1
|
Wang Q, Liu W, Meng L, Zeb A, Mo F, Wang J, Shi R. The interfacial interaction between Dechlorane Plus (DP) and polystyrene nanoplastics (PSNPs): An overlooked influence factor for the algal toxicity of PSNPs. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167129. [PMID: 37730039 DOI: 10.1016/j.scitotenv.2023.167129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/14/2023] [Accepted: 09/14/2023] [Indexed: 09/22/2023]
Abstract
As pollution has attracted attention due to its wide distribution. An environmental concern that may be overlooked is that NPs additives are easily released into the environment due to their physical combination with NPs. However, the knowledge gaps still exist about the interfacial reactions of NPs and the additives (e.g. flame retardants) and the joint ecological effect. In the present study, fourier transform infrared (FTIR) spectrometer coupled with 2D correlation spectroscopy (2D-COS) analysis revealed the interfacial reactions between polystyrene nanoplastics (PSNPs) and Dechlorane Plus (DP). Results showed that carbon‑oxygen bonds and carbon‑chlorine bonds were the important binding sites during adhesion and DP could reduce the colloidal stability. Single and joint ecological effects of PSNPs and DP on the microalgae Chlorella vulgaris were further deliberated. Reduced photosynthetic efficiency (reduced Fv/Fm by 0.03 %), higher growth inhibition (16.15 %) and oxidative damage (increased ROS by 152 %) were observed in algae under co-exposure. Notably, DP could significantly increase the attachment of PSNPs to the surface of the algae. Metabolomics further revealed that co-exposure significantly down-regulated amino acid metabolism and tricarboxylic acid cycle (TCA) cycle, and up-regulated fatty acid metabolism. The present study provides new insights into the risk assessment of NPs in aquatic environment by investigating the interfacial reaction mechanism and combined ecotoxicity of NPs and additives.
Collapse
Affiliation(s)
- Qi Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Weitao Liu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| | - Lingzuo Meng
- College of Municipal and Environmental Engineering, Shenyang Jianzhu University, Shenyang 110168, China
| | - Aurang Zeb
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Fan Mo
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Jianling Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Ruiying Shi
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| |
Collapse
|
2
|
Pérez-Iglesias JM, González P, Calderón MR, Natale GS, Almeida CA. Comprehensive evaluation of the toxicity of the flame retardant (decabromodiphenyl ether) in a bioindicator fish (Gambusia affinis). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:50845-50855. [PMID: 35243576 DOI: 10.1007/s11356-022-19462-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 02/23/2022] [Indexed: 06/14/2023]
Abstract
In recent years, concerns have increased about the adverse effects on health and the environment of polybrominated diphenyl ethers (PBDEs), especially BDE-209, the most widely PBDE used globally. These pollutants derive from e-waste and present different adverse effects on biota. In this work, a toxicological study on mosquitofish (Gambusia affinis) using BDE-209 (2,2',3,3',4,4',5,'5',6,6'-decabromodiphenyl ether) was carried out. Acute toxicity bioassays were conducted with daily renewal of solutions, using different concentrations of environmental relevance, ranged between 10 and 100 μg L-1 of BDE-209. At 48 and 96 h of exposure, several parameters were evaluated, such as mortality, individual activity (swimming), biochemical activity (catalase; thiobarbituric acid-reactive substances; and acetylcholinesterase), and cytotoxic responses (micronucleus frequencies). In addition, integrated biomarker response and multivariate analyses were conducted to study the correlation of biomarkers. The calculated Lethal Concentration-50 remained constant after all exposure times (24 to 96 h), being the corresponding value 27.79 μg L-1 BDE-209. Furthermore, BDE-209 induced effects on the swimming activity of this species in relation to acetylcholine, since BDE-209 increased, producing oxidative damage at the biochemical level and genotoxicity after 48 h of exposure to 10 and 25 μg L-1 BDE-209. The results indicate that BDE-209 has biochemical, cytotoxic, neurotoxic, and genotoxic potential on G. affinis. In addition, mosquitofish could be used as a good laboratory model to evaluate environmental stressors since they could represent a risk factor for Neotropical species.
Collapse
Affiliation(s)
- Juan Manuel Pérez-Iglesias
- Instituto de Química de San Luis (INQUISAL), Consejo Nacional de Investigaciones Científicas Y Técnicas (CONICET), Facultad de Química, Bioquímica Y Farmacia (FQByF), Universidad Nacional de San Luis (UNSL), Chacabuco 917, 1º Piso Oficina 8- C.P. (D5700BWS), Juan Martín de Pueyrredón, San Luis, Argentina
| | - Patricia González
- Instituto de Química de San Luis (INQUISAL), Consejo Nacional de Investigaciones Científicas Y Técnicas (CONICET), Facultad de Química, Bioquímica Y Farmacia (FQByF), Universidad Nacional de San Luis (UNSL), Chacabuco 917, 1º Piso Oficina 8- C.P. (D5700BWS), Juan Martín de Pueyrredón, San Luis, Argentina
| | - Mirian Roxana Calderón
- Instituto de Química de San Luis (INQUISAL), Consejo Nacional de Investigaciones Científicas Y Técnicas (CONICET), Facultad de Química, Bioquímica Y Farmacia (FQByF), Universidad Nacional de San Luis (UNSL), Chacabuco 917, 1º Piso Oficina 8- C.P. (D5700BWS), Juan Martín de Pueyrredón, San Luis, Argentina
| | - Guillermo Sebastián Natale
- Centro de Investigaciones del Medioambiente (CIM), CONICET, Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP), Calle 115 y 47 (CP 1900), La Plata, Argentina
| | - César Américo Almeida
- Instituto de Química de San Luis (INQUISAL), Consejo Nacional de Investigaciones Científicas Y Técnicas (CONICET), Facultad de Química, Bioquímica Y Farmacia (FQByF), Universidad Nacional de San Luis (UNSL), Chacabuco 917, 1º Piso Oficina 8- C.P. (D5700BWS), Juan Martín de Pueyrredón, San Luis, Argentina.
| |
Collapse
|
3
|
Li F, Liu Z, Yao L, Jiang Y, Qu M, Yu Y, Gong X, Tan Z, Li Z. Immunotoxicity of Perfluorooctanoic Acid to the Marine Bivalve Species Ruditapes philippinarum. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2022; 41:426-436. [PMID: 34888925 DOI: 10.1002/etc.5263] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 11/25/2021] [Accepted: 11/26/2021] [Indexed: 06/13/2023]
Abstract
Polyfluorinated alkylated substances are recognized as an important class of pollutants in marine environments. Bivalves are good model organisms for evaluating the toxicity of pollutants and monitoring marine environments. In the present study, immunotoxicity of perfluorooctanoic acid (PFOA) was investigated by measuring biomarkers of the immune profile of Ruditapes philippinarum. In bivalves, hemocytes are an important component of the immune system. Thus, hemocyte proliferation, phagocytosis, cell viability, and immune enzyme activities, which have been applied as marine pollution bioindicators, were identified and observed for changes after exposure to PFOA in R. philippinarum. Based on the integrated biomarker responses method, we selected five biomarkers to evaluate PFOA risk at the multibiomarker level. In addition, the histopathological alterations of hemocytes in bivalves were used as indexes of the response to environmental stress. The subcellular structure of the hemocytes in R. philippinarum changed significantly with PFOA exposure, including hemocyte and nucleus morphological changes, organelle dissolution, cytomembrane and karyotheca swelling, and cytoplasm vacuolization. The present study verifies PFOA immunotoxicity to R. philippinarum at different levels and the integrated assessment of stress levels caused by PFOA in marine environment. Our results will provide new insights into evaluating adverse effects of PFOA and monitoring marine ecosystem. Environ Toxicol Chem 2022;41:426-436. © 2021 SETAC.
Collapse
Affiliation(s)
- Fengling Li
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, People's Republic of China
| | - Zhiyu Liu
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, People's Republic of China
| | - Lin Yao
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, People's Republic of China
| | - Yanhua Jiang
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, People's Republic of China
| | - Meng Qu
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, People's Republic of China
| | - Yongxing Yu
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, People's Republic of China
- College of Marine Life Sciences, Ocean University of China, Qingdao, People's Republic of China
| | - Xiuqiong Gong
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, People's Republic of China
- College of Marine Sciences, Shanghai Ocean University, Shanghai, People's Republic of China
| | - Zhijun Tan
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, People's Republic of China
- Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, People's Republic of China
| | - Zhaojie Li
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, People's Republic of China
| |
Collapse
|
4
|
Jiang Y, Wang Y, Sun T, Lu K, Zhao X, Zhang Z, Lv M, Liu C, Zhou B. Depicting an energetic chain involved in physiological responses of blue mussel Mytilus edulis coping with BDE-47 exposure. CHEMOSPHERE 2021; 269:128736. [PMID: 33131734 DOI: 10.1016/j.chemosphere.2020.128736] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 10/20/2020] [Accepted: 10/22/2020] [Indexed: 06/11/2023]
Abstract
Depiction on an energetic chain in terms of assimilation, allocation and consumption as well as the linkage between energetic alteration and physiological process was performed in blue mussel Mytilus edulis coping with tetrabromodiphenyl ether (BDE-47) based on a 21-day bioassay to shed light on the possible mechanism from energetic perspective. The filtration was hindered along with BDE-47 concentration increment and the influence of digestion was suggested according to the combination of the digestive enzymatic activities' alteration and digestive gland tissue impairment, both of which decided the energy availability reduction. Energy consumption indicated by the electron transport system activity was firstly inhibited while was greatly increased with BDE-47 increment, and the cellular energy allocation and adenylate pool were decreased simultaneously. An energetic chain was thus depicted: it tended to reduce energy absorption, elevate the energy consumption and decrease the energy metabolism with BDE-47 exposure, and M. edulis adopted the energetic strategy with variation regarding to the stressing level, suggesting as the preference switched from protein utilization to lipid utilization with the concentration increment. A consistence was observed in index of growth and survival with the change of energy allocation, inferring the energetic involvement in sustaining the viability of the mussel.
Collapse
Affiliation(s)
- Yongshun Jiang
- Department of Marine Ecology, College of Marine Life Sciences, Ocean University of China, No.5 Yushan Road, Qingdao, China; Marine Science and Technology College, Qingdao Agricultural University, No.17 Wenhai Road, Qingdao, China.
| | - You Wang
- Department of Marine Ecology, College of Marine Life Sciences, Ocean University of China, No.5 Yushan Road, Qingdao, China; Laboratory for Marine Ecology and Environmental Science, Pilot Qingdao National Laboratory for Marine Science and Technology, No 1. Wenhai Road, Qingdao, China
| | - Tianli Sun
- National Marine Hazard Mitigation Service, No. 6, Qiwangfen North Road, Beijing, China
| | - Keyu Lu
- Department of Marine Ecology, College of Marine Life Sciences, Ocean University of China, No.5 Yushan Road, Qingdao, China; Laboratory for Marine Ecology and Environmental Science, Pilot Qingdao National Laboratory for Marine Science and Technology, No 1. Wenhai Road, Qingdao, China.
| | - Xinyu Zhao
- Department of Marine Ecology, College of Marine Life Sciences, Ocean University of China, No.5 Yushan Road, Qingdao, China
| | - Zhipeng Zhang
- Tianjin Research Institute for Water Transport Engineering, M. O. T., No. 2618, Xingang Erhao Road, Tianjin, China
| | - Mengchen Lv
- Department of Marine Ecology, College of Marine Life Sciences, Ocean University of China, No.5 Yushan Road, Qingdao, China
| | - Chunchen Liu
- Department of Marine Ecology, College of Marine Life Sciences, Ocean University of China, No.5 Yushan Road, Qingdao, China; College of Life Sciences, Qufu Normal University, Qufu, Shandong, China.
| | - Bin Zhou
- Department of Marine Ecology, College of Marine Life Sciences, Ocean University of China, No.5 Yushan Road, Qingdao, China; Laboratory for Marine Ecology and Environmental Science, Pilot Qingdao National Laboratory for Marine Science and Technology, No 1. Wenhai Road, Qingdao, China.
| |
Collapse
|
5
|
Cheng H, Luo H, Hu Y, Tao S. Release kinetics as a key linkage between the occurrence of flame retardants in microplastics and their risk to the environment and ecosystem: A critical review. WATER RESEARCH 2020; 185:116253. [PMID: 32768659 DOI: 10.1016/j.watres.2020.116253] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 07/27/2020] [Accepted: 07/29/2020] [Indexed: 06/11/2023]
Abstract
The widely occurring debris of plastic materials, particularly microplastics, can be an important source of flame retardants, which are one of the main groups of chemicals added in the production of plastics from polymers. This review provides an overview on the use of flame retardants in plastic manufacturing, the kinetics of their releases from microplastics, the factors affecting their releases, and the potential environmental and ecosystem risk of the released flame retardants. The releases of flame retardants from microplastics typically involve three major steps: internal diffusion, mass transfer across the plastic-medium boundary layer, and diffusion in the environmental medium, while the overall mass transfer rate is commonly controlled by diffusion within the plastic matrix. The overall release rates of additive flame retardants from microplastics, which are dependent on the particle's geometry, can often be described by the Fick's Law. The physicochemical properties of flame retardant and plastic matrix, and ambient temperature all affect the release rate, which can be predicted with empirical and semi-empirical models. Weathering of microplastics, which reduces their particle sizes and likely disrupts their polymeric structures, can greatly accelerate the releases of flame retardants. Flame retardants could also be released directly from the microplastics ingested by aquatic organisms and seabirds, with physical and chemical digestion in the bodies significantly enhancing their release rates. Limited by the extremely slow diffusion in plastic matrices, the fluxes of flame retardants released from microplastics are very low, and are unlikely to pose significant risk to the ecosystem in general. More research is needed to characterize the mechanical, chemical, and biological processes that degrade microplastics and accelerate the releases of flame retardants and to model their release kinetics from microplastics, while efforts should also be made to develop environmentally benign flame retardants to ultimately minimize their risk to the environment and ecosystem.
Collapse
Affiliation(s)
- Hefa Cheng
- MOE Key Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China.
| | - Hang Luo
- MOE Key Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Yuanan Hu
- MOE Key Laboratory of Groundwater Circulation and EvolutioSchool of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, China
| | - Shu Tao
- MOE Key Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
6
|
Zhao Y, Tang X, Qu F, Lv M, Liu Q, Li J, Li L, Zhang B, Zhao Y. ROS-mediated programmed cell death (PCD) of Thalassiosira pseudonana under the stress of BDE-47. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 262:114342. [PMID: 32179226 DOI: 10.1016/j.envpol.2020.114342] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 02/21/2020] [Accepted: 03/05/2020] [Indexed: 06/10/2023]
Abstract
Polybrominated diphenyl ethers (PBDEs) are a series of highly persistent organic pollutants (POPs) ubiquitously distributed in marine environments. As key primary producers, microalgae are the start of PBDEs bioaccumulations and vulnerable to their toxicities. In order to deeply investigate the toxic mechanism of PBDEs on microalgal cells, the occurrence of programmed cell death (PCD) in a model diatom Thalassiosira pseudonana and its possible mediating mechanism were studied. The results indicated: cell death of T. pseudonana happened under the stress of BDE-47, which was proved to be PCD based on the correlations with three biochemical markers (DNA fragmentation, phosphatidylserine externalization and caspase activity) and three molecular markers [Metacaspase 2 gene (TpMC2), Death-associated protein gene (DAP3) and Death-specific protein 1 gene (TpDSP1)]; Furthermore, the changes of cellular ROS levels were correlated with the PCD markers and the dead cell rates, and the cell membrane and the chloroplast were identified as the major ROS production sites. Therefore, we concluded that PCD might be an important toxic mechanism of PBDEs on microalgal cells, and that chloroplast- and cell membrane-produced ROS was an important signaling molecule to mediate the PCD activation process. Our research firstly indicated microalgal PCD could be induced by PBDEs, and increased our knowledge of the toxic mechanisms by which POPs affect microalgal cells.
Collapse
Affiliation(s)
- Yirong Zhao
- College of Marine Life Sciences, Department of Marine Ecology, Ocean University of China, Qingdao, 266003, China
| | - Xuexi Tang
- College of Marine Life Sciences, Department of Marine Ecology, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China
| | - Fangyuan Qu
- First Institute of Oceanography, Ministry of Natural Resources, Qingdao, 266061, China
| | - Mengchen Lv
- College of Marine Life Sciences, Department of Marine Ecology, Ocean University of China, Qingdao, 266003, China
| | - Qian Liu
- College of Marine Life Sciences, Department of Marine Ecology, Ocean University of China, Qingdao, 266003, China
| | - Jun Li
- College of Marine Life Sciences, Department of Marine Ecology, Ocean University of China, Qingdao, 266003, China
| | - Luying Li
- College of Marine Life Sciences, Department of Marine Ecology, Ocean University of China, Qingdao, 266003, China
| | - Bihan Zhang
- College of Marine Life Sciences, Department of Marine Ecology, Ocean University of China, Qingdao, 266003, China
| | - Yan Zhao
- College of Marine Life Sciences, Department of Marine Ecology, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China.
| |
Collapse
|
7
|
Lv M, Tang X, Zhao Y, Li J, Zhang B, Li L, Jiang Y, Zhao Y. The toxicity, bioaccumulation and debromination of BDE-47 and BDE-209 in Chlorella sp. under multiple exposure modes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 723:138086. [PMID: 32220740 DOI: 10.1016/j.scitotenv.2020.138086] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/25/2020] [Accepted: 03/19/2020] [Indexed: 06/10/2023]
Abstract
Polybrominated diphenyl ethers (PBDEs) are a series of important persistent organic pollutants (POPs) in marine environments. Microalgae are the start of PBDEs bioaccumulated and bioconcentrated along the marine food web. In order to investigate the variations of PBDEs bioaccumulation by microalgae and its influencing factors, we set up a series of experiments with Chlorella sp. under different BDE-47 or BDE-209 exposure modes to measure their toxicity, bioaccumulation and degradation patterns. The inhibition effect on cell growth was much more obvious in BDE-47 than BDE-209, with the EC50 values at 96 h calculated as 64.7 μg L-1 and 4070 μg L-1, respectively. Microalgal uptake rates showed BDE-209 diffused less into cells than BDE-47, with highest measured uptake rates of 0.145 × 10-7 μg h-1 cell-1 and 0.45 × 10-7 μg h-1 cell-1, respectively. The bioaccumulation amount by unit microalgal cell varied with PBDE concentrations and culture time, which appeared to be related to the changes of extracellular polymeric substances (EPS) and cellular neutral lipids under the toxicity of PBDEs. Finally, we found Chlorella sp. delayed the debromination patterns of BDE-209 compared to seawater. This study linked the toxicity, microalgal bioaccumulation and metabolism of PBDEs, provided new insights in the research of POPs by microalgae and marine food webs.
Collapse
Affiliation(s)
- Mengchen Lv
- Department of Marine Ecology, Ocean University of China, Qingdao 266003, China
| | - Xuexi Tang
- Department of Marine Ecology, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Yirong Zhao
- Department of Marine Ecology, Ocean University of China, Qingdao 266003, China
| | - Jun Li
- Department of Marine Ecology, Ocean University of China, Qingdao 266003, China
| | - Bihan Zhang
- Department of Marine Ecology, Ocean University of China, Qingdao 266003, China
| | - Luying Li
- Department of Marine Ecology, Ocean University of China, Qingdao 266003, China
| | - Yongshun Jiang
- College of Marine Science and Technology, Qingdao Agricultural University, No.17 Wenhai Road, Qingdao 266000, China
| | - Yan Zhao
- Department of Marine Ecology, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China.
| |
Collapse
|
8
|
Li X, Yan T, Yu R, Zhou M. A review of karenia mikimotoi: Bloom events, physiology, toxicity and toxic mechanism. HARMFUL ALGAE 2019; 90:101702. [PMID: 31806160 DOI: 10.1016/j.hal.2019.101702] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 09/10/2019] [Accepted: 10/28/2019] [Indexed: 06/10/2023]
Abstract
Karenia mikimotoi is a worldwide bloom-forming dinoflagellate in the genus Karenia. Blooms of this alga have been observed since the 1930s and have caused mass mortalities of fish, shellfish, and other invertebrates in the coastal waters of many countries, including Japan, Norway, Ireland, and New Zealand. This species has frequently bloomed in China, causing great financial losses (more than 2 billion yuan, Fujian Province, 2012). K. mikimotoi can adapt to various light, temperature, salinity, and nutrient conditions, which together with its complex life history, strong motility, and density-dependent allelopathy, allows it to form blooms that are lethal to almost all marine organisms. However, its toxicity differs between subspecies and some target-species-specific toxicity has also been recorded. Significant gill disorder is observed in affected fish, to which the massive fish kills are attributed, rather than to the hypoxia that occurs in the fading stage of a bloom. However, although this species is haemolytic and cytotoxic, and generates reactive oxygen species, none of the isolated toxins or lipophilic extracts have toxic effects as extreme as those of the intact algal cells. The toxic effects of K. mikimotoi are strongly related to contact with intact cells. Several reasonable hypotheses of how and why this species blooms and causes mass mortalities have been proposed, but further research is required.
Collapse
Affiliation(s)
- Xiaodong Li
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian Province, 350002, China; Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, Shandong Province, 266071, China.
| | - Tian Yan
- Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, Shandong Province, 266071, China; Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong Province, 266071, China; Centre for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China.
| | - Rencheng Yu
- Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, Shandong Province, 266071, China; Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong Province, 266071, China; Centre for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Mingjiang Zhou
- Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, Shandong Province, 266071, China
| |
Collapse
|
9
|
Zhao X, Lin X, Qu K, Xia B, Sun X, Chen B. Toxicity of BDE-47, BDE-99 and BDE-153 on swimming behavior of the unicellular marine microalgae Platymonas subcordiformis and implications for seawater quality assessment. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 174:408-416. [PMID: 30851538 DOI: 10.1016/j.ecoenv.2019.02.050] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 01/30/2019] [Accepted: 02/15/2019] [Indexed: 06/09/2023]
Abstract
Polybrominated diphenyl ethers (PBDEs), a class of brominated flame retardants, have been extensively applied and eventually leached into the surrounding environment. Marine microalgae are not only the dominant primary producers of marine ecosystem, but also food source for aquaculture. PBDEs have been found to remarkably inhibit growth, photosynthesis and metabolism of marine microalgae. However, whether they also affect swimming behavior of marine motile microalgae remains unknown. We chose BDE-47, BDE-99 and BDE-153 as model PBDEs, and the unicellular marine green flagellate, Platymonas subcordiformis, as test organism to figure out this issue. After two-hour exposure, motile cells proportion (MOT), swimming velocity (VCL, VAP and VSL), and swimming pattern (LIN and STR) of P. subcordiformis were measured via computer assisted cell movement tracking. Results suggest that the three PBDEs not only reduced motile cells proportion and swimming velocity, but also altered swimming pattern. BDE-47 was more toxic than BDE-99, followed by BDE-153, indicating their toxicity decreased as bromination degree increases. Swimming ability of P. subcordiformis was even completely arrested when BDE-47 and BDE-99 at 32 μg/L. The impairment of swimming ability by PBDEs might thereby hinder growth and survival of marine microalgae, and subsequently threaten marine ecosystem and aquaculture industry. More importantly, this study implies that marine microalgae swimming behavior test is more efficiency and sensitive than traditional marine microalgal bioassays, like growth and photosynthesis tests. We suggest that although future work is needed, swimming behavior analysis of P. subcordiformis with MOT, VCL and VAP as endpoints can be developed as a low-cost, convenient, fast, reliable and sensitive method for seawater quality assessment.
Collapse
Affiliation(s)
- Xinguo Zhao
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, PR China; Laboratory for Marine Ecology and Environment Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, PR China
| | - Xingguan Lin
- Zhejiang Mariculture Research Institute, Wenzhou 325005, PR China
| | - Keming Qu
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, PR China
| | - Bin Xia
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, PR China; Laboratory for Marine Ecology and Environment Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, PR China
| | - Xuemei Sun
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, PR China; Laboratory for Marine Ecology and Environment Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, PR China
| | - Bijuan Chen
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, PR China; Laboratory for Marine Ecology and Environment Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, PR China.
| |
Collapse
|
10
|
Using the Marine Rotifer Brachionus plicatilis as an Endpoint to Evaluate Whether ROS-Dependent Hemolytic Toxicity Is Involved in the Allelopathy Induced by Karenia mikimotoi. Toxins (Basel) 2018; 10:toxins10110439. [PMID: 30380633 PMCID: PMC6266181 DOI: 10.3390/toxins10110439] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 10/24/2018] [Accepted: 10/25/2018] [Indexed: 11/17/2022] Open
Abstract
The toxic effects of the typically noxious bloom-forming dinoflagellate Karenia mikimotoi were studied using the allelopathic experimental system under controlled laboratory conditions. The potency of intact cell suspensions with whole cells, cell-free culture filtrate in different growth phases, and lysed cells with ultrasonication were compared, and the growth and reproduction of the marine rotifer Brachionus plicatilis were used as endpoints to evaluate toxic differences. The intact cell suspension resulted the most significant growth inhibition, including lethality, on the growth of B. plicatilis (p < 0.05). Lysed culture medium treated with ultrasonication and the cell-free culture filtrates at either the exponential or stationary phase exhibited limited negative impacts compared to the control according to changes in the population growth rate (r) and survival rate (p > 0.05). Reproduction presented a similar tendency to change, and the number of eggs produced per individual, as well as spawning period decreased in the whole cell and lysed cell suspensions. The key parameters in the lift table include the net reproductive rate (R₀) and the intrinsic rate of increase (rm), which were more sensitive to treatment and were significantly suppressed compared to that of the control. The addition of the ROS inhibitor N-acetylcysteine (NAC) could not change the growth or reproduction patterns. Moreover, substantial hemolytic toxicity was found in the treatment of the intact cell suspension (p < 0.05), while limited toxicity was found in other treatments compared to that of the control. K. mikimotoi was speculated to secrete allelopathic substances onto the cell surface, and direct cell contact was necessary for allelopathic toxicity in B. plicatilis. Reactive oxygen species (ROS)-independent hemolytic toxicity was assumed to be the explanation for what was observed.
Collapse
|
11
|
Anacleto P, Figueiredo C, Baptista M, Maulvault AL, Camacho C, Pousão-Ferreira P, Valente LMP, Marques A, Rosa R. Fish energy budget under ocean warming and flame retardant exposure. ENVIRONMENTAL RESEARCH 2018; 164:186-196. [PMID: 29501006 DOI: 10.1016/j.envres.2018.02.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 01/31/2018] [Accepted: 02/15/2018] [Indexed: 06/08/2023]
Abstract
Climate change and chemical contamination are global environmental threats of growing concern for the scientific community and regulatory authorities. Yet, the impacts and interactions of both stressors (particularly ocean warming and emerging chemical contaminants) on physiological responses of marine organisms remain unclear and still require further understanding. Within this context, the main goal of this study was to assess, for the first time, the effects of warming (+ 5 °C) and accumulation of a polybrominated diphenyl ether congener (BDE-209, brominated flame retardant) through dietary exposure on energy budget of the juvenile white seabream (Diplodus sargus). Specifically, growth (G), routine metabolism (R), excretion (faecal, F and nitrogenous losses, U) and food consumption (C) were calculated to obtain the energy budget. The results demonstrated that the energy proportion spent for G dominated the mode of the energy allocation of juvenile white seabream (56.0-67.8%), especially under the combined effect of warming plus BDE-209 exposure. Under all treatments, the energy channelled for R varied around 26% and a much smaller percentage was channelled for excretion (F: 4.3-16.0% and U: 2.3-3.3%). An opposite trend to G was observed to F, where the highest percentage (16.0 ± 0.9%) was found under control temperature and BDE-209 exposure via diet. In general, the parameters were significantly affected by increased temperature and flame retardant exposure, where higher levels occurred for: i) wet weight, relative growth rate, protein and ash contents under warming conditions, ii) only for O:N ratio under BDE-209 exposure via diet, and iii) for feed efficiency, ammonia excretion rate, routine metabolic rate and assimilation efficiency under the combination of both stressors. On the other hand, decreased viscerosomatic index was observed under warming and lower fat content was observed under the combined effect of both stressors. Overall, under future warming and chemical contamination conditions, fish energy budget was greatly affected, which may dictate negative cascading impacts at population and community levels. Further research combining other climate change stressors (e.g. acidification and hypoxia) and emerging chemical contaminants are needed to better understand and forecast such biological effects in a changing ocean.
Collapse
Affiliation(s)
- Patrícia Anacleto
- Division of Aquaculture and Upgrading (DivAV), Portuguese Institute for the Sea and Atmosphere (IPMA, I.P.), Rua Alfredo Magalhães Ramalho 6, 1495-006 Lisboa, Portugal; MARE - Marine and Environmental Sciences Centre, Guia Marine Laboratory, Faculty of Sciences, University of Lisbon (FCUL), Av. Nossa Senhora do Cabo, 939, 2750-374 Cascais, Portugal; Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal.
| | - Cátia Figueiredo
- MARE - Marine and Environmental Sciences Centre, Guia Marine Laboratory, Faculty of Sciences, University of Lisbon (FCUL), Av. Nossa Senhora do Cabo, 939, 2750-374 Cascais, Portugal
| | - Miguel Baptista
- MARE - Marine and Environmental Sciences Centre, Guia Marine Laboratory, Faculty of Sciences, University of Lisbon (FCUL), Av. Nossa Senhora do Cabo, 939, 2750-374 Cascais, Portugal
| | - Ana Luísa Maulvault
- Division of Aquaculture and Upgrading (DivAV), Portuguese Institute for the Sea and Atmosphere (IPMA, I.P.), Rua Alfredo Magalhães Ramalho 6, 1495-006 Lisboa, Portugal; MARE - Marine and Environmental Sciences Centre, Guia Marine Laboratory, Faculty of Sciences, University of Lisbon (FCUL), Av. Nossa Senhora do Cabo, 939, 2750-374 Cascais, Portugal; Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal
| | - Carolina Camacho
- Division of Aquaculture and Upgrading (DivAV), Portuguese Institute for the Sea and Atmosphere (IPMA, I.P.), Rua Alfredo Magalhães Ramalho 6, 1495-006 Lisboa, Portugal; Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal; Faculty of Sciences and Technology, New University of Lisbon, Quinta da Torre, 2829-516 Caparica, Portugal
| | - Pedro Pousão-Ferreira
- Division of Aquaculture and Upgrading (DivAV), Portuguese Institute for the Sea and Atmosphere (IPMA, I.P.), Rua Alfredo Magalhães Ramalho 6, 1495-006 Lisboa, Portugal
| | - Luísa M P Valente
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal; ICBAS, Instituto de Ciências Biomédicas de Abel Salazar, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - António Marques
- Division of Aquaculture and Upgrading (DivAV), Portuguese Institute for the Sea and Atmosphere (IPMA, I.P.), Rua Alfredo Magalhães Ramalho 6, 1495-006 Lisboa, Portugal; Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal
| | - Rui Rosa
- MARE - Marine and Environmental Sciences Centre, Guia Marine Laboratory, Faculty of Sciences, University of Lisbon (FCUL), Av. Nossa Senhora do Cabo, 939, 2750-374 Cascais, Portugal
| |
Collapse
|
12
|
Seawater acidification induced immune function changes of haemocytes in Mytilus edulis: a comparative study of CO 2 and HCl enrichment. Sci Rep 2017; 7:41488. [PMID: 28165002 PMCID: PMC5292689 DOI: 10.1038/srep41488] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 12/21/2016] [Indexed: 12/30/2022] Open
Abstract
The present study was performed to evaluate the effects of CO2− or HCl-induced seawater acidification (pH 7.7 or 7.1; control: pH 8.1) on haemocytes of Mytilus edulis, and the changes in the structure and immune function were investigated during a 21-day experiment. The results demonstrated that seawater acidification had little effect on the cellular mortality and granulocyte proportion but damaged the granulocyte ultrastructure. Phagocytosis of haemocytes was also significantly inhibited in a clearly concentration-dependent manner, demonstrating that the immune function was affected. Moreover, ROS production was significantly induced in both CO2 and HCl treatments, and four antioxidant components, GSH, GST, GR and GPx, had active responses to the acidification stress. Comparatively, CO2 had more severe destructive effects on haemocytes than HCl at the same pH level, indicating that CO2 stressed cells in other ways beyond the increasing H+ concentration. One possible explanation was that seawater acidification induced ROS overproduction, which damaged the ultrastructure of haemocytes and decreased phagocytosis.
Collapse
|
13
|
Jiang Y, Tang X, Sun T, Wang Y. BDE-47 exposure changed the immune function of haemocytes in Mytilus edulis: An explanation based on ROS-mediated pathway. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2017; 182:58-66. [PMID: 27871004 DOI: 10.1016/j.aquatox.2016.11.010] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 11/08/2016] [Accepted: 11/10/2016] [Indexed: 06/06/2023]
Abstract
Brominated Tetra-BDE (BDE-47), is suggested to be widely distributed in marine environments and highly accumulated in marine organisms. Blue mussel Mytilus edulis is a sentinel organism that is commonly used for monitoring chemical contaminants in coastal ecosystems, and its haemocytes play an essential role in immune function. Therefore, we estimated the effects of BDE-47 exposure on the M. edulis haemocytes' immune function under controlled laboratory conditions. The study found the following results: (1) BDE-47 exposure increased the mortality of the haemocytes and decreased the total haemocyte counts. The ultrastructure and microstructure in the haemocytes were significantly changed, and the micronucleus frequency was increased steadily in a concentration-dependent manner, inferring that cellular and molecular damages occur during the exposure. (2) The immune function of the haemocytes was estimated from lysosomal and phagocytic changes. The lysosomal membrane stability was significantly disrupted compared to the control according to neutral red retention time changes, and the phagocytic ability was reduced significantly. Two lysosomal enzymes, acid phosphatases and alkaline phosphatases, presented similar increasing trends during the treatment. (3) BDE-47 exposure significantly induced the overproduction of reactive oxygen species and malondialdehyde in a clear time- and concentration-dependent manner, suggesting the occurrence of oxidative stress. We thus presumed that BDE-47 exposure affected the immune function of the mussel's haemocytes, and an ROS-mediated pathway might be one of the possible explanations for the observation.
Collapse
Affiliation(s)
- Yongshun Jiang
- Department of Marine Ecology, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.
| | - Xuexi Tang
- Department of Marine Ecology, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.
| | - Tianli Sun
- Department of Marine Ecology, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.
| | - You Wang
- Department of Marine Ecology, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.
| |
Collapse
|
14
|
Wang H, Tang X, Sha J, Chen H, Sun T, Wang Y. The reproductive toxicity on the rotifer Brachionus plicatilis induced by BDE-47 and studies on the effective mechanism based on antioxidant defense system changes. CHEMOSPHERE 2015; 135:129-137. [PMID: 25950406 DOI: 10.1016/j.chemosphere.2015.03.090] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2014] [Revised: 03/23/2015] [Accepted: 03/25/2015] [Indexed: 06/04/2023]
Abstract
2,2',4,4'-Tetrabromodiphenyl ether (BDE-47), a low-brominated Tetra-BDE that is widely distributed in the marine ecosystem, was selected to investigate the reproductive toxicity on the rotifer, Brachionus plicatilis, and the possible mechanism based on antioxidant defense system changes were studied. The results showed the following: (1) A low concentration of BDE-47 had a slight effect on the egg production of individual females and the egg production rate (EPR) of the population. In fact, BDE-47 exerted reproductive inhibition effects in a time- and concentration-dependent manner. The obtained life tables indicated that BDE-47 at a high concentration prolonged the generation time, whereas low and moderate concentrations of BDE-47 had the opposite effects. BDE-47 at a medium concentration significantly decreased the life expectancy and net reproductive rate (P<0.05). Additionally, a high concentration of BDE-47 markedly decreased the net reproductive rate and intrinsic increase rate (P<0.05). The ultra-structure of the ovary showed that BDE-47 severely damaged the ovary. (2) BDE-47 stress elevated the ROS level in B. plicatilis. The GST activity was induced significantly by the low concentration of BDE-47 and inhibited by the highest concentration tested. The GPx activity and GSH content were significant decreased in all the tested groups, and GR activity was induced. GST and GSH appeared to be sensitive to oxidative stress, and all of the glutathione-related enzymes were found to play an important role in maintaining the antioxidant/pro-oxidant balance based on Pearson's correlation analysis. The results indicated that BDE-47 causes reproductive toxicity in B. plicatilis and that the ROS-mediated pathway is responsible for the observed toxicity.
Collapse
Affiliation(s)
- Hong Wang
- Department of Marine Ecology, College of Marine Life Science, Ocean University of China, Qingdao, China.
| | - Xuexi Tang
- Department of Marine Ecology, College of Marine Life Science, Ocean University of China, Qingdao, China.
| | - Jingjing Sha
- Department of Marine Ecology, College of Marine Life Science, Ocean University of China, Qingdao, China.
| | - Hongmei Chen
- Department of Marine Ecology, College of Marine Life Science, Ocean University of China, Qingdao, China.
| | - Tianli Sun
- Department of Marine Ecology, College of Marine Life Science, Ocean University of China, Qingdao, China.
| | - You Wang
- Department of Marine Ecology, College of Marine Life Science, Ocean University of China, Qingdao, China.
| |
Collapse
|
15
|
Sha J, Wang Y, Lv J, Wang H, Chen H, Qi L, Tang X. Effects of two polybrominated diphenyl ethers (BDE-47, BDE-209) on the swimming behavior, population growth and reproduction of the rotifer Brachionus plicatilis. J Environ Sci (China) 2015; 28:54-63. [PMID: 25662239 DOI: 10.1016/j.jes.2014.07.020] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Revised: 07/08/2014] [Accepted: 07/31/2014] [Indexed: 06/04/2023]
Abstract
Polybrominated diphenyl ethers (PBDEs) are new kinds of persistent organic pollutants (POPs) and their potential threats to the equilibrium and sustainability of marine ecosystems have raised worldwide concerns. Here, two kinds of PBDEs, tetra-BDE (BDE-47) and deca-BDE (BDE-209) were applied, and their toxic effects on the swimming behavior, population growth and reproduction of Brachionus plicatilis were investigated. The results showed that: (1) The actual concentrations of BDE-47 and -209 in the seawater phase measured by GC-MS (Gas Chromatography-Mass Spectrometer) were much lower than their nominal concentrations. (2) In accordance with the 24-hr acute tests, BDE-209 did not show any obvious swimming inhibition to rotifers, but a good correlation did exist between the swimming inhibition rate and BDE-47 concentration suggesting that BDE-47 is more toxic than BDE-209. (3) Both BDE-47 and -209 had a significant influence on the population growth and reproduction parameters of B. plicatilis including the population growth rate, the ratio of ovigerous females/non-ovigerous females (OF/NOF), the ratio of mictic females/amictic females (MF/AF), resting egg production and the mictic rate, which indicate that these parameters in B. plicatilis population were suitable for monitoring and assessing PBDEs. Our results suggest that BDE-47 and -209 are not acute lethal toxicants and may pose a low risk to marine rotifers at environmental concentrations for short-term exposure. They also accumulate differently into rotifers. Further research data are needed to understand the mechanisms responsible for the effects caused by PBDEs and to assess their risks accurately.
Collapse
Affiliation(s)
- Jingjing Sha
- Department of Marine Ecology, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.
| | - You Wang
- Department of Marine Ecology, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Jianxia Lv
- Thermo Fisher Scientific (Beijing) Co., Ltd., Beijing 100080, China
| | - Hong Wang
- Department of Marine Ecology, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Hongmei Chen
- Department of Marine Ecology, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Leilei Qi
- Department of Marine Ecology, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Xuexi Tang
- Department of Marine Ecology, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.
| |
Collapse
|
16
|
Su G, Letcher RJ, Crump D, Farmahin R, Giesy JP, Kennedy SW. Photolytic degradation products of two highly brominated flame retardants cause cytotoxicity and mRNA expression alterations in chicken embryonic hepatocytes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:12039-12046. [PMID: 25222814 DOI: 10.1021/es503399r] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Tetradecabromo-1,4-diphenoxybenzene (TeDB-DiPhOBz) and 2,2',3,3',4,4',5,5',6,6'-decabromodiphenyl ether (BDE-209) are photolytically unstable flame retarding chemicals. Here, photocatalyzed byproducts of TeDB-DiPhOBz and BDE-209 (i.e Br(8)- to Br(11)-PB-DiPhOBz congeners from TeDB-DiPhOBz, and Br(6)- to Br(8)-BDE congeners from BDE-209), formed after 21 days of natural sunlight irradiation (SI), were assessed for exposure effects on cytotoxicity and mRNA expression levels of selected genes in chicken embryonic hepatocytes (CEH). CEHs were exposed for 36 h to concentrations of SI- and nonirradiated (NI)-TeDB-DiPhOBz and BDE-209. Cytotoxic effects were observed only in CEH exposed to 50 μM SI-BDE-209. Results from a custom-designed Avian ToxChip polymerase chain reaction array showed that NI-TeDB-DiPhOBz and NI-BDE-209, up to maximum concentrations of 1.9 and 9 μM, respectively, caused limited changes in mRNA levels of 27 genes from toxicologically relevant pathways, including phase I/II metabolism, the thyroid hormone pathway, lipid/cholesterol metabolism, oxidative stress, immune response, and cell death. In contrast, 12 and 14 of the 27 genes were altered after exposure to 25 μM SI-TeDB-DiPhOBz or 10 μM SI-BDE-209, respectively. Aryl hydrocarbon receptor (AhR)-related CYP1A4 mRNA levels were the most altered on the PCR array with an induction of 560- and 5200-fold after exposure to 1 or 25 μM SI-TeDB-DiPhOBz, respectively, and 2500- and 2300-fold after exposure to 1 or 10 μM SI-BDE-209, respectively. A dioxin-responsive luciferase reporter gene assay confirmed that the CYP1A4 inductions were independent of the dissolution solvents used (tetrahydrofuran/n-hexane, n-hexane, or methanol) during photolysis. Overall, degradation of TeDB-DiPhOBz and BDE-209 by natural sunlight generates byproducts that affect in vitro expression of genes, especially the AhR-mediated CYP1A4.
Collapse
Affiliation(s)
- Guanyong Su
- Ecotoxicology and Wildlife Health Division, Environment Canada, National Wildlife Research Centre, Carleton University , Ottawa, Ontario K1A 0H3, Canada
| | | | | | | | | | | |
Collapse
|