1
|
Mi Y, Jiang P, Luan J, Feng L, Zhang D, Gao X. Peptide‑based therapeutic strategies for glioma: Current state and prospects. Peptides 2025; 185:171354. [PMID: 39922284 DOI: 10.1016/j.peptides.2025.171354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 01/21/2025] [Accepted: 02/03/2025] [Indexed: 02/10/2025]
Abstract
Glioma is a prevalent form of primary malignant central nervous system tumor, characterized by its cellular invasiveness, rapid growth, and the presence of the blood-brain barrier (BBB)/blood-brain tumor barrier (BBTB). Current therapeutic approaches, such as chemotherapy and radiotherapy, have shown limited efficacy in achieving significant antitumor effects. Therefore, there is an urgent demand for new treatments. Therapeutic peptides represent an innovative class of pharmaceutical agents with lower immunogenicity and toxicity. They are easily modifiable via chemical means and possess deep tissue penetration capabilities which reduce side effects and drug resistance. These unique pharmacokinetic characteristics make peptides a rapidly growing class of new therapeutics that have demonstrated significant progress in glioma treatment. This review outlines the efforts and accomplishments in peptide-based therapeutic strategies for glioma. These therapeutic peptides can be classified into four types based on their anti-tumor function: tumor-homing peptides, inhibitor/antagonist peptides targeting cell surface receptors, interference peptides, and peptide vaccines. Furthermore, we briefly summarize the results from clinical trials of therapeutic peptides in glioma, which shows that peptide-based therapeutic strategies exhibit great potential as multifunctional players in glioma therapy.
Collapse
Affiliation(s)
- Yajing Mi
- Institute of Basic Medical Sciences, School of Basic Medical Science, Xi'an Medical University, Xi'an, China; Shaanxi Key Laboratory of Brain Disorders, School of Basic Medical Science, Xi'an Medical University, Xi'an, China
| | - Pengtao Jiang
- Institute of Basic Medical Sciences, School of Basic Medical Science, Xi'an Medical University, Xi'an, China
| | - Jing Luan
- Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, Shaanxi, China
| | - Lin Feng
- Institute of Basic Medical Sciences, School of Basic Medical Science, Xi'an Medical University, Xi'an, China
| | - Dian Zhang
- Institute of Basic Medical Sciences, School of Basic Medical Science, Xi'an Medical University, Xi'an, China
| | - Xingchun Gao
- Institute of Basic Medical Sciences, School of Basic Medical Science, Xi'an Medical University, Xi'an, China; Shaanxi Key Laboratory of Brain Disorders, School of Basic Medical Science, Xi'an Medical University, Xi'an, China.
| |
Collapse
|
2
|
Pavlova S, Fab L, Dzarieva F, Ryabova A, Revishchin A, Panteleev D, Antipova O, Usachev D, Kopylov A, Pavlova G. Unite and Conquer: Association of Two G-Quadruplex Aptamers Provides Antiproliferative and Antimigration Activity for Cells from High-Grade Glioma Patients. Pharmaceuticals (Basel) 2024; 17:1435. [PMID: 39598347 PMCID: PMC11597096 DOI: 10.3390/ph17111435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 10/23/2024] [Accepted: 10/24/2024] [Indexed: 11/29/2024] Open
Abstract
Background: High-grade gliomas remain a virtually incurable form of brain cancer. Current therapies are unable to completely eradicate the tumor, and the tumor cells that survive chemotherapy or radiation therapy often become more aggressive and resistant to further treatment, leading to inevitable relapses. While the antiproliferative effects of new therapeutic molecules are typically the primary focus of research, less attention is given to their influence on tumor cell migratory activity, which can play a significant role in recurrence. A potential solution may lie in the synergistic effects of multiple drugs on the tumor. Objectives: In this study, we investigated the effect of combined exposure to bi-(AID-1-T), an anti-proliferative aptamer, and its analog bi-(AID-1-C), on the migratory activity of human GBM cells. Results: We examined the effects of various sequences of adding bi-(AID-1-T) and bi-(AID-1-C) on five human GBM cell cultures. Our findings indicate that certain sequences significantly reduced the ability of tumor cells to migrate and proliferate. Additionally, the expression of Nestin, PARP1, L1CAM, Caveolin-1, and c-Myc was downregulated in human GBM cells that survived exposure, suggesting that the treatment had a persistent antitumor effect on these cells.
Collapse
Affiliation(s)
- Svetlana Pavlova
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 117485 Moscow, Russia
- Institution N. N. Burdenko National Medical Research Center of Neurosurgery of the Ministry of Health of the Russian Federation, 125047 Moscow, Russia
| | - Lika Fab
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 117485 Moscow, Russia
| | - Fatima Dzarieva
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 117485 Moscow, Russia
- Institution N. N. Burdenko National Medical Research Center of Neurosurgery of the Ministry of Health of the Russian Federation, 125047 Moscow, Russia
| | - Anastasia Ryabova
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 119991 Moscow, Russia
| | - Alexander Revishchin
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 117485 Moscow, Russia
| | - Dmitriy Panteleev
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 117485 Moscow, Russia
| | - Olga Antipova
- Institution N. N. Burdenko National Medical Research Center of Neurosurgery of the Ministry of Health of the Russian Federation, 125047 Moscow, Russia
- Belozersky Research Institute of Physical Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Dmitry Usachev
- Institution N. N. Burdenko National Medical Research Center of Neurosurgery of the Ministry of Health of the Russian Federation, 125047 Moscow, Russia
| | - Alexey Kopylov
- Institution N. N. Burdenko National Medical Research Center of Neurosurgery of the Ministry of Health of the Russian Federation, 125047 Moscow, Russia
- Belozersky Research Institute of Physical Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Galina Pavlova
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 117485 Moscow, Russia
- Institution N. N. Burdenko National Medical Research Center of Neurosurgery of the Ministry of Health of the Russian Federation, 125047 Moscow, Russia
| |
Collapse
|
3
|
Bauso LV, La Fauci V, Munaò S, Bonfiglio D, Armeli A, Maimone N, Longo C, Calabrese G. Biological Activity of Natural and Synthetic Peptides as Anticancer Agents. Int J Mol Sci 2024; 25:7264. [PMID: 39000371 PMCID: PMC11242495 DOI: 10.3390/ijms25137264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 06/25/2024] [Accepted: 06/28/2024] [Indexed: 07/16/2024] Open
Abstract
Cancer is one of the leading causes of morbidity and death worldwide, making it a serious global health concern. Chemotherapy, radiotherapy, and surgical treatment are the most used conventional therapeutic approaches, although they show several side effects that limit their effectiveness. For these reasons, the discovery of new effective alternative therapies still represents an enormous challenge for the treatment of tumour diseases. Recently, anticancer peptides (ACPs) have gained attention for cancer diagnosis and treatment. ACPs are small bioactive molecules which selectively induce cancer cell death through a variety of mechanisms such as apoptosis, membrane disruption, DNA damage, immunomodulation, as well as inhibition of angiogenesis, cell survival, and proliferation pathways. ACPs can also be employed for the targeted delivery of drugs into cancer cells. With over 1000 clinical trials using ACPs, their potential for application in cancer therapy seems promising. Peptides can also be utilized in conjunction with imaging agents and molecular imaging methods, such as MRI, PET, CT, and NIR, improving the detection and the classification of cancer, and monitoring the treatment response. In this review we will provide an overview of the biological activity of some natural and synthetic peptides for the treatment of the most common and malignant tumours affecting people around the world.
Collapse
Affiliation(s)
- Luana Vittoria Bauso
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres, 31, 98168 Messina, Italy
| | - Valeria La Fauci
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres, 31, 98168 Messina, Italy
| | - Serena Munaò
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres, 31, 98168 Messina, Italy
| | - Desirèe Bonfiglio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres, 31, 98168 Messina, Italy
| | - Alessandra Armeli
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres, 31, 98168 Messina, Italy
| | - Noemi Maimone
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres, 31, 98168 Messina, Italy
| | - Clelia Longo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres, 31, 98168 Messina, Italy
| | - Giovanna Calabrese
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres, 31, 98168 Messina, Italy
| |
Collapse
|
4
|
Ali BH, Khoee S, Mafakheri F, Sadri E, Mahabadi VP, Karimi MR, Shirvalilou S, Khoei S. Active targeted delivery of theranostic thermo/pH dual-responsive magnetic Janus nanoparticles functionalized with folic acid/fluorescein ligands for enhanced DOX combination therapy of rat glioblastoma. J Mater Chem B 2024; 12:5957-5973. [PMID: 38808630 DOI: 10.1039/d3tb02429f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
Doxorubicin (DOX), a chemotherapy drug, has demonstrated limited efficacy against glioblastoma, an aggressive brain tumor with resistance attributed to the blood-brain barrier (BBB). This study aims to overcome this challenge by proposing the targeted delivery of magnetic Janus nanoparticles (MJNPs) functionalized with folic acid ligands, fluorescent dye, and doxorubicin (DOX/MJNPs-FLA). The properties of these nanoparticles were comprehensively evaluated using bio-physiochemical techniques such as Fourier transform infrared (FTIR) spectroscopy, dynamic light scattering (DLS), zeta potential analysis, high-resolution transmission electron microscopy (HR-TEM), vibrating sample magnetometry (VSM), fluorescence microscopy, MTT assay, hemolysis assay, and liver enzyme level evaluation. Dual-controlled DOX release was investigated under different pH and temperature conditions. Additionally, the impact of DOX/MJNPs-FLA on apoptosis induction in tumor cells, body weight, and survival time of cancerous animals was assessed. The targeted delivery system was assessed using C6 and OLN-93 cell lines as representatives of cancerous and healthy cell lines, respectively, alongside Wistar rat tumor-bearing models. Results from Prussian blue staining and confocal microscopy tests demonstrated the effective targeted internalization of MJNPs-FLA by glioblastoma cells. Additionally, we investigated the biodistribution of the nanoparticles utilizing fluorescence imaging techniques. This enabled us to track the distribution pattern of MJNPs-FLA in vivo, shedding light on their movement and accumulation within the biological system. Furthermore, the combination of chemotherapy and magnetic hyperthermia exhibited enhanced efficacy in inducing apoptosis, as evidenced by the increase of the pro-apoptotic Bax gene and a decrease in the anti-apoptotic Bcl-2 gene. Remarkably, this combination treatment did not cause any hepatotoxicity. This study highlights the potential of DOX/MJNPs-FLA as carriers for therapeutic and diagnostic agents in the context of theranostic applications for the treatment of brain malignancies. Additionally, it demonstrates the promising performance of DOX/MJNPs-FLA in combination treatment through passive and active targeting.
Collapse
Affiliation(s)
- Bahareh Haji Ali
- Finetech in Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran.
- Department of Medical Physics, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Sepideh Khoee
- Department of Polymer Chemistry, School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | - Fariba Mafakheri
- Department of Polymer Chemistry, School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | - Elahe Sadri
- Département de Biologie Médicale, Université du Québec à Trois-Rivières, Trois-Rivières, Canada
| | | | - Mohammad Reza Karimi
- Department of Polymer Chemistry, School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | - Sakine Shirvalilou
- Finetech in Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran.
- Department of Medical Physics, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Samideh Khoei
- Finetech in Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran.
- Department of Medical Physics, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
5
|
Beeton K, Mitra D, Akinleye AA, Howell JA, Yu CS, Bidwell GL, Tandon R. An Elastin-like Polypeptide-fusion peptide targeting capsid-tegument interface as an antiviral against cytomegalovirus infection. Sci Rep 2024; 14:10253. [PMID: 38704431 PMCID: PMC11069587 DOI: 10.1038/s41598-024-60691-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 04/26/2024] [Indexed: 05/06/2024] Open
Abstract
The tegument protein pp150 of Human Cytomegalovirus (HCMV) is known to be essential for the final stages of virus maturation and mediates its functions by interacting with capsid proteins. Our laboratory has previously identified the critical regions in pp150 important for pp150-capsid interactions and designed peptides similar in sequence to these regions, with a goal to competitively inhibit capsid maturation. Treatment with a specific peptide (PepCR2 or P10) targeted to pp150 conserved region 2 led to a significant reduction in murine CMV (MCMV) growth in cell culture, paving the way for in vivo testing in a mouse model of CMV infection. However, the general pharmacokinetic parameters of peptides, including rapid degradation and limited tissue and cell membrane permeability, pose a challenge to their successful use in vivo. Therefore, we designed a biopolymer-stabilized elastin-like polypeptide (ELP) fusion construct (ELP-P10) to enhance the bioavailability of P10. Antiviral efficacy and cytotoxic effects of ELP-P10 were studied in cell culture, and pharmacokinetics, biodistribution, and antiviral efficacy were studied in a mouse model of CMV infection. ELP-P10 maintained significant antiviral activity in cell culture, and this conjugation significantly enhanced P10 bioavailability in mouse tissues. The fluorescently labeled ELP-P10 accumulated to higher levels in mouse liver and kidneys as compared to the unconjugated P10. Moreover, viral titers from vital organs of MCMV-infected mice indicated a significant reduction of virus load upon ELP-P10 treatment. Therefore, ELP-P10 has the potential to be developed into an effective antiviral against CMV infection.
Collapse
Affiliation(s)
- Komal Beeton
- Department of Cell and Molecular Biology, Center for Immunology and Microbial Research, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS, 39216, USA
| | - Dipanwita Mitra
- Department of Cell and Molecular Biology, Center for Immunology and Microbial Research, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS, 39216, USA
| | - Adesanya A Akinleye
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS, 39216, USA
| | - John A Howell
- Department of Neurology, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS, 39216, USA
| | - Christian S Yu
- Department of Cell and Molecular Biology, Center for Immunology and Microbial Research, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS, 39216, USA
| | - Gene L Bidwell
- Department of Cell and Molecular Biology, Center for Immunology and Microbial Research, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS, 39216, USA
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS, 39216, USA
- Department of Neurology, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS, 39216, USA
| | - Ritesh Tandon
- Department of Cell and Molecular Biology, Center for Immunology and Microbial Research, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS, 39216, USA.
- Office of Research Infrastructure Programs, National Institute of Health, 6701 Democracy Blvd., Bethesda, MD, 20892, USA.
| |
Collapse
|
6
|
Trejo-Solís C, Castillo-Rodríguez RA, Serrano-García N, Silva-Adaya D, Vargas-Cruz S, Chávez-Cortéz EG, Gallardo-Pérez JC, Zavala-Vega S, Cruz-Salgado A, Magaña-Maldonado R. Metabolic Roles of HIF1, c-Myc, and p53 in Glioma Cells. Metabolites 2024; 14:249. [PMID: 38786726 PMCID: PMC11122955 DOI: 10.3390/metabo14050249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 04/18/2024] [Accepted: 04/20/2024] [Indexed: 05/25/2024] Open
Abstract
The metabolic reprogramming that promotes tumorigenesis in glioblastoma is induced by dynamic alterations in the hypoxic tumor microenvironment, as well as in transcriptional and signaling networks, which result in changes in global genetic expression. The signaling pathways PI3K/AKT/mTOR and RAS/RAF/MEK/ERK stimulate cell metabolism, either directly or indirectly, by modulating the transcriptional factors p53, HIF1, and c-Myc. The overexpression of HIF1 and c-Myc, master regulators of cellular metabolism, is a key contributor to the synthesis of bioenergetic molecules that mediate glioma cell transformation, proliferation, survival, migration, and invasion by modifying the transcription levels of key gene groups involved in metabolism. Meanwhile, the tumor-suppressing protein p53, which negatively regulates HIF1 and c-Myc, is often lost in glioblastoma. Alterations in this triad of transcriptional factors induce a metabolic shift in glioma cells that allows them to adapt and survive changes such as mutations, hypoxia, acidosis, the presence of reactive oxygen species, and nutrient deprivation, by modulating the activity and expression of signaling molecules, enzymes, metabolites, transporters, and regulators involved in glycolysis and glutamine metabolism, the pentose phosphate cycle, the tricarboxylic acid cycle, and oxidative phosphorylation, as well as the synthesis and degradation of fatty acids and nucleic acids. This review summarizes our current knowledge on the role of HIF1, c-Myc, and p53 in the genic regulatory network for metabolism in glioma cells, as well as potential therapeutic inhibitors of these factors.
Collapse
Affiliation(s)
- Cristina Trejo-Solís
- Laboratorio Experimental de Enfermedades Neurodegenerativas, Departamento de Neurofisiología, Laboratorio Clínico y Banco de Sangre y Laboratorio de Reprogramación Celular, Instituto Nacional de Neurología y Neurocirugía, Ciudad de Mexico 14269, Mexico; (N.S.-G.); (D.S.-A.); (S.Z.-V.)
| | | | - Norma Serrano-García
- Laboratorio Experimental de Enfermedades Neurodegenerativas, Departamento de Neurofisiología, Laboratorio Clínico y Banco de Sangre y Laboratorio de Reprogramación Celular, Instituto Nacional de Neurología y Neurocirugía, Ciudad de Mexico 14269, Mexico; (N.S.-G.); (D.S.-A.); (S.Z.-V.)
| | - Daniela Silva-Adaya
- Laboratorio Experimental de Enfermedades Neurodegenerativas, Departamento de Neurofisiología, Laboratorio Clínico y Banco de Sangre y Laboratorio de Reprogramación Celular, Instituto Nacional de Neurología y Neurocirugía, Ciudad de Mexico 14269, Mexico; (N.S.-G.); (D.S.-A.); (S.Z.-V.)
- Centro de Investigación Sobre el Envejecimiento, Centro de Investigación y de Estudios Avanzados (CIE-CINVESTAV), Ciudad de Mexico 14330, Mexico
| | - Salvador Vargas-Cruz
- Departamento de Cirugía, Hospital Ángeles del Pedregal, Camino a Sta. Teresa, Ciudad de Mexico 10700, Mexico;
| | | | - Juan Carlos Gallardo-Pérez
- Departamento de Fisiopatología Cardio-Renal, Departamento de Bioquímica, Instituto Nacional de Cardiología, Ciudad de Mexico 14080, Mexico;
| | - Sergio Zavala-Vega
- Laboratorio Experimental de Enfermedades Neurodegenerativas, Departamento de Neurofisiología, Laboratorio Clínico y Banco de Sangre y Laboratorio de Reprogramación Celular, Instituto Nacional de Neurología y Neurocirugía, Ciudad de Mexico 14269, Mexico; (N.S.-G.); (D.S.-A.); (S.Z.-V.)
| | - Arturo Cruz-Salgado
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca 62100, Mexico;
| | - Roxana Magaña-Maldonado
- Laboratorio Experimental de Enfermedades Neurodegenerativas, Departamento de Neurofisiología, Laboratorio Clínico y Banco de Sangre y Laboratorio de Reprogramación Celular, Instituto Nacional de Neurología y Neurocirugía, Ciudad de Mexico 14269, Mexico; (N.S.-G.); (D.S.-A.); (S.Z.-V.)
| |
Collapse
|
7
|
Papadimitropoulou A, Makri M, Zoidis G. MYC the oncogene from hell: Novel opportunities for cancer therapy. Eur J Med Chem 2024; 267:116194. [PMID: 38340508 DOI: 10.1016/j.ejmech.2024.116194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/24/2024] [Accepted: 01/25/2024] [Indexed: 02/12/2024]
Abstract
Cancer comprises a heterogeneous disease, characterized by diverse features such as constitutive expression of oncogenes and/or downregulation of tumor suppressor genes. MYC constitutes a master transcriptional regulator, involved in many cellular functions and is aberrantly expressed in more than 70 % of human cancers. The Myc protein belongs to a family of transcription factors whose structural pattern is referred to as basic helix-loop-helix-leucine zipper. Myc binds to its partner, a smaller protein called Max, forming an Myc:Max heterodimeric complex that interacts with specific DNA recognition sequences (E-boxes) and regulates the expression of downstream target genes. Myc protein plays a fundamental role for the life of a cell, as it is involved in many physiological functions such as proliferation, growth and development since it controls the expression of a very large percentage of genes (∼15 %). However, despite the strict control of MYC expression in normal cells, MYC is often deregulated in cancer, exhibiting a key role in stimulating oncogenic process affecting features such as aberrant proliferation, differentiation, angiogenesis, genomic instability and oncogenic transformation. In this review we aim to meticulously describe the fundamental role of MYC in tumorigenesis and highlight its importance as an anticancer drug target. We focus mainly on the different categories of novel small molecules that act as inhibitors of Myc function in diverse ways hence offering great opportunities for an efficient cancer therapy. This knowledge will provide significant information for the development of novel Myc inhibitors and assist to the design of treatments that would effectively act against Myc-dependent cancers.
Collapse
Affiliation(s)
- Adriana Papadimitropoulou
- Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens, 11527, Greece
| | - Maria Makri
- Division of Pharmaceutical Chemistry, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis-Zografou, GR-15771, Athens, Greece
| | - Grigoris Zoidis
- Division of Pharmaceutical Chemistry, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis-Zografou, GR-15771, Athens, Greece.
| |
Collapse
|
8
|
Howell JA, Gaouette N, Lopez M, Burke SP, Perkins E, Bidwell GL. Elastin-like polypeptide delivery of anti-inflammatory peptides to the brain following ischemic stroke. FASEB J 2023; 37:e23077. [PMID: 37402128 PMCID: PMC10349587 DOI: 10.1096/fj.202300309rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 06/15/2023] [Accepted: 06/22/2023] [Indexed: 07/05/2023]
Abstract
Inflammatory processes are activated following ischemic stroke that lead to increased tissue damage for weeks following the ischemic insult, but there are no approved therapies that target this inflammation-induced secondary injury. Here, we report that SynB1-ELP-p50i, a novel protein inhibitor of the nuclear factor kappa B (NF-κB) inflammatory cascade bound to the drug carrier elastin-like polypeptide (ELP), decreases NF-κB induced inflammatory cytokine production in cultured macrophages, crosses the plasma membrane and accumulates in the cytoplasm of both neurons and microglia in vitro, and accumulates at the infarct site where the blood-brain barrier (BBB) is compromised following middle cerebral artery occlusion (MCAO) in rats. Additionally, SynB1-ELP-p50i treatment reduces infarct volume by 11.86% compared to saline-treated controls 24 h following MCAO. Longitudinally, SynB1-ELP-p50i treatment improves survival for 14 days following stroke with no effects of toxicity or peripheral organ dysfunction. These results show high potential for ELP-delivered biologics for therapy of ischemic stroke and other central nervous system disorders and further support targeting inflammation in ischemic stroke.
Collapse
Affiliation(s)
- John Aaron Howell
- Graduate Program in Neuroscience, University of Mississippi Medical Center, Jackson, MS 39216
- Department of Neurology, University of Mississippi Medical Center, Jackson, MS 39216
| | - Nicholas Gaouette
- School of Medicine, University of Mississippi Medical Center, Jackson, MS 39216
| | - Mariper Lopez
- Department of Neurology, University of Mississippi Medical Center, Jackson, MS 39216
| | - Stephen P. Burke
- Department of Neurology, University of Mississippi Medical Center, Jackson, MS 39216
| | - Eddie Perkins
- Department of Neurosurgery, University of Mississippi Medical Center, Jackson, MS 39216
| | - Gene L. Bidwell
- Department of Neurology, University of Mississippi Medical Center, Jackson, MS 39216
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, MS 39216
- Department of Pharmacology and Toxicology University of Mississippi Medical Center, Jackson, MS 39216
| |
Collapse
|
9
|
Dhungel L, Harris C, Romine L, Sarkaria J, Raucher D. Targeted c-Myc Inhibition and Systemic Temozolomide Therapy Extend Survival in Glioblastoma Xenografts. Bioengineering (Basel) 2023; 10:718. [PMID: 37370649 DOI: 10.3390/bioengineering10060718] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 05/26/2023] [Accepted: 06/11/2023] [Indexed: 06/29/2023] Open
Abstract
Glioblastoma is a highly aggressive disease with poor patient outcomes despite current treatment options, which consist of surgery, radiation, and chemotherapy. However, these strategies present challenges such as resistance development, damage to healthy tissue, and complications due to the blood-brain barrier. There is therefore a critical need for new treatment modalities that can selectively target tumor cells, minimize resistance development, and improve patient survival. Temozolomide is the current standard chemotherapeutic agent for glioblastoma, yet its use is hindered by drug resistance and severe side effects. Combination therapy using multiple drugs acting synergistically to kill cancer cells and with multiple targets can provide increased efficacy at lower drug concentrations and reduce side effects. In our previous work, we designed a therapeutic peptide (Bac-ELP1-H1) targeting the c-myc oncogene and demonstrated its ability to reduce tumor size, delay neurological deficits, and improve survival in a rat glioblastoma model. In this study, we expanded our research to the U87 glioblastoma cell line and investigated the efficacy of Bac-ELP1-H1/hyperthermia treatment, as well as the combination treatment of temozolomide and Bac-ELP1-H1, in suppressing tumor growth and extending survival in athymic mice. Our experiments revealed that the combination treatment of Bac-ELP1-H1 and temozolomide acted synergistically to enhance survival in mice and was more effective in reducing tumor progression than the single components. Additionally, our study demonstrated the effectiveness of hyperthermia in facilitating the accumulation of the Bac-ELP1-H1 protein at the tumor site. Our findings suggest that the combination of targeted c-myc inhibitory biopolymer with systemic temozolomide therapy may represent a promising alternative treatment option for glioblastoma patients.
Collapse
Affiliation(s)
- Laxmi Dhungel
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 39216, USA
| | - Cayla Harris
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 39216, USA
| | - Lauren Romine
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 39216, USA
| | - Jan Sarkaria
- Division of Radiation Oncology, Mayo Clinic and Foundation, 200 First Street, SW, Rochester, MN 55905, USA
| | - Drazen Raucher
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 39216, USA
| |
Collapse
|
10
|
Vadevoo SMP, Gurung S, Lee HS, Gunassekaran GR, Lee SM, Yoon JW, Lee YK, Lee B. Peptides as multifunctional players in cancer therapy. Exp Mol Med 2023; 55:1099-1109. [PMID: 37258584 PMCID: PMC10318096 DOI: 10.1038/s12276-023-01016-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 03/21/2023] [Accepted: 03/24/2023] [Indexed: 06/02/2023] Open
Abstract
Peptides exhibit lower affinity and a shorter half-life in the body than antibodies. Conversely, peptides demonstrate higher efficiency in tissue penetration and cell internalization than antibodies. Regardless of the pros and cons of peptides, they have been used as tumor-homing ligands for delivering carriers (such as nanoparticles, extracellular vesicles, and cells) and cargoes (such as cytotoxic peptides and radioisotopes) to tumors. Additionally, tumor-homing peptides have been conjugated with cargoes such as small-molecule or chemotherapeutic drugs via linkers to synthesize peptide-drug conjugates. In addition, peptides selectively bind to cell surface receptors and proteins, such as immune checkpoints, receptor kinases, and hormone receptors, subsequently blocking their biological activity or serving as hormone analogs. Furthermore, peptides internalized into cells bind to intracellular proteins and interfere with protein-protein interactions. Thus, peptides demonstrate great application potential as multifunctional players in cancer therapy.
Collapse
Affiliation(s)
- Sri Murugan Poongkavithai Vadevoo
- Department of Biochemistry and Cell Biology, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu, 41944, Republic of Korea
- Department of Biomedical Science, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu, 41944, Republic of Korea
- Cell & Matrix Research Institute, School of Medicine, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu, 41944, Republic of Korea
| | - Smriti Gurung
- Department of Biochemistry and Cell Biology, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu, 41944, Republic of Korea
- Department of Biomedical Science, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu, 41944, Republic of Korea
- Cell & Matrix Research Institute, School of Medicine, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu, 41944, Republic of Korea
| | - Hyun-Su Lee
- Department of Physiology, Daegu Catholic University School of Medicine, 33 Duryugongwon-ro 17-gil, Nam-gu, Daegu, 42472, Republic of Korea
| | - Gowri Rangaswamy Gunassekaran
- Department of Biochemistry and Cell Biology, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu, 41944, Republic of Korea
- Department of Biomedical Science, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu, 41944, Republic of Korea
- Cell & Matrix Research Institute, School of Medicine, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu, 41944, Republic of Korea
| | - Seok-Min Lee
- Department of Biochemistry and Cell Biology, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu, 41944, Republic of Korea
- Department of Biomedical Science, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu, 41944, Republic of Korea
- Cell & Matrix Research Institute, School of Medicine, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu, 41944, Republic of Korea
| | - Jae-Won Yoon
- Department of Biochemistry and Cell Biology, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu, 41944, Republic of Korea
- Department of Biomedical Science, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu, 41944, Republic of Korea
- Cell & Matrix Research Institute, School of Medicine, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu, 41944, Republic of Korea
| | - Yun-Ki Lee
- Department of Biochemistry and Cell Biology, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu, 41944, Republic of Korea
- Department of Biomedical Science, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu, 41944, Republic of Korea
- Cell & Matrix Research Institute, School of Medicine, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu, 41944, Republic of Korea
| | - Byungheon Lee
- Department of Biochemistry and Cell Biology, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu, 41944, Republic of Korea.
- Department of Biomedical Science, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu, 41944, Republic of Korea.
- Cell & Matrix Research Institute, School of Medicine, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu, 41944, Republic of Korea.
| |
Collapse
|
11
|
Ji Y, Liu D, Zhu H, Bao L, Chang R, Gao X, Yin J. Unstructured Polypeptides as a Versatile Drug Delivery Technology. Acta Biomater 2023; 164:74-93. [PMID: 37075961 DOI: 10.1016/j.actbio.2023.04.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/23/2023] [Accepted: 04/13/2023] [Indexed: 04/21/2023]
Abstract
Although polyethylene glycol (PEG), or "PEGylation" has become a widely applied approach for improving the efficiency of drug delivery, the immunogenicity and non-biodegradability of this synthetic polymer have prompted an evident need for alternatives. To overcome these caveats and to mimic PEG -or other natural or synthetic polymers- for the purpose of drug half-life extension, unstructured polypeptides are designed. Due to their tunable length, biodegradability, low immunogenicity and easy production, unstructured polypeptides have the potential to replace PEG as the preferred technology for therapeutic protein/peptide delivery. This review provides an overview of the evolution of unstructured polypeptides, starting from natural polypeptides to engineered polypeptides and discusses their characteristics. Then, it is described that unstructured polypeptides have been successfully applied to numerous drugs, including peptides, proteins, antibody fragments, and nanocarriers, for half-life extension. Innovative applications of unstructured peptides as releasable masks, multimolecular adaptors and intracellular delivery carriers are also discussed. Finally, challenges and future perspectives of this promising field are briefly presented. STATEMENT OF SIGNIFICANCE: : Polypeptide fusion technology simulating PEGylation has become an important topic for the development of long-circulating peptide or protein drugs without reduced activity, complex processes, and kidney injury caused by PEG modification. Here we provide a detailed and in-depth review of the recent advances in unstructured polypeptides. In addition to the application of enhanced pharmacokinetic performance, emphasis is placed on polypeptides as scaffolders for the delivery of multiple drugs, and on the preparation of reasonably designed polypeptides to manipulate the performance of proteins and peptides. This review will provide insight into future application of polypeptides in peptide or protein drug development and the design of novel functional polypeptides.
Collapse
Affiliation(s)
- Yue Ji
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Dingkang Liu
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Haichao Zhu
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Lichen Bao
- Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing 210009, China
| | - Ruilong Chang
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Xiangdong Gao
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China.
| | - Jun Yin
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
12
|
Howell JA, Gaouette N, Lopez M, Burke SP, Perkins E, Bidwell GL. Elastin-like polypeptide delivery of anti-inflammatory peptides to the brain following ischemic stroke. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.15.532834. [PMID: 36993686 PMCID: PMC10055169 DOI: 10.1101/2023.03.15.532834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Inflammatory processes are activated following ischemic strokes and lead to increased tissue damage for weeks following the ischemic insult, but there are no approved therapies that target this inflammation-induced secondary injury. Here, we report that SynB1-ELP-p50i, a novel protein inhibitor of the nuclear factor kappa B (NF-κB) inflammatory cascade bound to drug carrier elastin-like polypeptide (ELP), is able to enter both neurons and microglia, cross the blood-brain barrier, localize exclusively in the ischemic core and penumbra in Wistar-Kyoto and spontaneously hypertensive rats (SHRs), and reduce infarct volume in male SHRs. Additionally, in male SHRs, SynB1-ELP-p50i treatment improves survival for 14 days following stroke with no effects of toxicity or peripheral organ dysfunction. These results show high potential for ELP-delivered biologics for therapy of ischemic stroke and other central nervous system disorders and further support targeting inflammation in ischemic stroke.
Collapse
Affiliation(s)
- John Aaron Howell
- Graduate Program in Neuroscience, University of Mississippi Medical Center, Jackson, MS 39216
- Department of Neurology, University of Mississippi Medical Center, Jackson, MS 39216
| | - Nicholas Gaouette
- School of Medicine, University of Mississippi Medical Center, Jackson, MS 39216
| | - Mariper Lopez
- Department of Neurology, University of Mississippi Medical Center, Jackson, MS 39216
| | - Stephen P. Burke
- Department of Neurology, University of Mississippi Medical Center, Jackson, MS 39216
| | - Eddie Perkins
- Department of Neurosurgery, University of Mississippi Medical Center, Jackson, MS 39216
| | - Gene L. Bidwell
- Department of Neurology, University of Mississippi Medical Center, Jackson, MS 39216
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, MS 39216
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216
| |
Collapse
|
13
|
Karadkhelkar NM, Lin M, Eubanks LM, Janda KD. Demystifying the Druggability of the MYC Family of Oncogenes. J Am Chem Soc 2023; 145:3259-3269. [PMID: 36734615 PMCID: PMC10182829 DOI: 10.1021/jacs.2c12732] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The MYC family of oncogenes (MYC, MYCN, and MYCL) encodes a basic helix-loop-helix leucine zipper (bHLHLZ) transcriptional regulator that is responsible for moving the cell through the restriction point. Through the HLHZIP domain, MYC heterodimerizes with the bHLHLZ protein MAX, which enables this MYC-MAX complex to bind to E-box regulatory DNA elements thereby controlling transcription of a large group of genes and their proteins. Translationally, MYC is one of the foremost oncogenic targets, and deregulation of expression of the MYC family gene/proteins occurs in over half of all human tumors and is recognized as a hallmark of cancer initiation and maintenance. Additionally, unexpected roles for this oncoprotein have been found in cancers that nominally have a non-MYC etiology. Although MYC is rarely mutated, its gain of function in cancer results from overexpression or from amplification. Moreover, MYC is a pleiotropic transcription factor possessing broad pathogenic prominence making it a coveted cancer target. A widely held notion within the biomedical research community is that the reliable modulation of MYC represents a tremendous therapeutic opportunity given its role in directly potentiating oncogenesis. However, the MYC-MAX heterodimer interaction contains a large surface area with a lack of well-defined binding sites creating the perception that targeting of MYC-MAX is forbidding. Here, we discuss the biochemistry behind MYC and MYC-MAX as it relates to cancer progression associated with these transcription factors. We also discuss the notion that MYC should no longer be regarded as undruggable, providing examples that a therapeutic window is achievable despite global MYC inhibition.
Collapse
Affiliation(s)
- Nishant M. Karadkhelkar
- Departments of Chemistry and Immunology, The Skaggs Institute for Chemical Biology, Worm Institute of Research and Medicine (WIRM), The Scripps Research Institute, La Jolla, California 92037, United States
| | - Mingliang Lin
- Departments of Chemistry and Immunology, The Skaggs Institute for Chemical Biology, Worm Institute of Research and Medicine (WIRM), The Scripps Research Institute, La Jolla, California 92037, United States
| | - Lisa M. Eubanks
- Departments of Chemistry and Immunology, The Skaggs Institute for Chemical Biology, Worm Institute of Research and Medicine (WIRM), The Scripps Research Institute, La Jolla, California 92037, United States
| | - Kim D. Janda
- Departments of Chemistry and Immunology, The Skaggs Institute for Chemical Biology, Worm Institute of Research and Medicine (WIRM), The Scripps Research Institute, La Jolla, California 92037, United States
| |
Collapse
|
14
|
González P, González-Fernández C, Maqueda A, Pérez V, Escalera-Anzola S, Rodríguez de Lope Á, Arias FJ, Girotti A, Rodríguez FJ. Silk-Elastin-like Polymers for Acute Intraparenchymal Treatment of the Traumatically Injured Spinal Cord: A First Systematic Experimental Approach. Pharmaceutics 2022; 14:pharmaceutics14122713. [PMID: 36559207 PMCID: PMC9784492 DOI: 10.3390/pharmaceutics14122713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/25/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022] Open
Abstract
Despite the promising potential of hydrogel-based therapeutic approaches for spinal cord injury (SCI), the need for new biomaterials to design effective strategies for SCI treatment and the outstanding properties of silk-elastin-like polymers (SELP), the potential use of SELPs in SCI is currently unknown. In this context, we assessed the effects elicited by the in vivo acute intraparenchymal injection of an SELP named (EIS)2-RGD6 in a clinically relevant model of SCI. After optimization of the injection system, the distribution, structure, biodegradability, and cell infiltration capacity of (EIS)2-RGD6 were assessed. Finally, the effects exerted by the (EIS)2-RGD6 injection-in terms of motor function, myelin preservation, astroglial and microglia/macrophage reactivity, and fibrosis-were evaluated. We found that (EIS)2-RGD6 can be acutely injected in the lesioned spinal cord without inducing further damage, showing a widespread distribution covering all lesioned areas with a single injection and facilitating the formation of a slow-degrading porous scaffold at the lesion site that allows for the infiltration and/or proliferation of endogenous cells with no signs of collapse and without inducing further microglial and astroglial reactivity, as well as even reducing SCI-associated fibrosis. Altogether, these observations suggest that (EIS)2-RGD6-and, by extension, SELPs-could be promising polymers for the design of therapeutic strategies for SCI treatment.
Collapse
Affiliation(s)
- Pau González
- Laboratory of Molecular Neurology, Hospital Nacional de Parapléjicos, 45071 Toledo, Spain
| | | | - Alfredo Maqueda
- Laboratory of Molecular Neurology, Hospital Nacional de Parapléjicos, 45071 Toledo, Spain
| | - Virginia Pérez
- Laboratory of Molecular Neurology, Hospital Nacional de Parapléjicos, 45071 Toledo, Spain
| | - Sara Escalera-Anzola
- Smart Devices for NanoMedicine Group University of Valladolid, 47003 Valladolid, Spain
- Unidad de Excelencia Instituto de Biomedicina y Genética Molecular (IBGM), Universidad de Valladolid and Consejo Superior de Investigaciones Científicas (CSIC), 47003 Valladolid, Spain
| | | | - Francisco Javier Arias
- Smart Devices for NanoMedicine Group University of Valladolid, 47003 Valladolid, Spain
- Unidad de Excelencia Instituto de Biomedicina y Genética Molecular (IBGM), Universidad de Valladolid and Consejo Superior de Investigaciones Científicas (CSIC), 47003 Valladolid, Spain
| | - Alessandra Girotti
- Smart Devices for NanoMedicine Group University of Valladolid, 47003 Valladolid, Spain
- Unidad de Excelencia Instituto de Biomedicina y Genética Molecular (IBGM), Universidad de Valladolid and Consejo Superior de Investigaciones Científicas (CSIC), 47003 Valladolid, Spain
- Correspondence: (A.G.); (F.J.R.)
| | - Francisco Javier Rodríguez
- Laboratory of Molecular Neurology, Hospital Nacional de Parapléjicos, 45071 Toledo, Spain
- Correspondence: (A.G.); (F.J.R.)
| |
Collapse
|
15
|
Karami Fath M, Babakhaniyan K, Anjomrooz M, Jalalifar M, Alizadeh SD, Pourghasem Z, Abbasi Oshagh P, Azargoonjahromi A, Almasi F, Manzoor HZ, Khalesi B, Pourzardosht N, Khalili S, Payandeh Z. Recent Advances in Glioma Cancer Treatment: Conventional and Epigenetic Realms. Vaccines (Basel) 2022; 10:1448. [PMID: 36146527 PMCID: PMC9501259 DOI: 10.3390/vaccines10091448] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/14/2022] [Accepted: 08/27/2022] [Indexed: 11/29/2022] Open
Abstract
Glioblastoma (GBM) is the most typical and aggressive form of primary brain tumor in adults, with a poor prognosis. Successful glioma treatment is hampered by ineffective medication distribution across the blood-brain barrier (BBB) and the emergence of drug resistance. Although a few FDA-approved multimodal treatments are available for glioblastoma, most patients still have poor prognoses. Targeting epigenetic variables, immunotherapy, gene therapy, and different vaccine- and peptide-based treatments are some innovative approaches to improve anti-glioma treatment efficacy. Following the identification of lymphatics in the central nervous system, immunotherapy offers a potential method with the potency to permeate the blood-brain barrier. This review will discuss the rationale, tactics, benefits, and drawbacks of current glioma therapy options in clinical and preclinical investigations.
Collapse
Affiliation(s)
- Mohsen Karami Fath
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran 1571914911, Iran
| | - Kimiya Babakhaniyan
- Department of Medical Surgical Nursing, School of Nursing and Midwifery, Iran University of Medical Sciences, Tehran 1996713883, Iran
| | - Mehran Anjomrooz
- Department of Radiology, Shariati Hospital, Tehran University of Medical Sciences, Tehran 1411713135, Iran
| | | | | | - Zeinab Pourghasem
- Department of Microbiology, Islamic Azad University of Lahijan, Gilan 4416939515, Iran
| | - Parisa Abbasi Oshagh
- Department of Biology, Faculty of Basic Sciences, Malayer University, Malayer 6571995863, Iran
| | - Ali Azargoonjahromi
- Department of Nursing, School of Nursing and Midwifery, Shiraz University of Medical Sciences, Shiraz 7417773539, Iran
| | - Faezeh Almasi
- Pharmaceutical Biotechnology Lab, Department of Microbial Biotechnology, School of Biology and Center of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, Tehran 1411734115, Iran
| | - Hafza Zahira Manzoor
- Experimental and Translational Medicine, University of Insubria, Via jean Henry Dunant 3, 21100 Varese, Italy
| | - Bahman Khalesi
- Department of Research and Production of Poultry Viral Vaccine, Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization, Karaj 3197619751, Iran
| | - Navid Pourzardosht
- Cellular and Molecular Research Center, Faculty of Medicine, Guilan University of Medical Sciences, Rasht 4193713111, Iran
| | - Saeed Khalili
- Department of Biology Sciences, Shahid Rajaee Teacher Training University, Tehran 1678815811, Iran
| | - Zahra Payandeh
- Department of Medical Biochemistry and Biophysics, Division Medical Inflammation Research, Karolinska Institute, SE-17177 Stockholm, Sweden
| |
Collapse
|
16
|
Karami Fath M, Babakhaniyan K, Zokaei M, Yaghoubian A, Akbari S, Khorsandi M, Soofi A, Nabi-Afjadi M, Zalpoor H, Jalalifar F, Azargoonjahromi A, Payandeh Z, Alagheband Bahrami A. Anti-cancer peptide-based therapeutic strategies in solid tumors. Cell Mol Biol Lett 2022; 27:33. [PMID: 35397496 PMCID: PMC8994312 DOI: 10.1186/s11658-022-00332-w] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 03/17/2022] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Nowadays, conventional medical treatments such as surgery, radiotherapy, and chemotherapy cannot cure all types of cancer. A promising approach to treat solid tumors is the use of tumor-targeting peptides to deliver drugs or active agents selectively. RESULT Introducing beneficial therapeutic approaches, such as therapeutic peptides and their varied methods of action against tumor cells, can aid researchers in the discovery of novel peptides for cancer treatment. The biomedical applications of therapeutic peptides are highly interesting. These peptides, owing to their high selectivity, specificity, small dimensions, high biocompatibility, and easy modification, provide good opportunities for targeted drug delivery. In recent years, peptides have shown considerable promise as therapeutics or targeting ligands in cancer research and nanotechnology. CONCLUSION This study reviews a variety of therapeutic peptides and targeting ligands in cancer therapy. Initially, three types of tumor-homing and cell-penetrating peptides (CPPs) are described, and then their applications in breast, glioma, colorectal, and melanoma cancer research are discussed.
Collapse
Affiliation(s)
- Mohsen Karami Fath
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Kimiya Babakhaniyan
- Department of Medical Surgical Nursing, School of Nursing and Midwifery, Iran University of Medical Sciences, Tehran, Iran
| | - Maryam Zokaei
- Department of Food Science and Technology, Faculty of Nutrition Science, Food Science and Technology/National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Veterinary Medicine, Beyza Branch, Islamic Azad University, Beyza, Iran
| | - Azadeh Yaghoubian
- Department of Exercise Physiology, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Sadaf Akbari
- Faculty of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahdieh Khorsandi
- Department of Biotechnology, Faculty of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Asma Soofi
- Department of Physical Chemistry, School of Chemistry, College of Sciences, University of Tehran, Tehran, Iran
| | - Mohsen Nabi-Afjadi
- Department of Biochemistry, Faculty of biological science, Tarbiat Modares University, Tehran, Iran
| | - Hamidreza Zalpoor
- American Association of Kidney Patients, Tampa, FL USA
- Shiraz Neuroscience Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran
| | - Fateme Jalalifar
- School of Medicine, Jiroft University of Medical Sciences, Jiroft, Iran
| | | | - Zahra Payandeh
- Department Medical Biochemistry and Biophysics, Division Medical Inflammation Research, Karolinska Institute, Stockholm, Sweden
| | - Armina Alagheband Bahrami
- Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
17
|
Investigating the role of peptides in effective therapies against cancer. Cancer Cell Int 2022; 22:139. [PMID: 35346211 PMCID: PMC8962089 DOI: 10.1186/s12935-022-02553-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 03/14/2022] [Indexed: 12/03/2022] Open
Abstract
Early diagnosis and effective treatment of cancer are challenging. To diagnose and treat cancer effectively and to overcome these challenges, fundamental innovations in traditional diagnosis and therapy are necessary. Peptides can be very helpful in this regard due to their potential and diversity. To enhance the therapeutic potential of peptides, their limitations must be properly identified and their structures engineered and modified for higher efficiency. Promoting the bioavailability and stability of peptides is one of the main concerns. Peptides can also be effective in different areas of targeting, alone or with the help of other therapeutic agents. There has been a lot of research in this area, and the potential for variability of peptides will continue to improve this process. Another promising area in which peptides can help treat cancer is peptide vaccines, which are undergoing promising research, and high throughput technologies can lead to fundamental changes in this area. Peptides have been effective in almost all areas of cancer treatment, and some have even gone through clinical phases. However, many barriers need to be overcome to reach the desired point. The purpose of this review is to evaluate the mechanisms associated with peptides in the diagnosis and treatment of cancer. Therefore, related studies in this area will be discussed.
Collapse
|
18
|
Bidwell GL. Novel Protein Therapeutics Created Using the Elastin-Like Polypeptide Platform. Physiology (Bethesda) 2021; 36:367-381. [PMID: 34486397 DOI: 10.1152/physiol.00026.2021] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Elastin-like polypeptides (ELPs) are bioengineered proteins that have a unique physical property, a thermally triggered inverse phase transition, that can be exploited for drug delivery. ELP-fusion proteins can be used as soluble biologics, thermally targeted drug carriers, self-assembling nanoparticles, and slow-release drug depots. Because of their unique physical characteristics and versatility for delivery of nearly any type of therapeutic, ELP-based drug delivery systems represent a promising platform for biologics development.
Collapse
Affiliation(s)
- Gene L Bidwell
- Departments of Neurology, Cell and Molecular Biology, and Pharmacology, University of Mississippi Medical Center, Jackson, Mississippi
| |
Collapse
|
19
|
Lv S, Sylvestre M, Prossnitz AN, Yang LF, Pun SH. Design of Polymeric Carriers for Intracellular Peptide Delivery in Oncology Applications. Chem Rev 2021; 121:11653-11698. [PMID: 33566580 DOI: 10.1021/acs.chemrev.0c00963] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
In recent decades, peptides, which can possess high potency, excellent selectivity, and low toxicity, have emerged as promising therapeutics for cancer applications. Combined with an improved understanding of tumor biology and immuno-oncology, peptides have demonstrated robust antitumor efficacy in preclinical tumor models. However, the translation of peptides with intracellular targets into clinical therapies has been severely hindered by limitations in their intrinsic structure, such as low systemic stability, rapid clearance, and poor membrane permeability, that impede intracellular delivery. In this Review, we summarize recent advances in polymer-mediated intracellular delivery of peptides for cancer therapy, including both therapeutic peptides and peptide antigens. We highlight strategies to engineer polymeric materials to increase peptide delivery efficiency, especially cytosolic delivery, which plays a crucial role in potentiating peptide-based therapies. Finally, we discuss future opportunities for peptides in cancer treatment, with an emphasis on the design of polymer nanocarriers for optimized peptide delivery.
Collapse
Affiliation(s)
| | | | - Alexander N Prossnitz
- Department of Bioengineering, University of Washington, Seattle, Washington 98195, United States
| | | | | |
Collapse
|
20
|
Lee RH, Oh JD, Hwang JS, Lee HK, Shin D. Antitumorigenic effect of insect-derived peptide poecilocorisin-1 in human skin cancer cells through regulation of Sp1 transcription factor. Sci Rep 2021; 11:18445. [PMID: 34531430 PMCID: PMC8446052 DOI: 10.1038/s41598-021-97581-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 08/18/2021] [Indexed: 12/28/2022] Open
Abstract
Malignant melanoma is highly resistant to conventional treatments and is one of the most aggressive types of skin cancers. Conventional cancer treatments are limited due to drug resistance, tumor selectivity, and solubility. Therefore, new treatments with fewer side effects and excellent effects should be developed. In previous studies, we have analyzed antimicrobial peptides (AMPs), which showed antibacterial and anti-inflammatory effects in insects, and some AMPs also exhibited anticancer efficacy. Anticancer peptides (ACPs) are known to have fewer side effects and high anticancer efficacy. In this study, the insect-derived peptide poecilocorisin-1 (PCC-1) did not induce toxicity in the human epithelial cell line HaCaT, but its potential as an anticancer agent was confirmed through specific effects of antiproliferation, apoptosis, and cell cycle arrest in two melanoma cell lines, SK-MEL-28 and G361. Additionally, we discovered a novel anticancer mechanism of insect-derived peptides in melanoma through the regulation of transcription factor Sp1 protein, which is overexpressed in cancer, apoptosis, and cell cycle-related proteins. Taken together, this study aims to clarify the anticancer efficacy and safety of insect-derived peptides and to present their potential as future therapeutic agents.
Collapse
Affiliation(s)
- Ra Ham Lee
- Department of Animal Biotechnology, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Jae-Don Oh
- Department of Animal Biotechnology, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Jae Sam Hwang
- Department of Agricultural Biology, National Institute of Agricultural Sciences, Rural Development Administration, Wanju, 55365, Republic of Korea
| | - Hak-Kyo Lee
- Department of Animal Biotechnology, Jeonbuk National University, Jeonju, 54896, Republic of Korea. .,The Animal Molecular Genetics and Breeding Center, Jeonbuk National University, Jeonju, 54896, Republic of Korea. .,Department of Agricultural Convergence Technology, Jeonbuk National University, Jeonju, 54896, Republic of Korea.
| | - Donghyun Shin
- The Animal Molecular Genetics and Breeding Center, Jeonbuk National University, Jeonju, 54896, Republic of Korea. .,Department of Agricultural Convergence Technology, Jeonbuk National University, Jeonju, 54896, Republic of Korea.
| |
Collapse
|
21
|
Whitfield JR, Soucek L. The long journey to bring a Myc inhibitor to the clinic. J Cell Biol 2021; 220:212429. [PMID: 34160558 PMCID: PMC8240852 DOI: 10.1083/jcb.202103090] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 05/27/2021] [Accepted: 06/02/2021] [Indexed: 12/14/2022] Open
Abstract
The oncogene Myc is deregulated in the majority of human tumors and drives numerous hallmarks of cancer. Despite its indisputable role in cancer development and maintenance, Myc is still undrugged. Developing a clinical inhibitor for Myc has been particularly challenging owing to its intrinsically disordered nature and lack of a binding pocket, coupled with concerns regarding potentially deleterious side effects in normal proliferating tissues. However, major breakthroughs in the development of Myc inhibitors have arisen in the last couple of years. Notably, the direct Myc inhibitor that we developed has just entered clinical trials. Celebrating this milestone, with this Perspective, we pay homage to the different strategies developed so far against Myc and all of the researchers focused on developing treatments for a target long deemed undruggable.
Collapse
Affiliation(s)
| | - Laura Soucek
- Vall d'Hebron Institute of Oncology, Edifici Cellex, Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain.,Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Bellaterra, Spain.,Peptomyc S.L., Barcelona, Spain
| |
Collapse
|
22
|
A dose-escalating toxicology study of the candidate biologic ELP-VEGF. Sci Rep 2021; 11:6216. [PMID: 33737643 PMCID: PMC7973730 DOI: 10.1038/s41598-021-85693-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 03/04/2021] [Indexed: 01/31/2023] Open
Abstract
Vascular Endothelial Growth Factor (VEGF), a key mediator of angiogenesis and vascular repair, is reduced in chronic ischemic renal diseases, leading to microvascular rarefaction and deterioration of renal function. We developed a chimeric fusion of human VEGF-A121 with the carrier protein Elastin-like Polypeptide (ELP-VEGF) to induce therapeutic angiogenesis via targeted renal VEGF therapy. We previously showed that ELP-VEGF improves renal vascular density, renal fibrosis, and renal function in swine models of chronic renal diseases. However, VEGF is a potent cytokine that induces angiogenesis and increases vascular permeability, which could cause undesired off-target effects or be deleterious in a patient with a solid tumor. Therefore, the current study aims to define the toxicological profile of ELP-VEGF and assess its risk for exacerbating tumor progression and vascularity using rodent models. A dose escalating toxicology assessment of ELP-VEGF was performed by administering a bolus intravenous injection at doses ranging from 0.1 to 200 mg/kg in Sprague Dawley (SD) rats. Blood pressure, body weight, and glomerular filtration rate (GFR) were quantified longitudinally, and terminal blood sampling and renal vascular density measurements were made 14 days after treatment. Additionally, the effects of a single administration of ELP-VEGF (0.1-10 mg/kg) on tumor growth rate, mass, and vascular density were examined in a mouse model of breast cancer. At doses up to 200 mg/kg, ELP-VEGF had no effect on body weight, caused no changes in plasma or urinary markers of renal injury, and did not induce renal fibrosis or other histopathological findings in SD rats. At the highest doses (100-200 mg/kg), ELP-VEGF caused an acute, transient hypotension (30 min), increased GFR, and reduced renal microvascular density 14 days after injection. In a mouse tumor model, ELP-VEGF did not affect tumor growth rate or tumor mass, but analysis of tumor vascular density by micro-computed tomography (μCT) revealed significant, dose dependent increases in tumor vascularity after ELP-VEGF administration. ELP-VEGF did not induce toxicity in the therapeutic dosing range, and doses one hundred times higher than the expected maximum therapeutic dose were needed to observe any adverse signs in rats. In breast tumor-bearing mice, ELP-VEGF therapy induced a dose-dependent increase in tumor vascularity, demanding caution for potential use in a patient suffering from kidney disease but with known or suspected malignancy.
Collapse
|
23
|
Formulation of stabilizer-free, nontoxic PLGA and elastin-PLGA nanoparticle delivery systems. Int J Pharm 2021; 597:120340. [PMID: 33545284 DOI: 10.1016/j.ijpharm.2021.120340] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 01/25/2021] [Accepted: 01/31/2021] [Indexed: 12/18/2022]
Abstract
Biocompatible nanoparticles composed of poly(lactic-co-glycolic acid) (PLGA) are used as drug and vaccine delivery systems because of their tunability in size and sustained release of cargo molecules. While the use of toxic stabilizers such as polyvinyl alcohol (PVA) limit the utility of PLGA, stabilizer-free PLGA nanoparticles are rarely used because they can be challenging to prepare. Here, we developed a tunable, stabilizer-free PLGA nanoparticle formulation capable of encapsulating plasmid DNA and demonstrated the formation of an elastin-like polymer PLGA hybrid nanoparticle with exceptional stability and biocompatibility. A suite of PLGAs were fabricated using solvent evaporation methods and assessed for particle size and stability in water. We find that under physiological conditions (PBS at 37˚C), the most stable PLGA formulation (P4) was found to contain a greater L:G ratio (65:35), lower MW, and carboxyl terminus. Subsequent experiments determined P4 nanoparticles were as stable as those made with PVA, yet significantly less cytotoxic. Variation in particle size was achieved through altering PLGA stoichiometry while maintaining the ability to encapsulate DNA and were modified with elastin-like polymers for increased immune tolerance. Overall, a useful method for tunable, stabilizer-free PLGA nanoparticle formulation was developed for use in drug and vaccine delivery, and immune targeting.
Collapse
|
24
|
Impairing activation of phospholipid synthesis by c-Fos interferes with glioblastoma cell proliferation. Biochem J 2021; 477:4675-4688. [PMID: 33211090 DOI: 10.1042/bcj20200465] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 11/11/2020] [Accepted: 11/19/2020] [Indexed: 12/20/2022]
Abstract
Glioblastoma multiforme is the most aggressive type of tumor of the CNS with an overall survival rate of approximately one year. Since this rate has not changed significantly over the last 20 years, the development of new therapeutic strategies for the treatment of these tumors is peremptory. The over-expression of the proto-oncogene c-Fos has been observed in several CNS tumors including glioblastoma multiforme and is usually associated with a poor prognosis. Besides its genomic activity as an AP-1 transcription factor, this protein can also activate phospholipid synthesis by a direct interaction with key enzymes of their metabolic pathways. Given that the amino-terminal portion of c-Fos (c-Fos-NA: amino acids 1-138) associates to but does not activate phospholipid synthesizing enzymes, we evaluated if c-Fos-NA or some shorter derivatives are capable of acting as dominant-negative peptides of the activating capacity of c-Fos. The over-expression or the exogenous administration of c-Fos-NA to cultured T98G cells hampers the interaction between c-Fos and PI4K2A, an enzyme activated by c-Fos. Moreover, it was observed a decrease in tumor cell proliferation rates in vitro and a reduction in tumor growth in vivo when a U87-MG-generated xenograft on nude mice is intratumorally treated with recombinant c-Fos-NA. Importantly, a smaller peptide of 92 amino acids derived from c-Fos-NA retains the capacity to interfere with tumor proliferation in vitro and in vivo. Taken together, these results support the use of the N-terminal portion of c-Fos, or shorter derivatives as a novel therapeutic strategy for the treatment of glioblastoma multiforme.
Collapse
|
25
|
Cell-Penetrating Doxorubicin Released from Elastin-Like Polypeptide Kills Doxorubicin-Resistant Cancer Cells in In Vitro Study. Int J Mol Sci 2021; 22:ijms22031126. [PMID: 33498762 PMCID: PMC7865358 DOI: 10.3390/ijms22031126] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/16/2021] [Accepted: 01/20/2021] [Indexed: 11/17/2022] Open
Abstract
Elastin-like polypeptides (ELPs) undergo a characteristic phase transition in response to ambient temperature. Therefore, it has been be used as a thermosensitive vector for the delivery of chemotherapy agents since it can be used to target hyperthermic tumors. This novel strategy introduces unprecedented options for treating cancer with fewer concerns about side effects. In this study, the ELP system was further modified with an enzyme-cleavable linker in order to release drugs within tumors. This system consists of an ELP, a matrix metalloproteinase (MMP) substrate, a cell-penetrating peptide (CPP), and a 6-maleimidocaproyl amide derivative of doxorubicin (Dox). This strategy shows up to a 4-fold increase in cell penetration and results in more death in breast cancer cells compared to ELP-Dox. Even in doxorubicin-resistant cells (NCI/ADR and MES-SA/Dx5), ELP-released cell-penetrating doxorubicin demonstrated better membrane penetration, leading to at least twice the killing of resistant cells compared to ELP-Dox and free Dox. MMP-digested CPP-Dox showed better membrane penetration and induced more cancer cell death in vitro. This CPP-complexed Dox released from the ELP killed even Dox-resistant cells more efficiently than both free doxorubicin and non-cleaved ELP-CPP-Dox.
Collapse
|
26
|
Ashrafizadeh M, Zarabi A, Hushmandi K, Moghadam ER, Hashemi F, Daneshi S, Hashemi F, Tavakol S, Mohammadinejad R, Najafi M, Dudha N, Garg M. C-Myc Signaling Pathway in Treatment and Prevention of Brain Tumors. Curr Cancer Drug Targets 2021; 21:2-20. [PMID: 33069197 DOI: 10.2174/1568009620666201016121005] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/26/2020] [Accepted: 09/07/2020] [Indexed: 12/16/2022]
Abstract
Brain tumors are responsible for high morbidity and mortality worldwide. Several factors such as the presence of blood-brain barrier (BBB), sensitive location in the brain, and unique biological features challenge the treatment of brain tumors. The conventional drugs are no longer effective in the treatment of brain tumors, and scientists are trying to find novel therapeutics for brain tumors. In this way, identification of molecular pathways can facilitate finding an effective treatment. c-Myc is an oncogene signaling pathway capable of regulation of biological processes such as apoptotic cell death, proliferation, survival, differentiation, and so on. These pleiotropic effects of c-Myc have resulted in much fascination with its role in different cancers, particularly brain tumors. In the present review, we aim to demonstrate the upstream and down-stream mediators of c-Myc in brain tumors such as glioma, glioblastoma, astrocytoma, and medulloblastoma. The capacity of c-Myc as a prognostic factor in brain tumors will be investigated. Our goal is to define an axis in which the c-Myc signaling pathway plays a crucial role and to provide direction for therapeutic targeting in these signaling networks in brain tumors.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Universite Caddesi No. 27, Orhanli, Tuzla, 34956 Istanbul, Turkey
| | - Ali Zarabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, 34956, Istanbul, Turkey
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology & Zoonoses, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Ebrahim Rahmani Moghadam
- Department of Anatomical sciences, School of Medicine, Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Farid Hashemi
- DVM. Graduated, Young Researcher and Elite Club, Kazerun Branch, Islamic Azad University, Kazeroon, Iran
| | - Salman Daneshi
- Department of Public Health, School of Health, Jiroft University of Medical Sciences, Jiroft, Iran
| | - Fardin Hashemi
- Student Research Committee, Department of physiotherapy, Faculty of rehabilitation, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Shima Tavakol
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran 1449614535, Iran
| | - Reza Mohammadinejad
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman 7619813159, Iran
| | - Masoud Najafi
- Medical Technology Research Center, Institute of Health Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Namrata Dudha
- Department of Biotechnology and Microbiology, School of Sciences, Noida International University, Gautam Budh Nagar, Uttar Pradesh, India
| | - Manoj Garg
- Amity of Molecular Medicine and Stem cell Research (AIMMSCR), Amity University Uttar Pradesh, Noida-201313, India
| |
Collapse
|
27
|
Madden SK, de Araujo AD, Gerhardt M, Fairlie DP, Mason JM. Taking the Myc out of cancer: toward therapeutic strategies to directly inhibit c-Myc. Mol Cancer 2021; 20:3. [PMID: 33397405 PMCID: PMC7780693 DOI: 10.1186/s12943-020-01291-6] [Citation(s) in RCA: 254] [Impact Index Per Article: 63.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 11/29/2020] [Indexed: 02/07/2023] Open
Abstract
c-Myc is a transcription factor that is constitutively and aberrantly expressed in over 70% of human cancers. Its direct inhibition has been shown to trigger rapid tumor regression in mice with only mild and fully reversible side effects, suggesting this to be a viable therapeutic strategy. Here we reassess the challenges of directly targeting c-Myc, evaluate lessons learned from current inhibitors, and explore how future strategies such as miniaturisation of Omomyc and targeting E-box binding could facilitate translation of c-Myc inhibitors into the clinic.
Collapse
Affiliation(s)
- Sarah K Madden
- Department of Biology & Biochemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK.
| | - Aline Dantas de Araujo
- Division of Chemistry and Structural Biology and ARC 1066 Centre of Excellence for Innovations in Peptide and Protein Science, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Mara Gerhardt
- Department of Biology & Biochemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| | - David P Fairlie
- Division of Chemistry and Structural Biology and ARC 1066 Centre of Excellence for Innovations in Peptide and Protein Science, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Jody M Mason
- Department of Biology & Biochemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK.
| |
Collapse
|
28
|
Designing peptide nanoparticles for efficient brain delivery. Adv Drug Deliv Rev 2020; 160:52-77. [PMID: 33031897 DOI: 10.1016/j.addr.2020.10.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/28/2020] [Accepted: 10/01/2020] [Indexed: 12/12/2022]
Abstract
The targeted delivery of therapeutic compounds to the brain is arguably the most significant open problem in drug delivery today. Nanoparticles (NPs) based on peptides and designed using the emerging principles of molecular engineering show enormous promise in overcoming many of the barriers to brain delivery faced by NPs made of more traditional materials. However, shortcomings in our understanding of peptide self-assembly and blood-brain barrier (BBB) transport mechanisms pose significant obstacles to progress in this area. In this review, we discuss recent work in engineering peptide nanocarriers for the delivery of therapeutic compounds to the brain: from synthesis, to self-assembly, to in vivo studies, as well as discussing in detail the biological hurdles that a nanoparticle must overcome to reach the brain.
Collapse
|
29
|
Skandalakis GP, Rivera DR, Rizea CD, Bouras A, Raj JGJ, Bozec D, Hadjipanayis CG. Hyperthermia treatment advances for brain tumors. Int J Hyperthermia 2020; 37:3-19. [PMID: 32672123 PMCID: PMC7756245 DOI: 10.1080/02656736.2020.1772512] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 04/15/2020] [Accepted: 05/16/2020] [Indexed: 02/06/2023] Open
Abstract
Hyperthermia therapy (HT) of cancer is a well-known treatment approach. With the advent of new technologies, HT approaches are now important for the treatment of brain tumors. We review current clinical applications of HT in neuro-oncology and ongoing preclinical research aiming to advance HT approaches to clinical practice. Laser interstitial thermal therapy (LITT) is currently the most widely utilized thermal ablation approach in clinical practice mainly for the treatment of recurrent or deep-seated tumors in the brain. Magnetic hyperthermia therapy (MHT), which relies on the use of magnetic nanoparticles (MNPs) and alternating magnetic fields (AMFs), is a new quite promising HT treatment approach for brain tumors. Initial MHT clinical studies in combination with fractionated radiation therapy (RT) in patients have been completed in Europe with encouraging results. Another combination treatment with HT that warrants further investigation is immunotherapy. HT approaches for brain tumors will continue to a play an important role in neuro-oncology.
Collapse
Affiliation(s)
- Georgios P. Skandalakis
- Brain Tumor Nanotechnology Laboratory, Department of Neurosurgery, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Daniel R. Rivera
- Brain Tumor Nanotechnology Laboratory, Department of Neurosurgery, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Caroline D. Rizea
- Brain Tumor Nanotechnology Laboratory, Department of Neurosurgery, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Alexandros Bouras
- Brain Tumor Nanotechnology Laboratory, Department of Neurosurgery, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Joe Gerald Jesu Raj
- Brain Tumor Nanotechnology Laboratory, Department of Neurosurgery, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Dominique Bozec
- Brain Tumor Nanotechnology Laboratory, Department of Neurosurgery, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Constantinos G. Hadjipanayis
- Brain Tumor Nanotechnology Laboratory, Department of Neurosurgery, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| |
Collapse
|
30
|
Cheng M, Zhang ZW, Ji XH, Xu Y, Bian E, Zhao B. Super-enhancers: A new frontier for glioma treatment. Biochim Biophys Acta Rev Cancer 2020; 1873:188353. [PMID: 32112817 DOI: 10.1016/j.bbcan.2020.188353] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 02/21/2020] [Accepted: 02/21/2020] [Indexed: 01/17/2023]
Abstract
Glioma is the most common primary malignant tumor in the human brain. Although there are a variety of treatments, such as surgery, radiation and chemotherapy, glioma is still an incurable disease. Super-enhancers (SEs) are implicated in the control of tumor cell identity, and they promote oncogenic transcription, which supports tumor cells. Inhibition of the SE complex, which is required for the assembly and maintenance of SEs, may repress oncogenic transcription and impede tumor growth. In this review, we discuss the unique characteristics of SEs compared to typical enhancers, and we summarize the recent advances in the understanding of their properties and biological role in gene regulation. Additionally, we highlight that SE-driven lncRNAs, miRNAs and genes are involved in the malignant phenotype of glioma. Most importantly, the application of SE inhibitors in different cancer subtypes has introduced new directions in glioma treatment.
Collapse
Affiliation(s)
- Meng Cheng
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; Cerebral Vascular Disease Research Center, Anhui Medical University, Hefei 230601, China
| | - Zheng Wei Zhang
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; Cerebral Vascular Disease Research Center, Anhui Medical University, Hefei 230601, China
| | - Xing Hu Ji
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; Cerebral Vascular Disease Research Center, Anhui Medical University, Hefei 230601, China
| | - Yadi Xu
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; Cerebral Vascular Disease Research Center, Anhui Medical University, Hefei 230601, China
| | - Erbao Bian
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; Cerebral Vascular Disease Research Center, Anhui Medical University, Hefei 230601, China.
| | - Bing Zhao
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; Cerebral Vascular Disease Research Center, Anhui Medical University, Hefei 230601, China.
| |
Collapse
|
31
|
Abstract
MYC is a master transcriptional regulator that controls almost all cellular processes. Over the last several decades, researchers have strived to define the context-dependent transcriptional gene programs that are controlled by MYC, as well as the mechanisms that regulate MYC function, in an effort to better understand the contribution of this oncoprotein to cancer progression. There are a wealth of data indicating that deregulation of MYC activity occurs in a large number of cancers and significantly contributes to disease progression, metastatic potential, and therapeutic resistance. Although the therapeutic targeting of MYC in cancer is highly desirable, there remain substantial structural and functional challenges that have impeded direct MYC-targeted drug development and efficacy. While efforts to drug the ‘undruggable’ may seem futile given these challenges and considering the broad reach of MYC, significant strides have been made to identify points of regulation that can be exploited for therapeutic purposes. These include targeting the deregulation of MYC transcription in cancer through small-molecule inhibitors that induce epigenetic silencing or that regulate the G-quadruplex structures within the MYC promoter. Alternatively, compounds that disrupt the DNA-binding activities of MYC have been the long-standing focus of many research groups, since this method would prevent downstream MYC oncogenic activities regardless of upstream alterations. Finally, proteins involved in the post-translational regulation of MYC have been identified as important surrogate targets to reduce MYC activity downstream of aberrant cell stimulatory signals. Given the complex regulation of the MYC signaling pathway, a combination of these approaches may provide the most durable response, but this has yet to be shown. Here, we provide a comprehensive overview of the different therapeutic strategies being employed to target oncogenic MYC function, with a focus on post-translational mechanisms.
Collapse
|
32
|
Lan Y, Lou J, Hu J, Yu Z, Lyu W, Zhang B. Downregulation of SNRPG induces cell cycle arrest and sensitizes human glioblastoma cells to temozolomide by targeting Myc through a p53-dependent signaling pathway. Cancer Biol Med 2020; 17:112-131. [PMID: 32296580 PMCID: PMC7142844 DOI: 10.20892/j.issn.2095-3941.2019.0164] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 08/29/2019] [Indexed: 12/17/2022] Open
Abstract
Objective: Temozolomide (TMZ) is commonly used for glioblastoma multiforme (GBM) chemotherapy. However, drug resistance limits its therapeutic effect in GBM treatment. RNA-binding proteins (RBPs) have vital roles in posttranscriptional events. While disturbance of RBP-RNA network activity is potentially associated with cancer development, the precise mechanisms are not fully known. The SNRPG gene, encoding small nuclear ribonucleoprotein polypeptide G, was recently found to be related to cancer incidence, but its exact function has yet to be elucidated. Methods:SNRPG knockdown was achieved via short hairpin RNAs. Gene expression profiling and Western blot analyses were used to identify potential glioma cell growth signaling pathways affected by SNRPG. Xenograft tumors were examined to determine the carcinogenic effects of SNRPG on glioma tissues. Results: The SNRPG-mediated inhibitory effect on glioma cells might be due to the targeted prevention of Myc and p53. In addition, the effects of SNRPG loss on p53 levels and cell cycle progression were found to be Myc-dependent. Furthermore, SNRPG was increased in TMZ-resistant GBM cells, and downregulation of SNRPG potentially sensitized resistant cells to TMZ, suggesting that SNRPG deficiency decreases the chemoresistance of GBM cells to TMZ via the p53 signaling pathway. Our data confirmed that SNRPG suppression sensitizes GBM cells to TMZ by targeting Myc via the p53 signaling cascade. Conclusions: These results indicated that SNRPG is a probable molecular target of GBM and suggested that suppressing SNRPG in resistant GBM cells might be a substantially beneficial method for overcoming essential drug resistance.
Collapse
Affiliation(s)
- Yulong Lan
- Department of Neurosurgery, Shenzhen People’s Hospital, Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen 518020, China
- Department of Neurosurgery, The Second Affiliated Hospital of Dalian Medical University, Dalian 116023, China
| | - Jiacheng Lou
- Department of Neurosurgery, The Second Affiliated Hospital of Dalian Medical University, Dalian 116023, China
| | - Jiliang Hu
- Department of Neurosurgery, Shenzhen People’s Hospital, Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen 518020, China
| | - Zhikuan Yu
- Department of Neurosurgery, Shenzhen People’s Hospital, Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen 518020, China
| | - Wen Lyu
- Department of Neurosurgery, Shenzhen People’s Hospital, Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen 518020, China
| | - Bo Zhang
- Department of Neurosurgery, Shenzhen People’s Hospital, Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen 518020, China
- Department of Neurosurgery, The Second Affiliated Hospital of Dalian Medical University, Dalian 116023, China
| |
Collapse
|
33
|
Massó-Vallés D, Beaulieu ME, Soucek L. MYC, MYCL, and MYCN as therapeutic targets in lung cancer. Expert Opin Ther Targets 2020; 24:101-114. [PMID: 32003251 DOI: 10.1080/14728222.2020.1723548] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Introduction: Lung cancer is the leading cause of cancer-related mortality globally. Despite recent advances with personalized therapies and immunotherapy, the prognosis remains dire and recurrence is frequent. Myc is an oncogene deregulated in human cancers, including lung cancer, where it supports tumorigenic processes and progression. Elevated Myc levels have also been associated with resistance to therapy.Areas covered: This article summarizes the genomic and transcriptomic studies that compile evidence for (i) MYC, MYCN, and MYCL amplification and overexpression in lung cancer patients, and (ii) their prognostic significance. We collected the most recent literature regarding the development of Myc inhibitors where the emphasis is on those inhibitors tested in lung cancer experimental models and their potential for future clinical application.Expert opinion: The targeting of Myc in lung cancer is potentially an unprecedented opportunity for inhibiting a key player in tumor progression and maintenance and therapeutic resistance. Myc inhibitory strategies are on the path to their clinical application but further work is necessary for the assessment of their use in combination with standard treatment approaches. Given the role of Myc in immune suppression, a significant opportunity may exist in the combination of Myc inhibitors with immunotherapies.
Collapse
Affiliation(s)
| | | | - Laura Soucek
- Peptomyc S.L., Edifici Cellex, Hospital Vall d'Hebron, Barcelona, Spain.,Edifici Cellex, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain.,Institució Catalana De Recerca I Estudis Avançats (ICREA), Barcelona, Spain.,Department of Biochemistry and Molecular Biology, Universitat Autònoma De Barcelona, Bellaterra, Spain
| |
Collapse
|
34
|
Sorolla A, Wang E, Golden E, Duffy C, Henriques ST, Redfern AD, Blancafort P. Precision medicine by designer interference peptides: applications in oncology and molecular therapeutics. Oncogene 2019; 39:1167-1184. [PMID: 31636382 PMCID: PMC7002299 DOI: 10.1038/s41388-019-1056-3] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 09/28/2019] [Accepted: 10/02/2019] [Indexed: 01/17/2023]
Abstract
In molecular cancer therapeutics only 10% of known cancer gene products are targetable with current pharmacological agents. Major oncogenic drivers, such as MYC and KRAS proteins are frequently highly overexpressed or mutated in multiple human malignancies. However, despite their key role in oncogenesis, these proteins are hard to target with traditional small molecule drugs due to their large, featureless protein interfaces and lack of deep pockets. In addition, they are inaccessible to large biologicals, which are unable to cross cell membranes. Designer interference peptides (iPeps) represent emerging pharmacological agents created to block selective interactions between protein partners that are difficult to target with conventional small molecule chemicals or with large biologicals. iPeps have demonstrated successful inhibition of multiple oncogenic drivers with some now entering clinical settings. However, the clinical translation of iPeps has been hampered by certain intrinsic limitations including intracellular localization, targeting tissue specificity and pharmacological potency. Herein, we outline recent advances for the selective inhibition of major cancer oncoproteins via iPep approaches and discuss the development of multimodal peptides to overcome limitations of the first generations of iPeps. Since many protein–protein interfaces are cell-type specific, this approach opens the door to novel programmable, precision medicine tools in cancer research and treatment for selective manipulation and reprogramming of the cancer cell oncoproteome.
Collapse
Affiliation(s)
- Anabel Sorolla
- Harry Perkins Institute of Medical Research, QEII Medical Centre and Centre for Medical Research, The University of Western Australia, Nedlands, WA, 6009, Australia.
| | - Edina Wang
- Harry Perkins Institute of Medical Research, QEII Medical Centre and Centre for Medical Research, The University of Western Australia, Nedlands, WA, 6009, Australia
| | - Emily Golden
- Harry Perkins Institute of Medical Research, QEII Medical Centre and Centre for Medical Research, The University of Western Australia, Nedlands, WA, 6009, Australia
| | - Ciara Duffy
- Harry Perkins Institute of Medical Research, QEII Medical Centre and Centre for Medical Research, The University of Western Australia, Nedlands, WA, 6009, Australia
| | - Sónia T Henriques
- School of Biomedical Sciences, Faculty of Health, Institute of Health & Biomedical Innovation, Queensland University of Technology, Translational Research Institute, Brisbane, QLD, 4102, Australia
| | - Andrew D Redfern
- School of Medicine, The University of Western Australia, Crawley, WA, 6009, Australia
| | - Pilar Blancafort
- Harry Perkins Institute of Medical Research, QEII Medical Centre and Centre for Medical Research, The University of Western Australia, Nedlands, WA, 6009, Australia.
| |
Collapse
|
35
|
Utilizing a Kidney-Targeting Peptide to Improve Renal Deposition of a Pro-Angiogenic Protein Biopolymer. Pharmaceutics 2019; 11:pharmaceutics11100542. [PMID: 31635263 PMCID: PMC6835230 DOI: 10.3390/pharmaceutics11100542] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 10/12/2019] [Accepted: 10/15/2019] [Indexed: 01/06/2023] Open
Abstract
Elastin-like polypeptides (ELP) are versatile protein biopolymers used in drug delivery due to their modular nature, allowing fusion of therapeutics and targeting agents. We previously developed an ELP fusion with vascular endothelial growth factor (VEGF) and demonstrated its therapeutic efficacy in translational swine models of renovascular disease and chronic kidney disease. The goal of the current work was to refine renal targeting and reduce off-target tissue deposition of ELP–VEGF. The ELP–VEGF fusion protein was modified by adding a kidney-targeting peptide (KTP) to the N-terminus. All control proteins (ELP, KTP–ELP, ELP–VEGF, and KTP–ELP–VEGF) were also produced to thoroughly assess the effects of each domain on in vitro cell binding and activity and in vivo pharmacokinetics and biodistribution. KTP–ELP–VEGF was equipotent to ELP–VEGF and free VEGF in vitro in the stimulation of primary glomerular microvascular endothelial cell proliferation, tube formation, and extracellular matrix invasion. The contribution of each region of the KTP–ELP–VEGF protein to the cell binding specificity was assayed in primary human renal endothelial cells, tubular epithelial cells, and podocytes, demonstrating that the VEGF domain induced binding to endothelial cells and the KTP domain increased binding to all renal cell types. The pharmacokinetics and biodistribution of KTP–ELP–VEGF and all control proteins were determined in SKH-1 Elite hairless mice. The addition of KTP to ELP slowed its in vivo clearance and increased its renal deposition. Furthermore, addition of KTP redirected ELP–VEGF, which was found at high levels in the liver, to the kidney. Intrarenal histology showed similar distribution of all proteins, with high levels in blood vessels and tubules. The VEGF-containing proteins also accumulated in punctate foci in the glomeruli. These studies provide a thorough characterization of the effects of a kidney-targeting peptide and an active cytokine on the biodistribution of these novel biologics. Furthermore, they demonstrate that renal specificity of a proven therapeutic can be improved using a targeting peptide.
Collapse
|
36
|
Evaluation of Elastin-Like Polypeptides for Tumor Targeted Delivery of Doxorubicin to Glioblastoma. Molecules 2019; 24:molecules24183242. [PMID: 31489879 PMCID: PMC6767252 DOI: 10.3390/molecules24183242] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 09/04/2019] [Accepted: 09/04/2019] [Indexed: 02/07/2023] Open
Abstract
To increase treatment efficiency for glioblastoma, we have developed a system to selectively deliver chemotherapeutic doxorubicin (Dox) to Glioblastoma (GBM) tumors. This carrier is based on elastin-like polypeptide (ELP), which is soluble at physiological temperatures but undergoes a phase transition and accumulates at tumor sites with externally applied, mild (40–41 °C) hyperthermia. The CPP-ELP-Dox conjugate consists of a cell penetrating peptide (CPP), which facilitates transcytosis through the blood brain barrier and cell entry, and a 6-maleimidocaproyl hydrazone derivative of doxorubicin at the C-terminus of ELP. The acid-sensitive hydrazone linker ensures release of Dox in the lysosomes/endosomes after cellular uptake of the drug conjugate. We have shown that CPP-ELP-Dox effectively inhibits cell proliferation in three GBM cell lines. Both the free drug and CPP-ELP-Dox conjugate exhibited similar in vitro cytotoxicity, although their subcellular localization was considerably different. The Dox conjugate was mainly dispersed in the cytoplasm, while free drug had partial nuclear accumulation in addition to cytoplasmic distribution. The intracellular Dox concentration was increased in the CPP-ELP-Dox cells compared to that in the cells treated with free Dox, which positively correlates with cytotoxic activity. In summary, our findings demonstrate that CPP-ELP-Dox effectively kills GBM cells. Development of such a drug carrier has the potential to greatly improve current therapeutic approaches for GBM by increasing the specificity and efficacy of treatment and reducing cytotoxicity in normal tissues.
Collapse
|
37
|
Novel therapeutic interventions in cancer treatment using protein and peptide-based targeted smart systems. Semin Cancer Biol 2019; 69:249-267. [PMID: 31442570 DOI: 10.1016/j.semcancer.2019.08.023] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 08/19/2019] [Accepted: 08/20/2019] [Indexed: 01/12/2023]
Abstract
Cancer, being the most prevalent and resistant disease afflicting any gender, age or social status, is the ultimate challenge for the scientific community. The new generation therapeutics for cancer management has shifted the approach to personalized/precision medicine, making use of patient- and tumor-specific markers for specifying the targeted therapies for each patient. Peptides targeting these cancer-specific signatures hold enormous potential for cancer therapy and diagnosis. The rapid advancements in the combinatorial peptide libraries served as an impetus to the development of multifunctional peptide-based materials for targeted cancer therapy. The present review outlines benefits and shortcomings of peptides as cancer therapeutics and the potential of peptide modified nanomedicines for targeted delivery of anticancer agents.
Collapse
|
38
|
Chen JC, Hwang JH. Effects of Far-infrared Ray on Temozolomide-treated Glioma in Rats. In Vivo 2019; 33:1203-1208. [PMID: 31280210 DOI: 10.21873/invivo.11591] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 06/10/2019] [Accepted: 06/18/2019] [Indexed: 12/30/2022]
Abstract
BACKGROUND/AIM Malignant glioma is a rapidly progressive primary brain cancer. The aim of the study was to investigate the effect of far-infrared ray (FIR) on temozolomide (TMZ)-treated glioma in rats. MATERIALS AND METHODS Male, 8-week old, Fischer 344 inbred rats with glioma were randomly divided into three study groups (20 rats in each group). The control group received saline only once daily for 5 days. The TMZ group received TMZ (30 mg/kg) once daily for 5 days. The TMZ plus FIR group received TMZ (30 mg/kg) once daily for 5 days and infrared-c irradiation of 40 min twice daily for 4 weeks. The relative tumor fold and the expression of hypoxia-induced factor-1α (HIF-1α) and vascular endothelial growth factor (VEGF) were compared using one-way ANOVA at the end of study. RESULTS The relative tumor fold of the TMZ+FIR group was significantly higher compared to the control group, and was borderline higher compared to the TMZ group at Day 7. The relative tumor fold of TMZ+FIR group was significantly higher compared to the control group and the TMZ group at Days 14, 21 and 28. HIF-1α expression of TMZ+FIR group was borderline higher compared to the control group at Day 28. The VEGF expression of TMZ+FIR group was significantly higher compared to the control group and the TMZ group at Day 28. CONCLUSION FIR might increase the growth of glioma under TMZ treatment in rats possibly via increasing VEGF expression, but not HIF-1α expression.
Collapse
Affiliation(s)
- Jin-Cherng Chen
- Department of Neurosurgery, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi, Taiwan, R.O.C.,School of Medicine, Tzu Chi University, Hualien, Taiwan, R.O.C
| | - Juen-Haur Hwang
- School of Medicine, Tzu Chi University, Hualien, Taiwan, R.O.C. .,Department of Otolaryngology-Head and Neck Surgery, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi, Taiwan, R.O.C.,Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan, R.O.C
| |
Collapse
|
39
|
Jauset T, Beaulieu ME. Bioactive cell penetrating peptides and proteins in cancer: a bright future ahead. Curr Opin Pharmacol 2019; 47:133-140. [PMID: 31048179 DOI: 10.1016/j.coph.2019.03.014] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 03/26/2019] [Accepted: 03/27/2019] [Indexed: 02/05/2023]
Abstract
Peptides and proteins bear an extraordinary therapeutic potential to effectively and selectively target many components of cells currently considered undruggable. However, their intracellular delivery remains a critical challenge. Cell penetrating peptides and protein domains (CPPs) can be employed to translocate therapeutic polypeptides through the cellular membrane. Here, we describe examples of linear peptides and proteins, byciclic macropeptides and nanobodies that target key players in cancer development, with intrinsic and engineered cell penetrating ability. We also describe current solutions to the main challenges to their clinical viability.
Collapse
Affiliation(s)
- Toni Jauset
- Peptomyc, Edifici Cellex, Hospital Vall d'Hebron, Barcelona, 08035, Spain
| | - Marie-Eve Beaulieu
- Peptomyc, Edifici Cellex, Hospital Vall d'Hebron, Barcelona, 08035, Spain.
| |
Collapse
|
40
|
Guise E, Engel JE, Williams ML, Mahdi F, Bidwell GL, Chade AR. Biopolymer-delivered vascular endothelial growth factor improves renal outcomes following revascularization. Am J Physiol Renal Physiol 2019; 316:F1016-F1025. [PMID: 30892933 DOI: 10.1152/ajprenal.00607.2018] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Renal angioplasty and stenting (PTRAs) resolves renal artery stenosis, but inconsistently improves renal function, possibly due to persistent parenchymal damage. We developed a bioengineered fusion of a drug delivery vector (elastin-like polypeptide, ELP) with vascular endothelial growth factor (VEGF), and showed its therapeutic efficacy. We tested the hypothesis that combined ELP-VEGF therapy with PTRAs improves renal recovery more efficiently than PTRAs alone, by protecting the stenotic renal parenchyma. Unilateral renovascular disease (RVD) was induced by renal artery stenosis in 14 pigs. Six weeks later, stenotic kidney blood flow (RBF) and glomerular filtration rate (GFR) were quantified in vivo using multidetector CT. Blood and urine were collected during in vivo studies. All pigs underwent PTRAs and then were randomized into single intrarenal ELP-VEGF administration or placebo (n = 7 each) groups. Pigs were observed for four additional weeks, in vivo CT studies were repeated, and then pigs were euthanized for ex vivo studies to quantify renal microvascular (MV) density, angiogenic factor expression, and morphometric analysis. Renal hemodynamics were similarly blunted in all RVD pigs. PTRAs resolved stenosis but modestly improved RBF and GFR. However, combined PTRAs+ ELP-VEGF improved RBF, GFR, regional perfusion, plasma creatinine, asymmetric dimethlyarginine (ADMA), and albuminuria compared with PTRAs alone, accompanied by improved angiogenic signaling, MV density, and renal fibrosis. Greater improvement of renal function via coadjuvant ELP-VEGF therapy may be driven by enhanced MV proliferation and repair, which ameliorates MV rarefaction and fibrogenic activity that PTRAs alone cannot offset. Thus, our study supports a novel strategy to boost renal recovery in RVD after PTRAs.
Collapse
Affiliation(s)
- Erika Guise
- Department of Physiology and Biophysics, University of Mississippi Medical Center , Jackson, Mississippi
| | - Jason E Engel
- Department of Physiology and Biophysics, University of Mississippi Medical Center , Jackson, Mississippi
| | - Maxx L Williams
- Department of Physiology and Biophysics, University of Mississippi Medical Center , Jackson, Mississippi
| | - Fakhri Mahdi
- Department of Neurology, University of Mississippi Medical Center , Jackson, Mississippi.,Department of Cell and Molecular Biology, University of Mississippi Medical Center , Jackson, Mississippi
| | - Gene L Bidwell
- Department of Neurology, University of Mississippi Medical Center , Jackson, Mississippi.,Department of Cell and Molecular Biology, University of Mississippi Medical Center , Jackson, Mississippi.,Department of Pharmacology and Toxicology, University of Mississippi Medical Center , Jackson, Mississippi
| | - Alejandro R Chade
- Department of Physiology and Biophysics, University of Mississippi Medical Center , Jackson, Mississippi.,Department of Medicine, University of Mississippi Medical Center , Jackson, Mississippi.,Department of Radiology, University of Mississippi Medical Center , Jackson, Mississippi
| |
Collapse
|
41
|
Ryu JS, Robinson L, Raucher D. Elastin-Like Polypeptide Delivers a Notch Inhibitory Peptide to Inhibit Tumor Growth in Combination with Paclitaxel. J Chemother 2019; 31:23-29. [DOI: 10.1080/1120009x.2018.1537554] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Jung Su Ryu
- Department of Biochemistry, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Leslie Robinson
- Department of Chemistry and Physics, Belhaven University, Jackson, MississippiUSA
| | - Drazen Raucher
- Department of Biochemistry, University of Mississippi Medical Center, Jackson, Mississippi, USA
| |
Collapse
|
42
|
Raucher D. Tumor targeting peptides: novel therapeutic strategies in glioblastoma. Curr Opin Pharmacol 2019; 47:14-19. [PMID: 30776641 DOI: 10.1016/j.coph.2019.01.006] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 01/17/2019] [Accepted: 01/18/2019] [Indexed: 01/27/2023]
Abstract
Peptides are a promising new therapeutic approach for glioblastoma with potential for more effective targeting and fewer devastating side effects compared to conventional cancer therapies. With the specificity to target receptors which are uniquely or overexpressed on cancer cells as well as accurately targeting dysregulated signaling pathways, peptides demonstrate a high potential for the treatment of even the most aggressive cancers. By binding to these targets, peptides can be used to deliver drugs, serve as antagonists to various ligands, or, given some inherent anticancer activity, provide additional treatment options alone or in combination therapy. The highly specific targeting capacity of peptides is critical to achieve effective cancer treatment with limited side effects, and in preclinical studies peptides have shown to have both cell and blood brain barrier penetrating capacity. As tumor targeting peptides move beyond the preclinical setting, identification of additional glioblastoma-specific peptide ligands becomes imperative to expand the potential of this encouraging treatment strategy.
Collapse
Affiliation(s)
- Drazen Raucher
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, MS, United States.
| |
Collapse
|
43
|
Raucher D, Dragojevic S, Ryu J. Macromolecular Drug Carriers for Targeted Glioblastoma Therapy: Preclinical Studies, Challenges, and Future Perspectives. Front Oncol 2018; 8:624. [PMID: 30619758 PMCID: PMC6304427 DOI: 10.3389/fonc.2018.00624] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 12/03/2018] [Indexed: 11/13/2022] Open
Abstract
Glioblastoma, the most common, aggressive brain tumor, ranks among the least curable cancers-owing to its strong tendency for intracranial dissemination, high proliferation potential, and inherent tumor resistance to radiation and chemotherapy. Current glioblastoma treatment strategies are further hampered by a critical challenge: adverse, non-specific treatment effects in normal tissue combined with the inability of drugs to penetrate the blood brain barrier and reach the tumor microenvironment. Thus, the creation of effective therapies for glioblastoma requires development of targeted drug-delivery systems that increase accumulation of the drug in the tumor tissue while minimizing systemic toxicity in healthy tissues. As demonstrated in various preclinical glioblastoma models, macromolecular drug carriers have the potential to improve delivery of small molecule drugs, therapeutic peptides, proteins, and genes to brain tumors. Currently used macromolecular drug delivery systems, such as liposomes and polymers, passively target solid tumors, including glioblastoma, by capitalizing on abnormalities of the tumor vasculature, its lack of lymphatic drainage, and the enhanced permeation and retention (EPR) effect. In addition to passive targeting, active targeting approaches include the incorporation of various ligands on the surface of macromolecules that bind to cell surface receptors expressed on specific cancer cells. Active targeting approaches also utilize stimulus responsive macromolecules which further improve tumor accumulation by triggering changes in the physical properties of the macromolecular carrier. The stimulus can be an intrinsic property of the tumor tissue, such as low pH, or extrinsic, such as local application of ultrasound or heat. This review article explores current preclinical studies and future perspectives of targeted drug delivery to glioblastoma by macromolecular carrier systems, including polymeric micelles, nanoparticles, and biopolymers. We highlight key aspects of the design of diverse macromolecular drug delivery systems through a review of their preclinical applications in various glioblastoma animal models. We also review the principles and advantages of passive and active targeting based on various macromolecular carriers. Additionally, we discuss the potential disadvantages that may prevent clinical application of these carriers in targeting glioblastoma, as well as approaches to overcoming these obstacles.
Collapse
Affiliation(s)
- Drazen Raucher
- Department of Cell and Molecular Biology, University of Mississippi Medical Center Jackson, MS, United States
| | - Sonja Dragojevic
- Department of Cell and Molecular Biology, University of Mississippi Medical Center Jackson, MS, United States
| | - Jungsu Ryu
- Department of Cell and Molecular Biology, University of Mississippi Medical Center Jackson, MS, United States
| |
Collapse
|
44
|
Kuna M, Waller JP, Logue OC, Bidwell GL. Polymer size affects biodistribution and placental accumulation of the drug delivery biopolymer elastin-like polypeptide in a rodent pregnancy model. Placenta 2018; 72-73:20-27. [PMID: 30501877 PMCID: PMC6287274 DOI: 10.1016/j.placenta.2018.10.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 09/19/2018] [Accepted: 10/18/2018] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Fusion of therapeutic agents to Elastin-like Polypeptide (ELP) is a novel drug delivery strategy for prevention of placental drug transfer. Previous studies have used a 60 kDa ELP tag for this purpose. However, placental transfer of ELP may be size dependent. The goal of this study was to measure the effects of ELP polymer size on pharmacokinetics, biodistribution, and placental transfer of ELP. METHODS Three ELPs ranging from 25 to 86 kDa (4.1-6.8 nm hydrodynamic radius) were fluorescently labeled and administered by i.v. bolus to pregnant Sprague Dawley rats on gestational day 14. Plasma levels were monitored for 4 h, organ levels and placental transfer determined by ex vivo fluorescence imaging, and placental localization determined by confocal microscopy. RESULTS Increasing ELP size resulted in slower plasma clearance and increased deposition in all major maternal organs, except in the kidneys where an opposite effect was observed. Placental levels increased with an increase in size, while in the pups, little to no ELP was detected. DISCUSSION Pharmacokinetics and biodistribution of ELPs during pregnancy are size dependent, but all ELPs tested were too large to traverse the placental barrier. These studies verify that ELP fusion is a powerful method of modulating half-life and preventing placental transfer of cargo molecules. The tunable nature of the ELP sequence makes it ideal for drug delivery applications during pregnancy, where it can be used to target drugs to the mother while preventing fetal drug exposure.
Collapse
Affiliation(s)
- Marija Kuna
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, MS, USA
| | - Jamarius P Waller
- Department of Neurology, University of Mississippi Medical Center, Jackson, MS, USA
| | - Omar C Logue
- Department of Neurology, University of Mississippi Medical Center, Jackson, MS, USA
| | - Gene L Bidwell
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, MS, USA; Department of Neurology, University of Mississippi Medical Center, Jackson, MS, USA.
| |
Collapse
|
45
|
Kuna M, Mahdi F, Chade AR, Bidwell GL. Molecular Size Modulates Pharmacokinetics, Biodistribution, and Renal Deposition of the Drug Delivery Biopolymer Elastin-like Polypeptide. Sci Rep 2018; 8:7923. [PMID: 29784932 PMCID: PMC5962569 DOI: 10.1038/s41598-018-24897-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 04/11/2018] [Indexed: 11/25/2022] Open
Abstract
Elastin-like polypeptides (ELP) are engineered proteins that consist of repetitions of a five amino acid motif, and their composition is easily modified to adjust their physical properties and attach therapeutics. Because of the repetitive nature of the ELP sequence, polymer size is particularly amenable to manipulation. ELP fusion proteins are being actively developed as therapeutics for many disease applications, and how the ELP size and shape affects its pharmacokinetics and biodistribution is a critical question for the general field of ELP drug delivery. To address this, we generated a library of ELPs ranging in size from 25 kDa to 110 kDa. Terminal plasma half-life was directly proportional to polymer size, and organ biodistribution was also size dependent. The kidneys accumulated the highest levels of ELP of all sizes, followed by the liver. Within the kidney, most ELP was found in the proximal tubule, but intra-renal localization shifted from exclusively cortical to a mixture of cortical and medullary as ELP size increased.
Collapse
Affiliation(s)
- Marija Kuna
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, MS, USA
| | - Fakhri Mahdi
- Department of Neurology, University of Mississippi Medical Center, Jackson, MS, USA
| | - Alejandro R Chade
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS, USA.,Department of Medicine, University of Mississippi Medical Center, Jackson, MS, USA.,Department of Radiology, University of Mississippi Medical Center, Jackson, MS, USA
| | - Gene L Bidwell
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, MS, USA. .,Department of Neurology, University of Mississippi Medical Center, Jackson, MS, USA.
| |
Collapse
|
46
|
Abstract
Renovascular disease (RVD), which is prevalent in the elderly, significantly increases cardiovascular risk and can progressively deteriorate renal function. The loss of renal function in patients with RVD is associated with a progressive dysfunction, damage, and loss of renal microvessels, which can be combined with decreased renal bioavailability of vascular endothelial growth factor (VEGF) and a defective vascular repair and proliferation. This association has been the impetus for recent efforts that have focused on developing methods to stop the progression of renal injury by protecting the renal microvasculature. This mini-review focuses on recent studies supporting potential applications of VEGF therapy for the kidney and discusses underlying mechanisms of renoprotection.
Collapse
Affiliation(s)
- Erika Guise
- Department of Physiology and Biophysics, University of Mississippi Medical Center , Jackson, Mississippi
| | - Alejandro R Chade
- Department of Physiology and Biophysics, University of Mississippi Medical Center , Jackson, Mississippi.,Department of Medicine, University of Mississippi Medical Center , Jackson, Mississippi.,Department of Radiology, University of Mississippi Medical Center , Jackson, Mississippi
| |
Collapse
|
47
|
Inamoto I, Shin JA. Peptide therapeutics that directly target transcription factors. Pept Sci (Hoboken) 2018. [DOI: 10.1002/pep2.24048] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Ichiro Inamoto
- Department of Chemistry; University of Toronto, 3359 Mississauga Road; Mississauga Ontario L5L 1C6 Canada
| | - Jumi A. Shin
- Department of Chemistry; University of Toronto, 3359 Mississauga Road; Mississauga Ontario L5L 1C6 Canada
| |
Collapse
|
48
|
Roointan A, Kianpour S, Memari F, Gandomani M, Gheibi Hayat SM, Mohammadi-Samani S. Poly(lactic-co-glycolic acid): The most ardent and flexible candidate in biomedicine! INT J POLYM MATER PO 2018. [DOI: 10.1080/00914037.2017.1405350] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Amir Roointan
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sedigheh Kianpour
- Department of Pharmaceutical Biotechnology, Pharmaceutical Sciences Research Center, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatemeh Memari
- Department of Medical Biotechnology, School of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Molood Gandomani
- Department of Bioengineering, Biotechnology Research Center, Cyprus international University, Nicosia, Cyprus
| | - Seyed Mohammad Gheibi Hayat
- Student Research Committee, Department of Medical Biotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Soliman Mohammadi-Samani
- Department of Pharmaceutics, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
49
|
Kim HS, Son YJ, Mao W, Leong KW, Yoo HS. Atom Transfer Radical Polymerization of Multishelled Cationic Corona for the Systemic Delivery of siRNA. NANO LETTERS 2018; 18:314-325. [PMID: 29232130 DOI: 10.1021/acs.nanolett.7b04183] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We propose an effective siRNA delivery system by preparing poly(DAMA-HEMA)-multilayered gold nanoparticles using multiple surface-initiated atom transfer radical polymerization processes. The polymeric multilayer structure is characterized by transmission electron microscopy, matrix-associated laser desorption/ionization time-of-flight mass spectrometry, UV-vis spectroscopy, Fourier transform infrared spectroscopy, dynamic light scattering, and ζ-potential. The amount of siRNA electrostatically incorporated into the nanoparticle can be tuned by the number of polymeric shells, which in turn influences the cellular uptake and gene silencing effect. In a bioreductive environment, the interlayer disulfide bond breaks to release the siRNA from the degraded polymeric shells. Intravenously injected c-Myc siRNA-incorporated particles accumulate in the tumor site of a murine lung carcinoma model and significantly suppress the tumor growth. Therefore, the combination of a size-tunable AuNP core and an ATRP-functionalized shell offers control and versatility in the effective delivery of siRNA.
Collapse
Affiliation(s)
- Hye Sung Kim
- Department of Biomedical Materials Engineering, Kangwon National University , Chuncheon, 24341, Republic of Korea
| | - Young Ju Son
- Department of Biomedical Materials Engineering, Kangwon National University , Chuncheon, 24341, Republic of Korea
| | - Wei Mao
- Department of Biomedical Materials Engineering, Kangwon National University , Chuncheon, 24341, Republic of Korea
| | - Kam W Leong
- Department of Biomedical Engineering, Columbia University , New York, New York 10027, United States
| | - Hyuk Sang Yoo
- Department of Biomedical Materials Engineering, Kangwon National University , Chuncheon, 24341, Republic of Korea
- Institute of Bioscience and Bioengineering, Kangwon National University , Chuncheon, 24341, Republic of Korea
| |
Collapse
|
50
|
Chade AR, Williams ML, Guise E, Vincent LJ, Harvey TW, Kuna M, Mahdi F, Bidwell GL. Systemic biopolymer-delivered vascular endothelial growth factor promotes therapeutic angiogenesis in experimental renovascular disease. Kidney Int 2017; 93:842-854. [PMID: 29273331 DOI: 10.1016/j.kint.2017.09.029] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 09/20/2017] [Accepted: 09/28/2017] [Indexed: 12/19/2022]
Abstract
We recently developed a therapeutic biopolymer composed of an elastin-like polypeptide (ELP) fused to vascular endothelial growth factor (VEGF) and showed long-term renoprotective effects in experimental renovascular disease after a single intra-renal administration. Here, we sought to determine the specificity, safety, efficacy, and mechanisms of renoprotection of ELP-VEGF after systemic therapy in renovascular disease. We tested whether kidney selectivity of the ELP carrier would reduce off-target binding of VEGF in other organs. In vivo bio-distribution after systemic administration of ELP-VEGF in swine was determined in kidneys, liver, spleen, and heart. Stenotic-kidney renal blood flow and glomerular filtration rate were quantified in vivo using multi-detector computed tomography (CT) after six weeks of renovascular disease, then treated with a single intravenous dose of ELP-VEGF or placebo and observed for four weeks. CT studies were then repeated and the pigs euthanized. Ex vivo studies quantified renal microvascular density (micro-CT) and fibrosis. Kidneys, liver, spleen, and heart were excised to quantify the expression of angiogenic mediators and markers of progenitor cells. ELP-VEGF accumulated predominantly in the kidney and stimulated renal blood flow, glomerular filtration rate, improved cortical microvascular density, and renal fibrosis, and was accompanied by enhanced renal expression of VEGF, downstream mediators of VEGF signaling, and markers of progenitor cells compared to placebo. Expression of angiogenic factors in liver, spleen, and heart were not different compared to placebo-control. Thus, ELP efficiently directs VEGF to the kidney after systemic administration and induces long-term renoprotection without off-target effects, supporting the feasibility and safety of renal therapeutic angiogenesis via systemic administration of a novel kidney-specific bioengineered compound.
Collapse
Affiliation(s)
- Alejandro R Chade
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi, USA; Department of Medicine, University of Mississippi Medical Center, Jackson, Mississippi, USA; Department of Radiology, University of Mississippi Medical Center, Jackson, Mississippi, USA.
| | - Maxx L Williams
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Erika Guise
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Luke J Vincent
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Taylor W Harvey
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Marija Kuna
- Department of Biochemistry, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Fakhri Mahdi
- Department of Neurology, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Gene L Bidwell
- Department of Biochemistry, University of Mississippi Medical Center, Jackson, Mississippi, USA; Department of Neurology, University of Mississippi Medical Center, Jackson, Mississippi, USA
| |
Collapse
|