1
|
Abstract
Measuring SARS-CoV-2 neutralizing antibodies after vaccination or natural infection remains a priority in the ongoing COVID-19 pandemic to determine immunity, especially against newly emerging variants. The gold standard for assessing antibody-mediated immunity against SARS-CoV-2 are cell-based live virus neutralization assays. These assays usually take several days, thereby limiting test capacities and the availability of rapid results. In this study, therefore, we developed a faster live virus assay, which detects neutralizing antibodies through the early measurement of antibody-mediated intracellular virus reduction by SARS-CoV-2 qRT-PCR. In our assay, Vero E6 cells are infected with virus isolates preincubated with patient sera and controls. After 24 h, the intracellular viral load is determined by qRT-PCR using a standard curve to calculate percent neutralization. Utilizing COVID-19 convalescent-phase sera, we show that our novel assay generates results with high sensitivity and specificity as we detected antiviral activity for all tested convalescent-phase sera, but no antiviral activity in prepandemic sera. The assay showed a strong correlation with a conventional virus neutralization assay (rS = 0.8910), a receptor-binding domain ELISA (rS = 0.8485), and a surrogate neutralization assay (rS = 0.8373), proving that quantifying intracellular viral RNA can be used to measure seroneutralization. Our assay can be adapted easily to new variants, as demonstrated by our cross-neutralization experiments. This characteristic is key for rapidly determining immunity against newly emerging variants. Taken together, the novel assay presented here reduces turnaround time significantly while making use of a highly standardized and sensitive SARS-CoV-2 qRT-PCR method as a readout.
Collapse
|
2
|
Lanz C, Schotsaert M, Magnus C, Karakus U, Hunziker A, Sempere Borau M, Martínez-Romero C, Spieler EE, Günther SC, Moritz E, Hale BG, Trkola A, García-Sastre A, Stertz S. IFITM3 incorporation sensitizes influenza A virus to antibody-mediated neutralization. J Exp Med 2021; 218:212014. [PMID: 33882122 PMCID: PMC8072448 DOI: 10.1084/jem.20200303] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 02/02/2021] [Accepted: 03/04/2021] [Indexed: 12/17/2022] Open
Abstract
The disease severity of influenza is highly variable in humans, and one genetic determinant behind these differences is the IFITM3 gene. As an effector of the interferon response, IFITM3 potently blocks cytosolic entry of influenza A virus (IAV). Here, we reveal a novel level of inhibition by IFITM3 in vivo: We show that incorporation of IFITM3 into IAV particles competes with incorporation of viral hemagglutinin (HA). Decreased virion HA levels did not reduce infectivity, suggesting that high HA density on IAV virions may be an antagonistic strategy used by the virus to prevent direct inhibition. However, we found that IFITM3-mediated reduction in HA content sensitizes IAV to antibody-mediated neutralization. Mathematical modeling predicted that this effect decreases and delays peak IAV titers, and we show that, indeed, IFITM3-mediated sensitization of IAV to antibody-mediated neutralization impacts infection outcome in an in vivo mouse model. Overall, our data describe a previously unappreciated interplay between the innate effector IFITM3 and the adaptive immune response.
Collapse
Affiliation(s)
- Caroline Lanz
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland.,Life Sciences Zurich Graduate School, Eidgenössische Technische Hochschule Zurich and University of Zurich, Zurich, Switzerland
| | - Michael Schotsaert
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY.,Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Carsten Magnus
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland.,Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule Zurich, Basel, Switzerland.,Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Umut Karakus
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Annika Hunziker
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland.,Life Sciences Zurich Graduate School, Eidgenössische Technische Hochschule Zurich and University of Zurich, Zurich, Switzerland
| | - Milagros Sempere Borau
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland.,Life Sciences Zurich Graduate School, Eidgenössische Technische Hochschule Zurich and University of Zurich, Zurich, Switzerland
| | - Carles Martínez-Romero
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY.,Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Eva E Spieler
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland.,Life Sciences Zurich Graduate School, Eidgenössische Technische Hochschule Zurich and University of Zurich, Zurich, Switzerland
| | - Sira C Günther
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland.,Life Sciences Zurich Graduate School, Eidgenössische Technische Hochschule Zurich and University of Zurich, Zurich, Switzerland
| | - Eva Moritz
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Benjamin G Hale
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Alexandra Trkola
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY.,Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY.,Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY.,The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Silke Stertz
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
3
|
Johnson DM, Jokinen JD, Wang M, Pfeffer T, Tretyakova I, Carrion R, Griffiths A, Pushko P, Lukashevich IS. Bivalent Junin & Machupo experimental vaccine based on alphavirus RNA replicon vector. Vaccine 2020; 38:2949-2959. [PMID: 32111526 PMCID: PMC7112472 DOI: 10.1016/j.vaccine.2020.02.053] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/06/2020] [Accepted: 02/18/2020] [Indexed: 12/14/2022]
Abstract
Junin (JUNV) and Machupo (MACV), two mammalian arenaviruses placed on the 2018 WHO watch list, are prevalent in South America causing Argentine and Bolivian hemorrhagic fevers (AHF and BHF), respectively. The live attenuated JUNV vaccine, Candid #1, significantly reduced the incidence of AHF. Vaccination induces neutralizing antibody (nAb) responses which effectively target GP1 (the viral attachment glycoprotein) pocket which accepts the tyrosine residue of the cellular receptor, human transferrin receptor 1 (TfR1). In spite of close genetic relationships between JUNV and MACV, variability in the GP1 receptor binding site (e.g., MACV GP1 loop 10) results in poor MACV neutralization by Candid #1-induced nAbs. Candid #1 is not recommended for vaccination of children younger than 15 years old (a growing "at risk" group), pregnant women, or other immunocompromised individuals. Candid #1's primary reliance on limited missense mutations for attenuation, genetic heterogeneity, and potential stability concerns complicate approval of this vaccine in the US. To address these issues, we applied alphavirus RNA replicon vector technology based on the human Venezuelan equine encephalitis vaccine (VEEV) TC-83 to generate replication restricted virus-like-particles vectors (VLPVs) simultaneously expressing cellular glycoprotein precursors (GPC) of both viruses, JUNV and MACV. Resulting JV&MV VLPVs were found safe and immunogenic in guinea pigs. Immunization with VLPVs induced humoral responses which correlated with complete protection against lethal disease after challenge with pathogenic strains of JUNV (Romero) and MACV (Carvallo).
Collapse
Affiliation(s)
- Dylan M Johnson
- Department of Microbiology and Immunology, School of Medicine, Center for Predictive Medicine for Biodefense and Emerging Infectious Diseases, NIH Regional Bio-containment Laboratory, University of Louisville, KY, USA
| | - Jenny D Jokinen
- Department of Pharmacology and Toxicology, School of Medicine, Center for Predictive Medicine for Biodefense and Emerging Infectious Diseases, NIH Regional Bio-containment Laboratory, University of Louisville, KY, USA
| | - Min Wang
- Department of Pharmacology and Toxicology, School of Medicine, Center for Predictive Medicine for Biodefense and Emerging Infectious Diseases, NIH Regional Bio-containment Laboratory, University of Louisville, KY, USA
| | - Tia Pfeffer
- Department of Pharmacology and Toxicology, School of Medicine, Center for Predictive Medicine for Biodefense and Emerging Infectious Diseases, NIH Regional Bio-containment Laboratory, University of Louisville, KY, USA
| | | | - Ricardo Carrion
- Texas Biomedical Research Institute (TBRI), San Antonio, TX, USA
| | | | | | - Igor S Lukashevich
- Department of Pharmacology and Toxicology, School of Medicine, Center for Predictive Medicine for Biodefense and Emerging Infectious Diseases, NIH Regional Bio-containment Laboratory, University of Louisville, KY, USA.
| |
Collapse
|
4
|
Multiplex PCR-Based Neutralization (MPBN) Assay for Titers Determination of the Three Types of Anti-Poliovirus Neutralizing-Antibodies. Vaccines (Basel) 2020; 8:vaccines8010120. [PMID: 32150852 PMCID: PMC7157629 DOI: 10.3390/vaccines8010120] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 03/02/2020] [Accepted: 03/03/2020] [Indexed: 11/17/2022] Open
Abstract
Determination of poliovirus-neutralizing antibodies is an important part of clinical studies of poliovirus vaccines, epidemiological surveillance and seroprevalence studies that are crucial for global polio eradication campaigns. The conventional neutralization test is based on inhibition of cytopathic effect caused by poliovirus by serial dilutions of test serum. It is laborious, time-consuming and not suitable for large scale analysis. To overcome these limitations, a multiplex PCR-based neutralization (MPBN) assay was developed to measure the neutralizing antibody titers of anti-poliovirus sera against three serotypes of the virus in the same reaction and in shorter time. All three anti-poliovirus sera types were analyzed in a single assay. The MPBN assay was reproducible, robust and sensitive. Its lower limits of titration for the three anti-poliovirus sera types were within range of 0.76-1.64 per mL. Different anti-poliovirus sera were tested with conventional and MPBN assays; the results obtained by both methods correlated well and generated similar results. The MPBN is the first neutralization assay that specifically titrates anti-poliovirus antibodies against the three serotypes of the virus in the same reaction; it can be completed in two to three days instead of ten days for the conventional assay and can be automated for high-throughput implementation.
Collapse
|
5
|
Comparison of influenza-specific neutralizing antibody titers determined using different assay readouts and hemagglutination inhibition titers: good correlation but poor agreement. Vaccine 2020; 38:2527-2541. [PMID: 32044163 DOI: 10.1016/j.vaccine.2020.01.088] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 01/23/2020] [Accepted: 01/29/2020] [Indexed: 12/23/2022]
Abstract
Determination of influenza-specific antibody titers is commonly done using the hemagglutination inhibition assay (HAI) and the viral microneutralization assay (MN). Both assays are characterized by high intra- and inter-laboratory variability. The HAI assay offers little opportunity for standardization. For the MN assay, variability might be due to the use of different assay protocols employing different readouts. We therefore aimed at investigating which of the MN assay readout methods currently in use would be the most suitable choice for a standardized MN assay that could serve as a substitute for the HAI assay. For this purpose, human serum samples were tested for the presence of influenza specific neutralizing antibodies against A/California/7/09 H1N1 (49 sera) or A/Hong Kong/4801/2014 (50 sera) using four different infection readout methods for the MN assay (cytopathic effect, hemagglutination, ELISA, RT qPCR) and using the HAI assay. The results were compared by correlation analysis and by determining the level of agreement before and after normalization to a standard serum. Titers as measured by the 4 MN assay readouts showed good correlation, with high Person's r for most comparisons. However, agreement between nominal titers varied with readouts compared and virus strain used. In addition, Pearson's correlation of MN titers with HAI titers was high but agreement of nominal titers was moderate and the average difference between the readings of two assays (bias) was virus strain-dependent. Normalization to a standard serum did not result in better agreement of assay results. Our study demonstrates that different MN readouts result in nominally different antibody titers. Accordingly, the use of a common and standardized MN assay protocol will be crucial to minimize inter-laboratory variability. Based on reproducibility, cost effectiveness and unbiased assessment of results we elected the MN assay with ELISA readout as most suitable for a possible replacement of the HAI assay.
Collapse
|
6
|
Wang WH, Erazo EM, Ishcol MRC, Lin CY, Assavalapsakul W, Thitithanyanont A, Wang SF. Virus-induced pathogenesis, vaccine development, and diagnosis of novel H7N9 avian influenza A virus in humans: a systemic literature review. J Int Med Res 2019; 48:300060519845488. [PMID: 31068040 PMCID: PMC7140199 DOI: 10.1177/0300060519845488] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
H7N9 avian influenza virus (AIV) caused human infections in 2013 in China.
Phylogenetic analyses indicate that H7N9 AIV is a novel reassortant strain with
pandemic potential. We conducted a systemic review regarding virus-induced
pathogenesis, vaccine development, and diagnosis of H7N9 AIV infection in
humans. We followed PRISMA guidelines and searched PubMed, Web of Science, and
Google Scholar to identify relevant articles published between January 2013 and
December 2018. Pathogenesis data indicated that H7N9 AIV belongs to low
pathogenic avian influenza, which is mostly asymptomatic in avian species;
however, H7N9 induces high mortality in humans. Sporadic human infections have
recently been reported, caused by highly pathogenic avian influenza viruses
detected in poultry. H7N9 AIVs resistant to adamantine and oseltamivir cause
severe human infection by rapidly inducing progressive acute community-acquired
pneumonia, multiorgan dysfunction, and cytokine dysregulation; however,
mechanisms via which the virus induces severe syndromes remain unclear. An H7N9
AIV vaccine is lacking; designs under evaluation include synthesized peptide,
baculovirus-insect system, and virus-like particle vaccines. Molecular diagnosis
of H7N9 AIVs is suggested over conventional assays, for biosafety reasons.
Several advanced or modified diagnostic assays are under investigation and
development. We summarized virus-induced pathogenesis, vaccine development, and
current diagnostic assays in H7N9 AIVs.
Collapse
Affiliation(s)
- Wen-Hung Wang
- Division of Infectious Disease, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung.,Center for Infectious Disease and Cancer Research, Kaohsiung Medical University, Kaohsiung
| | - Esmeralda Merari Erazo
- Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung
| | - Max R Chang Ishcol
- Program in Tropical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung
| | - Chih-Yen Lin
- Center for Infectious Disease and Cancer Research, Kaohsiung Medical University, Kaohsiung.,Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung
| | - Wanchai Assavalapsakul
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | | | - Sheng-Fan Wang
- Center for Infectious Disease and Cancer Research, Kaohsiung Medical University, Kaohsiung.,Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung.,Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung
| |
Collapse
|
7
|
An Effective Neutralizing Antibody Against Influenza Virus H1N1 from Human B Cells. Sci Rep 2019; 9:4546. [PMID: 30872685 PMCID: PMC6418199 DOI: 10.1038/s41598-019-40937-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 02/19/2019] [Indexed: 02/06/2023] Open
Abstract
Influenza is a contagious acute respiratory disease caused by the influenza virus infection. Hemagglutinin (HA) is an important target in the therapeutic treatment and diagnostic detection of the influenza virus. Influenza A virus encompasses several different HA subtypes with different strains, which are constantly changing. In this study, we identified a fully human H1N1 neutralizing antibody (32D6) via an Epstein-Barr virus-immortalized B cell-based technology. 32D6 specifically neutralizes the clinically isolated H1N1 strains after the 2009 pandemic but not the earlier strains. The epitope was identified through X-ray crystallographic analysis of the 32D6-Fab/HA1 complex structure, which revealed a unique loop conformation located on the top surface of HA. The major region is composed of two peptide segments (residues 172-177 and 206-213), which form an abreast loop conformation. The residue T262 between the two loops forms a conformational epitope for recognition by 32D6. Three water molecules were observed at the interface of HA and the heavy chain, and they may constitute a stabilizing element for the 32D6-HA association. In addition, each 32D6-Fab is likely capable of blocking one HA trimer. This study provides important information on the strain specificity of 32D6 for the therapeutic treatment and detection of viral infection.
Collapse
|
8
|
Quantitative multiplex one-step RT-PCR assay for identification and quantitation of Sabin strains of poliovirus in clinical and environmental specimens. J Virol Methods 2018; 259:74-80. [PMID: 29920299 DOI: 10.1016/j.jviromet.2018.06.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 06/14/2018] [Accepted: 06/15/2018] [Indexed: 11/24/2022]
Abstract
An improved quantitative multiplex one-step RT-PCR (qmosRT-PCR) for simultaneous identification and quantitation of all three serotypes of poliovirus is described. It is based on using serotype-specific primers and fluorescent TaqMan oligonucleotide probes. The assay can be used for high-throughput screening of samples for the presence of poliovirus, poliovirus surveillance and for evaluation of virus shedding by vaccine recipients in clinical trials to assess mucosal immunity. It could replace conventional methods based on cell culture virus isolation followed by serotyping. The assay takes only few hours, and was found to be simple, specific, sensitive and has large quantitative linearity range. In addition, the method could be used as readout in PCR-based poliovirus titration and neutralization assays.
Collapse
|
9
|
Foni E, Chiapponi C, Baioni L, Zanni I, Merenda M, Rosignoli C, Kyriakis CS, Luini MV, Mandola ML, Bolzoni L, Nigrelli AD, Faccini S. Influenza D in Italy: towards a better understanding of an emerging viral infection in swine. Sci Rep 2017; 7:11660. [PMID: 28916759 PMCID: PMC5600963 DOI: 10.1038/s41598-017-12012-3] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 08/31/2017] [Indexed: 11/09/2022] Open
Abstract
Influenza D virus (IDV), a new member of the Orthomyxoviridae family, was first reported in 2011 in swine in Oklahoma, and consequently found in cattle across North America and Eurasia. To investigate the circulation of IDV among pigs in Italy, in the period between June 2015 and May 2016, biomolecular and virological tests were performed on 845 clinical samples collected from 448 pig farms affected by respiratory distress located in the Po Valley. Serological tests were conducted on 3698 swine sera, including archive sera collected in 2009, as well as samples collected in 2015 from the same region. Viral genome was detected in 21 (2.3%) samples from 9 herds (2%), while virus was successfully isolated from 3 samples. Genetic analysis highlighted that Italian swine IDVs are closely related to the D/swine/Oklahoma/1334/2011 cluster. Sera collected in 2015 showed a high prevalence of IDV antibody titers (11.7%), while archive sera from 2009 showed statistically significant lower positivity rates (0.6%). Our results indicate an increasing epidemiological relevance of the pathogen and the need for in-depth investigations towards understanding its pathogenesis, epidemiology and possible zoonotic potential of this emerging virus.
Collapse
Affiliation(s)
- Emanuela Foni
- OIE Reference Laboratory for Swine Influenza, Parma, 43123, Italy.
| | - Chiara Chiapponi
- OIE Reference Laboratory for Swine Influenza, Parma, 43123, Italy.,Istituto Zooprofilattico Sperimentale della Lombardia ed Emilia Romagna, Brescia, 25124, Italy
| | - Laura Baioni
- OIE Reference Laboratory for Swine Influenza, Parma, 43123, Italy.,Istituto Zooprofilattico Sperimentale della Lombardia ed Emilia Romagna, Brescia, 25124, Italy
| | - Irene Zanni
- Istituto Zooprofilattico Sperimentale della Lombardia ed Emilia Romagna, Brescia, 25124, Italy
| | - Marianna Merenda
- OIE Reference Laboratory for Swine Influenza, Parma, 43123, Italy.,Istituto Zooprofilattico Sperimentale della Lombardia ed Emilia Romagna, Brescia, 25124, Italy
| | - Carlo Rosignoli
- Istituto Zooprofilattico Sperimentale della Lombardia ed Emilia Romagna, Brescia, 25124, Italy
| | - Constantinos S Kyriakis
- Center for Vaccines and Immunology College of Veterinary Medicine, University of Georgia, Athens, GA, 30602, USA
| | - Mario Vittorio Luini
- Istituto Zooprofilattico Sperimentale della Lombardia ed Emilia Romagna, Brescia, 25124, Italy
| | - Maria Lucia Mandola
- Istituto Zooprofilattico Sperimentale of Piemonte, Liguria and Valle d'Aosta, Turin, 10154, Italy
| | - Luca Bolzoni
- Istituto Zooprofilattico Sperimentale della Lombardia ed Emilia Romagna, Brescia, 25124, Italy
| | - Arrigo Daniele Nigrelli
- Istituto Zooprofilattico Sperimentale della Lombardia ed Emilia Romagna, Brescia, 25124, Italy
| | - Silvia Faccini
- Istituto Zooprofilattico Sperimentale della Lombardia ed Emilia Romagna, Brescia, 25124, Italy
| |
Collapse
|
10
|
Neutralization Assay for Zika and Dengue Viruses by Use of Real-Time-PCR-Based Endpoint Assessment. J Clin Microbiol 2017; 55:3104-3112. [PMID: 28794181 DOI: 10.1128/jcm.00673-17] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Accepted: 07/19/2017] [Indexed: 12/13/2022] Open
Abstract
The global spread and infective complications of Zika virus (ZKV) and dengue virus (DENV) have made them flaviviruses of public health concern. Serological diagnosis can be challenging due to antibody cross-reactivity, particularly in secondary flavivirus infections or when there is a history of flavivirus vaccination. The virus neutralization assay is considered to be the most specific assay for measurement of anti-flavivirus antibodies. This study describes an assay where the neutralization endpoint is measured by real-time PCR, providing results within 72 h. It demonstrated 100% sensitivity (24/24 ZKV and 15/15 DENV) and 100% specificity (11/11 specimens) when testing well-characterized sera. In addition, the assay was able to determine the correct DENV serotype in 91.7% of cases. The high sensitivity and specificity of the real-time PCR neutralization assay makes it suitable to use as a confirmatory test for sera that are reactive in commercial IgM/IgG enzyme immunoassays. Results are objective and the PCR-based measurement of the neutralization endpoint lends itself to automation so that throughput may be increased in times of high demand.
Collapse
|
11
|
Lee SS, Phy K, Peden K, Sheng-Fowler L. Development of a micro-neutralization assay for ebolaviruses using a replication-competent vesicular stomatitis hybrid virus and a quantitative PCR readout. Vaccine 2017; 35:5481-5486. [PMID: 28427845 DOI: 10.1016/j.vaccine.2017.03.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 03/01/2017] [Accepted: 03/08/2017] [Indexed: 01/11/2023]
Abstract
Development of vaccines against highly pathogenic viruses that could also be used as agents of bioterrorism is both a public health issue and a national security priority. Methods that can quantify neutralizing antibodies will likely be crucial in demonstrating vaccine effectiveness, as most licensed viral vaccines are effective due to their capacity to elicit neutralizing antibodies. Assays to determine whether antibodies are neutralizing traditionally involve infectious virus, and the assay most commonly used is the plaque-reduction neutralization test (PRNT). However, when the virus is highly pathogenic, this assay must be done under the appropriate level of containment; for tier one select agents, such as Ebola virus (EBOV), it is performed under Biological Safety Level 4 (BSL-4) conditions. Developing high-throughput neutralization assays for these viruses that can be done in standard BSL-2 laboratories should facilitate vaccine development. Our approach is to use a replication-competent hybrid virus whose genome carries the envelope gene from the pathogenic virus on the genetic backbone of a non-pathogenic virus, such as vesicular stomatitis virus (VSV). We have generated hybrid VSVs carrying the envelope genes for several species of ebolavirus. The readout for infectivity is a one-step reverse transcriptase quantitative PCR (RT-qPCR), an approach that we have used for other viruses that allows robustness and adaptability to automation. Using this method, we have shown that neutralization can be assessed within 6-16h after infection. Importantly, the titers obtained in our assay with two characterized antibodies were in agreement with titers obtained in other assays. Finally, although in this paper we describe the VSV platform to quantify neutralizing antibodies to ebolaviruses, the platform should be directly applicable to any virus whose envelope is compatible with VSV biology.
Collapse
Affiliation(s)
- Stella S Lee
- Laboratory of DNA Viruses, Division of Viral Products, Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993, United States
| | - Kathryn Phy
- Laboratory of DNA Viruses, Division of Viral Products, Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993, United States
| | - Keith Peden
- Laboratory of DNA Viruses, Division of Viral Products, Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993, United States.
| | - Li Sheng-Fowler
- Laboratory of DNA Viruses, Division of Viral Products, Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993, United States
| |
Collapse
|
12
|
Lin SC, Kappes MA, Chen MC, Lin CC, Wang TT. Distinct susceptibility and applicability of MDCK derivatives for influenza virus research. PLoS One 2017; 12:e0172299. [PMID: 28207898 PMCID: PMC5313193 DOI: 10.1371/journal.pone.0172299] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2016] [Accepted: 02/02/2017] [Indexed: 11/19/2022] Open
Abstract
Madin-Darby Canine Kidney (MDCK) cells are widely utilized as a substrate for influenza virus isolation and propagation due to the high yields of virus. Here we compared the conventional MDCK cell line, MDCK-SIAT1 and MDCK-London for viral production, cell survival, and suitability in testing antivirals using six influenza strains including two H1N1 (pandemic and epidemic strains), three H3N2 and one influenza B strain. Overall our results suggest that MDCK-London cell line is superior for virus culturing and quantification, and hence an ideal platform to evaluate antiviral drug efficacy against multiple strains of influenza. Our data also suggests that while virus titers determined by the hemagglutination assay (HA) and neuraminidase activity (NA) are widely used to indicate viral load, there is a poor correlation between these measurements and the infectious titer obtained by plaque assay.
Collapse
Affiliation(s)
- Shih-Chao Lin
- Program in Medical Biotechnology, National Chung Hsing University, Taichung, Taiwan
- Center for Infectious Diseases, SRI International, Harrisonburg, Virginia, United States of America
| | - Matthew A. Kappes
- Center for Infectious Diseases, SRI International, Harrisonburg, Virginia, United States of America
| | - Mei-Chun Chen
- Center for Infectious Diseases, SRI International, Harrisonburg, Virginia, United States of America
| | - Chi-Chen Lin
- Department of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan
- Department of Biotechnology, Asia University, Taichung, Taiwan
- Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
- * E-mail: (TTW); (CCL)
| | - Tony T. Wang
- Center for Infectious Diseases, SRI International, Harrisonburg, Virginia, United States of America
- * E-mail: (TTW); (CCL)
| |
Collapse
|
13
|
Wang X, Teferedegne B, Shatzkes K, Tu W, Murata H. Endogenous RNase inhibitor contributes to stability of RNA in crude cell lysates: Applicability to RT-qPCR. Anal Biochem 2016; 513:21-27. [PMID: 27544650 DOI: 10.1016/j.ab.2016.08.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 08/10/2016] [Accepted: 08/15/2016] [Indexed: 10/21/2022]
Abstract
Crude cell lysates are increasingly used as input for direct analysis by reverse transcription quantitative PCR (RT-qPCR), particularly for high-throughput applications. We previously demonstrated that a simple buffer containing a non-ionic detergent can serve as an inexpensive alternative to commercial cell-lysis reagents for the preparation of RT-qPCR-ready cell lysates; addition of an exogenous RNase inhibitor (RI) to the lysis buffer was found to be unnecessary to maintain RNA stability in cell lysates either freshly prepared or previously stored frozen at -80 °C. In the present study, we have demonstrated that the stability of RNA observed in our cell lysates is due to the presence of the endogenous RI. Furthermore, we have established the generalizability and applicability of this phenomenon by evaluating lysates prepared from cell lines commonly used in virology (A549, HeLa, MDCK, and Vero). Awareness of the mechanism underlying RNA stability may engender greater confidence in generating cell lysates for RT-qPCR without relying on addition of exogenous RI (a substantial cost-saving benefit) and encourage appropriate practices for handling and storage of samples.
Collapse
Affiliation(s)
- Xiao Wang
- Laboratory of DNA Viruses, Division of Viral Products, OVRR, CBER, FDA, Silver Spring, MD 20993, USA
| | - Belete Teferedegne
- Laboratory of DNA Viruses, Division of Viral Products, OVRR, CBER, FDA, Silver Spring, MD 20993, USA
| | - Kenneth Shatzkes
- Laboratory of DNA Viruses, Division of Viral Products, OVRR, CBER, FDA, Silver Spring, MD 20993, USA
| | - Wei Tu
- Laboratory of DNA Viruses, Division of Viral Products, OVRR, CBER, FDA, Silver Spring, MD 20993, USA
| | - Haruhiko Murata
- Laboratory of DNA Viruses, Division of Viral Products, OVRR, CBER, FDA, Silver Spring, MD 20993, USA.
| |
Collapse
|
14
|
Wang X, Peden K, Murata H. RT-qPCR-based microneutralization assay for human cytomegalovirus using fibroblasts and epithelial cells. Vaccine 2015; 33:7254-7261. [DOI: 10.1016/j.vaccine.2015.10.110] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 08/28/2015] [Accepted: 10/28/2015] [Indexed: 01/03/2023]
|
15
|
Sensing strategies for influenza surveillance. Biosens Bioelectron 2014; 61:357-69. [DOI: 10.1016/j.bios.2014.05.024] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Revised: 04/12/2014] [Accepted: 05/11/2014] [Indexed: 01/06/2023]
|
16
|
Shatzkes K, Teferedegne B, Murata H. A simple, inexpensive method for preparing cell lysates suitable for downstream reverse transcription quantitative PCR. Sci Rep 2014; 4:4659. [PMID: 24722424 PMCID: PMC3983595 DOI: 10.1038/srep04659] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Accepted: 03/24/2014] [Indexed: 11/30/2022] Open
Abstract
Sample nucleic acid purification can often be rate-limiting for conventional quantitative PCR (qPCR) workflows. We recently developed high-throughput virus microneutralization assays using an endpoint assessment approach based on reverse transcription qPCR (RT-qPCR). The need for cumbersome RNA purification is circumvented in our assays by making use of a commercial reagent that can easily generate crude cell lysates amenable to direct analysis by one-step RT-qPCR. In the present study, we demonstrate that a simple buffer containing a non-ionic detergent can serve as an inexpensive alternative to commercially available reagents for the purpose of generating RT-qPCR-ready cell lysates from MDCK cells infected with influenza virus. We have found that addition of exogenous RNase inhibitor as a buffer component is not essential in order to maintain RNA integrity, even following stress at 37 °C incubation for 1-2 hours, in cell-lysate samples either freshly prepared or previously stored frozen at -80 °C.
Collapse
Affiliation(s)
- Kenneth Shatzkes
- Laboratory of DNA Viruses, Division of Viral Products, OVRR, CBER, FDA, Bethesda, MD 20892, USA
- Laboratory of Pediatric and Respiratory Viral Diseases, Division of Viral Products, OVRR, CBER, FDA, Bethesda, MD 20892, USA
- These authors contributed equally to this work
- Current address: Graduate School of Biomedical Sciences, New Jersey Medical School and Rutgers School of Dental Medicine, Newark, New Jersey, USA
| | - Belete Teferedegne
- Laboratory of DNA Viruses, Division of Viral Products, OVRR, CBER, FDA, Bethesda, MD 20892, USA
- These authors contributed equally to this work
| | - Haruhiko Murata
- Laboratory of DNA Viruses, Division of Viral Products, OVRR, CBER, FDA, Bethesda, MD 20892, USA
| |
Collapse
|
17
|
Varada JC, Teferedegne B, Crim RL, Mdluli T, Audet S, Peden K, Beeler J, Murata H. A neutralization assay for respiratory syncytial virus using a quantitative PCR-based endpoint assessment. Virol J 2013; 10:195. [PMID: 23767960 PMCID: PMC3686610 DOI: 10.1186/1743-422x-10-195] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Accepted: 06/11/2013] [Indexed: 11/22/2022] Open
Abstract
Background Few studies have used quantitative polymerase chain reaction (qPCR) as an approach to measure virus neutralization assay endpoints. Its lack of use may not be surprising considering that sample nucleic acid extraction and purification can be expensive, labor-intensive, and rate-limiting. Methods Virus/antibody mixtures were incubated for one hour at 37°C and then transferred to Vero cell monolayers in a 96-well plate format. At 24 (or 48) hours post-infection, we used a commercially available reagent to prepare cell lysates amenable to direct analysis by one-step SYBR Green quantitative reverse transcription PCR using primers specific for the RSV-N gene, thereby obviating the need for cumbersome RNA extraction and purification. The neutralization titer was defined as the reciprocal of the highest dilution needed to inhibit the PCR signal by 90% when compared with the mean value observed in virus control wells in the absence of neutralizing antibodies. Results We have developed a qPCR-based neutralization assay for human respiratory syncytial virus. Due to the sensitivity of qPCR in detecting virus replication, endpoints may be assessed as early as 24 hours post-infection. In addition, the dynamic range of qPCR provides a basis for the assay to be relatively robust to perturbations in input virus dose (i.e., the assay is in compliance with the Percentage Law). Conclusions This qPCR-based neutralization assay is suitable for automated high-throughput applications. In addition, our experimental approach may be generalizable for the rapid development of neutralization assays for other virus families.
Collapse
Affiliation(s)
- Jan C Varada
- Laboratory of DNA Viruses, Division of Viral Products, OVRR, CBER, FDA, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | |
Collapse
|