1
|
Abdelaziz AM. Alpha-Synuclein drives NURR1 and NLRP3 Inflammasome dysregulation in Parkinson's disease: From pathogenesis to potential therapeutic strategies. Int Immunopharmacol 2025; 156:114692. [PMID: 40267723 DOI: 10.1016/j.intimp.2025.114692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 04/10/2025] [Accepted: 04/17/2025] [Indexed: 04/25/2025]
Abstract
Parkinson's disease (PD), a progressive neurodegenerative disorder, is characterized by the loss of dopaminergic neurons and pathological aggregation of α-synuclein (α-Syn). Emerging evidence highlights the interplay between genetic susceptibility, neuroinflammation, and transcriptional dysregulation in driving PD pathogenesis. This review brings together the latest information on three important players: α-Syn, the transcription factor Orphan nuclear receptor (NURR1), and the NOD-like receptor 3 (NLRP3) inflammasome. Pathogenic α-syn aggregates cause damage to neurons by disrupting mitochondria and lysosomes and spreading in a way similar to prion proteins. They also turn on the NLRP3 inflammasome, which is a key player in neuroinflammation. NLRP3-driven release of pro-inflammatory cytokines exacerbates neurodegeneration and creates a self-sustaining inflammatory milieu. Meanwhile, reduced NURR1 activity, a pivotal modulator of dopaminergic neuron survival and development, exposes neurons to oxidative stress, neuroinflammation, and α-Syn toxicity, hence exacerbating disease progression. So, targeting this trio exhibits transformative potential against PD pathogenesis.
Collapse
Affiliation(s)
- Ahmed M Abdelaziz
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Sinai University- Arish Branch, Arish 45511, Egypt.
| |
Collapse
|
2
|
Wu Y, Jiao J, Wu S, Jiang J. Strategies for the enhancement of IL-21 mediated antitumor activity in solid tumors. Cytokine 2024; 184:156787. [PMID: 39467483 DOI: 10.1016/j.cyto.2024.156787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/22/2024] [Accepted: 10/15/2024] [Indexed: 10/30/2024]
Abstract
Solid tumors significantly impact global health, necessitating enhanced prevention, early diagnosis, and treatment approaches. Tumor immunotherapy, notably through programmed cell death protein 1 (PD-1) and programmed cell death-ligand 1 (PD-L1), offers new hope to patients with advanced tumors, although many still do not benefit. Interleukin-21 (IL-21), a cytokine produced by certain immune cells, performs various biological functions by activating the JAK/STAT signaling pathway. Currently, recombinant IL-21 demonstrates promising antitumor activity and acceptable toxicity in several clinical trials. However, challenges such as side effects, off-target reactions, and a short half-life limit the effectiveness of cytokine-based immunotherapies. Therefore, researching enhanced IL-21 treatment strategies in solid tumors is crucial. Integrating IL-21 with various treatment modalities, including immune checkpoint inhibitors, additional cytokines, vaccines, or radiotherapy, is essential for improving response rates and prolonging patient survival. This review explores the specific mechanisms of IL-21 in prevalent high-incidence tumors, examines improved strategies for IL-21 in solid tumors, and aims to provide a theoretical basis for developing targeted treatment strategies.
Collapse
Affiliation(s)
- You Wu
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, China; Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, China; Institute of Cell Therapy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, China
| | - Jing Jiao
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, China; Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, China; Institute of Cell Therapy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, China
| | - Shaoxian Wu
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, China; Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, China; Institute of Cell Therapy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, China
| | - Jingting Jiang
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, China; Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, China; Institute of Cell Therapy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, China.
| |
Collapse
|
3
|
Saadh MJ, Alfattah MA, Ismail AH, Saeed BA, Abbas HH, Elashmawy NF, Hashim GA, Ismail KS, Abo-Zaid MA, Waggiallah HA. The role of Interleukin-21 (IL-21) in allergic disorders: Biological insights and regulatory mechanisms. Int Immunopharmacol 2024; 134:111825. [PMID: 38723368 DOI: 10.1016/j.intimp.2024.111825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 02/29/2024] [Accepted: 03/05/2024] [Indexed: 06/03/2024]
Abstract
In recent decades, allergic diseases subsequent from an IgE-mediated response to specific allergens have become a progressively public chronic disease worldwide. They have shaped an important medical and socio-economic burden. A significant proportion of allergic disorders are branded via a form 2 immune response relating Th2 cells, type 2 natural lymphoid cells, mast cells and eosinophils. Interleukin-21 (IL-21) is a participant of the type-I cytokine family manufactured through numerous subsets of stimulated CD4+ T cells and uses controlling properties on a diversity of immune cells. Increasingly, experimental sign suggests a character for IL-21 in the pathogenesis of numerous allergic disorders. The purpose of this review is to discuss the biological properties of IL-21 and to summaries current developments in its role in the regulation of allergic disorders.
Collapse
Affiliation(s)
- Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman 11831, Jordan
| | - Mohammed A Alfattah
- Department of Biology, College of Science, Jazan University, P.O. Box. 114, Jazan 45142, Saudi Arabia
| | - Ahmed H Ismail
- Department of Biology, College of Science, Jazan University, P.O. Box. 114, Jazan 45142, Saudi Arabia
| | - Bashar Abdullah Saeed
- Department of Medical Laboratory Technics, Al-Noor University College, Nineveh, Iraq
| | | | - Nabila F Elashmawy
- Department of Biology, College of Science, Jazan University, P.O. Box. 114, Jazan 45142, Saudi Arabia
| | - Ghassan A Hashim
- Department of Nursing, Al-Zahrawi University College, Karbala, Iraq
| | - Khatib Sayeed Ismail
- Department of Biology, College of Science, Jazan University, P.O. Box. 114, Jazan 45142, Saudi Arabia
| | - Mabrouk A Abo-Zaid
- Department of Biology, College of Science, Jazan University, P.O. Box. 114, Jazan 45142, Saudi Arabia.
| | - Hisham Ali Waggiallah
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, Alkharj 11942, Saudi Arabia
| |
Collapse
|
4
|
Zhao S, Wang X, Huang F, Zhou Y, Meng D, Zhao D, Wang J, Zhang H, Wu L, Zhang Y, Zhao L, Zhang L, Song Y, Wang Q. A role of NR4A2 in Graves' disease: regulation of Th17/Treg. Endocrine 2024; 83:432-441. [PMID: 37651006 DOI: 10.1007/s12020-023-03490-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 08/10/2023] [Indexed: 09/01/2023]
Abstract
PURPOSE This study aimed to explore the molecular pathogenesis of Graves' disease (GD). METHODS The gene expression profile in CD4+ T cells from GD patients and healthy controls were analyzed through mRNA-sequencing. The expression of NR4A2 was determined by quantitative real-time PCR and western blot. The levels of Th17 and Treg were determined by flow cytometry. ELISA was employed to detect the levels of IL-10, IL-17A, IL-17F and IL-22. RESULTS In the CD4+ T cells from GD patients, there were 128 up-regulated and 510 down-regulated genes. Subsequently, we focused on the role of nuclear receptor 4 group A member 2 (NR4A2) in GD. NR4A2 was lowly expressed in the CD4+ T cells from GD patients. Its expression was negatively correlated with free triiodothyronine and tetraiodothyronine, but positively correlated with thyroid stimulating hormone. NR4A2 knockdown decreased the percentage of Treg cells, with a decreased IL-10 level. While its over-expression augmented the Treg differentiation, with an elevated IL-10 level. In addition, knockdown or over-expression of NR4A2 showed no significant influence on Th17 differentiation. CONCLUSION These results indicate that the low level of NR4A2 in GD patients may suppress Treg differentiation, but have no influence on Th17 differentiation, leading to the imbalance of Th17/Treg and contributing to the development of GD. Revealing the role of NR4A2 in GD provides a novel insight for the treatment of GD.
Collapse
Affiliation(s)
- Shuiying Zhao
- Department of Endocrinology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, PR China
| | - Xinyu Wang
- Department of Nuclear Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, PR China
| | - Fengjiao Huang
- Department of Endocrinology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, PR China
| | - Yingying Zhou
- Department of Endocrinology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, PR China
| | - Dongdong Meng
- Department of Endocrinology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, PR China
| | - Di Zhao
- Department of Endocrinology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, PR China
| | - Jiao Wang
- Department of Endocrinology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, PR China
| | - Haohao Zhang
- Department of Endocrinology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, PR China
| | - Lina Wu
- Department of Endocrinology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, PR China
| | - Ying Zhang
- Department of Endocrinology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, PR China
| | - Lin Zhao
- Department of Endocrinology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, PR China
| | - Lixia Zhang
- Department of Endocrinology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, PR China
| | - Yi Song
- Department of Endocrinology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, PR China
| | - Qingzhu Wang
- Department of Nuclear Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, PR China.
| |
Collapse
|
5
|
Liu X, Han J, Cui R, Peng M, Song H, Li R, Chen G. The Promotion of Humoral Immune Responses in Humans via SOCS1-Mediated Th2-Bias Following SARS-CoV-2 Vaccination. Vaccines (Basel) 2023; 11:1730. [PMID: 38006062 PMCID: PMC10674672 DOI: 10.3390/vaccines11111730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/17/2023] [Accepted: 11/17/2023] [Indexed: 11/26/2023] Open
Abstract
The effectiveness of SARS-CoV-2 vaccines varies among individuals. During the COVID-19 global pandemic, SARS-CoV-2 infection showed significant Th1 characteristics, suggesting that the immune disorder and production of SARS-CoV-2 antibodies may be related to Th1/Th2 bias. However, the molecular mechanisms underlying Th1/Th2 bias effects on host immune responses to viruses remain unclear. In this study, the top three subjects with the highest and lowest changes in anti-SARS-CoV-2 antibodies after receiving three doses of SARS-CoV-2 vaccination were selected and defined as the elevated group (E) and the control group (C), respectively. Peripheral blood was collected, single-cell sequencing was performed before and after the third dose of the SARS-CoV-2 vaccine, and the changes in T cell clusters were analyzed. Compared with the C group, the Treg pre-vaccination proportion was lower in E, while the post-vaccination proportion was higher, suggesting that Tregs may be crucial in this process. Differential analysis results of Tregs between the two groups revealed that differentially expressed genes (DEGs) were significantly enriched in the IL4 pathway. Correlation analysis between DEGs and serum antibody showed that the expression of NR4A2, SOCS1, and SOCS3 in Tregs was significantly correlated with serum antibodies, suggesting that the immune response in E group changed to Th2 bias, thereby promoting host humoral immune responses. On the other hand, antibody-related genes SOCS1 and NR4A2, as well as lnc-RNA MALAT1 and NEAT1, were highly expressed in the CD4-MALAT1 subclusters. In summary, our study revealed that Th2 bias promotes humoral immune responses in humans by increasing SOCS1 in T cells after SARS-CoV-2 vaccination. Moreover, NR4A2, SOCS1, MALAT1, and NEAT1 were identified as the potential key biomarkers or treatment targets for enhanced SARS-CoV-2 antibody production by influencing the Th1/Th2 balance in T cells. Our findings have important implications for population stratification and tailored therapeutics for more effective SARS-CoV-2 vaccines.
Collapse
Affiliation(s)
- Xiaoyu Liu
- The Core Laboratory in Medical Center of Clinical Research, Department of Molecular Diagnostic & Endocrinology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University (SJTU) School of Medicine, Shanghai 200011, China; (X.L.); (R.C.); (M.P.); (H.S.)
| | - Junyong Han
- Fujian Key Laboratory of Medical Measurement, Fujian Academy of Medical Sciences, Fuzhou 350001, China;
| | - Renjie Cui
- The Core Laboratory in Medical Center of Clinical Research, Department of Molecular Diagnostic & Endocrinology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University (SJTU) School of Medicine, Shanghai 200011, China; (X.L.); (R.C.); (M.P.); (H.S.)
| | - Meifang Peng
- The Core Laboratory in Medical Center of Clinical Research, Department of Molecular Diagnostic & Endocrinology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University (SJTU) School of Medicine, Shanghai 200011, China; (X.L.); (R.C.); (M.P.); (H.S.)
| | - Huaidong Song
- The Core Laboratory in Medical Center of Clinical Research, Department of Molecular Diagnostic & Endocrinology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University (SJTU) School of Medicine, Shanghai 200011, China; (X.L.); (R.C.); (M.P.); (H.S.)
- Department of Endocrinology, Shanghai Ninth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Rui Li
- The Core Laboratory in Medical Center of Clinical Research, Department of Molecular Diagnostic & Endocrinology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University (SJTU) School of Medicine, Shanghai 200011, China; (X.L.); (R.C.); (M.P.); (H.S.)
| | - Gang Chen
- Fujian Key Laboratory of Medical Measurement, Fujian Academy of Medical Sciences, Fuzhou 350001, China;
- Department of Endocrinology, Fujian Provincial Hospital, Fuzhou 350001, China
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou 350001, China
| |
Collapse
|
6
|
Mulik S, Berber E, Sehrawat S, Rouse BT. Controlling viral inflammatory lesions by rebalancing immune response patterns. Front Immunol 2023; 14:1257192. [PMID: 37671156 PMCID: PMC10475736 DOI: 10.3389/fimmu.2023.1257192] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 08/07/2023] [Indexed: 09/07/2023] Open
Abstract
In this review, we discuss a variety of immune modulating approaches that could be used to counteract tissue-damaging viral immunoinflammatory lesions which typify many chronic viral infections. We make the point that in several viral infections the lesions can be largely the result of one or more aspects of the host response mediating the cell and tissue damage rather than the virus itself being directly responsible. However, within the reactive inflammatory lesions along with the pro-inflammatory participants there are also other aspects of the host response that may be acting to constrain the activity of the damaging components and are contributing to resolution. This scenario should provide the prospect of rebalancing the contributions of different host responses and hence diminish or even fully control the virus-induced lesions. We identify several aspects of the host reactions that influence the pattern of immune responsiveness and describe approaches that have been used successfully, mainly in model systems, to modulate the activity of damaging participants and which has led to lesion control. We emphasize examples where such therapies are, or could be, translated for practical use in the clinic to control inflammatory lesions caused by viral infections.
Collapse
Affiliation(s)
- Sachin Mulik
- Center for Biomedical Research, The University of Texas Health Science Center at Tyler, Tyler, TX, United States
| | - Engin Berber
- Infection Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Sharvan Sehrawat
- Indian Institute of Science Education and Research, Department of Biological Sciences, Mohali, Punjab, India
| | - Barry Tyrrell Rouse
- College of Veterinary Medicine, University of Tennessee, Knoxville, TN, United States
| |
Collapse
|
7
|
Samarpita S, Li X. Leveraging Exosomes as the Next-Generation Bio-Shuttles: The Next Biggest Approach against Th17 Cell Catastrophe. Int J Mol Sci 2023; 24:ijms24087647. [PMID: 37108809 PMCID: PMC10142210 DOI: 10.3390/ijms24087647] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/12/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
In recent years, the launch of clinical-grade exosomes is rising expeditiously, as they represent a new powerful approach for the delivery of advanced therapies and for diagnostic purposes for various diseases. Exosomes are membrane-bound extracellular vesicles that can act as biological messengers between cells, in the context of health and disease. In comparison to several lab-based drug carriers, exosome exhibits high stability, accommodates diverse cargo loads, elicits low immunogenicity and toxicity, and therefore manifests tremendous perspectives in the development of therapeutics. The efforts made to spur exosomes in drugging the untreatable targets are encouraging. Currently, T helper (Th) 17 cells are considered the most prominent factor in the establishment of autoimmunity and several genetic disorders. Current reports have indicated the importance of targeting the development of Th17 cells and the secretion of its paracrine molecule, interleukin (IL)-17. However, the present-day targeted approaches exhibit drawbacks, such as high cost of production, rapid transformation, poor bioavailability, and importantly, causing opportunistic infections that ultimately hamper their clinical applications. To overcome this hurdle, the potential use of exosomes as vectors seem to be a promising approach for Th17 cell-targeted therapies. With this standpoint, this review discusses this new concept by providing a snapshot of exosome biogenesis, summarizes the current clinical trials of exosomes in several diseases, analyzes the prospect of exosomes as an established drug carrier and delineates the present challenges, with an emphasis on their practical applications in targeting Th17 cells in diseases. We further decode the possible future scope of exosome bioengineering for targeted drug delivery against Th17 cells and its catastrophe.
Collapse
Affiliation(s)
- Snigdha Samarpita
- Department of Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | - Xiaogang Li
- Department of Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
8
|
Sato W, Noto D, Araki M, Okamoto T, Lin Y, Yamaguchi H, Kadowaki-Saga R, Kimura A, Kimura Y, Sato N, Ishizuka T, Nakamura H, Miyake S, Yamamura T. First-in-human clinical trial of the NKT cell-stimulatory glycolipid OCH in multiple sclerosis. Ther Adv Neurol Disord 2023; 16:17562864231162153. [PMID: 36993937 PMCID: PMC10041592 DOI: 10.1177/17562864231162153] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 02/20/2023] [Indexed: 03/31/2023] Open
Abstract
Background Multiple sclerosis (MS) is an autoimmune inflammatory disease of the central nervous system that causes the damage to the myelin sheath as well as axonal degeneration. Individuals with MS appear to have changes in the numbers and functions of T-cell subsets, leading to an immunological imbalance accompanied by enhanced autoreactivity. In previous preclinical studies, (2 S,3 S,4R)-1-O-(α-D-Galactopyranosyl)-N-tetracosanoyl-2-amino-1,3,4-nonanetriol (OCH), a synthetic analog of α-galactosylceramide stimulatory for invariant NKT (iNKT) cells, has shown therapeutic or disease-preventive immunoregulatory effects in autoimmune disease models such as experimental autoimmune encephalomyelitis (EAE). Objectives This study is the first-in-human study of oral OCH to evaluate the pharmacokinetics and to examine the effects on immune cells as well as related gene expression profiles. Methods Fifteen healthy volunteers and 13 MS patients who met the study criteria were enrolled. They were divided into five cohorts and received oral administration of various doses of granulated powder of OCH (0.3-30 mg), once per week for 4 or 13 weeks. Plasma OCH concentrations were measured by high-performance liquid chromatography. Frequencies of lymphocyte subsets in peripheral blood were evaluated by flow cytometry, and microarray analysis was performed to determine OCH-induced changes in gene expression. Results Oral OCH was well tolerated, and its bioavailability was found to be sufficient. Six hours after a single dose of OCH, increased frequencies of Foxp3+ regulatory T-cells were observed in some cohorts of healthy subjects and MS patients. Furthermore, gene expression analysis demonstrated an upregulation of several immunoregulatory genes and downregulation of pro-inflammatory genes following OCH administration. Conclusion This study has demonstrated immunomodulatory effects of the iNKT cell-stimulatory drug OCH in human. Safety profiles together with the presumed anti-inflammatory effects of oral OCH encouraged us to conduct a phase II trial.
Collapse
Affiliation(s)
| | | | - Manabu Araki
- Multiple Sclerosis Center, National Center of Neurology and Psychiatry (NCNP), Tokyo, Japan
| | - Tomoko Okamoto
- Department of Neurology, National Center Hospital, National Center of Neurology and Psychiatry (NCNP), Tokyo, Japan
| | - Youwei Lin
- Department of Neurology, National Center Hospital, National Center of Neurology and Psychiatry (NCNP), Tokyo, Japan
| | - Hiromi Yamaguchi
- Department of Immunology, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), Tokyo, Japan
| | - Ryoko Kadowaki-Saga
- Department of Immunology, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), Tokyo, Japan
| | - Atsuko Kimura
- Department of Immunology, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), Tokyo, Japan
| | - Yukio Kimura
- Department of Radiology, National Center Hospital, National Center of Neurology and Psychiatry (NCNP), Tokyo, Japan
| | - Noriko Sato
- Department of Radiology, National Center Hospital, National Center of Neurology and Psychiatry (NCNP), Tokyo, Japan
| | - Takami Ishizuka
- Translational Medical Center, National Center of Neurology and Psychiatry (NCNP), Tokyo, Japan
| | - Harumasa Nakamura
- Translational Medical Center, National Center of Neurology and Psychiatry (NCNP), Tokyo, Japan
| | - Sachiko Miyake
- Department of Immunology, Juntendo University Graduate School of Medicine, Bunkyo-ku, Japan
| | | |
Collapse
|
9
|
Advances in NURR1-Regulated Neuroinflammation Associated with Parkinson's Disease. Int J Mol Sci 2022; 23:ijms232416184. [PMID: 36555826 PMCID: PMC9788636 DOI: 10.3390/ijms232416184] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/02/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
Neuroinflammation plays a crucial role in the progression of neurodegenerative disorders, particularly Parkinson's disease (PD). Glial cell activation and subsequent adaptive immune involvement are neuroinflammatory features in familial and idiopathic PD, resulting in the death of dopaminergic neuron cells. An oxidative stress response, inflammatory mediator production, and immune cell recruitment and activation are all hallmarks of this activation, leading to chronic neuroinflammation and progressive neurodegeneration. Several studies in PD patients' cerebrospinal fluid and peripheral blood revealed alterations in inflammatory markers and immune cell populations that may lead to or exacerbate neuroinflammation and perpetuate the neurodegenerative process. Most of the genes causing PD are also expressed in astrocytes and microglia, converting their neuroprotective role into a pathogenic one and contributing to disease onset and progression. Nuclear receptor-related transcription factor 1 (NURR1) regulates gene expression linked to dopaminergic neuron genesis and functional maintenance. In addition to playing a key role in developing and maintaining neurotransmitter phenotypes in dopaminergic neurons, NURR1 agonists have been shown to reverse behavioral and histological abnormalities in animal PD models. NURR1 protects dopaminergic neurons from inflammation-induced degeneration, specifically attenuating neuronal death by suppressing the expression of inflammatory genes in microglia and astrocytes. This narrative review highlights the inflammatory changes in PD and the advances in NURR1-regulated neuroinflammation associated with PD. Further, we present new evidence that targeting this inflammation with a variety of potential NURR1 target therapy medications can effectively slow the progression of chronic neuroinflammation-induced PD.
Collapse
|
10
|
Machida M, Yamazaki C, Kouda N, Hanai Y, Sato H, Konda A, Yamagata Y, Itho T, Aisaka H. A case report involving suppressed nuclear receptor transcription factors 4a1 and Stevens-Johnson syndrome induced by a single dose of pembrolizumab and successfully treated with early steroid administration, resulting in complete remission of stage III lung cancer. J Pharm Health Care Sci 2022; 8:29. [PMID: 36464708 PMCID: PMC9720965 DOI: 10.1186/s40780-022-00261-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 10/11/2022] [Indexed: 12/07/2022] Open
Abstract
BACKGROUND Immunotherapy with immune checkpoint inhibitors is associated with immune-related adverse events (irAEs). A positive correlation between treatment efficacy and irAEs has been reported. Clinical indicators are required for appropriate interventions, such as steroid administration, to prevent fatal outcomes. Nuclear receptor transcription factor 4a (Nr4a), which is involved in T-cell anergy, exhaustion, and regulatory T cells, were observed not only in thymocytes but in peripheral blood mononuclear cells. We describe a case of Stevens-Johnson syndrome (SJS) that was induced by a single dose of pembrolizumab and successfully treated with steroids, leading to complete remission of lung cancer during the monitoring of immune response indices, including Nr4a1 mRNA. CASE PRESENTATION A 68-year-old male with squamous cell lung cancer (cT2aN3M0, stage IIIb) received a single dose of pembrolizumab (200 mg). On Day 21 of treatment, SJS appeared, and the patient was treated with prednisolone 60 mg/day, which was gradually tapered off. After the disappearance of the SJS symptoms, complete remission of cancer was achieved and was maintained for more than 1 year. Acute increases in the plasma IFN-γ and IL-17 concentrations and a decrease in IL-10 concentrations were observed at the onset of SJS. Simple regression analysis showed that these changes in IL-17, IFN-γ and IL-10 were significantly influenced by the decreased expression of Nr4a1 mRNA. The pembrolizumab levels and prednisolone doses significantly influenced the suppression of Nr4a1 mRNA levels. Although Nr4a1 mRNA levels in the current case fluctuated during the observation period, they were significantly lower than those in a nonresponding progressive-disease case, as well as a pembrolizumab-responding case with non-SJS but similar background. The suppression of Nr4a1 in current case, might result in upregulation of cytotoxic T cells and a reduction in functional regulatory T cells, promoting favorable antitumor immunity. CONCLUSION The immune responses involving Nr4a1 suppression might relate to complete remission of lung cancer in this case, despite causing SJS, which may be attributed to synergistic effects from pembrolizumab treatment and intervention with steroids. The current case indicates the preliminarily clinical benefit of evaluating Nr4a expression-related indices as the possible clinical covariates and may serve as a milestone for appropriate future chemotherapy interventions.
Collapse
Affiliation(s)
- Maiko Machida
- grid.444700.30000 0001 2176 3638Department of Pharmacotherapy, Faculty of Pharmaceutical Sciences, Hokkaido University of Science, 7-15-4-1 Maeda Teine, Sapporo, Hokkaido 006-8585 Japan
| | - Chika Yamazaki
- grid.444700.30000 0001 2176 3638Department of Pharmacotherapy, Faculty of Pharmaceutical Sciences, Hokkaido University of Science, 7-15-4-1 Maeda Teine, Sapporo, Hokkaido 006-8585 Japan
| | - Nao Kouda
- grid.444700.30000 0001 2176 3638Department of Pharmacotherapy, Faculty of Pharmaceutical Sciences, Hokkaido University of Science, 7-15-4-1 Maeda Teine, Sapporo, Hokkaido 006-8585 Japan
| | - Yousei Hanai
- grid.444700.30000 0001 2176 3638Department of Pharmacotherapy, Faculty of Pharmaceutical Sciences, Hokkaido University of Science, 7-15-4-1 Maeda Teine, Sapporo, Hokkaido 006-8585 Japan
| | - Hideki Sato
- grid.444700.30000 0001 2176 3638Department of Pharmacotherapy, Faculty of Pharmaceutical Sciences, Hokkaido University of Science, 7-15-4-1 Maeda Teine, Sapporo, Hokkaido 006-8585 Japan
| | - Ainari Konda
- grid.444700.30000 0001 2176 3638Department of Pharmacotherapy, Faculty of Pharmaceutical Sciences, Hokkaido University of Science, 7-15-4-1 Maeda Teine, Sapporo, Hokkaido 006-8585 Japan
| | - Yuka Yamagata
- Department of Pharmacy and Respiratory Medicine, Japan Community Health Care Organization Sapporo Hokushin Hospital, 2-6-2-1 Atsubetsu Chou Atsubetsu, Sapporo, Hokkaido 004-8618 Japan
| | - Tatsuya Itho
- Department of Pharmacy and Respiratory Medicine, Japan Community Health Care Organization Sapporo Hokushin Hospital, 2-6-2-1 Atsubetsu Chou Atsubetsu, Sapporo, Hokkaido 004-8618 Japan
| | - Haruhiko Aisaka
- Department of Pharmacy and Respiratory Medicine, Japan Community Health Care Organization Sapporo Hokushin Hospital, 2-6-2-1 Atsubetsu Chou Atsubetsu, Sapporo, Hokkaido 004-8618 Japan
| |
Collapse
|
11
|
Babina M, Franke K, Bal G. How "Neuronal" Are Human Skin Mast Cells? Int J Mol Sci 2022; 23:ijms231810871. [PMID: 36142795 PMCID: PMC9505265 DOI: 10.3390/ijms231810871] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 09/05/2022] [Accepted: 09/14/2022] [Indexed: 11/24/2022] Open
Abstract
Mast cells are evolutionarily old cells and the principal effectors in allergic responses and inflammation. They are seeded from the yolk sac during embryogenesis or are derived from hematopoietic progenitors and are therefore related to other leukocyte subsets, even though they form a separate clade in the hematopoietic system. Herein, we systematically bundle information from several recent high-throughput endeavors, especially those comparing MCs with other cell types, and combine such information with knowledge on the genes’ functions to reveal groups of neuronal markers specifically expressed by MCs. We focus on recent advances made regarding human tissue MCs, but also refer to studies in mice. In broad terms, genes hyper-expressed in MCs, but largely inactive in other myelocytes, can be classified into subcategories such as traffic/lysosomes (MLPH and RAB27B), the dopamine system (MAOB, DRD2, SLC6A3, and SLC18A2), Ca2+-related entities (CALB2), adhesion molecules (L1CAM and NTM) and, as an overall principle, the transcription factors and modulators of transcriptional activity (LMO4, PBX1, MEIS2, and EHMT2). Their function in MCs is generally unknown but may tentatively be deduced by comparison with other systems. MCs share functions with the nervous system, as they express typical neurotransmitters (histamine and serotonin) and a degranulation machinery that shares features with the neuronal apparatus at the synapse. Therefore, selective overlaps are plausible, and they further highlight the uniqueness of MCs within the myeloid system, as well as when compared with basophils. Apart from investigating their functional implications in MCs, a key question is whether their expression in the lineage is due to the specific reactivation of genes normally silenced in leukocytes or whether the genes are not switched off during mastocytic development from early progenitors.
Collapse
Affiliation(s)
- Magda Babina
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology IA, 12203 Berlin, Germany
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Institute of Allergology, Hindenburgdamm 30, 12203 Berlin, Germany
- Correspondence:
| | - Kristin Franke
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology IA, 12203 Berlin, Germany
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Institute of Allergology, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Gürkan Bal
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology IA, 12203 Berlin, Germany
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Institute of Allergology, Hindenburgdamm 30, 12203 Berlin, Germany
| |
Collapse
|
12
|
Raveney BJE, El‐Darawish Y, Sato W, Arinuma Y, Yamaoka K, Hori S, Yamamura T, Oki S. Neuropilin-1 (NRP1) expression distinguishes self-reactive helper T cells in systemic autoimmune disease. EMBO Mol Med 2022; 14:e15864. [PMID: 36069030 PMCID: PMC9549730 DOI: 10.15252/emmm.202215864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 08/08/2022] [Accepted: 08/15/2022] [Indexed: 02/05/2023] Open
Abstract
Pathogenic T helper cells (Th cells) that respond to self-antigen cannot be easily distinguished from beneficial Th cells. These cells can generate systemic autoimmune disease in response to widely expressed self-antigens. In this study, we have identified neuropilin-1 (NRP1) as a cell surface marker of self-reactive Th cells. NRP1+ Th cells, absent in non-regulatory T cell subsets in normal mice, appeared in models of systemic autoimmune disease and strongly correlated with disease symptoms. NRP1+ Th cells were greatly reduced in Nr4a2 cKO mice, which have reduced self-reactive responses but showed normal responses against exogenous antigens. Transfer of NRP1+ Th cells was sufficient to initiate or accelerate systemic autoimmune disease, and targeting NRP1-expressing Th cells therapeutically ameliorated SLE-like autoimmune symptoms in BXSB-Yaa mice. Peripheral NRP1+ Th cells were significantly increased in human SLE patients. Our data suggest that self-reactive Th cells can be phenotypically distinguished within the Th cell pool. These findings offer a novel approach to identify self-reactive Th cells and target them to treat systemic autoimmune disease.
Collapse
Affiliation(s)
- Ben JE Raveney
- Department of ImmunologyNational Institute of NeuroscienceTokyoJapan
| | - Yosif El‐Darawish
- Department of ImmunologyNational Institute of NeuroscienceTokyoJapan
| | - Wakiro Sato
- Department of ImmunologyNational Institute of NeuroscienceTokyoJapan
| | - Yoshiyuki Arinuma
- Department of Rheumatology and Infectious DiseasesKitasato University School of MedicineSagamiharaJapan
| | - Kunihiro Yamaoka
- Department of Rheumatology and Infectious DiseasesKitasato University School of MedicineSagamiharaJapan
| | - Shohei Hori
- Laboratory for Immunology and MicrobiologyGraduate School of Pharmaceutical Sciences, The University of TokyoTokyoJapan
| | - Takashi Yamamura
- Department of ImmunologyNational Institute of NeuroscienceTokyoJapan
| | - Shinji Oki
- Department of ImmunologyNational Institute of NeuroscienceTokyoJapan
| |
Collapse
|
13
|
Willems S, Merk D. Medicinal Chemistry and Chemical Biology of Nurr1 Modulators: An Emerging Strategy in Neurodegeneration. J Med Chem 2022; 65:9548-9563. [PMID: 35797147 DOI: 10.1021/acs.jmedchem.2c00585] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Nuclear receptor related 1 (Nurr1) is a transcription factor with neuroprotective and antineuroinflammatory properties. Observations from genetic studies and human patients support potential of Nurr1 as a therapeutic target in neurodegeneration, but due to a lack of high-quality chemical tools for pharmacological control of Nurr1, its target validation is pending. Nevertheless, considerable progress has recently been made in elucidating structural and functional characteristics of Nurr1, and several ligand scaffolds have been discovered. Here, we analyze Nurr1's structure and mechanisms compared to other nuclear receptors, summarize the known small molecule Nurr1 ligands, and discuss the available evidence for the therapeutic potential of Nurr1 in neurodegeneration.
Collapse
Affiliation(s)
- Sabine Willems
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, 60438 Frankfurt, Germany.,Department of Pharmacy, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Daniel Merk
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, 60438 Frankfurt, Germany.,Department of Pharmacy, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| |
Collapse
|
14
|
Tan S, Feng X, Liu Z, Wang Q, Jiang Q, Ye X, Li H, Su G, Zhou C, Wang Y, Yang P. The pro-inflammatory effect of triglyceride on human CD4 + T cells and experimental autoimmune uveitis. Clin Immunol 2022; 240:109056. [PMID: 35659924 DOI: 10.1016/j.clim.2022.109056] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 05/20/2022] [Accepted: 05/26/2022] [Indexed: 11/28/2022]
Abstract
Aberrant lipid metabolism plays a role in inflammation and progression of autoimmune diseases but the definite mechanism remains unclear. In this study we investigate lipidomic profiles in Behçet's disease (BD) and the role of triglyceride (TAG) in the pathogenesis of autoimmune uveitis. Lipidomics revealed a distinct lipid metabolite profile including increased TAG metabolites in plasma of active BD patients. TAG could stimulate the proliferation, IL-17 and IFN-γ expression by CD4+ T cells and Th1, Th17 cell differentiation in vitro, but did not influence neutrophils. A922500 inhibited the TAG generation, ameliorated the EAU severity, decreased Th17 frequency and IL-17 expression by CD4+ T cells in vivo. The proteomocis analysis showed an up-regulation of apoptosis-related protein, Pik3r2, in CD4+ T cells from A922500-treated mice. In conclusion, TAG can stimulate human CD4+ T cells and the inhibition of its generation could significantly ameliorate EAU activity in association with down-regulated Th17 cell response.
Collapse
Affiliation(s)
- Shiyao Tan
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Lab of Ophthalmology, Chongqing Eye Institute, Chongqing Branch of National Clinical Research Center for Ocular Diseases, Chongqing, PR China
| | - Xiaojie Feng
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Lab of Ophthalmology, Chongqing Eye Institute, Chongqing Branch of National Clinical Research Center for Ocular Diseases, Chongqing, PR China
| | - Zhangluxi Liu
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Lab of Ophthalmology, Chongqing Eye Institute, Chongqing Branch of National Clinical Research Center for Ocular Diseases, Chongqing, PR China
| | - Qingfeng Wang
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Lab of Ophthalmology, Chongqing Eye Institute, Chongqing Branch of National Clinical Research Center for Ocular Diseases, Chongqing, PR China
| | - Qingyan Jiang
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Lab of Ophthalmology, Chongqing Eye Institute, Chongqing Branch of National Clinical Research Center for Ocular Diseases, Chongqing, PR China
| | - Xingsheng Ye
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Lab of Ophthalmology, Chongqing Eye Institute, Chongqing Branch of National Clinical Research Center for Ocular Diseases, Chongqing, PR China
| | - Hongxi Li
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Lab of Ophthalmology, Chongqing Eye Institute, Chongqing Branch of National Clinical Research Center for Ocular Diseases, Chongqing, PR China
| | - Guannan Su
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Lab of Ophthalmology, Chongqing Eye Institute, Chongqing Branch of National Clinical Research Center for Ocular Diseases, Chongqing, PR China
| | - Chunjiang Zhou
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Lab of Ophthalmology, Chongqing Eye Institute, Chongqing Branch of National Clinical Research Center for Ocular Diseases, Chongqing, PR China
| | - Yao Wang
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Lab of Ophthalmology, Chongqing Eye Institute, Chongqing Branch of National Clinical Research Center for Ocular Diseases, Chongqing, PR China
| | - Peizeng Yang
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Lab of Ophthalmology, Chongqing Eye Institute, Chongqing Branch of National Clinical Research Center for Ocular Diseases, Chongqing, PR China.
| |
Collapse
|
15
|
Expression Profile of mRNAs and miRNAs Related to the Oxidative-Stress Phenomenon in the Ishikawa Cell Line Treated Either Cisplatin or Salinomycin. Biomedicines 2022; 10:biomedicines10051190. [PMID: 35625926 PMCID: PMC9138494 DOI: 10.3390/biomedicines10051190] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 05/14/2022] [Accepted: 05/18/2022] [Indexed: 12/10/2022] Open
Abstract
The oxidative stress phenomenon is a result of anticancer therapy. The aim of this study was the assessment of gene expression profile changes, and to determine the miRNAs regulating genes’ transcriptional activity in an Ishikawa endometrial cancer culture exposed to cisplatin or salinomycin, compared to a control culture. The molecular analysis comprised the microarray technique (mRNAs and micro RNA (miRNA), the real-time quantitative reverse transcription reaction (RTqPCR), enzyme-linked immunosorbent assay (ELISA) reactions, and Western blot. NR4A2, MAP3K8, ICAM1, IL21, CXCL8, CCL7, and SLC7A11 were statistically significantly differentiated depending not only on time, but also on the drug used in the experiment. The conducted assessment indicated that the strongest links were between NR4A2 and hsa-miR-30a-5p and has-miR-302e, MAP3K8 and hsa-miR-144-3p, CXCL8 and hsa-miR-140-3p, and SLC7A11 and hsa-miR-144-3p. The obtained results suggest that four mRNAs—NR4A2, MAP3K8, CXCL8 and SLC7A11—and four miRNAs—hsa-miR-30a-5p, hsa-miR-302e, hsa-miR-144-3p and hsa-miR-140-3—changed their expressions regardless of the chemotherapeutic agent used, which suggests the possibility of their use in monitoring the severity of oxidative stress in endometrial cancer. However, considering the results at both the mRNA and the protein level, it is most likely that the expressions of NR4A2, MAP3K8, CXCL8 and SLC7A11 are regulated by miRNA molecules as well as other epigenetic mechanisms.
Collapse
|
16
|
Hu L, Zhao X, Li P, Zeng Y, Zhang Y, Shen Y, Wang Y, Sun X, Lai B, Zhong C. Proximal and Distal Regions of Pathogenic Th17 Related Chromatin Loci Are Sequentially Accessible During Pathogenicity of Th17. Front Immunol 2022; 13:864314. [PMID: 35514969 PMCID: PMC9062102 DOI: 10.3389/fimmu.2022.864314] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 03/17/2022] [Indexed: 11/13/2022] Open
Abstract
Pathogenic Th17, featured by their production of pro-inflammatory cytokines, are considered as a key player in most autoimmune diseases. The transcriptome of them is obviously distinct from that of conventional regulatory Th17. However, chromatin accessibility of the two Th17 groups have not been comprehensively compared yet. Here, we found that their chromatin-accessible regions(ChARs) significantly correlated with the expression of related genes, indicating that they might engage in the regulation of these genes. Indeed, pathogenic Th17 specific ChARs (patho-ChARs) exhibited a significant distribution preference in TSS-proximal region. We further filtered the patho-ChARs based on their conservation among mammalians or their concordance with the expression of their related genes. In either situation, the filtered patho-ChARs also showed a preference for TSS-proximal region. Enrichment of expression concordant patho-ChARs related genes suggested that they might involve in the pathogenicity of Th17. Thus, we also examined all ChARs of patho-ChARs related genes, and defined an opening ChAR set according to their changes in the Th17 to Th1 conversion. Interestingly, these opening ChARs displayed a sequential accessibility change from TSS-proximal region to TSS-distal region. Meanwhile, a group of patho-TFs (transcription factors) were identified based on the appearance of their binding motifs in the opening ChARs. Consistently, some of them also displayed a similar preference for binding the TSS-proximal region. Single-cell transcriptome analysis further confirmed that these patho-TFs were involved in the generation of pathogenic Th17. Therefore, our results shed light on a new regulatory mechanism underlying the generation of pathogenic Th17, which is worth to be considered for autoimmune disease therapy.
Collapse
Affiliation(s)
- Luni Hu
- Beijing Key Laboratory of Tumor Systems Biology, Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Xingyu Zhao
- Beijing Key Laboratory of Tumor Systems Biology, Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Peng Li
- Beijing Key Laboratory of Tumor Systems Biology, Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Yanyu Zeng
- Beijing Key Laboratory of Tumor Systems Biology, Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Yime Zhang
- Beijing Key Laboratory of Tumor Systems Biology, Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Yang Shen
- School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Yukai Wang
- School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Xiaolin Sun
- Department of Rheumatology and Immunology, Peking University People's Hospital, Beijing, China.,Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Peking University People's Hospital, Beijing, China
| | - Binbin Lai
- Biomedical Engineering Department, Peking University, Beijing, China.,Institute of Medical Technology, Peking University Health Science Center, Beijing, China.,Department of Dermatology and Venereology, Peking University First Hospital, Beijing, China
| | - Chao Zhong
- Beijing Key Laboratory of Tumor Systems Biology, Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China.,National Health Commission (NHC) Key Laboratory of Medical Immunology, Peking University, Beijing, China.,Key Laboratory of Molecular Immunology, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
17
|
Fong FLY, El-Nezami H, Mykkänen O, Kirjavainen PV. The Effects of Single Strains and Mixtures of Probiotic Bacteria on Immune Profile in Liver, Spleen, and Peripheral Blood. Front Nutr 2022; 9:773298. [PMID: 35495948 PMCID: PMC9039324 DOI: 10.3389/fnut.2022.773298] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 03/04/2022] [Indexed: 12/12/2022] Open
Abstract
Probiotic bacteria have potential use as immunomodulators but comparative data on their immunological effects are very limited. The aim of this study was to characterize the effect of oral administration of probiotic strains, alone or as mixtures, on systemic and organ-specific immune responses. For this purpose, healthy C57BL/6 mice were perorally administered probiotics for 3 weeks. A total of five common probiotic strains, Lactobacillus rhamnosus species GG (LGG) and LC705, Bifidobacterium breve 99 (Bb99), Propionibacterium freudenreichii Shermanii JS (PJS), and Escherichia coli Nissle 1917 (EcN), and two of their mixtures, were tested. Livers, spleens, and blood were collected for investigation. A number of five treatments increased the abundance of the natural killer (NK) cells. Bb99 had the most prominent effect on hepatic NK cells (20.0 ± 1.8%). LGG (liver: 5.8 ± 1.0%; spleen: 1.6 ± 0.4%), Bb99 (liver: 13.9 ± 4.3%; spleen: 10.3 ± 3.7%), and EcN (liver: 8.5 ± 3.2%; spleen: 1.0 ± 0.2%) increased the percentage of both the hepatic and splenic T-helper 17 cells. Moreover, LGG (85.5 ± 3.0%) and EcN (89.6 ± 1.2%) increased the percentage of splenic regulatory T-cells. The tested mixtures of the probiotics had different immunological effects from their individual components on cell-mediated responses and cytokine production. In conclusion, our results confirm that the immunomodulatory potential of the probiotics is strain- and organ/tissue-specific, and the effects of probiotic mixtures cannot be predicted based on their single constituents.
Collapse
Affiliation(s)
- Fiona Long Yan Fong
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, SAR China.,Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
| | - Hani El-Nezami
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, SAR China.,Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
| | - Otto Mykkänen
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
| | - Pirkka V Kirjavainen
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland.,Department of Environmental Health, Finnish Institute for Health and Welfare, Kuopio, Finland
| |
Collapse
|
18
|
Cáceres A, González JR. teff: estimation of Treatment EFFects on transcriptomic data using causal random forest. Bioinformatics 2022; 38:3124-3125. [DOI: 10.1093/bioinformatics/btac269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 04/07/2022] [Accepted: 04/11/2022] [Indexed: 11/14/2022] Open
Abstract
Abstract
Motivation
Causal inference on high dimensional feature data can be used to find a profile of patients who will benefit the most from treatment rather than no treatment. However, there is a need for usable implementations for transcriptomic data. We developed teff that applies random causal forest on gene expression data to target individuals with high expected treatment effects.
Results
We extracted a profile of high benefit of treating psoriasis with brodalumab and observed that it was associated with higher T cell abundance in non-lesional skin at baseline and a lower response for etanercept in an independent study. Individual patient targeting with causal inference profiling can inform patients on choosing between treatments before the intervention begins.
Availability and Implementation
teff is an R package available at https://teff-package.github.io
Supplementary information
Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Alejandro Cáceres
- Instituto de Salud Global de Barcelona (ISGlobal), Barcelona, 08003, Spain
| | - Juan R González
- Instituto de Salud Global de Barcelona (ISGlobal), Barcelona, 08003, Spain
| |
Collapse
|
19
|
Yoshimizu A, Kinoshita K, Ichihara Y, Kurauchi Y, Seki T, Katsuki H. Hydroxychloroquine improves motor function and affords neuroprotection without inhibition of inflammation and autophagy in mice after intracerebral hemorrhage. J Neuroimmunol 2022; 362:577786. [PMID: 34920280 DOI: 10.1016/j.jneuroim.2021.577786] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/28/2021] [Accepted: 12/06/2021] [Indexed: 01/05/2023]
Abstract
We examined the effect of an immunomodulator hydroxychloroquine, also known as a Nurr1 ligand and an autophagy inhibitor, on a mouse model of intracerebral hemorrhage (ICH). Daily administration of hydroxychloroquine (100 mg/kg, i.p.) from 3 h after induction of ICH alleviated neurological deficits of mice, increased the number of surviving neurons in the hematoma and prevented fragmentation of axon structures in the internal capsule. Unexpectedly, hydroxychloroquine did not inhibit either upregulation of pro-inflammatory mediators or autophagic responses in the brain. Hence, hydroxychloroquine may produce therapeutic effects on ICH primarily via neuroprotection including preservation of the axon tract integrity.
Collapse
Affiliation(s)
- Ayaka Yoshimizu
- Department of Chemico-Pharmacological Sciences, School of Pharmacy and Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto 862-0973, Japan
| | - Keita Kinoshita
- Department of Chemico-Pharmacological Sciences, School of Pharmacy and Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto 862-0973, Japan
| | - Yusei Ichihara
- Department of Chemico-Pharmacological Sciences, School of Pharmacy and Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto 862-0973, Japan
| | - Yuki Kurauchi
- Department of Chemico-Pharmacological Sciences, School of Pharmacy and Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto 862-0973, Japan
| | - Takahiro Seki
- Department of Chemico-Pharmacological Sciences, School of Pharmacy and Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto 862-0973, Japan
| | - Hiroshi Katsuki
- Department of Chemico-Pharmacological Sciences, School of Pharmacy and Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto 862-0973, Japan.
| |
Collapse
|
20
|
Wang T, Cai W, Wu Q, Chen D, Wang P, Xu Z. Exosomal lncRNA Nuclear Paraspeckle Assembly Transcript 1 (NEAT1)contributes to the progression of allergic rhinitis via modulating microRNA-511/Nuclear Receptor Subfamily 4 Group A Member 2 (NR4A2) axis. Bioengineered 2021; 12:8067-8079. [PMID: 34672863 PMCID: PMC8806616 DOI: 10.1080/21655979.2021.1982313] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Allergic rhinitis (AR) is a common chronic disease characterized by inflammation of the nasal mucosa. Long non-coding RNA (LncRNA) has been reported to be involved in the pathogenesis of various diseases. However, the biological roles of lncRNA Nuclear Paraspeckle Assembly Transcript 1 (NEAT1) in AR are still unclear. The mRNA levels of NEAT1, miR-511, and Nuclear Receptor Subfamily 4 Group A Member 2 (NR4A2) were detected by RT-qPCR. The protein levels of exosomal markers were examined by western blot. ELISA was used to assess the levels of GM-CSF, eotaxin-1, and MUC5AC. The cell viability and apoptosis were evaluated by CCK-8 and TUNEL assays. In this study, we found that the NEAT1 level was highly expressed in AR and IL-13-treated HNECs. NEAT1 interference significantly suppressed levels of GM-CSF, eotaxin-1, and MUC5AC and apoptosis rate, but promoted the viability of IL-13-treated human nasal epithelial cells (HNECs). Moreover, exosomes containing NEAT1 induced inflammatory cytokine production and apoptosis, while NEAT1 depletion abrogated these effects. In addition, NEAT1 directly interacted with miR-511, and the inhibition of miR-511 partially restored the inhibitory effects of NEAT1 silencing on inflammatory cytokine, mucus production, and apoptosis in IL-13-stimulated HNECs. Furthermore, miR-511 could bind to the 3ʹUTR of NR4A2, and the inhibition of miR-511 increased levels of inflammatory factors and apoptosis rate, which was counteracted by depleting NR4A2. In conclusion, our data revealed that exosomal NEAT1 contributed to the pathogenesis of AR through the miR-511/NR4A2 axis. These findings might offer novel strategies for the prevention and treatment of AR.
Collapse
Affiliation(s)
- Tao Wang
- Department of Otolaryngology Head & Neck Surgery, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Weiyu Cai
- Department of Otolaryngology Head & Neck Surgery, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Qinwei Wu
- Department of Otolaryngology Head & Neck Surgery, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Dong Chen
- Department of Otolaryngology Head & Neck Surgery, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Peihua Wang
- Department of Otolaryngology Head & Neck Surgery, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zhou Xu
- Department of Otolaryngology Head & Neck Surgery, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
21
|
NR4A2 expression is not altered in placentas from cases of growth restriction or preeclampsia, but is reduced in hypoxic cytotrophoblast. Sci Rep 2021; 11:20670. [PMID: 34667209 PMCID: PMC8526588 DOI: 10.1038/s41598-021-00192-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 09/29/2021] [Indexed: 11/21/2022] Open
Abstract
Nuclear Receptor Subfamily 4 Group A Member 2 (NR4A2) transcripts are elevated in the circulation of individuals whose pregnancies are complicated by preterm fetal growth restriction (FGR). In this paper, we show that the cases with preeclampsia (PE) have increased circulating NR4A2 transcripts compared to those with normotensive FGR. We aimed to establish whether the dysfunctional placenta mirrors the increase in NR4A2 transcripts and further, to uncover the function of placental NR4A2. NR4A2 expression was detected in preterm and term placental tissue; expressed higher at term. NR4A2 mRNA expression and protein were not altered in placentas from preterm FGR or PE pregnancies. Hypoxia (1% O2 compared to 8% O2) significantly reduced cytotrophoblast NR4A2 mRNA expression, but not placental explant NR4A2 expression. Silencing cytotrophoblast NR4A2 expression under hypoxia (via short interfering (si)RNAs) did not alter angiogenic Placental Growth Factor, nor anti-angiogenic sFlt-1 mRNA expression or protein secretion, but increased expression of cellular antioxidant, oxidative stress, inflammatory, and growth genes. NR4A2 expression was also not altered in a model of tumour necrosis factor-α-induced endothelial dysfunction, or with pravastatin treatment. Further studies are required to identify the origin of the circulating transcripts in pathological pregnancies, and investigate the function of placental NR4A2.
Collapse
|
22
|
Wang Y, Li C, Zhang Y, Zha X, Zhang H, Hu Z, Wu C. Aberrant mTOR/autophagy/Nurr1 signaling is critical for TSC-associated tumor development. Biochem Cell Biol 2021; 99:570-577. [PMID: 34463540 DOI: 10.1139/bcb-2021-0017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Tuberous sclerosis complex (TSC), an inherited neurocutaneous disease, is caused by mutations in either the TSC1 or TSC2 gene. This genetic disorder is characterized by the growth of benign tumors in the brain, kidneys, and other organs. As a member of the orphan nuclear receptor family, nuclear receptor related 1 (Nurr1) plays a vital role in some neuropathological diseases and several types of benign or malignant tumors. Here, we explored the potential regulatory role of TSC1/2 signaling in Nurr1 and the effect of Nurr1 in TSC-related tumors. We found that Nurr1 expression was drastically decreased by the disruption of the TSC1/2 complex in Tsc2-null cells, genetically modified mouse models of TSC, cortical tubers of TSC patients, and kidney tumor tissue obtained from a TSC patient. Deficient TSC1/2 complex downregulated Nurr1 expression in an mTOR-dependent manner. Moreover, hyperactivation of mTOR reduced Nurr1 expression via suppression of autophagy. In addition, Nurr1 overexpression inhibited cell proliferation and suppressed cell cycle progression. Therefore, TSC/mTOR/autophagy/Nurr1 signaling is partially responsible for the tumorigenesis of TSC. Taken together, Nurr1 may be a novel therapeutic target for TSC-associated tumors, and Nurr1 agonists or reagents that induce Nurr1 expression may be used for the treatment of TSC.
Collapse
Affiliation(s)
- Ying Wang
- Department of Molecular Orthopaedics, Beijing Research Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, Beijing 100035, China
| | - Chunjia Li
- Department of Rheumatology, China-Japan Friendship Hospital, Beijing 100029, China
| | - Yanzhuo Zhang
- Department of Molecular Orthopaedics, Beijing Research Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, Beijing 100035, China
| | - Xiaojun Zha
- Department of Biochemistry & Molecular Biology, School of Basic Medicine, Anhui Medical University, Hefei, Anhui 230032, China
| | - Hongbing Zhang
- State Key Laboratory of Medical Molecular Biology, Department of Physiology, Institute of Basic Medical Sciences and School of Basic Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Zhongdong Hu
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Chengai Wu
- Department of Molecular Orthopaedics, Beijing Research Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, Beijing 100035, China
| |
Collapse
|
23
|
Willems S, Zaienne D, Merk D. Targeting Nuclear Receptors in Neurodegeneration and Neuroinflammation. J Med Chem 2021; 64:9592-9638. [PMID: 34251209 DOI: 10.1021/acs.jmedchem.1c00186] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Nuclear receptors, also known as ligand-activated transcription factors, regulate gene expression upon ligand signals and present as attractive therapeutic targets especially in chronic diseases. Despite the therapeutic relevance of some nuclear receptors in various pathologies, their potential in neurodegeneration and neuroinflammation is insufficiently established. This perspective gathers preclinical and clinical data for a potential role of individual nuclear receptors as future targets in Alzheimer's disease, Parkinson's disease, and multiple sclerosis, and concomitantly evaluates the level of medicinal chemistry targeting these proteins. Considerable evidence suggests the high promise of ligand-activated transcription factors to counteract neurodegenerative diseases with a particularly high potential of several orphan nuclear receptors. However, potent tools are lacking for orphan receptors, and limited central nervous system exposure or insufficient selectivity also compromises the suitability of well-studied nuclear receptor ligands for functional studies. Medicinal chemistry efforts are needed to develop dedicated high-quality tool compounds for the therapeutic validation of nuclear receptors in neurodegenerative pathologies.
Collapse
Affiliation(s)
- Sabine Willems
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Strasse 9, 60438 Frankfurt, Germany
| | - Daniel Zaienne
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Strasse 9, 60438 Frankfurt, Germany
| | - Daniel Merk
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Strasse 9, 60438 Frankfurt, Germany
| |
Collapse
|
24
|
Saadatmand F, Gurdziel K, Jackson L, Kwabi-Addo B, Ruden DM. DNA methylation and exposure to violence among African American young adult males. Brain Behav Immun Health 2021; 14:100247. [PMID: 34589758 PMCID: PMC8474503 DOI: 10.1016/j.bbih.2021.100247] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 03/18/2021] [Accepted: 03/22/2021] [Indexed: 02/02/2023] Open
Abstract
Exposure to violence (ETV) has been linked to epigenomics mechanisms such as DNA methylation (DNAm). We used epigenetic profiling of blood collected from 32 African American young adult males who lived in Washington DC to determine if changes in DNAm at CpG sites affiliated with nervous and immune system were associated with exposure to violence. Pathway analysis of differentially methylated regions comparing high and low ETV groups revealed an enrichment of gene sets annotated to nervous system and immune ontologies. Many of these genes are known to interact with each other which suggests DNAm alters gene function in the nervous and immune system in response to ETV. Using data from a unique age group, young African American adult males, we provide evidence that lifetime ETV could impact DNA methylation in genes impacted at Central Nervous System and Immune Function sites. METHOD Methylation analysis was performed on DNA collected from the blood of participants classified with either high or low lifetime ETV. Illumina®MethylationEPIC Beadchips (~850k CpG sites) were processed on the iScan System to examine whole-genome methylation differences. Differentially methylated CpG-sites between high (n = 19) and low (n = 13) groups were identified using linear regression with violence and substance abuse as model covariates. Gene ontology analysis was used to identify enrichment categories from probes annotated to the nearest gene. RESULTS A total of 595 probes (279 hypermethylated; 316 hypomethylated) annotated to 383 genes were considered differentially methylated in association with ETV. Males with high ETV showed elevated methylation in several signaling pathways but were most impacted at Central Nervous System and Immune Function affiliated sites. Eight candidate genes were identified that play important biological roles in stress response to violence with HDAC4 (10%), NR4A3 (11%), NR4A2 (12%), DSCAML1(12%), and ELAVL3 (13%) exhibiting higher levels in the low ETV group and DLGAP1 (10%), SHANK2 (10%), and NRG1(11%) having increased methylation in the high ETV group. These findings suggest that individuals subjected to high ETV may be at risk for poor health outcomes that have not been reported previously.
Collapse
Affiliation(s)
- Forough Saadatmand
- Department of Pediatrics, College of Medicine, Howard University, Washington, DC, USA
| | - Katherine Gurdziel
- Office of the Vice President of Research, Wayne State University, Detroit, MI, USA
| | - Latifa Jackson
- Department of Pediatrics, College of Medicine, Howard University, Washington, DC, USA
- W. Montague Cobb Research Laboratory, College of Arts and Sciences, Howard University, Washington, DC, USA
| | - Bernard Kwabi-Addo
- Department of Biochemistry and Molecular Biology, College of Medicine, Howard University, Washington, DC, USA
| | - Douglas M. Ruden
- Department of Ob/Gyn, CS Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, MI, USA
- Institutes for Environmental Health Science, Wayne State University School of Medicine, Detroit, MI, USA
| |
Collapse
|
25
|
Involvement of cytotoxic Eomes-expressing CD4 + T cells in secondary progressive multiple sclerosis. Proc Natl Acad Sci U S A 2021; 118:2021818118. [PMID: 33836594 PMCID: PMC7980371 DOI: 10.1073/pnas.2021818118] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Multiple sclerosis (MS), a putative autoimmune disease of the central nervous system (CNS), commonly presents as relapsing-remitting MS (RRMS), characterized by recurrent episodes of peripheral disabling symptoms resulting from inflammatory CNS damage. Many RRMS patients transition to a chronic disease course with progressive neurological dysfunctions (secondary progressive MS, SPMS), with the progression rate varying between patients and over time. SPMS pathogenesis is now linked to immune-cell-mediated processes, although the mechanisms driving SPMS transition and progression remain elusive, and SPMS lacks biomarkers and effective treatments. We report the crucial involvement of cytotoxic CD4+ T cells expressing Eomes (Eomes+ Th cells) in SPMS pathogenesis-a Th cell subset previously identified in a mouse model of late/chronic autoimmune CNS inflammation. Few Eomes+ Th cells circulate in RRMS patient peripheral blood (n = 44), primary progressive MS (PPMS) patients (n = 25), or healthy controls (n = 42), but Eomes+ Th cells were significantly increased in SPMS (n = 105, P < 0.0001). Strikingly, lymphocytes isolated from SPMS autopsy brain samples revealed CD4+ T cells infiltrating CNS that coexpressed Eomes and the cytotoxic molecule granzyme B. In particular, the Eomes+ Th cell levels were increased in SPMS patients in progressive disease phases versus SPMS patients without current disability increases (P < 0.0001). Moreover, Eomes level acted as a biomarker to predict SPMS patients at risk of disease worsening with over 80% accuracy (ROC-AUC = 0.8276). Overall, our results indicate that granzyme B-expressing Eomes+ T helper cells are involved in the pathogenesis of SPMS, with significant implications for SPMS biomarkers and therapeutic targets.
Collapse
|
26
|
Sekiya T, Kagawa S, Masaki K, Fukunaga K, Yoshimura A, Takaki S. Regulation of peripheral Th/Treg differentiation and suppression of airway inflammation by Nr4a transcription factors. iScience 2021; 24:102166. [PMID: 33665581 PMCID: PMC7907427 DOI: 10.1016/j.isci.2021.102166] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 01/08/2021] [Accepted: 02/04/2021] [Indexed: 12/24/2022] Open
Abstract
Helper T (Th) and regulatory T (Treg) cell differentiation programs promote the eradication of pathogens, while minimizing adverse immune reactions. Here, we found that Nr4a family of nuclear receptors supports Treg cell induction and represses Th1 and Th2 cell differentiation from naive CD4+ T cells. Nr4a factors are transiently induced in CD4+ T cells immediately after antigen stimulation, thereby mediating epigenetic changes. In differentiating Treg cells, Nr4a factors mainly upregulated the early responsive genes in the Treg cell-specifying gene set, either directly or in cooperation with Ets family transcription factors. In contrast, Nr4a factors repressed AP-1 activity by interrupting a positive feedback loop for Batf factor expression, thus suppressing Th2 cell-associated genes. In an allergic airway inflammation model, Nr4a factors suppressed the pathogenesis, mediating oral tolerance. Lastly, pharmacological activation of an engineered Nr4a molecule prevented allergic airway inflammation, indicating that Nr4a factors may be novel therapeutic targets for inflammatory diseases. Among “Treg signature genes”, Nr4a factors mainly induce early responsive ones Nr4a activate target genes directly or by supporting Ets factors' function Nr4a factors repress Th2-driving positive feedback loop for Batf factor expression Pharmacological activation of Nr4a factors' activity prevented airway inflammation
Collapse
Affiliation(s)
- Takashi Sekiya
- Section of Immune Response Modification, Department of Immune Regulation, The Research Center for Hepatitis and Immunology, National Center for Global Health and Medicine, 1-7-1 Kohnodai, Ichikawa, Chiba 272-8516, Japan.,Department of Immune Regulation, The Research Center for Hepatitis and Immunology, National Center for Global Health and Medicine, 1-7-1 Kohnodai, Ichikawa, Chiba 272-8516, Japan
| | - Shizuko Kagawa
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Katsunori Masaki
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Koichi Fukunaga
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Akihiko Yoshimura
- Department of Microbiology and Immunology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Satoshi Takaki
- Department of Immune Regulation, The Research Center for Hepatitis and Immunology, National Center for Global Health and Medicine, 1-7-1 Kohnodai, Ichikawa, Chiba 272-8516, Japan
| |
Collapse
|
27
|
Mimouna S, Rollins DA, Shibu G, Tharmalingam B, Deochand DK, Chen X, Oliver D, Chinenov Y, Rogatsky I. Transcription cofactor GRIP1 differentially affects myeloid cell-driven neuroinflammation and response to IFN-β therapy. J Exp Med 2021; 218:e20192386. [PMID: 33045064 PMCID: PMC7555412 DOI: 10.1084/jem.20192386] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 07/29/2020] [Accepted: 09/04/2020] [Indexed: 11/18/2022] Open
Abstract
Macrophages (MФ) and microglia (MG) are critical in the pathogenesis of multiple sclerosis (MS) and its mouse model, experimental autoimmune encephalomyelitis (EAE). Glucocorticoids (GCs) and interferon β (IFN-β) are frontline treatments for MS, and disrupting each pathway in mice aggravates EAE. Glucocorticoid receptor-interacting protein 1 (GRIP1) facilitates both GR and type I IFN transcriptional actions; hence, we evaluated the role of GRIP1 in neuroinflammation. Surprisingly, myeloid cell-specific loss of GRIP1 dramatically reduced EAE severity, immune cell infiltration of the CNS, and MG activation and demyelination specifically during the neuroinflammatory phase of the disease, yet also blunted therapeutic properties of IFN-β. MФ/MG transcriptome analyses at the bulk and single-cell levels revealed that GRIP1 deletion attenuated nuclear receptor, inflammatory and, interestingly, type I IFN pathways and promoted the persistence of a homeostatic MG signature. Together, these results uncover the multifaceted function of type I IFN in MS/EAE pathogenesis and therapy, and an unexpectedly permissive role of myeloid cell GRIP1 in neuroinflammation.
Collapse
Affiliation(s)
- Sanda Mimouna
- The David Z. Rosensweig Genomics Center, Hospital for Special Surgery Research Institute, New York, NY
| | - David A. Rollins
- The David Z. Rosensweig Genomics Center, Hospital for Special Surgery Research Institute, New York, NY
- Graduate Program in Immunology and Microbial Pathogenesis, Weill Cornell Graduate School of Medical Sciences, New York, NY
| | - Gayathri Shibu
- The David Z. Rosensweig Genomics Center, Hospital for Special Surgery Research Institute, New York, NY
- Graduate Program in Immunology and Microbial Pathogenesis, Weill Cornell Graduate School of Medical Sciences, New York, NY
| | - Bowranigan Tharmalingam
- The David Z. Rosensweig Genomics Center, Hospital for Special Surgery Research Institute, New York, NY
| | - Dinesh K. Deochand
- The David Z. Rosensweig Genomics Center, Hospital for Special Surgery Research Institute, New York, NY
| | - Xi Chen
- The David Z. Rosensweig Genomics Center, Hospital for Special Surgery Research Institute, New York, NY
- Graduate Program in Immunology and Microbial Pathogenesis, Weill Cornell Graduate School of Medical Sciences, New York, NY
| | - David Oliver
- The David Z. Rosensweig Genomics Center, Hospital for Special Surgery Research Institute, New York, NY
| | - Yurii Chinenov
- The David Z. Rosensweig Genomics Center, Hospital for Special Surgery Research Institute, New York, NY
| | - Inez Rogatsky
- The David Z. Rosensweig Genomics Center, Hospital for Special Surgery Research Institute, New York, NY
- Graduate Program in Immunology and Microbial Pathogenesis, Weill Cornell Graduate School of Medical Sciences, New York, NY
| |
Collapse
|
28
|
Upregulation of interleukin (IL)-31, a cytokine producing CXCR1 peripheral immune cells, contributes to the immune abnormalities of autism spectrum disorder. J Neuroimmunol 2020; 349:577430. [PMID: 33130460 DOI: 10.1016/j.jneuroim.2020.577430] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 10/07/2020] [Accepted: 10/22/2020] [Indexed: 12/13/2022]
Abstract
Autism spectrum disorders (ASD) are a group of neurodevelopmental disorders characterized by communication deficits, impaired social interactions, and restricted stereotypical behaviors. Several immune cells are associated with immune dysfunction in ASD; however, IL-31 has not been explored in ASD. This study aims to investigate the role of inflammatory cytokines and transcription factors of the CXCR1 cells in children with ASD. In the current study, we investigated the cytokines and transcription factors produced by CXCR1+ cells (IL-31, IL-9, IL-21R, IL-21, NF-κB p65, RORγT, STAT1, and FoxP3) in peripheral blood mononuclear cells (PBMCs), from children with ASD and typically developing (TD) control children, using flow cytometric analysis. In addition, we measured mRNA and protein expression levels of IL-31 using quantitative real-time PCR and western blot analyses in PBMCs. In our study, children with ASD had increased CXCR1+IL-31+, CXCR1+IL-9+, CXCR1+IL-21R+, CXCR1+IL-21+, CXCR1+NF-κB+ p65, CXCR1+RORγT+, and CXCR1+STAT1+, and decreased CXCR1+FoxP3+ cells as compared with cells from the TD control samples. Similarly, children with ASD showed increased IL-31 mRNA and protein expression levels as compared to those of TD control samples. Our results suggest that upregulated production of inflammatory cytokines and transcription factors in CXCR1+ cells cause immunological imbalance in children with ASD. Therefore, attenuation of inflammatory cytokines/mediators and transcription factors could have a therapeutic potential in the treatment of ASD.
Collapse
|
29
|
Huang X, Yi S, Hu J, Du Z, Wang Q, Ye Z, Cao Q, Su G, Yuan G, Zhou C, Wang Y, Kijlstra A, Yang P. Analysis of the role of palmitoleic acid in acute anterior uveitis. Int Immunopharmacol 2020; 84:106552. [PMID: 32422526 DOI: 10.1016/j.intimp.2020.106552] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 04/09/2020] [Accepted: 04/27/2020] [Indexed: 12/19/2022]
Abstract
PURPOSE To study the role of palmitoleic acid (PA) in the pathogenesis of acute anterior uveitis (AAU). METHODS PA levels in feces from AAU patients were measured by gas chromatography coupled with a mass spectrometer (GC-MS) and compared with samples obtained from healthy individuals. Enzyme linked immunosorbent assay (ELISA) and flow cytometry (FCM) were used to assess the effect of PA on dendritic cells (DCs) and CD4+T cells obtained from mice, AAU patients and healthy individuals. C57BL/6 mice were fed with PA or vehicle and experimental autoimmune uveitis (EAU) was induced with a human retinal IRBP651-670 peptide. Disease severity of EAU was evaluated by clinical manifestation and histology. Differentiation of splenic Type 1 helper T cells (Th1) and Th17 cells was evaluated by FCM. Tandem mass tag (TMT)-based proteomics analysis was used to identify differentially expressed proteins following incubation of DCs with PA. RESULTS The fecal concentration of PA was increased in AAU patients as compared with healthy individuals. In vitro, PA promoted apoptosis of DCs and inhibited the secretion of TNF-α from mouse bone-marrow-derived dendritic cells (BMDCs) as well as in DCs from AAU patients and healthy individuals. It only decreased DCs surface marker expression and IL-12p70 secretion in BMDCs and healthy individuals DCs but not in AAU patient DCs. PA-treated BMDCs inhibited Th cell differentiation from mouse naïve CD4+T cells and IL-17 and IFN-γ secretion in co-culture supernatants. PA also inhibited the differentiation of Th cells and secretion of IFN-γ and IL-17 in CD4+T cells from mice, AAU patients and healthy individuals. In vivo, PA-treated EAU mice showed milder clinical and histopathological intraocular manifestations as compared with the control group. PA feeding inhibited differentiation of splenic Th17 cells, whereas Th1 cells were not affected. Up to 30 upregulated and 77 downregulated proteins were identified when comparing PA-treated DCs with controls. CONCLUSION An increased expression of fecal PA was observed in AAU patients. PA was shown to have immunoregulatory effects on DCs and CD4+T cells and attenuated disease severity in EAU mice.
Collapse
Affiliation(s)
- Xinyue Huang
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, and Chongqing Eye Institute, Chongqing, PR China
| | - Shenglan Yi
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, and Chongqing Eye Institute, Chongqing, PR China
| | - Jianping Hu
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, and Chongqing Eye Institute, Chongqing, PR China
| | - Ziyu Du
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, and Chongqing Eye Institute, Chongqing, PR China
| | - Qingfeng Wang
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, and Chongqing Eye Institute, Chongqing, PR China
| | - Zi Ye
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, and Chongqing Eye Institute, Chongqing, PR China
| | - Qingfeng Cao
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, and Chongqing Eye Institute, Chongqing, PR China
| | - Guannan Su
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, and Chongqing Eye Institute, Chongqing, PR China
| | - Gangxiang Yuan
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, and Chongqing Eye Institute, Chongqing, PR China
| | - Chunjiang Zhou
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, and Chongqing Eye Institute, Chongqing, PR China
| | - Yao Wang
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, and Chongqing Eye Institute, Chongqing, PR China
| | - Aize Kijlstra
- University Eye Clinic Maastricht, Maastricht, the Netherlands
| | - Peizeng Yang
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, and Chongqing Eye Institute, Chongqing, PR China.
| |
Collapse
|
30
|
Kurd NS, He Z, Louis TL, Milner JJ, Omilusik KD, Jin W, Tsai MS, Widjaja CE, Kanbar JN, Olvera JG, Tysl T, Quezada LK, Boland BS, Huang WJ, Murre C, Goldrath AW, Yeo GW, Chang JT. Early precursors and molecular determinants of tissue-resident memory CD8 + T lymphocytes revealed by single-cell RNA sequencing. Sci Immunol 2020; 5:eaaz6894. [PMID: 32414833 PMCID: PMC7341730 DOI: 10.1126/sciimmunol.aaz6894] [Citation(s) in RCA: 135] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 04/16/2020] [Indexed: 01/06/2023]
Abstract
During an immune response to microbial infection, CD8+ T cells give rise to distinct classes of cellular progeny that coordinately mediate clearance of the pathogen and provide long-lasting protection against reinfection, including a subset of noncirculating tissue-resident memory (TRM) cells that mediate potent protection within nonlymphoid tissues. Here, we used single-cell RNA sequencing to examine the gene expression patterns of individual CD8+ T cells in the spleen and small intestine intraepithelial lymphocyte (siIEL) compartment throughout the course of their differentiation in response to viral infection. These analyses revealed previously unknown transcriptional heterogeneity within the siIEL CD8+ T cell population at several stages of differentiation, representing functionally distinct TRM cell subsets and a subset of TRM cell precursors within the tissue early in infection. Together, these findings may inform strategies to optimize CD8+ T cell responses to protect against microbial infection and cancer.
Collapse
Affiliation(s)
- Nadia S Kurd
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Zhaoren He
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Division of Biologic Sciences, University of California San Diego, La Jolla, CA, USA
| | - Tiani L Louis
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - J Justin Milner
- Division of Biologic Sciences, University of California San Diego, La Jolla, CA, USA
| | - Kyla D Omilusik
- Division of Biologic Sciences, University of California San Diego, La Jolla, CA, USA
| | - Wenhao Jin
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
| | - Matthew S Tsai
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | | | - Jad N Kanbar
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Jocelyn G Olvera
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Tiffani Tysl
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Lauren K Quezada
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Brigid S Boland
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Wendy J Huang
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
| | - Cornelis Murre
- Division of Biologic Sciences, University of California San Diego, La Jolla, CA, USA
| | - Ananda W Goldrath
- Division of Biologic Sciences, University of California San Diego, La Jolla, CA, USA
| | - Gene W Yeo
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA.
- Institute for Genomic Medicine, University of California San Diego, La Jolla, California, USA
| | - John T Chang
- Department of Medicine, University of California San Diego, La Jolla, CA, USA.
- Division of Gastroenterology, VA San Diego Healthcare System, San Diego, CA, USA
| |
Collapse
|
31
|
Jeon SG, Yoo A, Chun DW, Hong SB, Chung H, Kim JI, Moon M. The Critical Role of Nurr1 as a Mediator and Therapeutic Target in Alzheimer's Disease-related Pathogenesis. Aging Dis 2020; 11:705-724. [PMID: 32489714 PMCID: PMC7220289 DOI: 10.14336/ad.2019.0718] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 07/18/2019] [Indexed: 01/16/2023] Open
Abstract
Several studies have revealed that the transcription factor nuclear receptor related 1 (Nurr1) plays several roles not only in the regulation of gene expression related to dopamine synthesis, but also in alternative splicing, and miRNA targeting. Moreover, it regulates cognitive functions and protects against inflammation-induced neuronal death. In particular, the role of Nurr1 in the pathogenesis of Parkinson's disease (PD) has been well investigated; for example, it has been shown that it restores behavioral and histological impairments in PD models. Although many studies have evaluated the connection between Nurr1 and PD pathogenesis, the role of Nurr1 in Alzheimer's disease (AD) remain to be studied. There have been several studies describing Nurr1 protein expression in the AD brain. However, only a few studies have examined the role of Nurr1 in the context of AD. Therefore, in this review, we highlight the overall effects of Nurr1 under the neuropathologic conditions related to AD. Furthermore, we suggest the possibility of using Nurr1 as a therapeutic target for AD or other neurodegenerative disorders.
Collapse
Affiliation(s)
- Seong Gak Jeon
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon, 35365, Republic of Korea
| | - Anji Yoo
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon, 35365, Republic of Korea
| | - Dong Wook Chun
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon, 35365, Republic of Korea
| | - Sang Bum Hong
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon, 35365, Republic of Korea
| | - Hyunju Chung
- Department of Core Research Laboratory, Clinical Research Institute, Kyung Hee University Hospital at Gangdong, Seoul 05278, Republic of Korea
| | - Jin-il Kim
- Department of Nursing, College of Nursing, Jeju National University, Jeju-si 63243, Republic of Korea
| | - Minho Moon
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon, 35365, Republic of Korea
| |
Collapse
|
32
|
Odagiu L, May J, Boulet S, Baldwin TA, Labrecque N. Role of the Orphan Nuclear Receptor NR4A Family in T-Cell Biology. Front Endocrinol (Lausanne) 2020; 11:624122. [PMID: 33597928 PMCID: PMC7883379 DOI: 10.3389/fendo.2020.624122] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 12/14/2020] [Indexed: 12/13/2022] Open
Abstract
The nuclear orphan receptors NR4A1, NR4A2, and NR4A3 are immediate early genes that are induced by various signals. They act as transcription factors and their activity is not regulated by ligand binding and are thus regulated via their expression levels. Their expression is transiently induced in T cells by triggering of the T cell receptor following antigen recognition during both thymic differentiation and peripheral T cell responses. In this review, we will discuss how NR4A family members impact different aspects of the life of a T cell from thymic differentiation to peripheral response against infections and cancer.
Collapse
Affiliation(s)
- Livia Odagiu
- Laboratory of Immunology, Maisonneuve-Rosemont Hospital Research Center, Montreal, QC, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC, Canada
| | - Julia May
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, Canada
| | - Salix Boulet
- Laboratory of Immunology, Maisonneuve-Rosemont Hospital Research Center, Montreal, QC, Canada
| | - Troy A. Baldwin
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, Canada
- *Correspondence: Troy A. Baldwin, ; Nathalie Labrecque,
| | - Nathalie Labrecque
- Laboratory of Immunology, Maisonneuve-Rosemont Hospital Research Center, Montreal, QC, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC, Canada
- Département de Médecine, Université de Montréal, Montreal, QC, Canada
- *Correspondence: Troy A. Baldwin, ; Nathalie Labrecque,
| |
Collapse
|
33
|
Wang L, Gu L, Tang Z. Cytokines secreted by arecoline activate fibroblasts that affect the balance of TH17 and Treg. J Oral Pathol Med 2019; 49:156-163. [PMID: 31610043 DOI: 10.1111/jop.12965] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 10/08/2019] [Indexed: 12/17/2022]
Affiliation(s)
- Liping Wang
- Xiangya Stomatological Hospital Central South University Changsha China
| | - Liqun Gu
- Xiangya Stomatological Hospital Central South University Changsha China
| | - Zhangui Tang
- Xiangya Stomatological Hospital Central South University Changsha China
| |
Collapse
|
34
|
Grabarek BO, Wcisło-Dziadecka D, Sanakiewicz A, Kruszniewska-Rajs C, Gola J. Evaluation of changes in expression pattern of oxidative stress genes under the influence of adalimumab. Dermatol Ther 2019; 32:e13141. [PMID: 31664747 DOI: 10.1111/dth.13141] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 10/19/2019] [Accepted: 10/26/2019] [Indexed: 02/06/2023]
Abstract
The psoriasis therapy consists of the inhibition of cytokines involved in inducing and development of this disease. The aim of the study was to evaluate the changes in the expression of genes related to the oxidative stress phenomenon in the culture of normal human dermal fibroblasts of Normal Human Dermal Fibroblasts (NHDF) exposed to adalimumab. NHDF culture was exposed to adalimumab for 2-, 8-, and 24-hr periods. The control consisted of the same cells not exposed to adalimumab. The oligonucleotide microarrays HG-U133A 2.0 were used to analyze the changes in gene expression in NHDF culture. Analysis showed that there are 3,881 ID mRNA involved in the induction and development of oxidative stress, the expression of which changes significantly due to the exposure of NHDF cells to adalimumab (p < .05) among 1,369 ID mRNA of them. These include genes associated with apoptosis, the p38 MAPK pathway and the PDGF pathway, and above all with pathways not yet classified. Studies have shown that two genes: NR4A2 and IL1RN, whose expression has changed the most, expressed as Fold Change (FC) seem to be the most promising molecular markers to monitor therapy and loss of cell sensitivity to treatment.
Collapse
Affiliation(s)
- Beniamin Oskar Grabarek
- Center of Oncology, M. Sklodowska-Curie Memorial Institute, Cracow Branch, Warsaw, Poland.,Katowice School of Technology, The University of Science and Art in Katowice, Zabrze, Poland.,Department of Molecular Biology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, Katowice, Poland
| | - Dominika Wcisło-Dziadecka
- Department of Cosmetology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, Katowice, Poland
| | - Adrianna Sanakiewicz
- Department of Molecular Biology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, Katowice, Poland
| | - Celina Kruszniewska-Rajs
- Department of Molecular Biology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, Katowice, Poland
| | - Joanna Gola
- Department of Molecular Biology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, Katowice, Poland
| |
Collapse
|
35
|
Oki S. Eomes-expressing T-helper cells as potential target of therapy in chronic neuroinflammation. Neurochem Int 2019; 130:104348. [DOI: 10.1016/j.neuint.2018.11.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 11/27/2018] [Accepted: 11/30/2018] [Indexed: 11/29/2022]
|
36
|
Park TY, Jang Y, Kim W, Shin J, Toh HT, Kim CH, Yoon HS, Leblanc P, Kim KS. Chloroquine modulates inflammatory autoimmune responses through Nurr1 in autoimmune diseases. Sci Rep 2019; 9:15559. [PMID: 31664129 PMCID: PMC6820774 DOI: 10.1038/s41598-019-52085-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 10/12/2019] [Indexed: 12/19/2022] Open
Abstract
For over a half-century the anti-malarial drug chloroquine (CQ) has been used as a therapeutic agent, alone or in combination, to treat autoimmune diseases. However, neither the underlying mechanism(s) of action nor their molecular target(s) are well defined. The orphan nuclear receptor Nurr1 (also known as NR4A2) is an essential transcription factor affecting the development and maintenance of midbrain dopaminergic neurons. In this study, using in vitro T cell differentiation models, we demonstrate that CQ activates TREG cell differentiation and induces Foxp3 gene expression in a Nurr1-dependent manner. Remarkably, CQ appears to induce Nurr1 function by two distinct mechanisms: firstly, by direct binding to Nurr1’s ligand-binding domain and promoting its transcriptional activity and secondly by upregulation of Nurr1 expression through the CREB signaling pathway. In contrast, CQ suppressed gene expression and differentiation of pathogenic TH17 cells. Importantly, using a valid animal model of inflammatory bowel disease (IBD), we demonstrated that CQ promotes Foxp3 expression and differentiation of TREG cells in a Nurr1-dependent manner, leading to significant improvement of IBD-related symptoms. Taken together, these data suggest that CQ ameliorates autoimmune diseases via regulating Nurr1 function/expression and that Nurr1 is a promising target for developing effective therapeutics of human inflammatory autoimmune diseases.
Collapse
Affiliation(s)
- Tae-Yoon Park
- Molecular Neurobiology Laboratory, Department of Psychiatry and McLean Hospital, Harvard Medical School, 115 Mill Street, Belmont, Massachusetts, 02478, USA
| | - Yongwoo Jang
- Molecular Neurobiology Laboratory, Department of Psychiatry and McLean Hospital, Harvard Medical School, 115 Mill Street, Belmont, Massachusetts, 02478, USA
| | - Woori Kim
- Molecular Neurobiology Laboratory, Department of Psychiatry and McLean Hospital, Harvard Medical School, 115 Mill Street, Belmont, Massachusetts, 02478, USA
| | - Joon Shin
- School of Biological Sciences, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Hui Ting Toh
- School of Biological Sciences, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Chun-Hyung Kim
- Molecular Neurobiology Laboratory, Department of Psychiatry and McLean Hospital, Harvard Medical School, 115 Mill Street, Belmont, Massachusetts, 02478, USA
| | - Ho Sup Yoon
- School of Biological Sciences, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Pierre Leblanc
- Molecular Neurobiology Laboratory, Department of Psychiatry and McLean Hospital, Harvard Medical School, 115 Mill Street, Belmont, Massachusetts, 02478, USA.
| | - Kwang-Soo Kim
- Molecular Neurobiology Laboratory, Department of Psychiatry and McLean Hospital, Harvard Medical School, 115 Mill Street, Belmont, Massachusetts, 02478, USA. .,Program in Neuroscience and Harvard Stem Cell Institute, McLean Hospital, Harvard Medical School, Belmont, MA, 02478, USA.
| |
Collapse
|
37
|
Jiang Y, Wang X, Dong C. Molecular mechanisms of T helper 17 cell differentiation: Emerging roles for transcription cofactors. Adv Immunol 2019; 144:121-153. [PMID: 31699215 DOI: 10.1016/bs.ai.2019.09.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
T helper 17 (Th17) cells, characterized by secretion of IL-17 and IL-17F, are a specialized CD4+ effector T cell lineage that not only facilitates host defense against pathogen infection and maintenance of mucosal barrier, but also potently induces tissue inflammation and autoimmune diseases. Since its discovery in 2005, the developmental program of Th17 cells has been characterized, which involves a number of key cytokines, transcription factors and multiple layers of epigenetic modifications. However, how these mechanisms integrate into the complex regulatory network in Th17 cells has not been well defined. Emerging evidences have revealed essential roles of cofactors in controlling chromosome accessibilities and activities of Th17-specific transcription factors. Moreover, cofactors also act as critical signaling integrators to coordinate multiple signaling pathways and transcriptional programs. Deficiency or dysregulation of these cofactors results in defects in Th17 responses and induction of associated autoimmune diseases. Our lab has recently reported several important cofactors in Th17 cells. Here we summarize our findings regarding this new scenario of developmental regulation of Th17 cells. These findings may benefit the development of innovative strategies to treat autoimmune diseases.
Collapse
Affiliation(s)
- Yu Jiang
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing, China
| | - Xiaohu Wang
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing, China
| | - Chen Dong
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing, China; Beijing Key Lab for Immunological Research on Chronic Diseases, Beijing, China.
| |
Collapse
|
38
|
NURR1 Impairment in Multiple Sclerosis. Int J Mol Sci 2019; 20:ijms20194858. [PMID: 31574937 PMCID: PMC6801584 DOI: 10.3390/ijms20194858] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 09/27/2019] [Accepted: 09/28/2019] [Indexed: 02/07/2023] Open
Abstract
The transcription factor NURR1 is a constitutively active orphan receptor belonging to the steroid hormone receptor class NR4A. Although a genetic association between NURR1 and autoimmune inflammatory diseases has never emerged from genome-wide association studies (GWAS), alterations in the expression of NURR1 have been observed in various autoimmune diseases. Specifically, its role in autoimmune inflammatory diseases is mainly related to its capability to counteract inflammation. In fact, NURR1 exerts anti-inflammatory functions inhibiting the transcription of the molecules involved in proinflammatory pathways, not only in the peripheral blood compartment, but also in the cerebral parenchyma acting in microglial cells and astrocytes. In parallel, NURR1 has been also linked to dopamine-associated brain disorders, such as Parkinson’s disease (PD) and schizophrenia, since it is involved in the development and in the maintenance of midbrain dopaminergic neurons (mDA). Considering its role in neuro- and systemic inflammatory processes, here we review the evidences supporting its contribution to multiple sclerosis (MS), a chronic inflammatory autoimmune disease affecting the central nervous system (CNS). To date, the specific role of NURR1 in MS is still debated and few authors have studied this topic. Here, we plan to clarify this issue analyzing the reported association between NURR1 and MS in human and murine model studies.
Collapse
|
39
|
Extrapituitary prolactin promotes generation of Eomes-positive helper T cells mediating neuroinflammation. Proc Natl Acad Sci U S A 2019; 116:21131-21139. [PMID: 31570595 PMCID: PMC6800326 DOI: 10.1073/pnas.1906438116] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
We have previously demonstrated that induction of pathogenic eomesodermin-positive CD4+ T cells (Eomes+ T helper [Th] cells) is associated with transition from an acute stage to a later stage of experimental autoimmune encephalomyelitis (EAE). In the late phase of EAE, B cells and non-B cell antigen-presenting cells (APCs) recruited to the central nervous system strikingly up-regulate prolactin (PRL). The PRL-producing APCs have the potential to promote generation of Eomes+ Th cells from naïve T cells in an MHC class II-restricted manner, and therapies inhibitory for PRL production suppress the induction of Eomes+ Th cells and ameliorate clinical signs of EAE. Our study highlights the unexpected role of extrapituitary PRL in the development of persistent neuroinflammation. Induction of eomesodermin-positive CD4+ T cells (Eomes+ T helper [Th] cells) has recently been correlated with the transition from an acute stage to a later stage of experimental autoimmune encephalomyelitis (EAE), an animal model for multiple sclerosis. Moreover, these cells’ pathogenic role has been experimentally proven in EAE. While exploring how the pathogenic Eomes+ Th cells are generated during the course of EAE, we unexpectedly found that B cells and MHC class II+ myeloid cells isolated from the late EAE lesions strikingly up-regulated the expression of prolactin (PRL). We demonstrate that such PRL-producing cells have a unique potential to induce Eomes+ Th cells from naïve T cells ex vivo, and that anti-MHC class II antibody could block this process. Furthermore, PRL levels in the cerebrospinal fluid were significantly increased in the late phase of EAE, and blocking the production of PRL by bromocriptine or Zbtb20-specific siRNA significantly reduced the numbers of Eomes+ Th cells in the central nervous system (CNS) and ameliorated clinical signs in the later phase of EAE. The PRL dependency of Eomes+ Th cells was confirmed in a series of in vitro and ex vivo experiments. Collectively, these results indicate that extrapituitary PRL plays a crucial role in the CNS inflammation mediated by pathogenic Eomes+ Th cells. Cellular interactions involving PRL-producing immune cells could be considered as a therapeutic target for the prevention of chronic neuroinflammation.
Collapse
|
40
|
DGAT1 inhibits retinol-dependent regulatory T cell formation and mediates autoimmune encephalomyelitis. Proc Natl Acad Sci U S A 2019; 116:3126-3135. [PMID: 30718413 DOI: 10.1073/pnas.1817669116] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The balance of effector versus regulatory T cells (Tregs) controls inflammation in numerous settings, including multiple sclerosis (MS). Here we show that memory phenotype CD4+ T cells infiltrating the central nervous system during experimental autoimmune encephalomyelitis (EAE), a widely studied animal model of MS, expressed high levels of mRNA for Dgat1 encoding diacylglycerol-O-acyltransferase-1 (DGAT1), an enzyme that catalyzes triglyceride synthesis and retinyl ester formation. DGAT1 inhibition or deficiency attenuated EAE, with associated enhanced Treg frequency; and encephalitogenic, DGAT1-/- in vitro-polarized Th17 cells were poor inducers of EAE in adoptive recipients. DGAT1 acyltransferase activity sequesters retinol in ester form, preventing synthesis of retinoic acid, a cofactor for Treg generation. In cultures with T cell-depleted lymphoid tissues, retinol enhanced Treg induction from DGAT1-/- but not from WT T cells. The WT Treg induction defect was reversed by DGAT1 inhibition. These results demonstrate that DGAT1 suppresses retinol-dependent Treg formation and suggest its potential as a therapeutic target for autoimmune inflammation.
Collapse
|
41
|
Shen F, Liu P, Xu Z, Li N, Yi Z, Tie X, Zhang Y, Gao L. CircRNA_001569 promotes cell proliferation through absorbing miR-145 in gastric cancer. J Biochem 2019; 165:27-36. [PMID: 30304349 DOI: 10.1093/jb/mvy079] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 10/08/2018] [Indexed: 12/17/2022] Open
Abstract
Gastric cancer severely threatens human life, while its pathogenesis is still unclear. The present study was to explore the potential pathogenic mechanism underlying gastric cancer. Real-time PCR was performed to detect the expression of circRNA_001569 and miR-145; western blot was performed to detect the expression of NR4A2. Cell cycle and apoptosis was determined using flow cytometry, and cell viability was determined using Cell counting kit-8 (CCK-8) assay. Luciferase reporter assay was carried out to validate the relationship between miR-145 and NR4A2. Both circRNA_001569 and NR4A2 were overexpressed in tissues and cells of gastric cancer, while miR-145 was down-regulated. Overexpressed circRNA_001569 significantly increased cell viability, and decreased cell apoptosis, while down-regulated circRNA_001569 dramatically decreased cell viability and promoted cell apoptosis. CircRNA_001569 regulated the expression of miR-145, the effect of pcDNA-circRNA_001569 was abolished by miR-145 mimic and the effect of si-circRNA_001569 was abolished by miR-145 inhibitor. MiR-145 targets NR4A2 to regulate its expression. Overexpressed miR-145 suppressed cell viability and promoted cell apoptosis. Taken together, the present study indicated that overexpressed circRNA_001569 promoted cell viability of gastric cancer through suppressing the expression of miR-145, which was mediated by NR4A2. The research will provide great theoretical basis for further clinical diagnosis and therapy.
Collapse
Affiliation(s)
- Fengqian Shen
- Department of Oncology, Kaifeng Central Hospital, Kaifeng, Henan, China
| | - Peijie Liu
- Department of Oncology, Kaifeng Central Hospital, Kaifeng, Henan, China
| | - Zhiqiao Xu
- Department of Oncology, Kaifeng Central Hospital, Kaifeng, Henan, China
| | - Ning Li
- Department of Oncology, Kaifeng Central Hospital, Kaifeng, Henan, China
| | - Zhenying Yi
- Department of Oncology, Kaifeng Central Hospital, Kaifeng, Henan, China
| | - Xiaojing Tie
- Department of Oncology, Kaifeng Central Hospital, Kaifeng, Henan, China
| | - Yan Zhang
- Department of Oncology, Kaifeng Central Hospital, Kaifeng, Henan, China
| | - Ling Gao
- Department of Oncology, Kaifeng Central Hospital, Kaifeng, Henan, China
| |
Collapse
|
42
|
Bioactive Dietary VDR Ligands Regulate Genes Encoding Biomarkers of Skin Repair That Are Associated with Risk for Psoriasis. Nutrients 2018; 10:nu10020174. [PMID: 29401702 PMCID: PMC5852750 DOI: 10.3390/nu10020174] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 01/05/2018] [Accepted: 01/30/2018] [Indexed: 01/10/2023] Open
Abstract
Treatment with 1,25-dihydroxyvitamin D3 (1,25D) improves psoriasis symptoms, possibly by inducing the expression of late cornified envelope (LCE)3 genes involved in skin repair. In psoriasis patients, the majority of whom harbor genomic deletion of LCE3B and LCE3C (LCE3C_LCE3B-del), we propose that certain dietary analogues of 1,25D activate the expression of residual LCE3A/LCE3D/LCE3E genes to compensate for the loss of LCE3B/LCE3C in the deletant genotype. Herein, human keratinocytes (HEKn) homozygous for LCE3C_LCE3B-del were treated with docosahexaenoic acid (DHA) and curcumin, two low-affinity, nutrient ligands for the vitamin D receptor (VDR). DHA and curcumin induce the expression of LCE3A/LCE3D/LCE3E mRNAs at concentrations corresponding to their affinity for VDR. Moreover, immunohistochemical quantitation revealed that the treatment of keratinocytes with DHA or curcumin stimulates LCE3 protein expression, while simultaneously opposing the tumor necrosis factor-alpha (TNFα)-signaled phosphorylation of mitogen activated protein (MAP) kinases, p38 and Jun amino-terminal kinase (JNK), thereby overcoming inflammation biomarkers elicited by TNFα challenge. Finally, DHA and curcumin modulate two transcription factors relevant to psoriatic inflammation, the activator protein-1 factor Jun B and the nuclear receptor NR4A2/NURR1, that is implicated as a mediator of VDR ligand-triggered gene control. These findings provide insights into the mechanism(s) whereby dietary VDR ligands alter inflammatory and barrier functions relevant to skin repair, and may provide a molecular basis for improved treatments for mild/moderate psoriasis.
Collapse
|
43
|
Xin G, Chen R, Zhang X. Identification of key microRNAs, transcription factors and genes associated with congenital obstructive nephropathy in a mouse model of megabladder. Gene 2018; 650:77-85. [PMID: 29410288 DOI: 10.1016/j.gene.2018.01.063] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2017] [Revised: 11/21/2017] [Accepted: 01/17/2018] [Indexed: 02/07/2023]
Abstract
OBJECTIVE The present study aimed to investigate the molecular mechanism underlying congenital obstructive nephropathy (CON). METHODS The microarray dataset GSE70879 was downloaded from the Gene Expression Omnibus, including 3 kidney samples of megabladder mice and 4 control kidneys. Using this dataset, differentially expressed miRNAs (DEMs) were identified between the kidney samples from megabladder mice and controls, followed by identification of the target genes for these DEMs and construction of a DEM and target gene interaction network. Additionally, the target genes were subjected to Gene Ontology and pathway enrichment analyses, and were used for construction of a protein-protein interaction (PPI) network. Finally, regulatory networks were constructed to analyze transcription factors for the key miRNAs. RESULTS From 17 DEMs identified between kidney samples of megabladder mice and controls, 3 key miRNAs were screened, including mmu-miR-150-5p, mmu-miR-374b-5p and mmu-miR-126a-5p. The regulatory networks identified vascular endothelial growth factor A (Vegfa) as the common target gene of mmu-miR-150-5p and five transcription factors, including nuclear receptor subfamily 4, group A, member 2 (Nr4a2), Jun dimerisation protein 2 (Jdp2), Kruppel-like factor 6 (Klf6), Neurexophilin-3 (Nxph3) and RNA binding motif protein 17 (Rbm17). The gene encoding phosphatase and tensin homolog (Pten) was found to be co-regulated by mmu-miR-374b-5p and high mobility group protein A1 (Hmga1), whereas the kirsten rat sarcoma viral oncogene (Kras) was identified as a common target gene of mmu-miR-126a-5p and paired box 6 (Pax6). CONCLUSIONS In summary, the above-listed key miRNAs, transcription factors and key genes may be involved in the development of CON.
Collapse
Affiliation(s)
- Guangda Xin
- Department of Nephrology, China-Japan Union Hospital of Jilin University, Changchun 130033, China
| | - Rui Chen
- Department of Pediatrics, China-Japan Union Hospital of Jilin University, Changchun 130033, China
| | - Xiaofei Zhang
- Department of Pediatrics, China-Japan Union Hospital of Jilin University, Changchun 130033, China.
| |
Collapse
|
44
|
Liu XL, Wang G, Song W, Yang WX, Hua J, Lyu L. microRNA-137 promotes endothelial progenitor cell proliferation and angiogenesis in cerebral ischemic stroke mice by targeting NR4A2 through the Notch pathway. J Cell Physiol 2018; 233:5255-5266. [PMID: 29206299 DOI: 10.1002/jcp.26312] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 12/03/2017] [Indexed: 01/12/2023]
Abstract
Cerebral ischemic stroke (CIS) is one of the common causes of death and disability worldwide. This study aims to investigate effect of miR-137 on endothelial progenitor cells and angiogenesis in CIS by targeting NR4A2 via the Notch pathway. Brain tissues were extracted from CIS and normal mice. Immunohistochemistry was used to determine positive rate of NR4A2 expression. Serum VEGF, Ang, HGF, and IκBα levels were determined by ELISA. RT-qPCR and Western blotting were used to determine expression of related factors. Endothelial progenitor cells in CIS mice were treated and grouped into blank, NC, miR-137 mimic, miR-137 inhibitor, siRNA-NR4A2, and miR-137 inhibitor + siRNA-NR4A2 groups, and cells in normal mice into normal group. Proliferation and apoptosis were determined by MTT and flow cytometry, respectively. NR4A2 protein expression was strongly positive in CIS mice, which showed higher serum levels of VEGF, Ang, and HGF but lower IκBα than normal mice. Compared with normal group, the rest groups (endothelial progenitor cells from CIS mice) showed decreased expressions of miR-137, Hes1, Hes5, and IκBα but elevated NR4A2, Notch, Jagged1, Hey-2, VEGF, Ang, and HGF, inhibited proliferation and enhanced apoptosis. Compared with blank and NC groups, the miR-137 mimic and siRNA-NR4A2 groups exhibited increased expression of miR-137, Hes1, Hes5, and IκBα, but decreased NR4A2, Notch, Jagged1, and Hey-2, with enhanced proliferation and attenuated apoptosis. The miR-137 inhibitor group reversed the conditions. miR-137 enhances the endothelial progenitor cell proliferation and angiogenesis in CIS mice by targeting NR4A2 through the Notch signaling pathway.
Collapse
Affiliation(s)
- Xing-Li Liu
- Department of Radiology, the First People's Hospital of Yunnan Province, Kunming, P.R. China.,Key Laboratory of Medical Imaging, Kunming University of Science and Technology, Kunming, P.R. China
| | - Gang Wang
- Department of Radiology, the First People's Hospital of Yunnan Province, Kunming, P.R. China.,Key Laboratory of Medical Imaging, Kunming University of Science and Technology, Kunming, P.R. China
| | - Wei Song
- Department of Radiology, the First People's Hospital of Yunnan Province, Kunming, P.R. China.,Key Laboratory of Medical Imaging, Kunming University of Science and Technology, Kunming, P.R. China
| | - Wei-Xin Yang
- Department of Radiology, the First People's Hospital of Yunnan Province, Kunming, P.R. China.,Key Laboratory of Medical Imaging, Kunming University of Science and Technology, Kunming, P.R. China
| | - Jian Hua
- Department of Radiology, the First People's Hospital of Yunnan Province, Kunming, P.R. China.,Key Laboratory of Medical Imaging, Kunming University of Science and Technology, Kunming, P.R. China
| | - Liang Lyu
- Department of Radiology, the First People's Hospital of Yunnan Province, Kunming, P.R. China.,Key Laboratory of Medical Imaging, Kunming University of Science and Technology, Kunming, P.R. China
| |
Collapse
|
45
|
Aging: a portrait from gene expression profile in blood cells. Aging (Albany NY) 2017; 8:1802-21. [PMID: 27545843 PMCID: PMC5032697 DOI: 10.18632/aging.101016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 08/07/2016] [Indexed: 01/27/2023]
Abstract
The availability of reliable biomarkers of aging is important not only to monitor the effect of interventions and predict the timing of pathologies associated with aging but also to understand the mechanisms and devise appropriate countermeasures. Blood cells provide an easily available tissue and gene expression profiles from whole blood samples appear to mirror disease states and some aspects of the aging process itself. We report here a microarray analysis of whole blood samples from two cohorts of healthy adult and elderly subjects, aged 43±3 and 68±4 years, respectively, to monitor gene expression changes in the initial phase of the senescence process. A number of significant changes were found in the elderly compared to the adult group, including decreased levels of transcripts coding for components of the mitochondrial respiratory chain, which correlate with a parallel decline in the maximum rate of oxygen consumption (VO2max), as monitored in the same subjects. In addition, blood cells show age-related changes in the expression of several markers of immunosenescence, inflammation and oxidative stress. These findings support the notion that the immune system has a major role in tissue homeostasis and repair, which appears to be impaired since early stages of the aging process.
Collapse
|
46
|
Takahashi H, Tsuboi H, Asashima H, Hirota T, Kondo Y, Moriyama M, Matsumoto I, Nakamura S, Sumida T. cDNA microarray analysis identifies NR4A2 as a novel molecule involved in the pathogenesis of Sjögren's syndrome. Clin Exp Immunol 2017. [PMID: 28621822 DOI: 10.1111/cei.13000] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
To examine genes expressed specifically in labial salivary glands (LSGs) of patients with Sjögren's syndrome (SS) in comparison with those of patients with immunoglobulin (Ig)G4-related disease (IgG4-RD), and to identify the genes involved in the pathogenesis of SS. Gene expression in LSGs of SS patients, IgG4-RD patients and healthy controls (HC) was analysed by cDNA microarray. Quantitative polymerase chain reaction (qPCR) was used to validate the up-regulation of differentially expressed genes (DEGs) in SS. Protein production of the validated gene in LSGs was examined by immunofluorescence (IF) assay. The association of molecular functions of the gene with the pathological conditions in SS was examined using peripheral blood lymphocytes. Among 1320 DEGs up-regulated in SS, qPCR confirmed the up-regulation of NR4A2 in LSGs of SS compared with IgG4-RD. IF staining showed higher production of NR4A2 in nuclei of CD4+ T cells and interleukin (IL)-17-producing cells in LSGs of SS, compared with IgG4-RD. Over-expression of NR4A2 mRNA was observed in peripheral CD4+ T cells of SS patients, compared with HC. Nuclear NR4A2 expression in T helper type 17 (Th17)-polarized CD4+ T cells determined by cellular IF was significantly higher in SS than in HC. Importazole, an inhibitor of importin-β, inhibited nuclear transport of NR4A2 and Th17 polarization along with IL-21 expression in naive CD4+ T cells under Th17-polarizing conditions, but did not alter retinoic acid receptor-related orphan receptor C (RORC) expression. NR4A2 seems to promote Th17 polarization via increased expression and intranuclear localization in CD4+ T cells of SS patients, which could play a critical role in the pathogenesis of SS.
Collapse
Affiliation(s)
- H Takahashi
- Department of Internal Medicine, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - H Tsuboi
- Department of Internal Medicine, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - H Asashima
- Department of Internal Medicine, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - T Hirota
- Department of Internal Medicine, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Y Kondo
- Department of Internal Medicine, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - M Moriyama
- Section of Oral and Maxillofacial Oncology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - I Matsumoto
- Department of Internal Medicine, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - S Nakamura
- Section of Oral and Maxillofacial Oncology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - T Sumida
- Department of Internal Medicine, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| |
Collapse
|
47
|
Morichi S, Urabe T, Morishita N, Takeshita M, Ishida Y, Oana S, Yamanaka G, Kashiwagi Y, Kawashima H. Pathological analysis of children with childhood central nervous system infection based on changes in chemokines and interleukin-17 family cytokines in cerebrospinal fluid. J Clin Lab Anal 2017; 32. [PMID: 28303609 DOI: 10.1002/jcla.22162] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 01/12/2017] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND In this study, the pathologies of acute meningitis and encephalopathy were investigated, and biomarkers useful as prognostic indices were searched for. METHODS The subjects were 31 children with meningitis, 30 with encephalopathy, and 12 with convulsions following gastroenteritis. Control group consisted of 24 children with non-central nervous system infection. Cerebrospinal fluid cytokine analysis was performed. RESULTS Chemokines significantly increased in the bacterial meningitis group compared with those in viral meningitis and encephalopathy groups. On comparison of interleukin(IL)-17, it increased in cases with status epilepticus in influenza-associated encephalopathy group. In the rotavirus encephalopathy and convulsions following gastroenteritis groups, IL-17 particularly increased in the convulsions following gastroenteritis group. IL-8 increased in all cases irrespective of the causative virus. CONCLUSIONS In the encephalopathy group, IL-8 may serve as a neurological prognostic index. IL-17 was increased in the convulsions following gastroenteritis group, particularly in cases with status epilepticus, suggesting its involvement as a convulsion-related factor.
Collapse
Affiliation(s)
| | - Tomomi Urabe
- Department of Pediatrics, Tokyo Medical University, Tokyo, Japan
| | | | - Mika Takeshita
- Department of Pediatrics, Tokyo Medical University, Tokyo, Japan
| | - Yu Ishida
- Department of Pediatrics, Tokyo Medical University, Tokyo, Japan
| | - Shingo Oana
- Department of Pediatrics, Tokyo Medical University, Tokyo, Japan
| | - Gaku Yamanaka
- Department of Pediatrics, Tokyo Medical University, Tokyo, Japan
| | - Yasuyo Kashiwagi
- Department of Pediatrics, Tokyo Medical University, Tokyo, Japan
| | | |
Collapse
|
48
|
Rodríguez-Calvo R, Tajes M, Vázquez-Carrera M. The NR4A subfamily of nuclear receptors: potential new therapeutic targets for the treatment of inflammatory diseases. Expert Opin Ther Targets 2017; 21:291-304. [PMID: 28055275 DOI: 10.1080/14728222.2017.1279146] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Prolonged inflammatory response contributes to the pathogenesis of chronic disease-related disturbances. Among nuclear receptors (NRs), the orphan NR4A subfamily, which includes Nur77 (NR4A1), Nurr1 (NR4A2) and NOR1 (NR4A3), has recently emerged as a therapeutic target for the treatment of inflammation. Areas covered: This review focuses on the capacity of NR4A receptors to counter-regulate the development of the inflammatory response, with a special focus on the molecular transrepression mechanisms. Expert opinion: Recent studies have highlighted the role of NR4A receptors as significant regulators of the inflammatory response. NR4A receptors are rapidly induced by inflammatory stimuli, thus suggesting that they are required for the initiation of inflammation. Nevertheless, NR4A anti-inflammatory properties indicate that this acute regulation could be a protective reaction aimed at resolving inflammation in the later stages. Therefore, NR4A receptors are involved in a negative feedback mechanism to maintain the inflammatory balance. However, the underlying mechanisms are not entirely clear. Only a small number of NR4A-target genes have been identified, and the transcriptional repression mechanisms are only beginning to emerge. Despite further research is needed to fully understand the role of NR4A receptors in inflammation, these NRs should be considered as targets for new therapeutic approaches to inflammatory diseases.
Collapse
Affiliation(s)
- Ricardo Rodríguez-Calvo
- a Vascular Medicine and Metabolism Unit, Research Unit on Lipids and Atherosclerosis, Sant Joan University Hospital, Pere Virgili Health Research Institute (IISPV) and Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM)-Instituto de Salud Carlos III, Faculty of Medicine and Health Sciences , Rovira i Virgili University , Reus , Spain
| | - Marta Tajes
- b Heart Diseases Biomedical Research Group, Inflammatory and Cardiovascular Disorders Program , Hospital del Mar Medical Research Institute (IMIM), Parc de Salut Mar , Barcelona , Spain
| | - Manuel Vázquez-Carrera
- c Department of Pharmacology, Toxicology and Therapeutic Chemistry, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Institut de Recerca Pediàtrica-Hospital Sant Joan de Déu, and Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM)-Instituto de Salud Carlos III, Faculty of Pharmacy, Diagonal 643 , University of Barcelona , Barcelona , Spain
| |
Collapse
|
49
|
Won HY, Hwang ES. Transcriptional modulation of regulatory T cell development by novel regulators NR4As. Arch Pharm Res 2016; 39:1530-1536. [PMID: 27778276 DOI: 10.1007/s12272-016-0803-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2016] [Accepted: 07/21/2016] [Indexed: 02/07/2023]
Abstract
Regulatory T (Treg) cells with high expression of both CD25 and Foxp3 are developed in the thymus and also peripheral tissues. Treg cells suppress the activation and functions of effector T cells raised against specific antigens and are crucial for maintaining immune homeostasis. Treg cell development is associated with the induction of and epigenetic alterations of forkhead transcription factor Foxp3. Foxp3 expression is increased by the activation of several transcription factors including nuclear factor-kappa B (NF-κB), nuclear factor of activated T cells (NFAT), and Smad3 in response to various signals such as TGFβ, retinoic acid, and rapamycin. Recently, the orphan nuclear receptor 4A proteins (NR4As) including NR4A1 (Nur77), NR4A2 (Nurr1), and NR4A3 (Nor1) are reported to regulate Treg cell development through activation of Foxp3 and have therapeutic potentials in treating immune disorders. This review summarizes the function and regulatory mechanisms of Treg cells and also implicates current advances in immunomodulatory functions of NR4As and their therapeutic potentials in inflammation and cancer.
Collapse
Affiliation(s)
- Hee Yeon Won
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, 03760, Korea
| | - Eun Sook Hwang
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, 03760, Korea.
| |
Collapse
|
50
|
Abstract
Recent progress in cancer immunotherapy emphasizes the importance of understanding immune-regulatory pathways in tumours. Dysfunction of antitumour T cells may be due to mechanisms that are evolutionarily conserved or acquired by somatic mutations. The dysfunctional state of T cells has been termed 'exhaustion', on the basis of similarities to dysfunctional T cells in chronic infections. However, despite shared properties, recent studies have identified marked differences between T cell dysfunction in cancer and chronic infection. In this Review, we discuss T cell-intrinsic molecular alterations and metabolic communication in the tumour microenvironment. Identification of the underlying molecular drivers of T cell dysfunction is essential for the continued progress of cancer research and therapy.
Collapse
Affiliation(s)
- Daniel E Speiser
- Department of Oncology, Ludwig Cancer Research, University of Lausanne, Biopole 3 - 02DB92, Chemin des Boveresses 155, CH-1066 Epalinges, Switzerland.,Campbell Family Institute for Breast Cancer Research, Princess Margaret Cancer Centre, Ontario Cancer Institute, 610 University Avenue, Toronto, Ontario M5G 2M9, Canada
| | - Ping-Chih Ho
- Department of Oncology, Ludwig Cancer Research, University of Lausanne, Biopole 3 - 02DB92, Chemin des Boveresses 155, CH-1066 Epalinges, Switzerland
| | - Grégory Verdeil
- Department of Oncology, Ludwig Cancer Research, University of Lausanne, Biopole 3 - 02DB92, Chemin des Boveresses 155, CH-1066 Epalinges, Switzerland
| |
Collapse
|