1
|
Bryda EC, Men H, Stone BJ. Rat Embryonic Stem Cell Transgenesis. Methods Mol Biol 2023; 2631:355-370. [PMID: 36995677 DOI: 10.1007/978-1-0716-2990-1_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
The availability of reliable germline competent rat embryonic stem cell (ESC) lines that can be genetically manipulated provides an important tool for generating new rat models. Here we describe the process for culturing rat ESCs, microinjecting the ESCs into rat blastocysts, and transferring the embryos to surrogate dams by either surgical or non-surgical embryo transfer techniques to produce chimeric animals with the potential to pass on the genetic modification to their offspring.
Collapse
Affiliation(s)
- Elizabeth C Bryda
- University of Missouri, Rat Resource and Research Center, Columbia, MO, USA.
| | - Hongsheng Men
- University of Missouri, Rat Resource and Research Center, Columbia, MO, USA
| | | |
Collapse
|
2
|
Zvick J, Tarnowska-Sengül M, Ghosh A, Bundschuh N, Gjonlleshaj P, Hinte LC, Trautmann CL, Noé F, Qabrati X, Domenig SA, Kim I, Hennek T, von Meyenn F, Bar-Nur O. Exclusive generation of rat spermatozoa in sterile mice utilizing blastocyst complementation with pluripotent stem cells. Stem Cell Reports 2022; 17:1942-1958. [PMID: 35931077 PMCID: PMC9481912 DOI: 10.1016/j.stemcr.2022.07.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/06/2022] [Accepted: 07/07/2022] [Indexed: 11/17/2022] Open
Abstract
Blastocyst complementation denotes a technique that aims to generate organs, tissues, or cell types in animal chimeras via injection of pluripotent stem cells (PSCs) into genetically compromised blastocyst-stage embryos. Here, we report on successful complementation of the male germline in adult chimeras following injection of mouse or rat PSCs into mouse blastocysts carrying a mutation in Tsc22d3, an essential gene for spermatozoa production. Injection of mouse PSCs into Tsc22d3-Knockout (KO) blastocysts gave rise to intraspecies chimeras exclusively embodying PSC-derived functional spermatozoa. In addition, injection of rat embryonic stem cells (rESCs) into Tsc22d3-KO embryos produced interspecies mouse-rat chimeras solely harboring rat spermatids and spermatozoa capable of fertilizing oocytes. Furthermore, using single-cell RNA sequencing, we deconstructed rat spermatogenesis occurring in a mouse-rat chimera testis. Collectively, this study details a method for exclusive xenogeneic germ cell production in vivo, with implications that may extend to rat transgenesis, or endangered animal species conservation efforts.
Collapse
Affiliation(s)
- Joel Zvick
- Laboratory of Regenerative and Movement Biology, Department of Health Sciences and Technology, ETH Zurich, Schwerzenbach 8603, Switzerland
| | - Monika Tarnowska-Sengül
- Laboratory of Regenerative and Movement Biology, Department of Health Sciences and Technology, ETH Zurich, Schwerzenbach 8603, Switzerland
| | - Adhideb Ghosh
- Laboratory of Regenerative and Movement Biology, Department of Health Sciences and Technology, ETH Zurich, Schwerzenbach 8603, Switzerland; Functional Genomics Center Zurich, ETH Zurich and University of Zurich, Zurich 8057, Switzerland
| | - Nicola Bundschuh
- Laboratory of Regenerative and Movement Biology, Department of Health Sciences and Technology, ETH Zurich, Schwerzenbach 8603, Switzerland
| | - Pjeter Gjonlleshaj
- Laboratory of Regenerative and Movement Biology, Department of Health Sciences and Technology, ETH Zurich, Schwerzenbach 8603, Switzerland
| | - Laura C Hinte
- Laboratory of Nutrition and Metabolic Epigenetics, Department of Health Sciences and Technology, ETH Zurich, Schwerzenbach 8603, Switzerland
| | - Christine L Trautmann
- Laboratory of Regenerative and Movement Biology, Department of Health Sciences and Technology, ETH Zurich, Schwerzenbach 8603, Switzerland
| | - Falko Noé
- Laboratory of Regenerative and Movement Biology, Department of Health Sciences and Technology, ETH Zurich, Schwerzenbach 8603, Switzerland; Functional Genomics Center Zurich, ETH Zurich and University of Zurich, Zurich 8057, Switzerland
| | - Xhem Qabrati
- Laboratory of Regenerative and Movement Biology, Department of Health Sciences and Technology, ETH Zurich, Schwerzenbach 8603, Switzerland
| | - Seraina A Domenig
- Laboratory of Regenerative and Movement Biology, Department of Health Sciences and Technology, ETH Zurich, Schwerzenbach 8603, Switzerland
| | - Inseon Kim
- Laboratory of Regenerative and Movement Biology, Department of Health Sciences and Technology, ETH Zurich, Schwerzenbach 8603, Switzerland
| | - Thomas Hennek
- ETH Phenomics Center, ETH Zurich, Zurich 8049, Switzerland
| | - Ferdinand von Meyenn
- Laboratory of Nutrition and Metabolic Epigenetics, Department of Health Sciences and Technology, ETH Zurich, Schwerzenbach 8603, Switzerland
| | - Ori Bar-Nur
- Laboratory of Regenerative and Movement Biology, Department of Health Sciences and Technology, ETH Zurich, Schwerzenbach 8603, Switzerland.
| |
Collapse
|
3
|
The effect of dual inhibition of Ras-MEK-ERK and GSK3β pathways on development of in vitro cultured rabbit embryos. ZYGOTE 2020; 28:183-190. [PMID: 32192548 DOI: 10.1017/s0967199419000753] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Dual inhibition (2i) of Ras-MEK-ERK and GSK3β pathways enables the derivation of embryo stem cells (ESCs) from refractory mouse strains and, for permissive strains, allows ESC derivation with no external protein factor stimuli involvement. In addition, blocking of ERK signalling in 8-cell-stage mouse embryos leads to ablation of GATA4/6 expression in hypoblasts, suggesting fibroblast growth factor (FGF) dependence of hypoblast formation in the mouse. In human, bovine or porcine embryos, the hypoblast remains unaffected or displays slight-to-moderate reduction in cell number. In this study, we demonstrated that segregation of the hypoblast and the epiblast in rabbit embryos is FGF independent and 2i treatment elicits only a limited reinforcement in favour of OCT4-positive epiblast populations against the GATA4-/6-positive hypoblast population. It has been previously shown that TGFβ/Activin A inhibition overcomes the pervasive differentiation and inhomogeneity of rat iPSCs, rat ESCs and human iPSCs while prompting them to acquire naïve properties. However, TGFβ/Activin A inhibition, alone or together with Rho-associated, coiled-coil containing protein kinase (ROCK) inhibition, was not compatible with the viability of rabbit embryos according to the ultrastructural analysis of preimplantation rabbit embryos by electron microscopy. In rabbit models ovulation upon mating allows the precise timing of progression of the pregnancy. It produces several embryos of the desired stage in one pregnancy and a relatively short gestation period, making the rabbit embryo a suitable model to discover the cellular functions and mechanisms of maintenance of pluripotency in embryonic cells and the embryo-derived stem cells of other mammals.
Collapse
|
4
|
Abstract
The rat is one the most widely used laboratory animal species in many aspects of biomedical research, including the production of genetically engineered animal models to study human diseases and conditions. In addition to in vitro fertilization (IVF), the ability to grow IVF-derived or in vivo-collected zygotes to a desired preimplantation stage (zygote to blastocyst) entirely in vitro has a great importance for studies of developmental biology and genetic modification of laboratory rats for biomedical research. Although embryo biotechnologies are required to study or manipulate the genome effectively, such technologies for rat preimplantation embryos are not currently as successful as they are in the mouse. Here we provide a brief history of the development of rat in vitro culture systems and a step-by-step protocol to produce rat blastocyst stage embryos from zygotes under in vitro conditions from commonly used laboratory rat strains in biomedical research.
Collapse
Affiliation(s)
- Yuksel Agca
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA.
| |
Collapse
|
5
|
Abstract
The laboratory rat, Rattus norvegicus, has been used in biomedical research for more than 150 years, and in many cases remains the model of choice for studies of physiology, behavior, and complex human disease. This book provides detailed information on a number of methodologies that can be used in rat. This chapter gives an introduction to rat as a species and as a biomedical model, providing historical information, a brief introduction to the current state of rat research, and a perspective on the future of rat as a model for human disease.
Collapse
Affiliation(s)
- Jennifer R Smith
- Department of Biomedical Engineering, Rat Genome Database, Medical College of Wisconsin, Milwaukee, WI, USA.
| | - Elizabeth R Bolton
- Department of Biomedical Engineering, Rat Genome Database, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Melinda R Dwinell
- Genomic Sciences and Precision Medicine Center, Medical College of Wisconsin, Milwaukee, WI, USA
- Department of Physiology, Rat Genome Database, Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
6
|
Chen Y, Spitzer S, Agathou S, Karadottir RT, Smith A. Gene Editing in Rat Embryonic Stem Cells to Produce In Vitro Models and In Vivo Reporters. Stem Cell Reports 2018; 9:1262-1274. [PMID: 29020614 PMCID: PMC5639479 DOI: 10.1016/j.stemcr.2017.09.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 09/05/2017] [Accepted: 09/06/2017] [Indexed: 12/13/2022] Open
Abstract
Rat embryonic stem cells (ESCs) offer the potential for sophisticated genome engineering in this valuable biomedical model species. However, germline transmission has been rare following conventional homologous recombination and clonal selection. Here, we used the CRISPR/Cas9 system to target genomic mutations and insertions. We first evaluated utility for directed mutagenesis and recovered clones with biallelic deletions in Lef1. Mutant cells exhibited reduced sensitivity to glycogen synthase kinase 3 inhibition during self-renewal. We then generated a non-disruptive knockin of dsRed at the Sox10 locus. Two clones produced germline chimeras. Comparative expression of dsRed and SOX10 validated the fidelity of the reporter. To illustrate utility, live imaging of dsRed in neonatal brain slices was employed to visualize oligodendrocyte lineage cells for patch-clamp recording. Overall, these results show that CRISPR/Cas9 gene editing technology in germline-competent rat ESCs is enabling for in vitro studies and for generating genetically modified rats. Gene mutation and homologous recombination in rat ESCs using CRISPR/Cas9 Lef1 mutants exhibit predicted loss of hypersensitivity to GSK3 inhibition Sox10 knockin rat provides a vital reporter of neural crest and oligodendroglia Sox10::dsRed facilitates patch-clamp recording from oligodendroglial lineage cells
Collapse
Affiliation(s)
- Yaoyao Chen
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK
| | - Sonia Spitzer
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK; Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, UK
| | - Sylvia Agathou
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK; Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, UK
| | - Ragnhildur Thora Karadottir
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK; Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, UK
| | - Austin Smith
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK; Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, UK.
| |
Collapse
|
7
|
Shimoyama M, Smith JR, Bryda E, Kuramoto T, Saba L, Dwinell M. Rat Genome and Model Resources. ILAR J 2017; 58:42-58. [PMID: 28838068 PMCID: PMC6057551 DOI: 10.1093/ilar/ilw041] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Indexed: 11/25/2022] Open
Abstract
Rats remain a major model for studying disease mechanisms and discovery, validation, and testing of new compounds to improve human health. The rat’s value continues to grow as indicated by the more than 1.4 million publications (second to human) at PubMed documenting important discoveries using this model. Advanced sequencing technologies, genome modification techniques, and the development of embryonic stem cell protocols ensure the rat remains an important mammalian model for disease studies. The 2004 release of the reference genome has been followed by the production of complete genomes for more than two dozen individual strains utilizing NextGen sequencing technologies; their analyses have identified over 80 million variants. This explosion in genomic data has been accompanied by the ability to selectively edit the rat genome, leading to hundreds of new strains through multiple technologies. A number of resources have been developed to provide investigators with access to precision rat models, comprehensive datasets, and sophisticated software tools necessary for their research. Those profiled here include the Rat Genome Database, PhenoGen, Gene Editing Rat Resource Center, Rat Resource and Research Center, and the National BioResource Project for the Rat in Japan.
Collapse
Affiliation(s)
- Mary Shimoyama
- Department of Biomedical Engineering, Marquette University and the Medical College of Wisconsin, Milwaukee, Wisconsin. Rat Genome Database, Department of Biomedical Engineering at Marquette University and the Medical College of Wisconsin, Milwaukee, Wisconsin. Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, Missouri. Institute of Laboratory Animals, Graduate School of Medicine, Kyoto University, Kyoto, Japan. Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado. Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Jennifer R Smith
- Department of Biomedical Engineering, Marquette University and the Medical College of Wisconsin, Milwaukee, Wisconsin. Rat Genome Database, Department of Biomedical Engineering at Marquette University and the Medical College of Wisconsin, Milwaukee, Wisconsin. Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, Missouri. Institute of Laboratory Animals, Graduate School of Medicine, Kyoto University, Kyoto, Japan. Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado. Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Elizabeth Bryda
- Department of Biomedical Engineering, Marquette University and the Medical College of Wisconsin, Milwaukee, Wisconsin. Rat Genome Database, Department of Biomedical Engineering at Marquette University and the Medical College of Wisconsin, Milwaukee, Wisconsin. Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, Missouri. Institute of Laboratory Animals, Graduate School of Medicine, Kyoto University, Kyoto, Japan. Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado. Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Takashi Kuramoto
- Department of Biomedical Engineering, Marquette University and the Medical College of Wisconsin, Milwaukee, Wisconsin. Rat Genome Database, Department of Biomedical Engineering at Marquette University and the Medical College of Wisconsin, Milwaukee, Wisconsin. Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, Missouri. Institute of Laboratory Animals, Graduate School of Medicine, Kyoto University, Kyoto, Japan. Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado. Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Laura Saba
- Department of Biomedical Engineering, Marquette University and the Medical College of Wisconsin, Milwaukee, Wisconsin. Rat Genome Database, Department of Biomedical Engineering at Marquette University and the Medical College of Wisconsin, Milwaukee, Wisconsin. Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, Missouri. Institute of Laboratory Animals, Graduate School of Medicine, Kyoto University, Kyoto, Japan. Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado. Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Melinda Dwinell
- Department of Biomedical Engineering, Marquette University and the Medical College of Wisconsin, Milwaukee, Wisconsin. Rat Genome Database, Department of Biomedical Engineering at Marquette University and the Medical College of Wisconsin, Milwaukee, Wisconsin. Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, Missouri. Institute of Laboratory Animals, Graduate School of Medicine, Kyoto University, Kyoto, Japan. Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado. Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| |
Collapse
|
8
|
Lan H, Li S, Guo Z, Men H, Wu Y, Li N, Bryda EC, Capecchi MR, Wu S. Efficient generation of selection-gene-free rat knockout models by homologous recombination in ES cells. FEBS Lett 2016; 590:3416-3424. [PMID: 27597178 PMCID: PMC5129459 DOI: 10.1002/1873-3468.12388] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 08/24/2016] [Accepted: 08/25/2016] [Indexed: 11/25/2022]
Abstract
Embryonic stem cell (ES cell)‐based rat knockout technology, although successfully developed in 2010, has seen very limited usage to date due to low targeting efficiency and a lack of optimized procedures. In this study, we performed gene targeting in ES cells from the Sprague–Dawley (SD) and the Fischer 344 (F344) rat strains using an optimized procedure and the self‐excising neomycin (neo)‐positive selection cassette ACN to successfully generate Leptin and Trp53 knockout rats that did not carry the selection gene. These results demonstrate that our simplified targeting strategy using ACN provides an efficient approach to knock out many other rat genes.
Collapse
Affiliation(s)
- He Lan
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Shuping Li
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Zihang Guo
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Hongsheng Men
- Veterinary Pathobiology, Rat Resource and Research Center, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA
| | - Yuanyuan Wu
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Ning Li
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Elizabeth C Bryda
- Veterinary Pathobiology, Rat Resource and Research Center, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA
| | - Mario R Capecchi
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Sen Wu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China.
| |
Collapse
|
9
|
Li S, Lan H, Men H, Wu Y, Li N, Capecchi MR, Bryda EC, Wu S. Derivation of Transgene-Free Rat Induced Pluripotent Stem Cells Approximating the Quality of Embryonic Stem Cells. Stem Cells Transl Med 2016; 6:340-351. [PMID: 28191784 PMCID: PMC5442795 DOI: 10.5966/sctm.2015-0390] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 07/28/2016] [Indexed: 01/08/2023] Open
Abstract
Although a variety of reprogramming strategies have been reported to create transgene‐free induced pluripotent stem (iPS) cells from differentiated cell sources, a fundamental question still remains: Can we generate safe iPS cells that have the full spectrum of features of corresponding embryonic stem (ES) cells? Studies in transgene‐free mouse iPS cells have indicated a positive answer to this question. However, the reality is that no other species have a derived transgene‐free iPS cell line that can truly mimic ES cell quality. Specifically, critical data for chimera formation and germline transmission are generally lacking. To date, the rat is the only species, other than the mouse, that has commonly recognized authentic ES cells that can be used for direct comparison with measure features of iPS cells. To help find the underlying reasons of the current inability to derive germline‐competent ES/iPS cells in nonrodent animals, we first used optimized culture conditions to isolate and establish rat ES cell lines and demonstrated they are fully competent for chimeric formation and germline transmission. We then used episomal vectors bearing eight reprogramming genes to improve rat iPS (riPS) cell generation from Sprague‐Dawley rat embryonic fibroblasts. The obtained transgene‐free riPS cells exhibit the typical characteristics of pluripotent stem cells; moreover, they are amenable to subsequent genetic modification by homologous recombination. Although they can contribute significantly to chimeric formation, no germline transmission has been achieved. Although this partial success in achieving competency is encouraging, it suggests that more efforts are still needed to derive ground‐state riPS cells. Stem Cells Translational Medicine2017;6:340–351
Collapse
Affiliation(s)
- Shuping Li
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, People's Republic of China
| | - He Lan
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, People's Republic of China
| | - Hongsheng Men
- Rat Resource and Research Center, Veterinary Pathobiology, University of Missouri, Columbia, Missouri, USA
| | - Yuanyuan Wu
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Ning Li
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, People's Republic of China
| | - Mario R. Capecchi
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Elizabeth C. Bryda
- Rat Resource and Research Center, Veterinary Pathobiology, University of Missouri, Columbia, Missouri, USA
| | - Sen Wu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, People's Republic of China
| |
Collapse
|
10
|
Kawaharada K, Kawamata M, Ochiya T. Rat embryonic stem cells create new era in development of genetically manipulated rat models. World J Stem Cells 2015; 7:1054-1063. [PMID: 26328021 PMCID: PMC4550629 DOI: 10.4252/wjsc.v7.i7.1054] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 01/15/2015] [Accepted: 07/17/2015] [Indexed: 02/07/2023] Open
Abstract
Embryonic stem (ES) cells are isolated from the inner cell mass of a blastocyst, and are used for the generation of gene-modified animals. In mice, the transplantation of gene-modified ES cells into recipient blastocysts leads to the creation of gene-targeted mice such as knock-in and knock-out mice; these gene-targeted mice contribute greatly to scientific development. Although the rat is considered a useful laboratory animal alongside the mouse, fewer gene-modified rats have been produced due to the lack of robust establishment methods for rat ES cells. A new method for establishing rat ES cells using signaling inhibitors was reported in 2008. By considering the characteristics of rat ES cells, recent research has made progress in improving conditions for the stable culture of rat ES cells in order to generate gene-modified rats efficiently. In this review, we summarize several advanced methods to maintain rat ES cells and generate gene-targeted rats.
Collapse
|
11
|
Flister MJ, Prokop JW, Lazar J, Shimoyama M, Dwinell M, Geurts A. 2015 Guidelines for Establishing Genetically Modified Rat Models for Cardiovascular Research. J Cardiovasc Transl Res 2015; 8:269-77. [PMID: 25920443 PMCID: PMC4475456 DOI: 10.1007/s12265-015-9626-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 04/15/2015] [Indexed: 12/24/2022]
Abstract
The rat has long been a key physiological model for cardiovascular research, most of the inbred strains having been previously selected for susceptibility or resistance to various cardiovascular diseases (CVD). These CVD rat models offer a physiologically relevant background on which candidates of human CVD can be tested in a more clinically translatable experimental setting. However, a diverse toolbox for genetically modifying the rat genome to test molecular mechanisms has only recently become available. Here, we provide a high-level description of several strategies for developing genetically modified rat models of CVD.
Collapse
Affiliation(s)
- Michael J Flister
- Human and Molecular Genetics Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, 53226, WI, USA,
| | | | | | | | | | | |
Collapse
|
12
|
Shao Y, Guan Y, Wang L, Qiu Z, Liu M, Chen Y, Wu L, Li Y, Ma X, Liu M, Li D. CRISPR/Cas-mediated genome editing in the rat via direct injection of one-cell embryos. Nat Protoc 2014; 9:2493-512. [PMID: 25255092 DOI: 10.1038/nprot.2014.171] [Citation(s) in RCA: 152] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Conventional embryonic stem cell (ESC)-based gene targeting, zinc-finger nuclease (ZFN) and transcription activator-like effector nuclease (TALEN) technologies are powerful strategies for the generation of genetically modified animals. Recently, the CRISPR/Cas system has emerged as an efficient and convenient alternative to these approaches. We have used the CRISPR/Cas system to generate rat strains that carry mutations in multiple genes through direct injection of RNAs into one-cell embryos, demonstrating the high efficiency of Cas9-mediated gene editing in rats for simultaneous generation of compound gene mutant models. Here we describe a stepwise procedure for the generation of knockout and knock-in rats. This protocol provides guidelines for the selection of genomic targets, synthesis of guide RNAs, design and construction of homologous recombination (HR) template vectors, embryo microinjection, and detection of mutations and insertions in founders or their progeny. The procedure from target design to identification of founders can take as little as 6 weeks, of which <10 d is actual hands-on working time.
Collapse
Affiliation(s)
- Yanjiao Shao
- 1] Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China. [2]
| | - Yuting Guan
- 1] Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China. [2]
| | - Liren Wang
- 1] Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China. [2]
| | - Zhongwei Qiu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Meizhen Liu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Yuting Chen
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Lijuan Wu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Yongmei Li
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Xueyun Ma
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Mingyao Liu
- 1] Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China. [2] Center for Cancer and Stem Cell Biology, Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, Texas, USA
| | - Dali Li
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| |
Collapse
|
13
|
Hirabayashi M, Goto T, Tamura C, Sanbo M, Hara H, Hochi S. Effect of leukemia inhibitory factor and forskolin on establishment of rat embryonic stem cell lines. J Reprod Dev 2014; 60:78-82. [PMID: 24317016 PMCID: PMC3958585 DOI: 10.1262/jrd.2013-109] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Accepted: 11/11/2013] [Indexed: 11/20/2022] Open
Abstract
This study was designed to investigate whether supplementation of 2i medium with leukemia inhibitory factor (LIF) and/or forskolin would support establishment of germline-competent rat embryonic stem (ES) cell lines. Due to the higher likelihood of outgrowth rates, supplementation of forskolin with or without LIF contributed to the higher establishment efficiency of ES cell lines in the WDB strain. Germline transmission competency of the chimeric rats was not influenced by the profile of ES cell lines until their establishment. When the LIF/forskolin-supplemented 2i medium was used, the rat strain used as the blastocyst donor, such as the WI strain, was a possible factor negatively influencing the establishment efficiency of ES cell lines. Once ES cell lines were established, all lines were found to be germline-competent by a progeny test in chimeric rats. In conclusion, both LIF and forskolin are not essential but can play a beneficial role in the establishment of "genuine" rat ES cell lines.
Collapse
Affiliation(s)
- Masumi Hirabayashi
- Center for Genetic Analysis of Behavior, National Institute for Physiological Sciences, Aichi 444-8787, Japan
| | | | | | | | | | | |
Collapse
|
14
|
Abstract
With the advent of genetic engineering of rodents came the need to assess fertility and germline competency, especially in chimeric rodents generated using embryonic stem cells. Traditional methods rely on natural mating and progeny testing, which is time- and cost-intensive. Electroejaculation is a faster method of collecting sperm for genetic analysis and offers the additional benefit of using fewer animals. This column describes a refined electroejaculation technique for chimeric rats using light gas anesthesia and a custom-made platform for sperm collection.
Collapse
Affiliation(s)
- Marina R McCoy
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA
| | | | | |
Collapse
|