1
|
Zhang Y, Wu S, Zhou X, Huang F, Chen R, Wang Y, Wu J. Association between nucleotide excision repair gene polymorphism and colorectal cancer risk. J Clin Lab Anal 2019; 33:e22956. [PMID: 31568607 PMCID: PMC6805325 DOI: 10.1002/jcla.22956] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 05/28/2019] [Accepted: 05/29/2019] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND The nucleotide excision repair system removes a wide variety of DNA lesions from the human genome, and plays an important role in maintaining genomic stability. Single nucleotide polymorphisms (SNPs) in nucleotide excision repair are associated with the various forms of tumor susceptibility. However, the relationship between NER polymorphism and colorectal cancer is not clear. METHODS In this study, three candidate SNPs including ERCC4 (rs6498486), ERCC1 (rs3212986), and ERCC5 (rs17655) were analyzed in 1101colorectal cancer patients and 1175 healthy control patients from Jiangsu province (China). Then, we performed Immunohistochemistry, qPCR, and luciferase assay to determine the potential mechanisms. RESULTS The ERCC4 rs6498486 AC/CC genotypes show lower susceptibility to CRC than those carrying rs6498486 AA (Adjusted OR = 0.82, 95% CI = 0.69-0.97). However, we did not observe any association between the colorectal cancer risk and the rs3212986(ERCC1) and rs17655(ERCC5) polymorphisms. Immunohistochemistry, qPCR, and luciferase assay revealed that rs6498486 A > C polymorphism in the ERCC4 promoter region could lessen the expression level of ERCC4 by impacting the binding ability of the transcription factor NF-kB, thereby affecting the transcription activity of the ERCC4 gene and decreased ERCC4 gene expression. CONCLUSION In brief, our finding demonstrated that ERCC4 rs6498486 serves as a potential biomarker of CRC susceptibility for the development of colorectal cancer.
Collapse
Affiliation(s)
- Yujie Zhang
- College of Life and Medicine Sciences, Zhejiang Sci-Tech University, Hangzhou, China
| | - Shenshen Wu
- Key Laboratory of Environmental Medicine Engineering School of Public Health, Southeast University, Nanjing, China
| | - Xiumei Zhou
- College of Life and Medicine Sciences, Zhejiang Sci-Tech University, Hangzhou, China
| | - Fang Huang
- Department of Pathology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Rui Chen
- Key Laboratory of Environmental Medicine Engineering School of Public Health, Southeast University, Nanjing, China
| | - Yigang Wang
- College of Life and Medicine Sciences, Zhejiang Sci-Tech University, Hangzhou, China
| | - Jiong Wu
- College of Life and Medicine Sciences, Zhejiang Sci-Tech University, Hangzhou, China.,Jiangsu Provincial Key Lab of Pharmaceutical Botany, Jiangsu Normal university, Xuzhou, China
| |
Collapse
|
2
|
Abstract
BACKGROUND Forkhead box P3 (Foxp3) plays important roles in the development and pathogensis of cancer. To investigate the association of 3 polymorphisms of Foxp3 (rs3761548, rs 3761549 and rs2280883) and cancer risk, an updated meta-analysis was performed. METHODS Around 11 studies including 4344 cancer patients and 4665 healthy controls were selected for this meta-analysis. There were nine studies with 3783 cases and 4096 controls for rs3761548, 4 studies with 1669 cases and 1613 controls for rs3761549 and 4 studies with 1821 cases and 1799 controls for rs2280883. Odds radios (ORs) and 95% confidence intervals (CIs) were used to evaluate the cancer risk. RESULTS Meta-analysis showed that rs3761548 was associated with an increased cancer risk in the overall population under the recessive model (AA vs CA + CC: OR = 1.45, 95%CI = 1.03-2.02, P = .03). No association was found between rs3761549, rs2280883 polymorphisms, and cancer susceptibility in the overall population. Nonetheless, in the genotyping methods subgroup analysis of rs2280883, a lower risk of cancer was found in studies using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) under the allelic model (C vs T: OR = 0.70, 95%CI = 0.52-0.95, P = .02), heterozygote model (TC vs TT: OR = 0.60, 95%CI = 0.41-0.87, P = .008) and dominant model (CC + TC vs TT: OR = 0.63, 95%CI = 0.45-0.90, P = .01). In the subgroup analysis by cancer types showed C allele or TC carriers were insusceptible to cancer under 3 genetic models (C vs T: OR = 0.78, 95%CI = 0.64-0.95, P = .01; TC vs TT: OR = 0.50, 95%CI = 0.32-0.79, P = .003; CC + TC vs TT: OR = 0.64, 95%CI = 0.51-0.82, P < .001). CONCLUSION Our results suggest that rs3761548 polymorphism is associated with cancer risk.
Collapse
|
3
|
Yu Y, Cheng D, Parfrey P, Liu G, Savas S. Two functional indel polymorphisms in the promoter region of the Brahma gene (BRM) and disease risk and progression-free survival in colorectal cancer. PLoS One 2018; 13:e0198873. [PMID: 29894502 PMCID: PMC5997361 DOI: 10.1371/journal.pone.0198873] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 05/25/2018] [Indexed: 01/28/2023] Open
Abstract
Background and objective The Brahma gene (BRM) encodes a catalytic ATPase subunit of the Switch/Sucrose non-fermentable (SWI/SNF) complex, which modulates gene expression and many important cellular processes. Two indel polymorphisms in the promoter region of BRM (BRM-741 and BRM-1321) are associated with its reduced expression and the risk of susceptibility or survival outcomes in multiple solid cancers. In this study, we have examined these variants in relation to susceptibility and survival outcomes in colorectal cancer. Methods Genotypes were obtained using TaqMan assays in 427 cases and 408 controls. Multivariate logistic and Cox regression models were fitted to examine the associations of the BRM-741 and BRM-1321 genotypes adjusting for relevant covariates. Sub-group analyses based on tumor location and patient sex were also performed. In all analyses, indels were examined individually as well as in combination. Results Our results showed that there was no association between the BRM polymorphisms and the risk of colorectal cancer. However, genotype combinations of the BRM-741 and BRM-1321 variants were associated with the risk of colon cancer. Particularly, patients having at least one variant allele had increased risk of colon cancer when compared to patients with the double wild-type genotype. In the survival analyses, BRM-741 heterozygosity was associated with longer progression-free survival time in the colorectal cancer patients. A stronger association was detected in the male patients under the recessive genetic model where the homozygosity for the variant allele of BRM-741 was associated with shorter progression-free survival time. Conclusions Our analyses suggest that BRM-741 and BRM-1321 indels are associated with the risk of developing colon cancer and the BRM-741 indel is associated with the disease progression in colorectal cancer patients, especially in the male patients. Although our results show a different relationship between these indels and colorectal cancer compared to other cancer sites, they also suggest that BRM and its promoter variants may have biological roles in susceptibility and survival outcomes in colorectal cancers. Performing further analyses in additional and larger cohorts are needed to confirm our conclusions.
Collapse
Affiliation(s)
- Yajun Yu
- Discipline of Genetics, Faculty of Medicine, Memorial University, St. John’s, Newfoundland and Labrador, Canada
| | - Dangxiao Cheng
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Patrick Parfrey
- Clinical Epidemiology Unit, Faculty of Medicine, Memorial University, St. John’s, Newfoundland and Labrador, Canada
| | - Geoffrey Liu
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Division of Medical Oncology and Hematology, Department of Medicine, Princess Margaret Cancer Centre and University of Toronto, Toronto, Ontario, Canada
- Epidemiology, Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| | - Sevtap Savas
- Discipline of Genetics, Faculty of Medicine, Memorial University, St. John’s, Newfoundland and Labrador, Canada
- Discipline of Oncology, Faculty of Medicine, Memorial University, St. John’s, Newfoundland and Labrador, Canada
- * E-mail:
| |
Collapse
|
4
|
Korpanty GJ, Eng L, Qiu X, Faluyi OO, Renouf DJ, Cheng D, Patel D, Chen Z, Tse BC, Knox JJ, Dodbiba L, Teichman J, Azad AK, Wong R, Darling G, Reisman D, Cuffe S, Liu G, Xu W. Association of BRM promoter polymorphisms and esophageal adenocarcinoma outcome. Oncotarget 2018; 8:28093-28100. [PMID: 28427211 PMCID: PMC5438633 DOI: 10.18632/oncotarget.15890] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 02/22/2017] [Indexed: 12/16/2022] Open
Abstract
Purpose Brahma (BRM) is a critical catalytic subunit of the SWI/SNF chromatin remodeling complex; expression of BRM is commonly lost in various cancer types. BRM promoter polymorphisms (BRM-741; BRM-1321) are associated with loss of BRM expression, and with cancer risk/survival. We evaluated these two polymorphisms in the overall survival (OS) of esophageal adenocarcinoma (EAC) patients. Results Of 270 patients, 37% were stage IV. Minor allele frequencies were 47−49%; 15% were double-homozygotes. When compared to the wild-type genotype, the homozygous variant of BRM-741 carried an adjusted OS hazard ratio (aHR) of 1.64 (95% CI:1.1−2.4); for BRM-1321, the aHR was 2.09 (95% CI:1.4−3.0). Compared to the double wild-type, carrying homozygous variants of both promoter polymorphisms (double-homozygote) yielded an aHR of 2.21 (95% CI:1.4−3.6). Directions/magnitudes of associations were similar in subsets by age, gender, smoking status, use of platinum agents, and disease stage, and for progression-free survival. Materials and Methods In a cohort of EAC patients of all stages (84% male; median age of 64 years), two BRM polymorphisms were genotyped. Cox proportional hazards models, adjusted for known prognostic variables, estimated the association of polymorphisms with OS. Conclusions BRM polymorphisms were associated with OS in EAC in this study. Validation studies are warranted.
Collapse
Affiliation(s)
- Grzegorz J Korpanty
- Princess Margaret Cancer Centre, Department of Medicine, University Health Network, Toronto, ON, Canada.,Canadian Cancer Trials Group, Department of Medicine, Queens University, Kingston, ON, Canada
| | - Lawson Eng
- Princess Margaret Cancer Centre, Department of Medicine, University Health Network, Toronto, ON, Canada
| | - Xin Qiu
- Princess Margaret Cancer Centre, Department of Biostatistics, University Health Network, Toronto, ON, Canada
| | - Olusola Olusesan Faluyi
- Princess Margaret Cancer Centre, Department of Medicine, University Health Network, Toronto, ON, Canada
| | - Daniel J Renouf
- Department of Medical Oncology, University of British Columbia and British Columbia Cancer Agency, Vancouver, BC, Canada
| | - Dangxiao Cheng
- Princess Margaret Cancer Centre, Department of Medical Biophysics, University Health Network, Toronto, ON, Canada
| | - Devalben Patel
- Princess Margaret Cancer Centre, Department of Medical Biophysics, University Health Network, Toronto, ON, Canada
| | - Zhuo Chen
- Princess Margaret Cancer Centre, Department of Medical Biophysics, University Health Network, Toronto, ON, Canada
| | - Brandon C Tse
- Princess Margaret Cancer Centre, Department of Medical Biophysics, University Health Network, Toronto, ON, Canada
| | - Jennifer J Knox
- Princess Margaret Cancer Centre, Department of Medicine, University Health Network, Toronto, ON, Canada
| | - Lorin Dodbiba
- Princess Margaret Cancer Centre, Department of Medicine, University Health Network, Toronto, ON, Canada
| | - Jennifer Teichman
- Princess Margaret Cancer Centre, Department of Medicine, University Health Network, Toronto, ON, Canada
| | - Abul Kalam Azad
- Princess Margaret Cancer Centre, Department of Medicine, University Health Network, Toronto, ON, Canada
| | - Rebecca Wong
- Princess Margaret Cancer Centre, Radiation Medicine Program, University Health Network, Toronto, ON, Canada
| | - Gail Darling
- Department of Surgery, Division of Thoracic Surgery, Toronto General Hospital, University Health Network, Toronto, ON, Canada
| | - David Reisman
- Department of Medicine in the College of Medicine, Division of Hematology and Oncology, University of Florida, Gainesville, FL, USA
| | - Sinead Cuffe
- Princess Margaret Cancer Centre, Department of Medicine, University Health Network, Toronto, ON, Canada
| | - Geoffrey Liu
- Princess Margaret Cancer Centre, Department of Medicine, University Health Network, Toronto, ON, Canada.,Princess Margaret Cancer Centre, Department of Medical Biophysics, University Health Network, Toronto, ON, Canada.,Department of Epidemiology, Dalla Lana School of Pubic Health, Toronto, ON, Canada
| | - Wei Xu
- Princess Margaret Cancer Centre, Department of Biostatistics, University Health Network, Toronto, ON, Canada
| |
Collapse
|
5
|
Savas S, Skardasi G. The SWI/SNF complex subunit genes: Their functions, variations, and links to risk and survival outcomes in human cancers. Crit Rev Oncol Hematol 2018; 123:114-131. [PMID: 29482773 DOI: 10.1016/j.critrevonc.2018.01.009] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 11/24/2017] [Accepted: 01/17/2018] [Indexed: 02/06/2023] Open
Abstract
SWI/SNF is a multiprotein complex essential for regulation of eukaryotic gene expression. In this article, we review the function and characteristics of this complex and its subunits in cancer-related phenotypes. We also present and discuss the publically available survival analysis data for TCGA patient cohorts, revealing novel relationships between the expression levels of the SWI/SNF subunit genes and patient survival times in several cancers. Overall, multiple lines of research point to a wide-spread role for the SWI/SNF complex genes in human cancer susceptibility and patient survival times. Examples include the mutations in ARID1A with cancer-driving effects, associations of tumor SWI/SNF gene expression levels and patient survival times, and two BRM promoter region polymorphisms linked to risk or patient outcomes in multiple human cancers. These findings should motivate comprehensive studies in order to fully dissect these relationships and verify the potential clinical utility of the SWI/SNF genes in controlling cancer.
Collapse
Affiliation(s)
- Sevtap Savas
- Discipline of Genetics, Faculty of Medicine, Memorial University, St. John's, NL, Canada; Discipline of Oncology, Faculty of Medicine, Memorial University, St. John's, NL, Canada.
| | - Georgia Skardasi
- Discipline of Genetics, Faculty of Medicine, Memorial University, St. John's, NL, Canada
| |
Collapse
|
6
|
Gao X, Zhu Z, Zhang S. miR-146a rs2910164 polymorphism and the risk of colorectal cancer in Chinese population. J Cancer Res Ther 2018; 14:S97-S99. [DOI: 10.4103/0973-1482.165864] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
7
|
Pasic I, Wong KM, Lee JJ, Espin-Garcia O, Brhane Y, Cheng D, Chen Z, Patel D, Brown C, Bucur R, Reisman D, Knox JJ, Xu W, Hung RJ, Liu G, Cleary SP. Two BRM promoter polymorphisms predict poor survival in patients with hepatocellular carcinoma. Mol Carcinog 2017; 57:106-113. [PMID: 28892201 DOI: 10.1002/mc.22736] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 09/06/2017] [Indexed: 01/13/2023]
Abstract
Polymorphisms in the promoter of the BRM gene, a critical subunit of the chromatin remodeling SWI/SNF complex, have previously been implicated in risk and prognosis in Caucasian-predominant lung, head and neck, esophageal, and pancreatic cancers, and in hepatocellular cancers in Asians. We investigated the role of these polymorphisms in hepatocellular carcinoma (HCC) risk and prognosis. HCC cases were recruited in a comprehensive cancer center while the matched controls were recruited from family practice units from the same catchment area. For risk analyses, unconditional logistic regression analyses were performed in HCC patients and matched healthy controls. Overall survival analyses were performed using Cox proportional hazard models, Kaplan-Meier curves, and log-rank tests. In 266 HCC cases and 536 controls, no association between either BRM promoter polymorphism (BRM-741 or BRM-1321) and risk of HCC was identified (P > 0.10 for all comparisons). There was significant worsening of overall survival as the number of variant alleles increased: BRM-741 per variant allele adjusted hazards ratio (aHR) 5.77, 95% confidence interval (CI) 2.89-11.54 and BRM-1321 per variant allele aHR 4.09, 95%CI 2.22-7.51. The effects of these two polymorphisms were at least additive, where individuals who were double homozygotes for the variant alleles had a 45-fold increase in risk of death when compared to those who were double wild-type for the two polymorphisms. Two BRM promoter polymorphisms were strongly associated with HCC prognosis but were not associated with increased HCC susceptibility. The association was strongest in double homozygotes for the allele variants.
Collapse
Affiliation(s)
- Ivan Pasic
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada.,University of Toronto, Toronto, Canada
| | - Kit M Wong
- Department of Medical Oncology, University of Washington, Seattle, Washington
| | - Jonghun J Lee
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Osvaldo Espin-Garcia
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada.,University of Toronto, Toronto, Canada
| | - Yonathan Brhane
- Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Dangxiao Cheng
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Zhuo Chen
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Devalben Patel
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Catherine Brown
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Roxana Bucur
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | | | - Jennifer J Knox
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Wei Xu
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Rayjean J Hung
- Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Geoffrey Liu
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada.,University of Toronto, Toronto, Canada
| | - Sean P Cleary
- Department of Surgery, Mayo Clinic College of Medicine, Rochester, Minnesota
| |
Collapse
|
8
|
Sensitive genotyping of mutations in the EGFR gene from NSCLC patients using PCR-GoldMag lateral flow device. Sci Rep 2017; 7:8346. [PMID: 28827701 PMCID: PMC5566435 DOI: 10.1038/s41598-017-08210-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 07/05/2017] [Indexed: 11/09/2022] Open
Abstract
Epidermal growth factor receptor (EGFR) mutations predict better outcomes with EGFR tyrosine kinase inhibitors in patients with non-small cell lung cancer (NSCLC). Most common activating mutations include in-frame deletion in exon 19 and L858R substitution in exon 21, which account for >90% of all EGFR mutations in NSCLC. In this study, a PCR-GoldMag lateral flow assay (PCR-GoldMag LFA) was developed for the visual detection of delE746-A750 and L858R of EGFR mutations. Forty formalin-fixed paraffin-embedded (FFPE) tissue samples of NSCLC patients were analyzed using PCR-GoldMag LFA system and verified by direct sequencing and TaqMan-PCR detection methods. Results showed that EGFR mutations were detected in 34 cases among the 40 samples (85%) by PCR-GoldMag LFA method. Among the 34 cases, 5 cases were simultaneously detected with delE746-A750 in exon 19 and L858R mutation in exon 21. Compared with sequencing, only 4 samples were detected as delE746-A750, which revealed higher sensitivity of PCR-GoldMag LFA detection method than direct sequencing. TaqMan-PCR method verified the L858R mutation and was in 100% agreement with our method. These results indicated that our method has obvious advantages to analyze clinical samples and offers a more sensitive alternative to direct sequencing for the detection of EGFR mutations.
Collapse
|
9
|
Liu G, Cuffe S, Liang S, Azad AK, Cheng L, Brhane Y, Qiu X, Cescon DW, Bruce J, Chen Z, Cheng D, Patel D, Tse BC, Laurie SA, Goss G, Leighl NB, Hung R, Bradbury PA, Seymour L, Shepherd FA, Tsao MS, Chen BE, Xu W, Reisman DN. BRM Promoter Polymorphisms and Survival of Advanced Non-Small Cell Lung Cancer Patients in the Princess Margaret Cohort and CCTG BR.24 Trial. Clin Cancer Res 2016; 23:2460-2470. [PMID: 27827316 DOI: 10.1158/1078-0432.ccr-16-1640] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 10/04/2016] [Accepted: 10/23/2016] [Indexed: 01/08/2023]
Abstract
Introduction: BRM, a key catalytic subunit of the SWI/SNF chromatin remodeling complex, is a putative tumor susceptibility gene that is silenced in 15% of non-small cell lung cancer (NSCLC). Two novel BRM promoter polymorphisms (BRM-741 and BRM-1321) are associated with reversible epigenetic silencing of BRM protein expression.Experimental Design: Advanced NSCLC patients from the Princess Margaret (PM) cohort study and from the CCTG BR.24 clinical trial were genotyped for BRM promoter polymorphisms. Associations of BRM variants with survival were assessed using log-rank tests, the method of Kaplan and Meier, and Cox proportional hazards models. Promoter swap, luciferase assays, and chromatin immunoprecipitation (ChIP) experiments evaluated polymorphism function. In silico analysis of publicly available gene expression datasets with outcome were performed.Results: Carrying the homozygous variants of both polymorphisms ("double homozygotes", DH) when compared with those carrying the double wild-type was associated with worse overall survival, with an adjusted hazard ratios (aHR) of 2.74 (95% CI, 1.9-4.0). This was confirmed in the BR.24 trial (aHR, 8.97; 95% CI, 3.3-18.5). Lower BRM gene expression (by RNA-Seq or microarray) was associated with worse outcome (P < 0.04). ChIP and promoter swap experiments confirmed binding of MEF2D and HDAC9 only to homozygotes of each polymorphism, associated with reduced promoter activity in the DH.Conclusions: Epigenetic regulatory molecules bind to two BRM promoter sequence variants but not to their wild-type sequences. These variants are associated with adverse overall and progression-free survival. Decreased BRM gene expression, seen with these variants, is also associated with worse overall survival. Clin Cancer Res; 23(10); 2460-70. ©2016 AACR.
Collapse
Affiliation(s)
- Geoffrey Liu
- Princess Margaret Cancer Centre and University Health Network, University of Toronto, Toronto, Ontario, Canada.
- Ontario Cancer Institute, Toronto, Ontario, Canada
| | - Sinead Cuffe
- Princess Margaret Cancer Centre and University Health Network, University of Toronto, Toronto, Ontario, Canada
| | | | - Abul Kalam Azad
- Princess Margaret Cancer Centre and University Health Network, University of Toronto, Toronto, Ontario, Canada
- Ontario Cancer Institute, Toronto, Ontario, Canada
| | - Lu Cheng
- Princess Margaret Cancer Centre and University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Yonathan Brhane
- Princess Margaret Cancer Centre and University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Xin Qiu
- Princess Margaret Cancer Centre and University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - David W Cescon
- Princess Margaret Cancer Centre and University Health Network, University of Toronto, Toronto, Ontario, Canada
- Ontario Cancer Institute, Toronto, Ontario, Canada
| | - Jeffrey Bruce
- Princess Margaret Cancer Centre and University Health Network, University of Toronto, Toronto, Ontario, Canada
- Ontario Cancer Institute, Toronto, Ontario, Canada
| | - Zhuo Chen
- Princess Margaret Cancer Centre and University Health Network, University of Toronto, Toronto, Ontario, Canada
- Ontario Cancer Institute, Toronto, Ontario, Canada
| | - Dangxiao Cheng
- Princess Margaret Cancer Centre and University Health Network, University of Toronto, Toronto, Ontario, Canada
- Ontario Cancer Institute, Toronto, Ontario, Canada
| | - Devalben Patel
- Princess Margaret Cancer Centre and University Health Network, University of Toronto, Toronto, Ontario, Canada
- Ontario Cancer Institute, Toronto, Ontario, Canada
| | - Brandon C Tse
- Princess Margaret Cancer Centre and University Health Network, University of Toronto, Toronto, Ontario, Canada
- Ontario Cancer Institute, Toronto, Ontario, Canada
| | | | - Glenwood Goss
- Ottawa Hospital Cancer Centre, Ottawa, Ontario, Canada
| | - Natasha B Leighl
- Princess Margaret Cancer Centre and University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Rayjean Hung
- Lunenfeld Research Institute and Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Penelope A Bradbury
- Princess Margaret Cancer Centre and University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Lesley Seymour
- Canadian Cancer Trials Group, Queens University, Kingston, Ontario, Canada
| | - Frances A Shepherd
- Princess Margaret Cancer Centre and University Health Network, University of Toronto, Toronto, Ontario, Canada
- Ontario Cancer Institute, Toronto, Ontario, Canada
| | - Ming Sound Tsao
- Princess Margaret Cancer Centre and University Health Network, University of Toronto, Toronto, Ontario, Canada
- Ontario Cancer Institute, Toronto, Ontario, Canada
| | - Bingshu E Chen
- Canadian Cancer Trials Group, Queens University, Kingston, Ontario, Canada
| | - Wei Xu
- Princess Margaret Cancer Centre and University Health Network, University of Toronto, Toronto, Ontario, Canada
- Ontario Cancer Institute, Toronto, Ontario, Canada
| | | |
Collapse
|
10
|
Segedi M, Anderson LN, Espin-Garcia O, Borgida A, Bianco T, Cheng D, Chen Z, Patel D, Brown MC, Xu W, Reisman D, Gallinger S, Cotterchio M, Hung R, Liu G, Cleary SP. BRM polymorphisms, pancreatic cancer risk and survival. Int J Cancer 2016; 139:2474-81. [PMID: 27487558 DOI: 10.1002/ijc.30369] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 05/31/2016] [Accepted: 06/20/2016] [Indexed: 12/30/2022]
Abstract
Variant alleles of two promoter polymorphisms in the BRM gene (BRM-741, BRM-1321), create MEF2D transcription binding sites that lead to epigenetic silencing of BRM, the key catalytic component of the SWI/SNF chromatin remodeling complex. BRM suppression can be reversed pharmacologically.(1) Our group and others have reported associations with lung, head and neck, hepatocellular cancer risk,(1-3) and with lung and esophageal cancer prognosis (ASCO 2013; abstract 11057 & 4077). Herein, we assessed risk and survival associations with pancreatic cancer. A provincial population-based case-control study was conducted with 623 histologically confirmed pancreatic adenocarcinoma cases and 1,192 age/gender distribution-matched controls.(4) Survival of cases was obtained through the Ontario Cancer Registry. Logistic and Cox proportional hazard regression models were fitted, adjusting for relevant covariates. Median age was 65 y; 52% were male; Stage I (8%), II (55%), III (14%), IV (23%); 53% after curative resection, 79% after chemotherapy; and 83% had died. In the risk analysis, adjusted odds ratios (aOR) were 1.01 (95% CI: 0.1-2.0) and 0.96 (95% CI: 0.7-1.3) for the homozygotes of BRM-741 and BRM-1321, respectively; aOR of double-homozygotes was 1.11 (95% CI: 0.80-1.53), compared to the double-wildtype. For the survival analysis, adjusted hazard ratios (aHR) were 2.19 (95% CI: 1.9-2.5) for BRM-741 and 1.94 (95% CI: 1.7-2.2) for BRM-1321, per unit increase in variant alleles. Compared with the double-wildtype, aHR for carrying no, one, and two double-homozygotes were 2.14 (95% CI: 1.6-2.8), 4.17 (95% CI: 3.0-5.7), 8.03 (95% CI: 5.7-11.4), respectively. In conclusion, two functional promoter BRM polymorphisms were not associated with pancreatic adenocarcinoma risk, but are strongly associated with survival.
Collapse
Affiliation(s)
- Maja Segedi
- Department of Surgery, University of British Columbia, Vancouver, BC, Canada.,Princess Margaret Cancer Centre-University Health Network-Ontario Cancer Institute, University of Toronto, Toronto, ON, Canada
| | - Laura N Anderson
- Mount Sinai Hospital-Lunenfeld Research Institute, Toronto, ON, Canada
| | - Osvaldo Espin-Garcia
- Princess Margaret Cancer Centre-University Health Network-Ontario Cancer Institute, University of Toronto, Toronto, ON, Canada
| | - Ayelet Borgida
- Princess Margaret Cancer Centre-University Health Network-Ontario Cancer Institute, University of Toronto, Toronto, ON, Canada.,Mount Sinai Hospital-Lunenfeld Research Institute, Toronto, ON, Canada
| | - Teresa Bianco
- Princess Margaret Cancer Centre-University Health Network-Ontario Cancer Institute, University of Toronto, Toronto, ON, Canada.,Mount Sinai Hospital-Lunenfeld Research Institute, Toronto, ON, Canada
| | - Dangxiao Cheng
- Princess Margaret Cancer Centre-University Health Network-Ontario Cancer Institute, University of Toronto, Toronto, ON, Canada
| | - Zhuo Chen
- Princess Margaret Cancer Centre-University Health Network-Ontario Cancer Institute, University of Toronto, Toronto, ON, Canada
| | - Devalben Patel
- Princess Margaret Cancer Centre-University Health Network-Ontario Cancer Institute, University of Toronto, Toronto, ON, Canada
| | - M Catherine Brown
- Princess Margaret Cancer Centre-University Health Network-Ontario Cancer Institute, University of Toronto, Toronto, ON, Canada
| | - Wei Xu
- Princess Margaret Cancer Centre-University Health Network-Ontario Cancer Institute, University of Toronto, Toronto, ON, Canada
| | - David Reisman
- Medical Oncology, University of Florida, Gainesville, FL
| | - Steven Gallinger
- Princess Margaret Cancer Centre-University Health Network-Ontario Cancer Institute, University of Toronto, Toronto, ON, Canada.,Mount Sinai Hospital-Lunenfeld Research Institute, Toronto, ON, Canada
| | | | - Rayjean Hung
- Mount Sinai Hospital-Lunenfeld Research Institute, Toronto, ON, Canada
| | - Geoffrey Liu
- Princess Margaret Cancer Centre-University Health Network-Ontario Cancer Institute, University of Toronto, Toronto, ON, Canada.
| | - Sean P Cleary
- Princess Margaret Cancer Centre-University Health Network-Ontario Cancer Institute, University of Toronto, Toronto, ON, Canada.,Mount Sinai Hospital-Lunenfeld Research Institute, Toronto, ON, Canada
| |
Collapse
|
11
|
Diederichs S, Bartsch L, Berkmann JC, Fröse K, Heitmann J, Hoppe C, Iggena D, Jazmati D, Karschnia P, Linsenmeier M, Maulhardt T, Möhrmann L, Morstein J, Paffenholz SV, Röpenack P, Rückert T, Sandig L, Schell M, Steinmann A, Voss G, Wasmuth J, Weinberger ME, Wullenkord R. The dark matter of the cancer genome: aberrations in regulatory elements, untranslated regions, splice sites, non-coding RNA and synonymous mutations. EMBO Mol Med 2016; 8:442-57. [PMID: 26992833 PMCID: PMC5126213 DOI: 10.15252/emmm.201506055] [Citation(s) in RCA: 188] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Cancer is a disease of the genome caused by oncogene activation and tumor suppressor gene inhibition. Deep sequencing studies including large consortia such as TCGA and ICGC identified numerous tumor‐specific mutations not only in protein‐coding sequences but also in non‐coding sequences. Although 98% of the genome is not translated into proteins, most studies have neglected the information hidden in this “dark matter” of the genome. Malignancy‐driving mutations can occur in all genetic elements outside the coding region, namely in enhancer, silencer, insulator, and promoter as well as in 5′‐UTR and 3′‐UTR. Intron or splice site mutations can alter the splicing pattern. Moreover, cancer genomes contain mutations within non‐coding RNA, such as microRNA, lncRNA, and lincRNA. A synonymous mutation changes the coding region in the DNA and RNA but not the protein sequence. Importantly, oncogenes such as TERT or miR‐21 as well as tumor suppressor genes such as TP53/p53,APC,BRCA1, or RB1 can be affected by these alterations. In summary, coding‐independent mutations can affect gene regulation from transcription, splicing, mRNA stability to translation, and hence, this largely neglected area needs functional studies to elucidate the mechanisms underlying tumorigenesis. This review will focus on the important role and novel mechanisms of these non‐coding or allegedly silent mutations in tumorigenesis.
Collapse
Affiliation(s)
- Sven Diederichs
- Division of Cancer Research, Department of Thoracic Surgery, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany Division of RNA Biology & Cancer (B150), German Cancer Research Center (DKFZ), Heidelberg, Germany German Cancer Consortium (DKTK), Freiburg, Germany
| | - Lorenz Bartsch
- German Academic Scholarship Foundation - Studienstiftung des deutschen Volkes, Bonn, Germany
| | - Julia C Berkmann
- German Academic Scholarship Foundation - Studienstiftung des deutschen Volkes, Bonn, Germany
| | - Karin Fröse
- German Academic Scholarship Foundation - Studienstiftung des deutschen Volkes, Bonn, Germany
| | - Jana Heitmann
- German Academic Scholarship Foundation - Studienstiftung des deutschen Volkes, Bonn, Germany
| | - Caroline Hoppe
- German Academic Scholarship Foundation - Studienstiftung des deutschen Volkes, Bonn, Germany
| | - Deetje Iggena
- German Academic Scholarship Foundation - Studienstiftung des deutschen Volkes, Bonn, Germany
| | - Danny Jazmati
- German Academic Scholarship Foundation - Studienstiftung des deutschen Volkes, Bonn, Germany
| | - Philipp Karschnia
- German Academic Scholarship Foundation - Studienstiftung des deutschen Volkes, Bonn, Germany
| | - Miriam Linsenmeier
- German Academic Scholarship Foundation - Studienstiftung des deutschen Volkes, Bonn, Germany
| | - Thomas Maulhardt
- German Academic Scholarship Foundation - Studienstiftung des deutschen Volkes, Bonn, Germany
| | - Lino Möhrmann
- German Academic Scholarship Foundation - Studienstiftung des deutschen Volkes, Bonn, Germany
| | - Johannes Morstein
- German Academic Scholarship Foundation - Studienstiftung des deutschen Volkes, Bonn, Germany
| | - Stella V Paffenholz
- German Academic Scholarship Foundation - Studienstiftung des deutschen Volkes, Bonn, Germany
| | - Paula Röpenack
- German Academic Scholarship Foundation - Studienstiftung des deutschen Volkes, Bonn, Germany
| | - Timo Rückert
- German Academic Scholarship Foundation - Studienstiftung des deutschen Volkes, Bonn, Germany
| | - Ludger Sandig
- German Academic Scholarship Foundation - Studienstiftung des deutschen Volkes, Bonn, Germany
| | - Maximilian Schell
- German Academic Scholarship Foundation - Studienstiftung des deutschen Volkes, Bonn, Germany
| | - Anna Steinmann
- German Academic Scholarship Foundation - Studienstiftung des deutschen Volkes, Bonn, Germany
| | - Gjendine Voss
- German Academic Scholarship Foundation - Studienstiftung des deutschen Volkes, Bonn, Germany
| | - Jacqueline Wasmuth
- German Academic Scholarship Foundation - Studienstiftung des deutschen Volkes, Bonn, Germany
| | - Maria E Weinberger
- German Academic Scholarship Foundation - Studienstiftung des deutschen Volkes, Bonn, Germany
| | - Ramona Wullenkord
- German Academic Scholarship Foundation - Studienstiftung des deutschen Volkes, Bonn, Germany
| |
Collapse
|
12
|
Thompson KW, Marquez SB, Lu L, Reisman D. Induction of functional Brm protein from Brm knockout mice. Oncoscience 2015; 2:349-61. [PMID: 26097869 PMCID: PMC4468321 DOI: 10.18632/oncoscience.153] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2015] [Accepted: 04/08/2015] [Indexed: 12/18/2022] Open
Abstract
Once the knockout of the Brm gene was found to be nontumorigenic in mice, the study of BRM's involvement in cancer seemed less important compared with that of its homolog, Brg1. This has likely contributed to the disparity that has been observed in the publication ratio between BRG1 and BRM. We show that a previously published Brm knockout mouse is an incomplete knockout whereby a truncated isoform of Brm is detected in normal tissue and in tumors. We show that this truncated Brm isoform has functionality comparable to wild type Brm. By immunohistochemistry (IHC), this truncated Brm is undetectable in normal lung tissue and is minimal to very low in Brmnull tumors. However, it is significant in a subset (~40%) of Brg1/Brm double knockout (DKO) tumors that robustly express this truncated BRM, which in part stems from an increase in Brm mRNA levels. Thus, it is likely that this mutant mouse model does not accurately reflect the role that Brm plays in cancer development. We suggest that the construction of a completely new mouse Brm knockout, where Brm is functionally absent, is needed to determine whether or not Brm is actually tumorigenic and if Brm might be a tumor suppressor.
Collapse
Affiliation(s)
- Kenneth W. Thompson
- Division of Hematology and Oncology, Department of Medicine, University of Florida, Gainesville, Florida, USA
| | - Stefanie B. Marquez
- Division of Hematology and Oncology, Department of Medicine, University of Florida, Gainesville, Florida, USA
| | - Li Lu
- Department of Pathology, University of Florida, Gainesville, Florida, USA
| | - David Reisman
- Division of Hematology and Oncology, Department of Medicine, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
13
|
Marquez SB, Thompson KW, Lu L, Reisman D. Beyond Mutations: Additional Mechanisms and Implications of SWI/SNF Complex Inactivation. Front Oncol 2015; 4:372. [PMID: 25774356 PMCID: PMC4343012 DOI: 10.3389/fonc.2014.00372] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 12/11/2014] [Indexed: 01/14/2023] Open
Abstract
UNLABELLED SWI/SNF is a major regulator of gene expression. Its role is to facilitate the shifting and exposure of DNA segments within the promoter and other key domains to transcription factors and other essential cellular proteins. This complex interacts with a wide range of proteins and does not function within a single, specific pathway; thus, it is involved in a multitude of cellular processes, including DNA repair, differentiation, development, cell adhesion, and growth control. Given SWI/SNF's prominent role in these processes, many of which are important for blocking cancer development, it is not surprising that the SWI/SNF complex is targeted during cancer initiation and progression both by mutations and by non-mutational mechanisms. Currently, the understanding of the types of alterations, their frequency, and their impact on the SWI/SNF subunits is an area of intense research that has been bolstered by a recent cadre of NextGen sequencing studies. These studies have revealed mutations in SWI/SNF subunits, indicating that this complex is thus important for cancer development. The purpose of this review is to put into perspective the role of mutations versus other mechanisms in the silencing of SWI/SNF subunits, in particular, BRG1 and BRM. In addition, this review explores the recent development of synthetic lethality and how it applies to this complex, as well as how BRM polymorphisms are becoming recognized as potential clinical biomarkers for cancer risk. SIGNIFICANCE Recent reviews have detailed the occurrence of mutations in nearly all SWI/SNF subunits, which indicates that this complex is an important target for cancer. However, when the frequency of mutations in a given tumor type is compared to the frequency of subunit loss, it becomes clear that other non-mutational mechanisms must play a role in the inactivation of SWI/SNF subunits. Such data indicate that epigenetic mechanisms that are known to regulate BRM may also be involved in the loss of expression of other SWI/SNF subunits. This is important since epigenetically silenced genes are inducible, and thus, the reversal of the silencing of these non-mutationally suppressed subunits may be a viable mode of targeted therapy.
Collapse
Affiliation(s)
- Stefanie B Marquez
- Department of Medicine, Division of Hematology/Oncology, University of Florida , Gainesville, FL , USA
| | - Kenneth W Thompson
- Department of Medicine, Division of Hematology/Oncology, University of Florida , Gainesville, FL , USA
| | - Li Lu
- Department of Pathology, University of Florida , Gainesville, FL , USA
| | - David Reisman
- Department of Medicine, Division of Hematology/Oncology, University of Florida , Gainesville, FL , USA
| |
Collapse
|
14
|
Jiang LL, Ruan LW. Association between FOXP3 promoter polymorphisms and cancer risk: A meta-analysis. Oncol Lett 2014; 8:2795-2799. [PMID: 25364468 PMCID: PMC4214479 DOI: 10.3892/ol.2014.2585] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Accepted: 09/11/2014] [Indexed: 02/06/2023] Open
Abstract
Epidemiological studies have been conducted to investigate the association between the FOXP3 promoter polymorphisms, rs3761549 and rs3761548, and the risk of cancer. However, the results from these studies have been controversial. In order to obtain a more precise conclusion of this association, the present meta-analysis was performed. The odds ratio (OR) and 95% confidence interval (95% CI) values were used to assess any correlations between the data. Overall, the rs3761549 (C>T) and rs3761548 (C>A) polymorphisms of the FOXP3 gene were not associated with the cancer risk in an Asian population. In the subgroup analyses based on cancer type, no significant associations were identified between these two polymorphisms and breast cancer. However, the results altered when the analyses were restricted to hepatocellular carcinoma (HCC) and non-small cell lung cancer (NSCLC) (for rs3761549: TT+CT vs. CC OR, 0.52, 95% CI, 0.38-0.72; TC vs. CC OR, 0.25, 95% CI, 0.16-0.39; T vs. C OR, 0.76, 95% CI, 0.59-0.97. For rs3761548: AA vs. AC+CC OR, 3.20, 95% CI 1.76-5.81; AA+AC vs. CC OR, 2.56, 95% CI, 1.75-3.76; AA vs. CC OR, 4.41, 95% CI, 2.36-8.25; AC vs. CC OR, 2.15, 95% CI, 1.42-3.25; A vs. C OR, 2.32, 95% CI, 1.74-3.10). The present meta-analysis indicates that the FOXP3 rs3761549 (C>T) and rs3761548 (C>A) polymorphisms are not associated with the risk of breast cancer, but with the risk of HCC and NSCLC. Therefore, a study with a larger sample size is required to further evaluate this association.
Collapse
Affiliation(s)
- Ling-Ling Jiang
- Department of Neurology, Suzhou Municipal Hospital, Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu 215002, P.R. China
| | - Li-Wei Ruan
- Department of General Surgery (Breast and Thyroid Surgery), Shaoxing People's Hospital, Shaoxing Hospital of Zhejiang University, Shaoxing, Zhejiang 312000, P.R. China
| |
Collapse
|
15
|
Gao XR, Zhang SL, Yang YF, Han GR. FEN1 -69G>A and 4150G>T polymorphisms and cancer risk in Chinese population. Sci Rep 2014; 4:6183. [PMID: 25154853 PMCID: PMC4143769 DOI: 10.1038/srep06183] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Accepted: 08/04/2014] [Indexed: 12/23/2022] Open
Abstract
Previous studies have investigated the associations between FEN1 -69G>A (rs174538) and 4150G>T (rs4246215) polymorphisms and cancer risk in Chinese population. However, the results were controversial. We therefore carried out a meta-analysis to derive a more precise estimation of the associations. PubMed Database was systematically searched to identify potentially eligible literatures. Crude odds ratios (ORs) and their 95% confidence intervals (CIs) were used to assess the strength of associations between FEN1 -69G>A and 4150G>T polymorphisms and cancer risk in Chinese population. A total of 4 articles, including 5,108 cases and 6,382 controls, were used to evaluate the effect of the two polymorphisms on cancer risk. The pooled ORs indicated that FEN1 -69G>A and 4150G>T polymorphisms were significantly associated with cancer risk in Chinese population. In stratified analyses by cancer type, significant associations were also observed in digestive system cancer. In addition, haplotypes consisting of -69G>A and 4150G>T polymorphisms were closely associated with cancer risk. Interestingly, significantly correlation between FEN1 -69G>A polymorphism and mRNA expression was observed. In conclusion, this meta-analysis suggests that FEN1 -69G>A and 4150G>T polymorphisms may be associated with cancer susceptibility in Chinese population. However, further investigation on large population and different ethnicities are warranted.
Collapse
Affiliation(s)
- Xue-ren Gao
- Department of Microbiology and Immunology, Medical School of Southeast University, Nanjing, China
- These authors contributed equally to this work
| | - Shu-long Zhang
- Department of General Surgery, Zhongda Hospital, Medical School of Southeast University, Nanjing, China
- These authors contributed equally to this work
| | - Yong-feng Yang
- Department of Infectious Diseases, The Second Affiliated Hospital of the Southeast University, Nanjing, China
| | - Guo-rong Han
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of the Southeast University, Nanjing, China
| |
Collapse
|
16
|
Hu T, Zhao H, Wang K, Sun W, Li L, Wang W. Association of IL-27 polymorphisms and cancer risk in Chinese population. J Recept Signal Transduct Res 2014; 35:180-3. [PMID: 25051492 DOI: 10.3109/10799893.2014.942465] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A number of genetic studies have attempted to link interleukin-27 (IL-27) polymorphisms (rs153109, rs17855750 and rs181206) to the risk of cancer in Chinese population, including glioma, ovarian cancer, hepatocellular carcinoma, colorectal cancer, esophageal cancer, etc. However, the results were inconclusive. The aim of this study is to derive a more precise estimation of any association in a meta-analysis. We searched the PubMed database (up to 6 June 2014) for studies regarding the association of IL-27 polymorphisms (rs153109, rs17855750 and rs181206) and the risk of cancer in Chinese population. Odds ratios (ORs) together with their 95% confidence intervals (CIs) were calculated by using random/fixed effect model to assess the association. Sensitivity analyses were used to assess the stability of the results. Begg's test was performed to measure publication bias. A total of six eligible studies with 1684 patients and 1837 controls were included in this meta-analysis. IL-27 rs153109 polymorphism was significantly associated with cancer risk in Chinese population (GG versus AA: OR = 1.24, 95% CI = 1.00-1.54, p = 0.05). However, there were no associations between IL-27 rs17855750 and rs181206 polymorphisms and cancer risk in Chinese population. In conclusion, this meta-analysis indicated that IL-27 rs153109 polymorphism was associated with cancer risk in Chinese population.
Collapse
Affiliation(s)
- Tiemin Hu
- Division of Neurosurgery, The Affiliated Hospital, Chengde Medical College , Hebei Province , China and
| | | | | | | | | | | |
Collapse
|
17
|
Kahali B, Yu J, Marquez SB, Thompson KW, Liang SY, Lu L, Reisman D. The silencing of the SWI/SNF subunit and anticancer gene BRM in Rhabdoid tumors. Oncotarget 2014; 5:3316-32. [PMID: 24913006 PMCID: PMC4102812 DOI: 10.18632/oncotarget.1945] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 05/03/2014] [Indexed: 02/05/2023] Open
Abstract
Rhabdoid sarcomas are highly malignant tumors that usually occur in young children. A key to the genesis of this tumor is the mutational loss of the BAF47 gene as well as the widespread epigenetic suppression of other key anticancer genes. The BRM gene is one such epigenetically silenced gene in Rhabdoid tumors. This gene codes for an ATPase catalytic subunit that shifts histones and opens the chromatin. We show that BRM is an epigenetically silenced gene in 10/11 Rhabdoid cell lines and in 70% of Rhabdoid tumors. Moreover, BRM can be induced by BAF47 re-expression and by Flavopiridol. By selective shRNAi knockdown of BRM, we show that BRM re-expression is necessary for growth inhibition by BAF47 re-expression or Flavopiridol application. Similar to lung cancer cell lines, we found that HDAC3, HDAC9, MEF2D and GATA3 controlled BRM silencing and that HDAC9 was overexpressed in Rhabdoid cancer cell lines. In primary BRM-deficient Rhabdoid tumors, HDAC9 was also found to be highly overexpressed. Two insertional BRM promoter polymorphisms contribute to BRM silencing, but only the -1321 polymorphism correlated with BRM silencing in Rhabdoid cell lines. To determine how these polymorphisms were tied to BRM silencing, we conducted ChIP assays and found that both HDAC9 and MEF2D bound to the BRM promoter at or near these polymorphic sites. Using BRM promoter swap experiments, we indirectly showed that both HDAC9 and MEF2D bound to these polymorphic sites. Together, these data show that the mechanism of BRM silencing contributes to the pathogenesis of Rhabdoid tumors and appears to be conserved among tumor types.
Collapse
Affiliation(s)
- Bhaskar Kahali
- Division of Hematology/Oncology, Department of Medicine, University of Florida, Florida, USA
| | - Jinlong Yu
- Division of Hematology/Oncology, Department of Medicine, University of Florida, Florida, USA
| | - Stefanie B. Marquez
- Division of Hematology/Oncology, Department of Medicine, University of Florida, Florida, USA
| | - Kenneth. W. Thompson
- Division of Hematology/Oncology, Department of Medicine, University of Florida, Florida, USA
| | - Shermi Y. Liang
- Division of Hematology/Oncology, Department of Medicine, University of Florida, Florida, USA
| | - Li Lu
- Department of Pathology, University of Florida, Florida, USA
| | - David Reisman
- Division of Hematology/Oncology, Department of Medicine, University of Florida, Florida, USA
| |
Collapse
|
18
|
Cancer genomics identifies disrupted epigenetic genes. Hum Genet 2013; 133:713-25. [PMID: 24104525 DOI: 10.1007/s00439-013-1373-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Accepted: 09/29/2013] [Indexed: 12/22/2022]
Abstract
Latest advances in genome technologies have greatly advanced the discovery of epigenetic genes altered in cancer. The initial single candidate gene approaches have been coupled with newly developed epigenomic platforms to hasten the convergence of scientific discoveries and translational applications. Here, we present an overview of the evolution of cancer epigenomics and an updated catalog of disruptions in epigenetic pathways, whose misregulation can culminate in cancer. The creation of these basic mutational catalogs in cell lines and primary tumors will provide us with enough knowledge to move diagnostics and therapy from the laboratory bench to the bedside.
Collapse
|
19
|
Association between an insertion/deletion polymorphism within 3'UTR of SGSM3 and risk of hepatocellular carcinoma. Tumour Biol 2013; 35:295-301. [PMID: 23918301 DOI: 10.1007/s13277-013-1039-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Accepted: 07/18/2013] [Indexed: 12/18/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common primary hepatic malignancy, and multiple host genetic factors are believed to contribute to HCC development. The small G protein signaling modulator 3 (SGSM3) has been shown to be associated with small G protein coupled receptor signal transduction pathway, suggesting a potential role in HCC susceptibility. We carried out a case-control study in a Chinese population (502 cases and 513 controls) to determine whether the 4-bp insertion/deletion polymorphism (rs56228771) in 3' untranslated region of SGSM3 could affect HCC susceptibility. Logistic regression analysis showed that compared with the del/del genotype, the ins/del genotype of rs56228771 was associated with a significantly decreased risk of HCC [adjusted odd ratio = 0.55, 95% confidence interval (CI) = 0.42-0.73, P = 1.93 × 10(-5)]. The combined ins/del + ins/ins genotypes contributed to a 45% decreased HCC risk (95% CI = 0.42-0.73, P = 1.03 × 10(-5)). This protective trend was more prominent in the HBsAg-negative subgroup. Furthermore, in vivo experiments showed that mRNA levels of SGSM3 from HCC tumor tissues and adjacent non-HCC tissues were correlated with rs56228771 genotypes. Tissue samples with ins/ins genotype have the highest level of SGSM3, which are 2.85-3.00-fold and 1.46-1.57-fold higher than that with ins/del and del/del genotype, respectively. Similar results were also observed with four common hepatoma cell lines in vitro. In addition, compared with HCC tissues, significantly higher SGSM3 expression was observed in adjacent non-HCC tissues (fold change = 2.48), implying its tumor suppressor roles in HCC. Bioinformatics prediction showed that the insertion allele disrupted a binding site for microRNA (miRNA)-151-5p, which would upregulate SGSM3. Taken together, we provided initial evidence that rs56228771 may contribute to hepatocarcinogenesis, possibly by affecting SGSM3 expression through a miRNA-mediated regulation. The replication of our studies in other populations and functional analysis will further strengthen the underlining mechanism.
Collapse
|