated AGE-induced activation of ENaC. AGEs induced phosphorylation of p47(phox) and increased gp91(phox)-dependent reactive oxygen species production, a response that was abrogated with RAGE or PKC inhibition. Finally, tracheal instillation of AGEs promoted clearance of lung fluid, whereas concomitant inhibition of RAGE, PKC, and gp91(phox) abrogated the response.
Collapse
|
13
|
Lu XY, Liu BC, Wang LH, Yang LL, Bao Q, Zhai YJ, Alli AA, Thai TL, Eaton DC, Wang WZ, Ma HP. Acute ethanol induces apoptosis by stimulating TRPC6 via elevation of superoxide in oxygenated podocytes. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1853:965-74. [PMID: 25601712 DOI: 10.1016/j.bbamcr.2015.01.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Revised: 01/07/2015] [Accepted: 01/09/2015] [Indexed: 01/06/2023]
Abstract
Our recent studies indicate that hydrogen peroxide (H2O2) only at high concentrations can cause oxidative stress in renal epithelial cells and induce apoptosis of podocytes. Consistently, the present study shows that H2O2, even at 1 mM, failed to induce intracellular oxidative stress and apoptosis of the podocytes due to efficient activity of catalase, an enzyme which degrades H2O2 to produce water and oxygen (O2). However, H2O2 acted as a source of O2 to allow acute ethanol to induce superoxide production and cause apoptosis of the podocytes. In contrast, acute ethanol alone did not elevate intracellular superoxide, even though it stimulates expression and translocation of p47phox to the plasma membrane. Inhibition of catalase abolished not only O2 production from H2O2 degradation, but also NOX2-dependent superoxide production in the podocytes challenged by both H2O2 and acute ethanol. In parallel, acute ethanol in the presence of H2O2, but neither ethanol nor H2O2 alone, stimulated transient receptor potential canonical 6 (TRPC6) channels and caused TRPC6-dependent elevation of intracellular Ca2+. These data suggest that exogenous H2O2 does not induce oxidative stress due to rapid degradation to produce O2 in the podocytes, but the oxygenated podocytes become sensitive to acute ethanol challenge and undergo apoptosis via a TRPC6-dependent elevation of intracellular Ca2+. Since cultured podocytes are considered in hypoxic conditions, H2O2 may be used as a source of O2 to establish an ischemia-reperfusion model in some type of cultured cells in which H2O2 does not directly induce intracellular oxidative stress.
Collapse
Affiliation(s)
- Xiao-Yu Lu
- Department of Neurology, the Second Affiliated Hospital of Harbin Medical University, Harbin, People's Republic of China; Department of Physiology, Emory University School of Medicine, Atlanta, GA 30322, United States
| | - Bing-Chen Liu
- Department of Physiology, Emory University School of Medicine, Atlanta, GA 30322, United States; Department of Radiology, the Fourth Affiliated Hospital of Harbin Medical University, Harbin, People's Republic of China; Department of Cardiology, the Fourth Affiliated Hospital of Harbin Medical University, Harbin, People's Republic of China
| | - Li-Hua Wang
- Department of Neurology, the Second Affiliated Hospital of Harbin Medical University, Harbin, People's Republic of China
| | - Li-Li Yang
- Department of Physiology, Emory University School of Medicine, Atlanta, GA 30322, United States; Department of Radiology, the Fourth Affiliated Hospital of Harbin Medical University, Harbin, People's Republic of China; Department of Cardiology, the Fourth Affiliated Hospital of Harbin Medical University, Harbin, People's Republic of China
| | - Qing Bao
- Department of Physiology, Emory University School of Medicine, Atlanta, GA 30322, United States
| | - Yu-Jia Zhai
- Department of Physiology, Emory University School of Medicine, Atlanta, GA 30322, United States; Department of Radiology, the Fourth Affiliated Hospital of Harbin Medical University, Harbin, People's Republic of China; Department of Cardiology, the Fourth Affiliated Hospital of Harbin Medical University, Harbin, People's Republic of China
| | - Abdel A Alli
- Department of Physiology, Emory University School of Medicine, Atlanta, GA 30322, United States
| | - Tiffany L Thai
- Department of Physiology, Emory University School of Medicine, Atlanta, GA 30322, United States
| | - Douglas C Eaton
- Department of Physiology, Emory University School of Medicine, Atlanta, GA 30322, United States
| | - Wei-Zhi Wang
- Department of Neurology, the Second Affiliated Hospital of Harbin Medical University, Harbin, People's Republic of China
| | - He-Ping Ma
- Department of Physiology, Emory University School of Medicine, Atlanta, GA 30322, United States.
| |
Collapse
|
14
|
Abstract
Oxidative stress has many implications in the pathogenesis of lung diseases. In this review, we provide an overview of Reactive Oxygen Species (ROS) and nitrogen (RNS) species and antioxidants, how they relate to normal physiological function and the pathophysiology of different lung diseases, and therapeutic strategies. The production of ROS/RNS from endogenous and exogenous sources is first discussed, followed by antioxidant systems that restore oxidative balance and cellular homeostasis. The contribution of oxidant/antioxidant imbalance in lung disease pathogenesis is also discussed. An overview of therapeutic strategies is provided, such as augmenting NO bioactivity, blocking the production of ROS/RNS and replacement of deficient antioxidants. The limitations of current strategies and failures of clinical trials are then addressed, followed by discussion of novel experimental approaches for the development of improved antioxidant therapies.
Collapse
|
15
|
Eaton AF, Yue Q, Eaton DC, Bao HF. ENaC activity and expression is decreased in the lungs of protein kinase C-α knockout mice. Am J Physiol Lung Cell Mol Physiol 2014; 307:L374-85. [PMID: 25015976 DOI: 10.1152/ajplung.00040.2014] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We used a PKC-α knockout model to investigate the regulation of alveolar epithelial Na(+) channels (ENaC) by PKC. Primary alveolar type II (ATII) cells were subjected to cell-attached patch clamp. In the absence of PKC-α, the open probability (Po) of ENaC was decreased by half compared with wild-type mice. The channel density (N) was also reduced in the knockout mice. Using in vivo biotinylation, membrane localization of all three ENaC subunits (α, β, and γ) was decreased in the PKC-α knockout lung, compared with the wild-type. Confocal microscopy of lung slices showed elevated levels of reactive oxygen species (ROS) in the lungs of the PKC-α knockout mice vs. the wild-type. High levels of ROS in the knockout lung can be explained by a decrease in both cytosolic and mitochondrial superoxide dismutase activity. Elevated levels of ROS in the knockout lung activates PKC-δ and leads to reduced dephosphorylation of ERK1/2 by MAP kinase phosphatase, which in turn causes increased internalization of ENaC via ubiquitination by the ubiquitin-ligase Nedd4-2. In addition, in the knockout lung, PKC-δ activates ERK, causing a decrease in ENaC density at the apical alveolar membrane. PKC-δ also phosphorylates MARCKS, leading to a decrease in ENaC Po. The effects of ROS and PKC-δ were confirmed with patch-clamp experiments on isolated ATII cells in which the ROS scavenger, Tempol, or a PKC-δ-specific inhibitor added to patches reversed the observed decrease in ENaC apical channel density and Po. These results explain the decrease in ENaC activity in PKC-α knockout lung.
Collapse
Affiliation(s)
- Amity F Eaton
- Department of Physiology and the Center for Cell and Molecular Signaling, Emory University School of Medicine, Atlanta, Georgia
| | - Qiang Yue
- Department of Physiology and the Center for Cell and Molecular Signaling, Emory University School of Medicine, Atlanta, Georgia
| | - Douglas C Eaton
- Department of Physiology and the Center for Cell and Molecular Signaling, Emory University School of Medicine, Atlanta, Georgia
| | - Hui-Fang Bao
- Department of Physiology and the Center for Cell and Molecular Signaling, Emory University School of Medicine, Atlanta, Georgia
| |
Collapse
|
16
|
Alli AA, Brewer EM, Montgomery DS, Ghant MS, Eaton DC, Brown LA, Helms MN. Chronic ethanol exposure alters the lung proteome and leads to mitochondrial dysfunction in alveolar type 2 cells. Am J Physiol Lung Cell Mol Physiol 2014; 306:L1026-35. [PMID: 24682449 DOI: 10.1152/ajplung.00287.2013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The lungs can undergo irreversible damage from chronic alcohol consumption. Herein, we developed an animal model predisposed for edematous lung injury following chronic ingestion of alcohol to better understand the etiology of alcohol-related disorders. Using animal modeling, alongside high-throughput proteomic and microarray assays, we identified changes in lung protein and transcript in mice and rats, respectively, following chronic alcohol ingestion or a caloric control diet. Liquid chromatography-mass spectrometry identified several mitochondrial-related proteins in which the expression was upregulated following long-term alcohol ingestion in mice. Consistent with these observations, rat gene chip microarray analysis of alveolar cells obtained from animals maintained on a Lieber-DeCarli liquid alcohol diet confirmed significant changes in mitochondrial-related transcripts in the alcohol lung. Transmission electron microscopy revealed significant changes in the mitochondrial architecture in alcohol mice, particularly following lipopolysaccharide exposure. Chronic alcohol ingestion was also shown to worsen mitochondrial respiration, mitochondrial membrane polarization, and NAD(+)-to-NADH ratios in alveolar type 2 cells. In summary, our studies show causal connection between chronic alcohol ingestion and mitochondrial dysfunction, albeit the specific role of each of the mitochondrial-related proteins and transcripts identified in our study requires additional study.
Collapse
Affiliation(s)
- Abdel A Alli
- Department of Physiology, Emory University School of Medicine, Atlanta, Georgia
| | - Elizabeth M Brewer
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia; and
| | | | - Marcus S Ghant
- Department of Biological Sciences, Clark Atlanta University, Atlanta, Georgia
| | - Douglas C Eaton
- Department of Physiology, Emory University School of Medicine, Atlanta, Georgia; Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia; and
| | - Lou Ann Brown
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia; and
| | - My N Helms
- Department of Physiology, Emory University School of Medicine, Atlanta, Georgia; Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia; and
| |
Collapse
|
17
|
Abstract
NADPH oxidase5 (Nox5) is a novel Nox isoform which has recently been recognized as having important roles in the pathogenesis of coronary artery disease, acute myocardial infarction, fetal ventricular septal defect and cancer. The activity of Nox5 and production of reactive oxygen species is regulated by intracellular calcium levels and phosphorylation. However, the kinases that phosphorylate Nox5 remain poorly understood. Previous studies have shown that the phosphorylation of Nox5 is PKC dependent, but this contention was based on the use of pharmacological inhibitors and the isoforms of PKC involved remain unknown. Thus, the major goals of this study were to determine whether PKC can directly regulate Nox5 phosphorylation and activity, to identify which isoforms are involved in the process, and to understand the functional significance of this pathway in disease. We found that a relatively specific PKCα inhibitor, Ro-32-0432, dose-dependently inhibited PMA-induced superoxide production from Nox5. PMA-stimulated Nox5 activity was significantly reduced in cells with genetic silencing of PKCα and PKCε, enhanced by loss of PKCδ and the silencing of PKCθ expression was without effect. A constitutively active form of PKCα robustly increased basal and PMA-stimulated Nox5 activity and promoted the phosphorylation of Nox5 on Ser490, Thr494, and Ser498. In contrast, constitutively active PKCε potently inhibited both basal and PMA-dependent Nox5 activity. Co-IP and in vitro kinase assay experiments demonstrated that PKCα directly binds to Nox5 and modifies Nox5 phosphorylation and activity. Exposure of endothelial cells to high glucose significantly increased PKCα activation, and enhanced Nox5 derived superoxide in a manner that was in prevented by a PKCα inhibitor, Go 6976. In summary, our study reveals that PKCα is the primary isoform mediating the activation of Nox5 and this maybe of significance in our understanding of the vascular complications of diabetes and other diseases with increased ROS production.
Collapse
|
18
|
TGF-β directs trafficking of the epithelial sodium channel ENaC which has implications for ion and fluid transport in acute lung injury. Proc Natl Acad Sci U S A 2013; 111:E374-83. [PMID: 24324142 DOI: 10.1073/pnas.1306798111] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
TGF-β is a pathogenic factor in patients with acute respiratory distress syndrome (ARDS), a condition characterized by alveolar edema. A unique TGF-β pathway is described, which rapidly promoted internalization of the αβγ epithelial sodium channel (ENaC) complex from the alveolar epithelial cell surface, leading to persistence of pulmonary edema. TGF-β applied to the alveolar airspaces of live rabbits or isolated rabbit lungs blocked sodium transport and caused fluid retention, which--together with patch-clamp and flow cytometry studies--identified ENaC as the target of TGF-β. TGF-β rapidly and sequentially activated phospholipase D1, phosphatidylinositol-4-phosphate 5-kinase 1α, and NADPH oxidase 4 (NOX4) to produce reactive oxygen species, driving internalization of βENaC, the subunit responsible for cell-surface stability of the αβγENaC complex. ENaC internalization was dependent on oxidation of βENaC Cys(43). Treatment of alveolar epithelial cells with bronchoalveolar lavage fluids from ARDS patients drove βENaC internalization, which was inhibited by a TGF-β neutralizing antibody and a Tgfbr1 inhibitor. Pharmacological inhibition of TGF-β signaling in vivo in mice, and genetic ablation of the nox4 gene in mice, protected against perturbed lung fluid balance in a bleomycin model of lung injury, highlighting a role for both proximal and distal components of this unique ENaC regulatory pathway in lung fluid balance. These data describe a unique TGF-β-dependent mechanism that regulates ion and fluid transport in the lung, which is not only relevant to the pathological mechanisms of ARDS, but might also represent a physiological means of acutely regulating ENaC activity in the lung and other organs.
Collapse
|
19
|
Downs CA, Kreiner LH, Trac DQ, Helms MN. Acute effects of cigarette smoke extract on alveolar epithelial sodium channel activity and lung fluid clearance. Am J Respir Cell Mol Biol 2013; 49:251-9. [PMID: 23526224 DOI: 10.1165/rcmb.2012-0234oc] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Cigarette smoke contains high levels of reactive species. Moreover, cigarette smoke can induce cellular production of oxidants. The purpose of this study was to determine the effect of cigarette smoke extract (CSE)-derived oxidants on epithelial sodium channel (ENaC) activity in alveolar type 1 (T1) and type 2 (T2) cells and to measure corresponding rates of fluid clearance in mice receiving a tracheal instillation of CSE. Single-channel patch clamp analysis of T1 and T2 cells demonstrate that CSE exposure increases ENaC activity (NPo), measured as the product of the number of channels (N) and a channels open probability (Po), from 0.17 ± 0.07 to 0.34 ± 0.10 (n = 9; P = 0.04) in T1 cells. In T2 cells, CSE increased NPo from 0.08 ± 0.03 to 0.35 ± 0.10 (n = 9; P = 0.02). In both cell types, addition of tetramethylpiperidine and glutathione attenuated CSE-induced increases in ENaC NPo. Biotinylation and cycloheximide chase assays indicate that CSE-derived ROS increases channel activity, in part, by maintaining cell surface expression of the α-ENaC subunit. In vivo studies show that tracheal instillation of CSE promoted alveolar fluid clearance after 105 minutes compared with vehicle control (n = 10/group; P < 0.05).
Collapse
Affiliation(s)
- Charles A Downs
- Nell Hodgson Woodruff School of Nursing, School of Medicine, Emory University, Atlanta, GA 30322, USA
| | | | | | | |
Collapse
|
20
|
Abstract
Ion channels perform a variety of cellular functions in lung epithelia. Oxidant- and antioxidant-mediated mechanisms (that is, redox regulation) of ion channels are areas of intense research. Significant progress has been made in our understanding of redox regulation of ion channels since the last Experimental Biology report in 2003. Advancements include: 1) identification of nonphagocytic NADPH oxidases as sources of regulated reactive species (RS) production in epithelia, 2) an understanding that excessive treatment with antioxidants can result in greater oxidative stress, and 3) characterization of novel RS signaling pathways that converge upon ion channel regulation. These advancements, as discussed at the 2013 Experimental Biology Meeting in Boston, MA, impact our understanding of oxidative stress in the lung, and, in particular, illustrate that the redox state has profound effects on ion channel and cellular function.
Collapse
|
21
|
Abstract
The distal airways are covered with a heterogeneous layer of cells known as the alveolar epithelium. Alveolar epithelial cells provide the major barrier between the airspace and fluid filled tissue compartments. As such, regulation of the alveolar epithelium is critical to maintain a healthy lung and for optimal gas exchange. In this chapter, we discuss functional roles for alveolar epithelial cells with particular emphasis on intercellular junctions and communication. As a thin layer of cells directly exposed to atmospheric oxygen, alveoli are particularly sensitive to oxidant insults. Alcohol significantly diminishes the normal antioxidant reserves of the alveolar epithelium, thereby rendering it sensitized for an exaggerated damage response to acute and chronic injuries. The effects of alcohol on alveolar epithelia are discussed along with open questions and potential therapeutic targets to prevent the pathophysiology of alcoholic lung disease.
Collapse
|