1
|
Liu X, Liu K, Hu L, Liu Z, Liu X, Wang J. A novel TGFBR2 mutation causes Loeys-Dietz syndrome in a Chinese infant: A case report. Heliyon 2025; 11:e42116. [PMID: 39906804 PMCID: PMC11791283 DOI: 10.1016/j.heliyon.2025.e42116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 01/13/2025] [Accepted: 01/17/2025] [Indexed: 02/06/2025] Open
Abstract
Introduction Loeys-Dietz syndrome (LDS) is a rare autosomal dominant disorder with extensive connective tissue involvement. The diagnosis of this disease is mainly based on clinical features combined with the detection of pathogenic gene mutations, mainly mutations in the transforming growth factor-beta (TGF-β) signaling pathway. Methods The molecular pathogenesis of a LDS syndrome proband and his family members was analyzed using whole exome sequencing and validated using Sanger sequencing. Molecular dynamics simulations and in vitro cell experiments further analyzed the structural changes and functional abnormalities of the variation. Results This study describes the case of a 6-month-old infant diagnosed with LDS with typical craniofacial abnormalities, developmental delay, and a dilated aortic sinus (19 mm; Z-score 3.5). Genetic analysis showed the patient carried a novel de novo TGF-β receptor 2 (TGFBR2) mutation (NM_003242: c.1005_1007delGTA (p.Glu335_Tyr336delinsAsp)). Molecular dynamics simulation showed that the TGFBR2 c.1005_1007delGTA mutation changed the protein conformation, making the protein conformation more stable. The p.Glu335_Tyr336delinsAsp mutation significantly reduced TGF-β-induced gene transcription and phosphorylation of SMAD Family Member 2 (SMAD2) in vitro. Conclusions Our comprehensive genetic analysis suggested that the p.Glu335_Tyr336delinsAsp variant of TGFBR2 caused aberrant TGF-β signaling and contributed to LDS in the patient.
Collapse
Affiliation(s)
- Xin Liu
- Shenzhen Eye Hospital, Jinan University, Shenzhen Eye Institute, Shenzhen, China
| | - Kaiqing Liu
- Shenzhen Luohu Hospital Group, The Third Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Lifu Hu
- Department of Clinical Medicine, Shantou University Medical College, Shantou, China
| | - Zixiao Liu
- Shenzhen Eye Hospital, Jinan University, Shenzhen Eye Institute, Shenzhen, China
| | - Xinhua Liu
- Shenzhen Eye Hospital, Jinan University, Shenzhen Eye Institute, Shenzhen, China
| | - Jiantao Wang
- Shenzhen Eye Hospital, Jinan University, Shenzhen Eye Institute, Shenzhen, China
| |
Collapse
|
2
|
Guo Y, Hu C, Cai K, Long G, Cai D, Yu Z, Huang X, Cai Z, Hu P, Chen Y, Gao F, Wu X. KRAS inhibitors may prevent colorectal cancer metachronous metastasis by suppressing TGF‑β mediated epithelial‑mesenchymal transition. Mol Med Rep 2025; 31:24. [PMID: 39540351 DOI: 10.3892/mmr.2024.13389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
In colorectal cancer (CRC), KRAS mutations enhance metachronous metastasis, a condition without prognostic biomarkers or preventive measures. The present study demonstrated that KRAS mutation may be a risk factor for CRC metachronous metastasis through meta‑analysis of public databases. A risk scoring model was constructed using machine learning for predicting metachronous metastasis in KRAS‑mutant CRC. Wound healing and Transwell assay indicated that KRAS inhibitors strongly suppress migration and invasion capabilities of high‑risk CRC cells and these findings were validated through ex vivo organoid and a mouse model of splenic‑liver metastasis. Mechanistically, RNA sequencing, reverse transcription‑quantitative PCR and western blot analyses revealed that KRAS inhibitors suppressed epithelial‑mesenchymal transition (EMT) and transforming growth factor β (TGF‑β) signaling. Notably, addition of TGF‑β1 protein partially reversed the inhibitory effects of KRAS inhibitors on CRC. These results suggested that KRAS inhibitors may prevent CRC metachronous metastasis by downregulating TGF‑β‑mediated EMT, suggesting they can be used prophylactically in high‑risk KRAS‑mutant CRC.
Collapse
Affiliation(s)
- Yaoyu Guo
- Guangdong Institute of Gastroenterology, Department of General Surgery, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat‑sen University, Guangzhou, Guangdong 510655, P.R. China
| | - Chuling Hu
- Guangdong Institute of Gastroenterology, Department of General Surgery, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat‑sen University, Guangzhou, Guangdong 510655, P.R. China
| | - Kuntai Cai
- Guangdong Institute of Gastroenterology, Department of General Surgery, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat‑sen University, Guangzhou, Guangdong 510655, P.R. China
| | - Guojie Long
- Department of General Surgery (Department of Pancreatic Hepatobiliary Surgery), The Sixth Affiliated Hospital, Sun Yat‑sen University, Guangzhou, Guangdong 510655, P.R. China
| | - Du Cai
- Guangdong Institute of Gastroenterology, Department of General Surgery, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat‑sen University, Guangzhou, Guangdong 510655, P.R. China
| | - Zhaoliang Yu
- Guangdong Institute of Gastroenterology, Department of General Surgery, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat‑sen University, Guangzhou, Guangdong 510655, P.R. China
| | - Xinxin Huang
- Guangdong Institute of Gastroenterology, Department of General Surgery, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat‑sen University, Guangzhou, Guangdong 510655, P.R. China
| | - Zerong Cai
- Guangdong Institute of Gastroenterology, Department of General Surgery, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat‑sen University, Guangzhou, Guangdong 510655, P.R. China
| | - Peishan Hu
- Guangdong Institute of Gastroenterology, Department of General Surgery, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat‑sen University, Guangzhou, Guangdong 510655, P.R. China
| | - Yufeng Chen
- Guangdong Institute of Gastroenterology, Department of General Surgery, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat‑sen University, Guangzhou, Guangdong 510655, P.R. China
| | - Feng Gao
- Guangdong Institute of Gastroenterology, Department of General Surgery, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat‑sen University, Guangzhou, Guangdong 510655, P.R. China
| | - Xiaojian Wu
- Guangdong Institute of Gastroenterology, Department of General Surgery, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat‑sen University, Guangzhou, Guangdong 510655, P.R. China
| |
Collapse
|
3
|
Chung SW, Cooper CR, Farach-Carson MC, Ogunnaike BA. Computational Modeling and Analysis of the TGF-β-induced ERK and SMAD Pathways. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.07.622480. [PMID: 39574616 PMCID: PMC11581039 DOI: 10.1101/2024.11.07.622480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/01/2024]
Abstract
TGF-β, an important cytokine that plays a key role in many diseases regulates a wide array of cellular and physiologic processes via several TGF-β-driven signaling cascades, including the SMAD and non-SMAD-driven pathways. However, the detailed mechanisms by which TGF-β induces such diverse responses remain poorly understood. In particular, compared to the SMAD-dependent pathway, SMAD-independent pathways such as the ERK/MAPK pathway, which is critical in cancer progression, are less characterized. Here, we develop an integrated mechanistic model of the TGF-β-triggered ERK activation pathway and its crosstalk with the SMAD pathway, an analysis of which demonstrates how SMAD dynamics can be significantly modulated and regulated by the ERK pathway. In particular, SMAD-mediated transcription can be altered and delayed due to expedited phosphorylation of the linker of SMAD by TGF-β-activated ERK; and enhanced ERK activity, but attenuated SMAD activity, can be achieved simultaneously by fast turnover of TGF-β receptors via lipid-rafts. Also, in silico mutations of the TGF-β pathways reveal that the dynamic characteristics of both SMAD and ERK signaling may change significantly during cancer development. Specifically, normal cells may exhibit enhanced and sustained SMAD signaling with transient ERK activation, whereas cancerous cells may produce elevated and prolonged ERK signaling with enervated SMAD activation. These distinctive differences between normal and cancerous signaling behavior provide clues concerning, and potential explanations for, the seemingly contradictory roles played by TGF-β during cancer progression. We demonstrate how crosstalk among various branch pathways of TGF-β can influence overall cellular behavior. Based on model analysis, we hypothesize that aberrant molecular alterations drive changes in the intensity and duration of SMAD and ERK signaling during cancer progression and ultimately lead to an imbalance between the SMAD and ERK pathways in favor of tumor promotion. Thus, to treat cancer patients with a genetic signature of oncogenic Ras effectively may require at least a combination therapy to restore both the expression of TGF-β receptors and the GTPase activity of Ras.
Collapse
|
4
|
Fioretto BS, Rosa I, Tani A, Andreucci E, Romano E, Sgambati E, Manetti M. Blockade of Sialylation with Decrease in Polysialic Acid Levels Counteracts Transforming Growth Factor β1-Induced Skin Fibroblast-to-Myofibroblast Transition. Cells 2024; 13:1067. [PMID: 38920695 PMCID: PMC11201575 DOI: 10.3390/cells13121067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/14/2024] [Accepted: 06/18/2024] [Indexed: 06/27/2024] Open
Abstract
Aberrant sialylation with overexpression of the homopolymeric glycan polysialic acid (polySia) was recently reported in fibroblasts from fibrotic skin lesions. Yet, whether such a rise in polySia levels or sialylation in general may be functionally implicated in profibrotic activation of fibroblasts and their transition to myofibroblasts remains unknown. Therefore, we herein explored whether inhibition of sialylation could interfere with the process of skin fibroblast-to-myofibroblast transition induced by the master profibrotic mediator transforming growth factor β1 (TGFβ1). Adult human skin fibroblasts were pretreated with the competitive pan-sialyltransferase inhibitor 3-Fax-peracetyl-Neu5Ac (3-Fax) before stimulation with recombinant human TGFβ1, and then analyzed for polySia expression, cell viability, proliferation, migratory ability, and acquisition of myofibroblast-like morphofunctional features. Skin fibroblast stimulation with TGFβ1 resulted in overexpression of polySia, which was effectively blunted by 3-Fax pre-administration. Pretreatment with 3-Fax efficiently lessened TGFβ1-induced skin fibroblast proliferation, migration, changes in cell morphology, and phenotypic and functional differentiation into myofibroblasts, as testified by a significant reduction in FAP, ACTA2, COL1A1, COL1A2, and FN1 gene expression, and α-smooth muscle actin, N-cadherin, COL1A1, and FN-EDA protein levels, as well as a reduced contractile capability. Moreover, skin fibroblasts pre-administered with 3-Fax displayed a significant decrease in Smad3-dependent canonical TGFβ1 signaling. Collectively, our in vitro findings demonstrate for the first time that aberrant sialylation with increased polySia levels has a functional role in skin fibroblast-to-myofibroblast transition and suggest that competitive sialyltransferase inhibition might offer new therapeutic opportunities against skin fibrosis.
Collapse
Affiliation(s)
- Bianca Saveria Fioretto
- Section of Anatomy and Histology, Department of Experimental and Clinical Medicine, University of Florence, Largo Brambilla 3, 50134 Florence, Italy; (B.S.F.); (I.R.); (A.T.)
| | - Irene Rosa
- Section of Anatomy and Histology, Department of Experimental and Clinical Medicine, University of Florence, Largo Brambilla 3, 50134 Florence, Italy; (B.S.F.); (I.R.); (A.T.)
- Imaging Platform, Department of Experimental and Clinical Medicine, University of Florence, Largo Brambilla 3, 50134 Florence, Italy
| | - Alessia Tani
- Section of Anatomy and Histology, Department of Experimental and Clinical Medicine, University of Florence, Largo Brambilla 3, 50134 Florence, Italy; (B.S.F.); (I.R.); (A.T.)
- Imaging Platform, Department of Experimental and Clinical Medicine, University of Florence, Largo Brambilla 3, 50134 Florence, Italy
| | - Elena Andreucci
- Section of Experimental Pathology and Oncology, Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, Viale Morgagni 50, 50134 Florence, Italy;
| | - Eloisa Romano
- Section of Internal Medicine, Department of Experimental and Clinical Medicine, University of Florence, Largo Brambilla 3, 50134 Florence, Italy;
| | - Eleonora Sgambati
- Department of Biosciences and Territory, University of Molise, Contrada Fonte Lappone, Pesche, 86090 Isernia, Italy;
| | - Mirko Manetti
- Section of Anatomy and Histology, Department of Experimental and Clinical Medicine, University of Florence, Largo Brambilla 3, 50134 Florence, Italy; (B.S.F.); (I.R.); (A.T.)
- Imaging Platform, Department of Experimental and Clinical Medicine, University of Florence, Largo Brambilla 3, 50134 Florence, Italy
| |
Collapse
|
5
|
Li X, Wu Y, Tian T. TGF-β Signaling in Metastatic Colorectal Cancer (mCRC): From Underlying Mechanism to Potential Applications in Clinical Development. Int J Mol Sci 2022; 23:14436. [PMID: 36430910 PMCID: PMC9698504 DOI: 10.3390/ijms232214436] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/08/2022] [Accepted: 11/17/2022] [Indexed: 11/22/2022] Open
Abstract
Colorectal cancer (CRC) is a serious public health issue, and it has the leading incidence and mortality among malignant tumors worldwide. CRC patients with metastasis in the liver, lung or other distant sites always have poor prognosis. Thus, there is an urgent need to discover the underlying mechanisms of metastatic colorectal cancer (mCRC) and to develop optimal therapy for mCRC. Transforming growth factor-β (TGF-β) signaling plays a significant role in various physiologic and pathologic processes, and aberrant TGF-β signal transduction contributes to mCRC progression. In this review, we summarize the alterations of the TGF-β signaling pathway in mCRC patients, the functional mechanisms of TGF-β signaling, its promotion of epithelial-mesenchymal transition, its facilitation of angiogenesis, its suppression of anti-tumor activity of immune cells in the microenvironment and its contribution to stemness of CRC cells. We also discuss the possible applications of TGF-β signaling in mCRC diagnosis, prognosis and targeted therapies in clinical trials. Hopefully, these research advances in TGF-β signaling in mCRC will improve the development of new strategies that can be combined with molecular targeted therapy, immunotherapy and traditional therapies to achieve better efficacy and benefit mCRC patients in the near future.
Collapse
Affiliation(s)
| | | | - Tian Tian
- College of Life Science and Bioengineering, Beijing Jiaotong University, Beijing 100044, China
| |
Collapse
|
6
|
Michalak M, Golde V, Helm D, Kaltner H, Gebert J, Kopitz J. Combining Recombinase-Mediated Cassette Exchange Strategy with Quantitative Proteomic and Phosphoproteomic Analyses to Inspect Intracellular Functions of the Tumor Suppressor Galectin-4 in Colorectal Cancer Cells. Int J Mol Sci 2022; 23:ijms23126414. [PMID: 35742860 PMCID: PMC9223697 DOI: 10.3390/ijms23126414] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/03/2022] [Accepted: 06/06/2022] [Indexed: 12/18/2022] Open
Abstract
Galectin-4 (Gal4) has been suggested to function as a tumor suppressor in colorectal cancer (CRC). In order to systematically explore its function in CRC, we established a CRC cell line where Gal4 expression can be regulated via the doxycycline (dox)-inducible expression of a single copy wildtype LGALS4 transgene generated by recombinase-mediated cassette exchange (RMCE). Using this model and applying in-depth proteomic and phosphoproteomic analyses, we systematically screened for intracellular changes induced by Gal4 expression. Overall, 3083 cellular proteins and 2071 phosphosites were identified and quantified, of which 1603 could be matched and normalized to their protein expression levels. A bioinformatic analysis revealed that most of the regulated proteins and phosphosites can be localized in the nucleus and are categorized as nucleic acid-binding proteins. The top candidates whose expression was modulated by Gal4 are PURB, MAPKAPK3, BTF3 and BCAR1, while the prime candidates with altered phosphorylation included ZBTB7A, FOXK1, PURB and CK2beta. In order to validate the (phospho)proteomic data, we confirmed these candidates by a radiometric metabolic-labelling and immunoprecipitation strategy. All candidates exert functions in the transcriptional or translational control, indicating that Gal4 might be involved in these processes by affecting the expression or activity of these proteins.
Collapse
Affiliation(s)
- Malwina Michalak
- Department of Applied Tumor Biology, Institute of Pathology, Ruprecht-Karls-University Heidelberg, Im Neuenheimer Feld 224, 69120 Heidelberg, Germany; (M.M.); (V.G.); (J.K.)
- Clinical Cooperation Unit Applied Tumor Biology, German Cancer Research Center, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Viola Golde
- Department of Applied Tumor Biology, Institute of Pathology, Ruprecht-Karls-University Heidelberg, Im Neuenheimer Feld 224, 69120 Heidelberg, Germany; (M.M.); (V.G.); (J.K.)
| | - Dominik Helm
- Proteomics Core Facility, German Cancer Research Center, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany;
| | - Herbert Kaltner
- Veterinary Faculty, Institute of Physiological Chemistry, Ludwig-Maximilians-University, 80539 München, Germany;
| | - Johannes Gebert
- Department of Applied Tumor Biology, Institute of Pathology, Ruprecht-Karls-University Heidelberg, Im Neuenheimer Feld 224, 69120 Heidelberg, Germany; (M.M.); (V.G.); (J.K.)
- Clinical Cooperation Unit Applied Tumor Biology, German Cancer Research Center, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
- Correspondence:
| | - Jürgen Kopitz
- Department of Applied Tumor Biology, Institute of Pathology, Ruprecht-Karls-University Heidelberg, Im Neuenheimer Feld 224, 69120 Heidelberg, Germany; (M.M.); (V.G.); (J.K.)
- Clinical Cooperation Unit Applied Tumor Biology, German Cancer Research Center, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| |
Collapse
|
7
|
Stanilov N, Grigorova A, Velikova T, Stanilova SA. Genetic variation of TGF-ΒR2 as a protective genotype for the development of colorectal cancer in men. World J Gastrointest Oncol 2021; 13:1766-1780. [PMID: 34853649 PMCID: PMC8603459 DOI: 10.4251/wjgo.v13.i11.1766] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 05/19/2021] [Accepted: 09/22/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The role of transforming growth factor beta (TGF-β) signaling, including both the cytokine and their receptors, in the etiology of colorectal cancer (CRC) has been of particular interest lately. AIM To investigate the association between promoter polymorphism in TGF-β receptor 2 TGF-ΒR2G[-875]A with a CRC risk in a cohort of Bulgarian patients using a case-control gene association study approach, as well as the protein levels of TGF-β1 in the peripheral blood. METHODS A cohort of 184 CRC patients and 307 sex and age-matched healthy subjects were recruited in the study. A genotyping of the TGF-ΒR2G[-875]A (rs3087465) polymorphism was performed by primer-introduced restriction analyses-polymerase chain reaction approaches. RESULTS The frequency of TGF-ΒR2G[-875]A genotype was decreased in male patients with CRC than in healthy men (31.3% vs 44.8%; P = 0.058). Among males, the TGF-ΒR2G[-509]G genotype was related to a significantly increased risk of CRC development (OR = 1.820, 95%CI: 0.985-3.362, P = 0.055) than the GA + AA genotype. Also, TGF-ΒR2[-875]*A-allele itself was rarer in men with CRC than healthy men (19.1% vs 26.9%, P = 0.086) and was associated with a protective effect (OR = 0.644; 95%CI: 0.389-1.066; P = 0.086). Regarding the genotypes, we found that TGF-β1 serum levels were higher in GG genotype in healthy persons above 50 years than the CRC patients [36.3 ng/mL interquartile range (IQR) 19.9-56.5 vs 22.4 ng/mL IQR 14.8-29.7, P = 0.014]. We found significant differences between higher levels of TGF-β1 serum levels in healthy controls above 50 years (GG genotype) and CRC patients (GG genotype) at the early stage (36.3 ng/mL IQR 19.9-56.5 vs 22.8 ng/mL IQR 14.6-28.6, P = 0.037) and advanced CRC (36.3 ng/mL IQR 19.9-56.5 vs 21.6 ng/mL IQR 15.9-33.9, P = 0.039). CONCLUSION In summary, our results demonstrated that TGF-ΒR2 AG and AA genotypes were associated with a reduced risk of CRC, as well as circulating levels of TGF-β could prevent CRC development in a gender-specific manner. Notably, male carriers of TGF-ΒR2 -875A allele genotypes had a lower risk of CRC development and progression, suggesting that TGF-ΒR2 -875A/G polymorphism significantly affects the protective biological factors that also impact the risk of colon and rectal carcinogenesis.
Collapse
Affiliation(s)
- Noyko Stanilov
- Oncoplastic Unit, University College London Hospital, London NW1 2BU, United Kingdom
| | - Antonia Grigorova
- Department of Molecular Biology, Immunology and Medical Genetics, Medical Faculty, Trakia University, Stara Zagora 6000, Bulgaria
| | - Tsvetelina Velikova
- Department of Clinical Immunology, University Hospital Lozenetz, Sofia 1407, Bulgaria
- Medical Faculty, Sofia University St. Kliment Ohridski, Sofia 1407, Bulgaria
| | - Spaska Angelova Stanilova
- Department of Molecular Biology, Immunology and Medical Genetics, Medical Faculty, Trakia University, Stara Zagora 6000, Bulgaria
| |
Collapse
|
8
|
Cho JH, Park S, Kim S, Kang SM, Woo TG, Yoon MH, Lee H, Jeong M, Park YH, Kim H, Han YT, Suh YG, Kim BH, Kwon Y, Yun H, Park BJ. RKIP Induction Promotes Tumor Differentiation via SOX2 Degradation in NF2-Deficient Conditions. Mol Cancer Res 2021; 20:412-424. [PMID: 34728553 DOI: 10.1158/1541-7786.mcr-21-0373] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 09/16/2021] [Accepted: 10/28/2021] [Indexed: 11/16/2022]
Abstract
Loss of NF2 (merlin) has been suggested as a genetic cause of neurofibromatosis type 2 and malignant peripheral nerve sheath tumor (MPNST). Previously, we demonstrated that NF2 sustained TGFβ receptor 2 (TβR2) expression and reduction or loss of NF2 activated non-canonical TGFβ signaling, which reduced Raf kinase inhibitor protein (RKIP) expression via TβR1 kinase activity. Here, we show that a selective RKIP inducer (novel chemical, Nf18001) inhibits tumor growth and promotes schwannoma cell differentiation into mature Schwann cells under NF2-deficient conditions. In addition, Nf18001 is not cytotoxic to cells expressing NF2 and is not disturb canonical TGFβ signaling. Moreover, the novel chemical induces expression of SOX10, a marker of differentiated Schwann cells, and promotes nuclear export and degradation of SOX2, a stem cell factor. Treatment with Nf18001 inhibited tumor growth in an allograft model with mouse schwannoma cells. These results strongly suggest that selective RKIP inducers could be useful for the treatment of neurofibromatosis type 2 as well as NF2-deficient MPNST. IMPLICATIONS: This study identifies that a selective RKIP inducer inhibits tumor growth and promotes schwannoma cell differentiation under NF2-deficient conditions by reducing SOX2 and increasing SOX10 expression.
Collapse
Affiliation(s)
- Jung-Hyun Cho
- Department of Molecular Biology, College of Natural Science, Pusan National University, Busan, Republic of Korea.,Institute of Systems Biology, Pusan National University, Busan, Republic of Korea
| | - Soyoung Park
- Department of Molecular Biology, College of Natural Science, Pusan National University, Busan, Republic of Korea
| | - Soyeong Kim
- College of Pharmacy, Pusan National University, Busan, Republic of Korea
| | - So-Mi Kang
- Department of Molecular Biology, College of Natural Science, Pusan National University, Busan, Republic of Korea
| | - Tae-Gyun Woo
- Department of Molecular Biology, College of Natural Science, Pusan National University, Busan, Republic of Korea
| | - Min-Ho Yoon
- Department of Molecular Biology, College of Natural Science, Pusan National University, Busan, Republic of Korea
| | - Hyunkee Lee
- College of Pharmacy, Pusan National University, Busan, Republic of Korea
| | - Myeonggyo Jeong
- College of Pharmacy, Pusan National University, Busan, Republic of Korea
| | - Yeong Hye Park
- College of Pharmacy, Pusan National University, Busan, Republic of Korea
| | - Heegyu Kim
- College of Pharmacy, Pusan National University, Busan, Republic of Korea
| | - Young Taek Han
- College of Pharmacy, Dankook University, Cheonan, Republic of Korea
| | - Young-Ger Suh
- College of Pharmacy, CHA University, Pocheon, Gyeonggi-do, Republic of Korea
| | - Bae-Hoon Kim
- Rare Disease R&D Center, PRG S&T Co., Ltd. Busan, Republic of Korea
| | - Yonghoon Kwon
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
| | - Hwayoung Yun
- College of Pharmacy, Pusan National University, Busan, Republic of Korea.
| | - Bum-Joon Park
- Department of Molecular Biology, College of Natural Science, Pusan National University, Busan, Republic of Korea.
| |
Collapse
|
9
|
Sieber-Frank J, Stark HJ, Kalteis S, Prigge ES, Köhler R, Andresen C, Henkel T, Casari G, Schubert T, Fischl W, Li-Weber M, Krammer PH, von Knebel Doeberitz M, Kopitz J, Kloor M, Ahadova A. Treatment resistance analysis reveals GLUT-1-mediated glucose uptake as a major target of synthetic rocaglates in cancer cells. Cancer Med 2021; 10:6807-6822. [PMID: 34546000 PMCID: PMC8495295 DOI: 10.1002/cam4.4212] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/15/2021] [Accepted: 07/21/2021] [Indexed: 12/19/2022] Open
Abstract
Rocaglates are natural compounds that have been extensively studied for their ability to inhibit translation initiation. Rocaglates represent promising drug candidates for tumor treatment due to their growth‐inhibitory effects on neoplastic cells. In contrast to natural rocaglates, synthetic analogues of rocaglates have been less comprehensively characterized, but were also shown to have similar effects on the process of protein translation. Here, we demonstrate an enhanced growth‐inhibitory effect of synthetic rocaglates when combined with glucose anti‐metabolite 2‐deoxy‐D‐glucose (2DG) in different cancer cell lines. Moreover, we unravel a new aspect in the mechanism of action of synthetic rocaglates involving reduction of glucose uptake mediated by downregulation or abrogation of glucose transporter GLUT‐1 expression. Importantly, cells with genetically induced resistance to synthetic rocaglates showed substantially less pronounced treatment effect on glucose metabolism and did not demonstrate GLUT‐1 downregulation, pointing at the crucial role of this mechanism for the anti‐tumor activity of the synthetic rocaglates. Transcriptome profiling revealed glycolysis as one of the major pathways differentially regulated in sensitive and resistant cells. Analysis of synthetic rocaglate efficacy in a 3D tissue context with a co‐culture of tumor and normal cells demonstrated a selective effect on tumor cells and substantiated the mechanistic observations obtained in cancer cell lines. Increased glucose uptake and metabolism is a universal feature across different tumor types. Therefore, targeting this feature by synthetic rocaglates could represent a promising direction for exploitation of rocaglates in novel anti‐tumor therapies.
Collapse
Affiliation(s)
- Julia Sieber-Frank
- Department of Applied Tumor Biology, Institute of Pathology, University of Heidelberg, Heidelberg, Germany.,Collaboration Unit Applied Tumor Biology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Hans-Jürgen Stark
- Department of Applied Tumor Biology, Institute of Pathology, University of Heidelberg, Heidelberg, Germany.,Collaboration Unit Applied Tumor Biology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Simon Kalteis
- Department of Applied Tumor Biology, Institute of Pathology, University of Heidelberg, Heidelberg, Germany.,Collaboration Unit Applied Tumor Biology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Elena-Sophie Prigge
- Department of Applied Tumor Biology, Institute of Pathology, University of Heidelberg, Heidelberg, Germany.,Collaboration Unit Applied Tumor Biology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Richard Köhler
- Department of Applied Tumor Biology, Institute of Pathology, University of Heidelberg, Heidelberg, Germany.,Collaboration Unit Applied Tumor Biology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Carolin Andresen
- Department of Applied Tumor Biology, Institute of Pathology, University of Heidelberg, Heidelberg, Germany.,Collaboration Unit Applied Tumor Biology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | | | | | | | - Min Li-Weber
- Tumor Immunology Program, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Peter H Krammer
- Tumor Immunology Program, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Magnus von Knebel Doeberitz
- Department of Applied Tumor Biology, Institute of Pathology, University of Heidelberg, Heidelberg, Germany.,Collaboration Unit Applied Tumor Biology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jürgen Kopitz
- Department of Applied Tumor Biology, Institute of Pathology, University of Heidelberg, Heidelberg, Germany.,Collaboration Unit Applied Tumor Biology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Matthias Kloor
- Department of Applied Tumor Biology, Institute of Pathology, University of Heidelberg, Heidelberg, Germany.,Collaboration Unit Applied Tumor Biology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Aysel Ahadova
- Department of Applied Tumor Biology, Institute of Pathology, University of Heidelberg, Heidelberg, Germany.,Collaboration Unit Applied Tumor Biology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
10
|
Zhang J, Ten Dijke P, Wuhrer M, Zhang T. Role of glycosylation in TGF-β signaling and epithelial-to-mesenchymal transition in cancer. Protein Cell 2021; 12:89-106. [PMID: 32583064 PMCID: PMC7862465 DOI: 10.1007/s13238-020-00741-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 05/29/2020] [Indexed: 12/14/2022] Open
Abstract
Glycosylation is a common posttranslational modification on membrane-associated and secreted proteins that is of pivotal importance for regulating cell functions. Aberrant glycosylation can lead to uncontrolled cell proliferation, cell-matrix interactions, migration and differentiation, and has been shown to be involved in cancer and other diseases. The epithelial-to-mesenchymal transition is a key step in the metastatic process by which cancer cells gain the ability to invade tissues and extravasate into the bloodstream. This cellular transformation process, which is associated by morphological change, loss of epithelial traits and gain of mesenchymal markers, is triggered by the secreted cytokine transforming growth factor-β (TGF-β). TGF-β bioactivity is carefully regulated, and its effects on cells are mediated by its receptors on the cell surface. In this review, we first provide a brief overview of major types of glycans, namely, N-glycans, O-glycans, glycosphingolipids and glycosaminoglycans that are involved in cancer progression. Thereafter, we summarize studies on how the glycosylation of TGF-β signaling components regulates TGF-β secretion, bioavailability and TGF-β receptor function. Then, we review glycosylation changes associated with TGF-β-induced epithelial-to-mesenchymal transition in cancer. Identifying and understanding the mechanisms by which glycosylation affects TGF-β signaling and downstream biological responses will facilitate the identification of glycans as biomarkers and enable novel therapeutic approaches.
Collapse
Affiliation(s)
- Jing Zhang
- Oncode Institute and Cell Chemical Biology, Leiden University Medical Center, 2300 RC, Leiden, The Netherlands
| | - Peter Ten Dijke
- Oncode Institute and Cell Chemical Biology, Leiden University Medical Center, 2300 RC, Leiden, The Netherlands.
| | - Manfred Wuhrer
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Tao Zhang
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
11
|
do Nascimento RS, Pedrosa LDF, Diethelm LTH, Souza T, Shiga TM, Fabi JP. The purification of pectin from commercial fruit flours results in a jaboticaba fraction that inhibits galectin-3 and colon cancer cell growth. Food Res Int 2020; 137:109747. [PMID: 33233311 DOI: 10.1016/j.foodres.2020.109747] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 09/12/2020] [Accepted: 09/21/2020] [Indexed: 12/26/2022]
Abstract
Fruits are a prime source of nutrients, bioactive compounds, and dietary fibers. Some products available on the Brazilian market use fruit by-products and claim to have useful effects on human health due to their dietary fiber content. The study aimed to extract and purify the total (28-47 w/w yield) and soluble dietary fiber (4-7 w/w yield) from jaboticaba, papaya, and plum commercial flours sold in Brazil and to study the in vitro biological effects of the fractions. The purified water-soluble fractions consisted mainly of pectin-derived oligosaccharides (5-15 KDa molecular weight) with a negligible content of polyphenols, protein, ashes, and starch. Jaboticaba sample was 95% galacturonic acid while plum and papaya samples were 40% galacturonic acid and 40% galactose (mol%), approximately. The samples were tested for recombinant human galectin-3 inhibition and changes in the cell viability of human colorectal cancer cells. Only the jaboticaba sample inhibited galectin-3 and decreased HCT116 cell viability after 48 h of treatment (p ≤ 0.01) while the plum sample decreased the cell viability after 24 h treatment (p ≤ 0.05). The results obtained in this study demonstrate the relationship between the structure of the soluble fibers extracted from jaboticaba flour and the possible beneficial effects of their consumption.
Collapse
Affiliation(s)
- Raissa Sansoni do Nascimento
- Department of Food Science and Experimental Nutrition, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Lucas de Freitas Pedrosa
- Department of Food Science and Experimental Nutrition, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Luiza Tamie Hirata Diethelm
- Department of Food Science and Experimental Nutrition, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Thales Souza
- Department of Food Science and Experimental Nutrition, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Tania M Shiga
- Department of Food Science and Experimental Nutrition, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - João Paulo Fabi
- Department of Food Science and Experimental Nutrition, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP, Brazil; Food and Nutrition Research Center (NAPAN), University of São Paulo, São Paulo, SP, Brazil; Food Research Center (FoRC), CEPID-FAPESP (Research, Innovation and Dissemination Centers, São Paulo Research Foundation), São Paulo, SP, Brazil.
| |
Collapse
|
12
|
Zhang L, Peng TL, Wang L, Meng XH, Zhu W, Zeng Y, Zhu JQ, Zhou Y, Xiao HM, Deng HW. Network-based Transcriptome-wide Expression Study for Postmenopausal Osteoporosis. J Clin Endocrinol Metab 2020; 105:2678-2691. [PMID: 32483604 PMCID: PMC7320836 DOI: 10.1210/clinem/dgaa319] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 05/27/2020] [Indexed: 01/08/2023]
Abstract
PURPOSE Menopause is a crucial physiological transition during a woman's life, and it occurs with growing risks of health issues like osteoporosis. To identify postmenopausal osteoporosis-related genes, we performed transcriptome-wide expression analyses for human peripheral blood monocytes (PBMs) using Affymetrix 1.0 ST arrays in 40 Caucasian postmenopausal women with discordant bone mineral density (BMD) levels. METHODS We performed multiscale embedded gene coexpression network analysis (MEGENA) to study functionally orchestrating clusters of differentially expressed genes in the form of functional networks. Gene sets net correlations analysis (GSNCA) was applied to assess how the coexpression structure of a predefined gene set differs in high and low BMD groups. Bayesian network (BN) analysis was used to identify important regulation patterns between potential risk genes for osteoporosis. A small interfering ribonucleic acid (siRNA)-based gene silencing in vitro experiment was performed to validate the findings from BN analysis. RESULT MEGENA showed that the "T cell receptor signaling pathway" and the "osteoclast differentiation pathway" were significantly enriched in the identified compact network, which is significantly correlated with BMD variation. GSNCA revealed that the coexpression structure of the "Signaling by TGF-beta receptor complex pathway" is significantly different between the 2 BMD discordant groups; the hub genes in the postmenopausal low and high BMD group are FURIN and SMAD3 respectively. With siRNA in vitro experiments, we confirmed the regulation relationship of TGFBR2-SMAD7 and TGFBR1-SMURF2. MAIN CONCLUSION The present study suggests that biological signals involved in monocyte recruitment, monocyte/macrophage lineage development, osteoclast formation, and osteoclast differentiation might function together in PBMs that contribute to the pathogenesis of postmenopausal osteoporosis.
Collapse
Affiliation(s)
- Lan Zhang
- Center for Biomedical informatics and Genomics, Department of Medicine, Tulane University, New Orleans, Louisiana
| | - Tian-Liu Peng
- Institute of Reproduction and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Le Wang
- Institute of Reproduction and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Xiang-He Meng
- Laboratory of Molecular and Statistical Genetics, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Wei Zhu
- Center for Biomedical informatics and Genomics, Department of Medicine, Tulane University, New Orleans, Louisiana
| | - Yong Zeng
- Center for Biomedical informatics and Genomics, Department of Medicine, Tulane University, New Orleans, Louisiana
| | - Jia-Qiang Zhu
- Department of Biostatistics, University of Michigan, Ann Arbor, Michigan
| | - Yu Zhou
- Center for Biomedical informatics and Genomics, Department of Medicine, Tulane University, New Orleans, Louisiana
| | - Hong-Mei Xiao
- Institute of Reproduction and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Hong-Wen Deng
- Center for Biomedical informatics and Genomics, Department of Medicine, Tulane University, New Orleans, Louisiana
| |
Collapse
|
13
|
Luo X, Deng S, Jiang Y, Wang X, Al-Raimi AMA, Wu L, Liu X, Song Y, Chen X, Zhu F. Identification of a Pathogenic TGFBR2 Variant in a Patient With Loeys-Dietz Syndrome. Front Genet 2020; 11:479. [PMID: 32528524 PMCID: PMC7266969 DOI: 10.3389/fgene.2020.00479] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Accepted: 04/17/2020] [Indexed: 12/21/2022] Open
Abstract
Loeys-Dietz syndrome (LDS) is a rare connective tissue genetic disorder that is caused by a pathogenic variant in genes of transforming growth factor (TGF) beta receptor 1 (TGFBR1), TGFBR2, mothers against decapentaplegic homolog 2 (SMAD2), SMAD3, TGFB2, or TGFB3. It is characterized by aggressive vascular pathology, aneurysms, arterial tortuosity, bifid uvula, hypertelorism, and cleft palate. Here we present a 42-year-old female patient with LDS. The patient underwent rapidly progressing artery aneurysms and life-threatening aortic dissection. Spontaneous fracture of the first metatarsal bone was noted in her medical record. Physical examination revealed a delayed wound healing on her left abdomen. Considering these clinical manifestations, we speculated that there was a genetic defect in the connective tissue, which provides strength and flexibility to structures such as bones, skins, ligaments, and blood vessels. Thus, whole exome sequencing (WES) was performed on the proband and revealed a heterozygous missense pathogenic variant (c.1613T > C/p.Val538Ala) in TGFBR2, which was a de novo variant in the proband as confirmed by the segregation analysis in parental samples. Although this variant was discovered and associated with the phenotype of LDS previously, the pathogenicity of the variant had not been confirmed by cellular functional assay yet. To further validate the effects of the variant in vitro, we assessed the canonical TGF-β signaling pathway in mutant cells. Our results showed that the p.Val538Ala variant significantly decreased TGF-β-induced gene transcription and the phosphorylation of Smad2, which were consistent with other pathogenic variants of TGFBR2. In conclusion, this study demonstrates that the p.Val538Ala pathogenic variant in TGFBR2 leads to aberrant TGF-β signaling and LDS in this patient.
Collapse
Affiliation(s)
- Xi Luo
- Department of Cardiology, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Clinic Center of Human Gene Research, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shan Deng
- Department of Cardiology, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Clinic Center of Human Gene Research, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ying Jiang
- Department of Cardiology, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiang Wang
- Department of Cardiology, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | | | - Long Wu
- Department of Cardiovascular Surgery, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaobin Liu
- Department of Cardiovascular Surgery, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Song
- Department of Cardiovascular Surgery, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiao Chen
- Department of Cardiology, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Feng Zhu
- Department of Cardiology, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Clinic Center of Human Gene Research, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
14
|
Venturi G, Gomes Ferreira I, Pucci M, Ferracin M, Malagolini N, Chiricolo M, Dall'Olio F. Impact of sialyltransferase ST6GAL1 overexpression on different colon cancer cell types. Glycobiology 2020; 29:684-695. [PMID: 31317190 DOI: 10.1093/glycob/cwz053] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 07/11/2019] [Accepted: 07/11/2019] [Indexed: 12/11/2022] Open
Abstract
Cancer-associated glycan structures can be both tumor markers and engines of disease progression. The structure Siaα2,6Galβ1,4GlcNAc (Sia6LacNAc), synthesized by sialyltransferase ST6GAL1, is a cancer-associated glycan. Although ST6GAL1/Sia6LacNAc are often overexpressed in colorectal cancer (CRC), their biological and clinical significance remains unclear. To get insights into the clinical relevance of ST6GAL1 expression in CRC, we interrogated The Cancer Genome Atlas with mRNA expression data of hundreds of clinically characterized CRC and normal samples. We found an association of low ST6GAL1 expression with microsatellite instability (MSI), BRAF mutations and mucinous phenotype but not with stage, response to therapy and survival. To investigate the impact of ST6GAL1 expression in experimental systems, we analyzed the transcriptome and the phenotype of the CRC cell lines SW948 and SW48 after retroviral transduction with ST6GAL1 cDNA. The two cell lines display the two main pathways of CRC transformation: chromosomal instability and MSI, respectively. Constitutive ST6GAL1 expression induced much deeper transcriptomic changes in SW948 than in SW48 and affected different genes in the two cell lines. ST6GAL1 expression affected differentially the tyrosine phosphorylation induced by hepatocyte growth factor, the ability to grow in soft agar, to heal a scratch wound and to invade Matrigel in the two cell lines. These results indicate that the altered expression of a cancer-associated glycosyltransferase impacts the gene expression profile, as well as the phenotype, although in a cancer subtype-specific manner.
Collapse
Affiliation(s)
- Giulia Venturi
- Department of Experimental, Diagnostic and Specialty Medicine, General Pathology Building, University of Bologna Via S. Giacomo 14, Bologna, Italy
| | - Inês Gomes Ferreira
- Department of Experimental, Diagnostic and Specialty Medicine, General Pathology Building, University of Bologna Via S. Giacomo 14, Bologna, Italy
| | - Michela Pucci
- Department of Experimental, Diagnostic and Specialty Medicine, General Pathology Building, University of Bologna Via S. Giacomo 14, Bologna, Italy
| | - Manuela Ferracin
- Department of Experimental, Diagnostic and Specialty Medicine, General Pathology Building, University of Bologna Via S. Giacomo 14, Bologna, Italy
| | - Nadia Malagolini
- Department of Experimental, Diagnostic and Specialty Medicine, General Pathology Building, University of Bologna Via S. Giacomo 14, Bologna, Italy
| | - Mariella Chiricolo
- Department of Experimental, Diagnostic and Specialty Medicine, General Pathology Building, University of Bologna Via S. Giacomo 14, Bologna, Italy
| | - Fabio Dall'Olio
- Department of Experimental, Diagnostic and Specialty Medicine, General Pathology Building, University of Bologna Via S. Giacomo 14, Bologna, Italy
| |
Collapse
|
15
|
SILAC-Based Quantification of TGFBR2-Regulated Protein Expression in Extracellular Vesicles of Microsatellite Unstable Colorectal Cancers. Int J Mol Sci 2019; 20:ijms20174162. [PMID: 31454892 PMCID: PMC6747473 DOI: 10.3390/ijms20174162] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 08/21/2019] [Accepted: 08/23/2019] [Indexed: 12/13/2022] Open
Abstract
Microsatellite unstable (MSI) colorectal cancers (CRCs) are characterized by mutational inactivation of Transforming Growth Factor Beta Receptor Type 2 (TGFBR2). TGFBR2-deficient CRCs present altered target gene and protein expression. Such cellular alterations modulate the content of CRC-derived extracellular vesicles (EVs). EVs function as couriers of proteins, nucleic acids, and lipids in intercellular communication. At a qualitative level, we have previously shown that TGFBR2 deficiency causes overall alterations in the EV protein content. To deepen the basic understanding of altered protein dynamics, this work aimed to determine TGFBR2-dependent EV protein signatures in a quantitative manner. Using a stable isotope labeling with amino acids in cell culture (SILAC) approach for mass spectrometry-based quantification, 48 TGFBR2-regulated proteins were identified in MSI CRC-derived EVs. Overall, TGFBR2 deficiency caused upregulation of several EV proteins related to the extracellular matrix and nucleosome as well as downregulation of proteasome-associated proteins. The present study emphasizes the general overlap of proteins between EVs and their parental CRC cells but also highlights the impact of TGFBR2 deficiency on EV protein composition. From a clinical perspective, TGFBR2-regulated quantitative differences of protein expression in EVs might nominate novel biomarkers for liquid biopsy-based MSI typing in the future.
Collapse
|
16
|
Fricke F, Mussack V, Buschmann D, Hausser I, Pfaffl MW, Kopitz J, Gebert J. TGFBR2‑dependent alterations of microRNA profiles in extracellular vesicles and parental colorectal cancer cells. Int J Oncol 2019; 55:925-937. [PMID: 31432155 DOI: 10.3892/ijo.2019.4859] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 07/22/2019] [Indexed: 12/13/2022] Open
Abstract
In colorectal cancer (CRC) with microsatellite instability (MSI), >90% of cases are affected by inactivating frameshift mutations of transforming growth factor β receptor type 2 (TGFBR2). TGFBR2 deficiency is considered to drive MSI tumor progression by abrogating downstream TGF‑β signaling. This pathway can alter the expression of coding and non‑coding RNAs, including microRNAs (miRNAs), which are also present in extracellular vesicles (EVs) as post‑transcriptional modulators of gene expression. In our previous study, it was shown that TGFBR2 deficiency alters the protein composition and function of EVs in MSI tumors. To investigate whether mutant TGFBR2 may also affect the miRNA cargo of EVs, the present study characterized miRNAs in EVs and their parental MSI tumor cells that differed only in TGFBR2 expression status. The HCT116‑TGFBR2 MSI cell line model enables the doxycycline (dox)‑inducible reconstituted expression of TGFBR2 in an isogenic background (‑dox, TGFBR2 deficient; +dox, TGFBR2 proficient). Small RNA sequencing of cellular and EV miRNAs showed that the majority of the miRNAs (263/471; 56%) were shared between MSI tumor cells and their EVs. Exploratory data analysis revealed the TGBFR2‑dependent cluster separation of miRNA profiles in EVs and MSI tumor cells. This segregation appeared to result from two subsets of miRNAs, the expression of which were regulated in a TGFBR2‑dependent manner (EVs: n=10; MSI cells: n=15). In the EV subset, 7/10 miRNAs were downregulated and 3/10 were upregulated by TGFBR2 deficiency. In the cellular subset, 13/15 miRNAs were downregulated and 2/15 miRNAs were upregulated in the TGFBR2‑deficient cells. The present study emphasizes the general overlap of miRNA profiles in MSI tumor cells and their EVs, but also highlights the impact of a single tumor driver mutation on the expression of individual miRNAs, as exemplified by the downregulation of miR‑381‑3p in TGFBR2‑deficient MSI tumor cells and their secreted EVs.
Collapse
Affiliation(s)
- Fabia Fricke
- Department of Applied Tumor Biology, Institute of Pathology, Heidelberg University Hospital, D‑69120 Heidelberg, Germany
| | - Veronika Mussack
- Department of Animal Physiology and Immunology, TUM School of Life Sciences Weihenstephan, Technical University of Munich, D‑85354 Freising, Germany
| | - Dominik Buschmann
- Department of Animal Physiology and Immunology, TUM School of Life Sciences Weihenstephan, Technical University of Munich, D‑85354 Freising, Germany
| | - Ingrid Hausser
- EM‑Lab, Institute of Pathology, Heidelberg University Hospital, D‑69120 Heidelberg, Germany
| | - Michael W Pfaffl
- Department of Animal Physiology and Immunology, TUM School of Life Sciences Weihenstephan, Technical University of Munich, D‑85354 Freising, Germany
| | - Jürgen Kopitz
- Department of Applied Tumor Biology, Institute of Pathology, Heidelberg University Hospital, D‑69120 Heidelberg, Germany
| | - Johannes Gebert
- Department of Applied Tumor Biology, Institute of Pathology, Heidelberg University Hospital, D‑69120 Heidelberg, Germany
| |
Collapse
|
17
|
Expression status of GATA3 and mismatch repair proteins in upper tract urothelial carcinoma. Front Med 2019; 13:730-740. [DOI: 10.1007/s11684-019-0687-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 12/26/2018] [Indexed: 12/22/2022]
|
18
|
Liu J, Huang Y, Wang H, Wu D. MiR-106a-5p promotes 5-FU resistance and the metastasis of colorectal cancer by targeting TGFβR2. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2018; 11:5622-5634. [PMID: 31949649 PMCID: PMC6963073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 10/26/2018] [Indexed: 06/10/2023]
Abstract
BACKGROUND Colorectal cancer (CRC) is the third leading cause of cancer-related deaths. 5-Fluorouracil (5-FU)-based chemotherapy has always been the first-line treatment. However, development of 5-FU resistance seriously affects its curative effect. The aim of this study was to elucidate the molecular mechanisms of 5-FU resistance through miR-106a-5p in CRC. METHODS Colorectal cancer tissues were collected to analyze miR-106a-5p and TGFβR2 expressions by qPCR. Functional experiments for evaluating cell survival and metastasis were conducted to observe the biological effects of miR-106a-5p and TGFβR2. The cell survival rate was calculated using an MTT assay; the metastasis was confirmed with a Transwell invasion assay and Western blotting, which we used to measure the expression levels of the epithelial-mesenchymal transition (EMT) markers E-cadherin and vimentin. The combination of miR-106a to TGFβR2 was predicted using Targetscan, and confirmed through the construction of the luciferase reporter plasmid pGL3-basic. The interplay between miR-106a-5p and TGFβR2 was tested with qPCR and Western blotting. A Spearman rank analysis was employed to verify the correlation of miR-106a-5p and TGFβR2 expressions. RESULTS MiR-106a-5p was up-regulated and TGFβR2 was down-regulated in 5-FU resistant CRC tissues and HT-29 cells. MiR-106a-5p promoted cell survival and suppressed the apoptosis rate and caspase 3 activity. Additionally, cell invasion was promoted by miR-106a-5p overexpression in the HT-29 cells and was inhibited by miR-106a-5p knockdown in the 5-FU resistant HT-29 cells; miR-106a-5p overexpression contributed to migration by increasing vimentin expression and by decreasing E-cadherin expression in the HT-29 cells; miR-106a-5p functioned by directly binding to TGFβR2. The TGFβR2 knockdown conferred chemoresistance of 5-FU and metastasis in 5-FU resistant HT-29 cells, and TGFβR2 overexpression reduced cell survival, invasion numbers, vimentin expression, and increased the cell apoptosis rate and caspase 3 activity in 5-FU resistant HT-29 cells. Also, miR-106a-5p negatively regulated TGFβR2 in a linear correlation way in the CRC tissues. CONCLUSION The up-regulation of miR-106a-5p contributes to the pathomechanism of colorectal cancer by promoting 5-FU resistance and metastasis via inhibiting target TGFβR2. Our findings provide new promising ways for the clinical application of the TGFβR2-miR-106a axis in clinical chemotherapy for 5-FU resistant colorectal cancer.
Collapse
Affiliation(s)
- Jian Liu
- Department of General Surgery, The Second Affiliated Hospital of Zhejiang Chinese Medical University (Xinhua Hospital of Zhejiang Province)Hangzhou, China
| | - Yanqin Huang
- Cancer Institute, Second Affiliated Hospital, College of Medicine, Zhejiang UniversityHangzhou, China
| | - Hongqian Wang
- Department of General Surgery, The Second Affiliated Hospital of Zhejiang Chinese Medical University (Xinhua Hospital of Zhejiang Province)Hangzhou, China
| | - Denghai Wu
- Department of General Surgery, The Second Affiliated Hospital of Zhejiang Chinese Medical University (Xinhua Hospital of Zhejiang Province)Hangzhou, China
| |
Collapse
|
19
|
Cho JH, Oh AY, Park S, Kang SM, Yoon MH, Woo TG, Hong SD, Hwang J, Ha NC, Lee HY, Park BJ. Loss of NF2 Induces TGFβ Receptor 1–mediated Noncanonical and Oncogenic TGFβ Signaling: Implication of the Therapeutic Effect of TGFβ Receptor 1 Inhibitor on NF2 Syndrome. Mol Cancer Ther 2018; 17:2271-2284. [DOI: 10.1158/1535-7163.mct-17-1210] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 05/08/2018] [Accepted: 08/16/2018] [Indexed: 11/16/2022]
|
20
|
Ferreira IG, Pucci M, Venturi G, Malagolini N, Chiricolo M, Dall'Olio F. Glycosylation as a Main Regulator of Growth and Death Factor Receptors Signaling. Int J Mol Sci 2018; 19:ijms19020580. [PMID: 29462882 PMCID: PMC5855802 DOI: 10.3390/ijms19020580] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 02/12/2018] [Accepted: 02/14/2018] [Indexed: 12/22/2022] Open
Abstract
Glycosylation is a very frequent and functionally important post-translational protein modification that undergoes profound changes in cancer. Growth and death factor receptors and plasma membrane glycoproteins, which upon activation by extracellular ligands trigger a signal transduction cascade, are targets of several molecular anti-cancer drugs. In this review, we provide a thorough picture of the mechanisms bywhich glycosylation affects the activity of growth and death factor receptors in normal and pathological conditions. Glycosylation affects receptor activity through three non-mutually exclusive basic mechanisms: (1) by directly regulating intracellular transport, ligand binding, oligomerization and signaling of receptors; (2) through the binding of receptor carbohydrate structures to galectins, forming a lattice thatregulates receptor turnover on the plasma membrane; and (3) by receptor interaction with gangliosides inside membrane microdomains. Some carbohydrate chains, for example core fucose and β1,6-branching, exert a stimulatory effect on all receptors, while other structures exert opposite effects on different receptors or in different cellular contexts. In light of the crucial role played by glycosylation in the regulation of receptor activity, the development of next-generation drugs targeting glyco-epitopes of growth factor receptors should be considered a therapeutically interesting goal.
Collapse
Affiliation(s)
- Inês Gomes Ferreira
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), General Pathology Building, University of Bologna, 40126 Bologna, Italy.
| | - Michela Pucci
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), General Pathology Building, University of Bologna, 40126 Bologna, Italy.
| | - Giulia Venturi
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), General Pathology Building, University of Bologna, 40126 Bologna, Italy.
| | - Nadia Malagolini
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), General Pathology Building, University of Bologna, 40126 Bologna, Italy.
| | - Mariella Chiricolo
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), General Pathology Building, University of Bologna, 40126 Bologna, Italy.
| | - Fabio Dall'Olio
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), General Pathology Building, University of Bologna, 40126 Bologna, Italy.
| |
Collapse
|
21
|
Cousin MA, Zimmermann MT, Mathison AJ, Blackburn PR, Boczek NJ, Oliver GR, Lomberk GA, Urrutia RA, Deyle DR, Klee EW. Functional validation reveals the novel missense V419L variant in TGFBR2 associated with Loeys-Dietz syndrome (LDS) impairs canonical TGF-β signaling. Cold Spring Harb Mol Case Stud 2017; 3:mcs.a001727. [PMID: 28679693 PMCID: PMC5495030 DOI: 10.1101/mcs.a001727] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 04/12/2017] [Indexed: 12/31/2022] Open
Abstract
TGF-β-related heritable connective tissue disorders are characterized by a similar pattern of cardiovascular defects, including aortic root dilatation, mitral valve prolapse, vascular aneurysms, and vascular dissections and exhibit incomplete penetrance and variable expressivity. Because of the phenotypic overlap of these disorders, panel-based genetic testing is frequently used to confirm the clinical findings. Unfortunately in many cases, variants of uncertain significance (VUSs) obscure the genetic diagnosis until more information becomes available. Here, we describe and characterize the functional impact of a novel VUS in the TGFBR2 kinase domain (c.1255G>T; p.Val419Leu), in a patient with the clinical diagnosis of Marfan syndrome spectrum. We assessed the structural and functional consequence of this VUS using molecular modeling, molecular dynamic simulations, and in vitro cell-based assays. A high-quality homology-based model of TGFBR2 was generated and computational mutagenesis followed by refinement and molecular dynamics simulations were used to assess structural and dynamic changes. Relative to wild type, the V419L induced conformational and dynamic changes that may affect ATP binding, increasing the likelihood of adopting an inactive state, and, we hypothesize, alter canonical signaling. Experimentally, we tested this by measuring the canonical TGF-β signaling pathway activation at two points; V419L significantly delayed SMAD2 phosphorylation by western blot and significantly decreased TGF-β-induced gene transcription by reporter assays consistent with known pathogenic variants in this gene. Thus, our results establish that the V419L variant leads to aberrant TGF-β signaling and confirm the diagnosis of Loeys-Dietz syndrome in this patient.
Collapse
Affiliation(s)
- Margot A Cousin
- Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota 55905, USA.,Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota 55905, USA
| | - Michael T Zimmermann
- Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota 55905, USA
| | - Angela J Mathison
- Laboratory of Epigenetics and Chromatin Dynamics, Gastroenterology Research Unit, Department of Medicine, Mayo Clinic, Rochester, Minnesota 55905, USA
| | - Patrick R Blackburn
- Department of Health Sciences Research, Mayo Clinic, Jacksonville, Florida 32224, USA.,Center for Individualized Medicine, Mayo Clinic, Jacksonville, Florida 32224, USA
| | - Nicole J Boczek
- Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota 55905, USA.,Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota 55905, USA
| | - Gavin R Oliver
- Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota 55905, USA
| | - Gwen A Lomberk
- Laboratory of Epigenetics and Chromatin Dynamics, Gastroenterology Research Unit, Department of Medicine, Mayo Clinic, Rochester, Minnesota 55905, USA.,Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota 55905, USA
| | - Raul A Urrutia
- Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota 55905, USA.,Laboratory of Epigenetics and Chromatin Dynamics, Gastroenterology Research Unit, Department of Medicine, Mayo Clinic, Rochester, Minnesota 55905, USA
| | - David R Deyle
- Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota 55905, USA.,Department of Clinic Genomics, Mayo Clinic, Rochester, Minnesota 55905, USA
| | - Eric W Klee
- Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota 55905, USA.,Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota 55905, USA.,Department of Clinic Genomics, Mayo Clinic, Rochester, Minnesota 55905, USA
| |
Collapse
|
22
|
Fricke F, Lee J, Michalak M, Warnken U, Hausser I, Suarez-Carmona M, Halama N, Schnölzer M, Kopitz J, Gebert J. TGFBR2-dependent alterations of exosomal cargo and functions in DNA mismatch repair-deficient HCT116 colorectal cancer cells. Cell Commun Signal 2017; 15:14. [PMID: 28376875 PMCID: PMC5379773 DOI: 10.1186/s12964-017-0169-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 03/21/2017] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Colorectal cancers (CRCs) that lack DNA mismatch repair function exhibit the microsatellite unstable (MSI) phenotype and are characterized by the accumulation of frameshift mutations at short repetitive DNA sequences (microsatellites). These tumors recurrently show inactivating frameshift mutations in the tumor suppressor Transforming Growth Factor Beta Receptor Type 2 (TGFBR2) thereby abrogating downstream signaling. How altered TGFBR2 signaling affects exosome-mediated communication between MSI tumor cells and their environment has not been resolved. Here, we report on molecular alterations of exosomes shed by MSI cells and the biological response evoked in recipient cells. METHODS Exosomes were isolated and characterized by electron microscopy, nanoparticle tracking, and western blot analysis. TGFBR2-dependent effects on the cargo and functions of exosomes were studied in a MSI CRC model cell line enabling reconstituted and inducible TGFBR2 expression and signaling. Microsatellite frameshift mutations in exosomal and cellular DNA were examined by PCR-based DNA fragment analysis and exosomal protein profiles were identified by mass spectrometry. Uptake of fluorescent-labeled exosomes by hepatoma recipient cells was monitored by confocal microscopy. TGFBR2-dependent exosomal effects on secreted cytokine levels of recipient cells were analyzed by Luminex technology and ELISA. RESULTS Frameshift mutation patterns in microsatellite stretches of TGFBR2 and other MSI target genes were found to be reflected in the cargo of MSI CRC-derived exosomes. At the proteome level, reconstituted TGFBR2 expression and signaling uncovered two protein subsets exclusively occurring in exosomes derived from TGFBR2-deficient (14 proteins) or TGFBR2-proficient (five proteins) MSI donor cells. Uptake of these exosomes by recipient cells caused increased secretion (2-6 fold) of specific cytokines (Interleukin-4, Stem Cell Factor, Platelet-derived Growth Factor-B), depending on the TGFBR2 expression status of the tumor cell. CONCLUSION Our results indicate that the coding MSI phenotype of DNA mismatch repair-deficient CRC cells is maintained in their exosomal DNA. Moreover, we uncovered that a recurrent MSI tumor driver mutation like TGFBR2 can reprogram the protein content of MSI cell-derived exosomes and in turn modulate the cytokine secretion profile of recipient cells. Apart from its diagnostic potential, these TGFBR2-dependent exosomal molecular and proteomic signatures might help to understand the signaling routes used by MSI tumors. Fricke et al. uncovered coding microsatellite instability-associated mutations of colorectal tumor driver genes like TGFBR2 in MSI tumor cellderived exosomes. Depending on the TGFBR2 expression status of their donor cells, shed exosomes show distinct proteomic signatures and promote altered cytokine secretion profiles in recipient cells.
Collapse
Affiliation(s)
- Fabia Fricke
- Department of Applied Tumor Biology, Institute of Pathology, University Hospital Heidelberg, Im Neuenheimer Feld 224, 69120 Heidelberg, Germany
- Department of Cancer Early Detection, German Cancer Research Centre (DKFZ), Im Neuenheimer Feld 224, 69120 Heidelberg, Germany
| | - Jennifer Lee
- Department of Applied Tumor Biology, Institute of Pathology, University Hospital Heidelberg, Im Neuenheimer Feld 224, 69120 Heidelberg, Germany
- Department of Cancer Early Detection, German Cancer Research Centre (DKFZ), Im Neuenheimer Feld 224, 69120 Heidelberg, Germany
- Present address: Tissue Genesis, Suite 1000, Tissue Genesis Tower, 810 Richards Street, Honolulu, HI 96813 USA
| | - Malwina Michalak
- Department of Applied Tumor Biology, Institute of Pathology, University Hospital Heidelberg, Im Neuenheimer Feld 224, 69120 Heidelberg, Germany
- Department of Cancer Early Detection, German Cancer Research Centre (DKFZ), Im Neuenheimer Feld 224, 69120 Heidelberg, Germany
| | - Uwe Warnken
- Functional Proteome Analysis and Core Facility Protein Analysis (B100), German Cancer Research Centre (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Ingrid Hausser
- Department of General Pathology, Institute of Pathology, University Hospital Heidelberg, Im Neuenheimer Feld 224, 69120 Heidelberg, Germany
| | - Meggy Suarez-Carmona
- Department of Medical Oncology, National Center for Tumor diseases (NCT), Tissue Imaging and Analysis Center, Bioquant, University Hospital Heidelberg, Im Neuenheimer Feld 460, 69120 Heidelberg, Germany
| | - Niels Halama
- Department of Medical Oncology, National Center for Tumor diseases (NCT), Tissue Imaging and Analysis Center, Bioquant, University Hospital Heidelberg, Im Neuenheimer Feld 460, 69120 Heidelberg, Germany
| | - Martina Schnölzer
- Functional Proteome Analysis and Core Facility Protein Analysis (B100), German Cancer Research Centre (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Jürgen Kopitz
- Department of Applied Tumor Biology, Institute of Pathology, University Hospital Heidelberg, Im Neuenheimer Feld 224, 69120 Heidelberg, Germany
- Department of Cancer Early Detection, German Cancer Research Centre (DKFZ), Im Neuenheimer Feld 224, 69120 Heidelberg, Germany
| | - Johannes Gebert
- Department of Applied Tumor Biology, Institute of Pathology, University Hospital Heidelberg, Im Neuenheimer Feld 224, 69120 Heidelberg, Germany
- Department of Cancer Early Detection, German Cancer Research Centre (DKFZ), Im Neuenheimer Feld 224, 69120 Heidelberg, Germany
| |
Collapse
|
23
|
Gebert J, Schnölzer M, Warnken U, Kopitz J. Combining Click Chemistry-Based Proteomics With Dox-Inducible Gene Expression. Methods Enzymol 2016; 585:295-327. [PMID: 28109436 DOI: 10.1016/bs.mie.2016.09.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Inactivating mutations in single genes can trigger, prevent, promote, or alleviate diseases. Identifying such disease-related genes is a main pillar of medical research. Since proteins play a crucial role in mediating these effects, their impact on the diseased cells' proteome including posttranslational modifications has to be elucidated for a detailed understanding of the role of these genes in the disease process. In complex disorders, like cancer, several genes contribute to the disease process, thereby hampering the assignment of a proteomic change to the corresponding causative gene. To enable comprehensive screening for the impact of inactivation of a gene, e.g., loss of a tumor suppressor in cancer, on the cellular proteome, we present a strategy based on combination of three technologies that is recombinase-mediated cassette exchange, click chemistry, and mass spectrometry. The methodology is exemplified by the analysis of the proteomic changes induced by the loss of a tumor suppressor gene in colorectal cancer cells. To demonstrate the applicability to screen for posttranslational modification changes, we also describe the analysis of protein glycosylation changes caused by the tumor suppressor inactivation. In principle, this strategy can be applied to analyze the effects of any gene of interest on protein expression as well as posttranslational modification by glycosylation. Moreover adaptation of the strategy to an appropriate cell culture model has the potential for application on a broad range of diseases where the disease-promoting mutations have been identified.
Collapse
Affiliation(s)
- J Gebert
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany; Cancer Early Detection, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - M Schnölzer
- Functional Proteome Analysis, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - U Warnken
- Functional Proteome Analysis, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - J Kopitz
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany; Cancer Early Detection, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
24
|
Lee J, Warnken U, Schnölzer M, Gebert J, Kopitz J. A new method for detection of tumor driver-dependent changes of protein sialylation in a colon cancer cell line reveals nectin-3 as TGFBR2 target. Protein Sci 2015; 24:1686-94. [PMID: 26177744 DOI: 10.1002/pro.2741] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 06/25/2015] [Indexed: 02/03/2023]
Abstract
Protein-linked glycans play key roles in cell differentiation, cell-cell interactions, cell growth, adhesion and immune response. Aberrant glycosylation is a characteristic feature of tumor cells and is involved in tumor growth, escape from apoptosis, metastasis formation, and resistance to therapy. It can serve as cancer biomarker and treatment target. To enable comprehensive screening for the impact of tumor driving mutations in colorectal cancer cells we present a method for specific analysis of tumor driver-induced glycome changes. The strategy is based on a combination of three technologies, that is recombinase-mediated cassette exchange (RMCE), Click-It chemistry and mass spectrometry. The new method is exemplified by the analysis of the impact of inactivating mutations of the TGF-ß-receptor type II (TGFBR2) on sialic acid incorporation into protein-linked glycans of the colon cancer cell line HCT116. Overall, 70 proteins were found to show de novo sialic acid incorporation exclusively upon TGFBR2 expression whereas 7 proteins lost sialylation upon TGFBR2 reconstitution. Validation of detected candidate glycoproteins is demonstrated with the cell surface glycoprotein nectin-3 known to be involved in metastasis, invasion and prognosis of various cancers. Altogether, our new approach can help to systematically puzzle out the influence of tumor-specific mutations in a major signaling pathway, as exemplified by the TGFBR2 tumor suppressor, on the tumor glycome. It facilitates the identification of glycan-based tumor markers that could be used for diagnostic and therapeutic applications. In principle the outlined strategy can be adapted to any cancer cell line, tumor driver mutation and several glycan-building blocks.
Collapse
Affiliation(s)
- Jennifer Lee
- Department of Applied Tumor Biology, Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany.,Department of Cancer Early Detection, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Uwe Warnken
- Department of Functional Proteome Analysis, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Martina Schnölzer
- Department of Functional Proteome Analysis, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Johannes Gebert
- Department of Applied Tumor Biology, Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany.,Department of Cancer Early Detection, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jürgen Kopitz
- Department of Applied Tumor Biology, Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany.,Department of Cancer Early Detection, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
25
|
Lee J, Fricke F, Warnken U, Schnölzer M, Kopitz J, Gebert J. Reconstitution of TGFBR2-Mediated Signaling Causes Upregulation of GDF-15 in HCT116 Colorectal Cancer Cells. PLoS One 2015; 10:e0131506. [PMID: 26114631 PMCID: PMC4484253 DOI: 10.1371/journal.pone.0131506] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 06/03/2015] [Indexed: 12/21/2022] Open
Abstract
Although inactivating frameshift mutations in the Transforming growth factor beta receptor type 2 (TGFBR2) gene are considered as drivers of microsatellite unstable (MSI) colorectal tumorigenesis, consequential alterations of the downstream target proteome are not resolved completely. Applying a click-it chemistry protein labeling approach combined with mass spectrometry in a MSI colorectal cancer model cell line, we identified 21 de novo synthesized proteins differentially expressed upon reconstituted TGFBR2 expression. One candidate gene, the TGF-ß family member Growth differentiation factor-15 (GDF-15), exhibited TGFBR2-dependent transcriptional upregulation causing increased intracellular and extracellular protein levels. As a new TGFBR2 target gene it may provide a link between the TGF-ß branch and the BMP/GDF branch of SMAD-mediated signaling.
Collapse
Affiliation(s)
- Jennifer Lee
- Department of Applied Tumor Biology, Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
- Cancer Early Detection, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Fabia Fricke
- Department of Applied Tumor Biology, Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
- Cancer Early Detection, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Uwe Warnken
- Functional Proteome Analysis, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Martina Schnölzer
- Functional Proteome Analysis, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jürgen Kopitz
- Department of Applied Tumor Biology, Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
- Cancer Early Detection, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Johannes Gebert
- Department of Applied Tumor Biology, Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
- Cancer Early Detection, German Cancer Research Center (DKFZ), Heidelberg, Germany
- * E-mail:
| |
Collapse
|
26
|
Ahadova A, Gebert J, von Knebel Doeberitz M, Kopitz J, Kloor M. Dose-dependent effect of 2-deoxy-D-glucose on glycoprotein mannosylation in cancer cells. IUBMB Life 2015; 67:218-26. [PMID: 25854316 DOI: 10.1002/iub.1364] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 02/02/2015] [Indexed: 12/11/2022]
Abstract
High glucose consumption due to Warburg effect is one of the metabolic hallmarks of cancer. Consequently, glucose antimetabolites, such as 2-deoxy-glucose (2DG), can induce substantial growth inhibition of cancer cells. However, the inhibition of metabolic pathways is not the sole effect of 2DG on cancer cells. As mannose-mimetic molecule, 2DG is believed to interfere with normal glycosylation of proteins in cells. Here, we address how 2DG influences protein glycosylation in cancer cells and discuss possible implications of the consequences of this influence. In detail, six colorectal cancer cell lines were examined for alterations of protein glycosylation by measuring monosaccharide incorporation into cellular glycoproteins and cell surface glycosylation by lectin FACS. A significant increase in mannose incorporation was observed on treatment with 2DG (1 mM for 48 h), which was also reflected by an increased binding of the mannose-binding lectin Concanavalin A in FACS analysis. This phenomenon, which could be reversed by external addition of mannose, was not caused by 2DG-mediated mannosidase inhibition, as shown by pulse-chase experiments, arguing in favor of the hypothesis that 2DG directly influenced the incorporation of mannose. Increased mannose content was generally observed in cellular glycoproteins, including glycoproteins isolated from the plasma membrane fraction. Our results indicate that 2DG at low doses, which have only a limited metabolism-related effect on glycosylation, induces a strong increase in mannose incorporation into cellular glycoproteins. On the other hand, higher 2DG concentrations (10 and 20 mM) led to a significant decrease of absolute mannose incorporation accompanied by a dramatically reduced protein synthesis rate. 2DG-induced alterations of glycosylation may represent a novel mechanism potentially explaining the varied effects of 2DG on cancer cells. Moreover, 2DG treatment may open a path toward novel diagnostic and cancer therapeutic approaches, which specifically target altered glycoantigen structures induced by 2DG.
Collapse
Affiliation(s)
- Aysel Ahadova
- Department of Applied Tumor Biology, Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany; Clinical Cooperation Unit Applied Tumor Biology, DKFZ (German Cancer Research Center) Heidelberg, Heidelberg, Germany; Molecular Medicine Partnership Unit, University of Heidelberg and European Molecular Biology Laboratory, Heidelberg, Germany
| | | | | | | | | |
Collapse
|
27
|
X-linked inhibitor of apoptosis-associated factor l (XAFl) enhances the sensitivity of colorectal cancer cells to cisplatin. Med Oncol 2014; 31:273. [PMID: 25367849 DOI: 10.1007/s12032-014-0273-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Accepted: 09/26/2014] [Indexed: 01/05/2023]
Abstract
The purpose of present study was to investigate the roles of X-linked inhibitor of apoptosis-associated factor l (XAFl) in regulation apoptosis of colorectal cancer (CRC) cells after treatment with cisplatin (DDP). A total of ten paired cancerous and non-cancerous tissues were collected from patients with CRC after surgery. The levels of XAFl protein were detected by Western blot. Primary CRC cells were separated from cancer tissues, and its viability or apoptosis after treatment with DDP was determined with MTT or Annexin V/PI assays, respectively. Furthermore, we either up-regulated transfecting a XAF1 overexpression vector or down-regulated XAF1 by siRNA interference. And then, the XAF1 levels and its sensitivity to cisplatin were assessed. XAFl had a lower expression in the cancerous tissues from samples T1, T2 and T3 than their paired non-cancerous tissues N1, N2 and N3. However, the expression of XAF1 was not detected in samples T4 and N1. XAF1 levels in cancer tissues significantly decreased in comparison with normal tissues. Cell abilities of primary cells were significantly decreased in a dose-dependent manner, after treatment with a series concentrations of cisplatin (2, 5, 10 μg/mL) for 48 h. Although, after down-expression of XAFl by siRNA, cisplatin caused a significant decreases in apoptosis rates in CRC cells. The up-regulation of XAF1 distinctly increased apoptosis in CRC cells administered by cisplatin (P < 0.001). The XAFl could promoted apoptosis and enhanced chemotherapy sensitivity to cisplatin in CRC cells.
Collapse
|
28
|
Dhanasekaran S, Jenum S, Stavrum R, Wiker HG, Kenneth J, Vaz M, Doherty TM, Grewal HMS, TB Trials Study Group. Effect of non-tuberculous Mycobacteria on host biomarkers potentially relevant for tuberculosis management. PLoS Negl Trop Dis 2014; 8:e3243. [PMID: 25329719 PMCID: PMC4199571 DOI: 10.1371/journal.pntd.0003243] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 09/05/2014] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Non-tuberculous mycobacteria (NTM) are different from Mycobacterium tuberculosis (MTB) both in their ubiquitous environmental distribution and in their reduced capacity to cause disease. While often neglected in favour of other infectious diseases, NTM may interfere with important aspects of TB control and management, namely the efficacy of new anti-tuberculosis (TB) vaccines; the immuno-diagnostic Tuberculin skin test (TST) and QuantiFERON TB Gold In Tube assay (QFTGIT); and immune biomarkers explored for their diagnostic and/or predictive potential. Our objective was therefore to explore host immune biomarkers in children who had NTM isolated from respiratory and/or gastric specimens. METHODOLOGY AND PRINCIPLE FINDINGS The present study was nested within a prospective cohort study of BCG-vaccinated neonates in Southern India. In this setting, immune biomarkers from peripheral blood were analyzed in 210 children aged <3 years evaluated for TB using dual-colour-Reverse-Transcriptase-Multiple-Ligation-dependent-Probe-Amplification (dcRT-MLPA) and Bio-Plex assays. The children were classified based on clinical examination, chest X-rays and mycobacterial culture reports as either: 1) TB disease, 2) NTM present and 3) controls. The study shows a down-regulation of RAB33A (p<0.001) and up-regulation of TGFβ1, IL-2 and IL-6 (all p<0.05) in children with TB disease, and that RAB33A, TGFBR2 and IL-10 (all p<0.05) were differentially expressed in children with NTM present when compared to children that were culture negative for MTB and NTM (controls). CONCLUSIONS AND SIGNIFICANCE Carriage of NTM may reduce the specificity of future diagnostic and predictive immune biomarkers relevant to TB management.
Collapse
Affiliation(s)
- S. Dhanasekaran
- Department of Clinical Science, Faculty of Medicine and Dentistry, University of Bergen, Bergen, Norway
| | - Synne Jenum
- Center for Immune Regulation, Rikshospitalet- Radium Hospitalet Medical Centre, University of Oslo, Oslo, Norway
| | - Ruth Stavrum
- Department of Clinical Science, Faculty of Medicine and Dentistry, University of Bergen, Bergen, Norway
| | - Harald G. Wiker
- Department of Clinical Science, Faculty of Medicine and Dentistry, University of Bergen, Bergen, Norway
| | - John Kenneth
- Division of Infectious Diseases, St. John's Research Institute, Koramangala, Bangalore, India
| | - Mario Vaz
- Division of Health & Humanities, St. John's Research Institute, Koramangala, Bangalore, India
| | - T. Mark Doherty
- Department of Clinical Science, Faculty of Medicine and Dentistry, University of Bergen, Bergen, Norway
- GlaxoSmithKline Pharma, Vaccines, Brøndby, Denmark
- * E-mail: (TMD); (HMSG)
| | - Harleen M. S. Grewal
- Department of Clinical Science, Faculty of Medicine and Dentistry, University of Bergen, Bergen, Norway
- Department of Microbiology, Haukeland university hospital, University of Bergen, Bergen, Norway
- * E-mail: (TMD); (HMSG)
| | | |
Collapse
|
29
|
Ballikaya S, Lee J, Warnken U, Schnölzer M, Gebert J, Kopitz J. De Novo proteome analysis of genetically modified tumor cells by a metabolic labeling/azide-alkyne cycloaddition approach. Mol Cell Proteomics 2014; 13:3446-56. [PMID: 25225355 DOI: 10.1074/mcp.m113.036665] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Activin receptor type II (ACVR2) is a member of the transforming growth factor type II receptor family and controls cell growth and differentiation, thereby acting as a tumor suppressor. ACVR2 inactivation is known to drive colorectal tumorigenesis. We used an ACVR2-deficient microsatellite unstable colon cancer cell line (HCT116) to set up a novel experimental design for comprehensive analysis of proteomic changes associated with such functional loss of a tumor suppressor. To this end we combined two existing technologies. First, the ACVR2 gene was reconstituted in an ACVR2-deficient colorectal cancer (CRC) cell line by means of recombinase-mediated cassette exchange, resulting in the generation of an inducible expression system that allowed the regulation of ACVR2 gene expression in a doxycycline-dependent manner. Functional expression in the induced cells was explicitly proven. Second, we used the methionine analog azidohomoalanine for metabolic labeling of newly synthesized proteins in our cell line model. Labeled proteins were tagged with biotin via a Click-iT chemistry approach enabling specific extraction of labeled proteins by streptavidin-coated beads. Tryptic on-bead digestion of captured proteins and subsequent ultra-high-performance LC coupled to LTQ Orbitrap XL mass spectrometry identified 513 proteins, with 25 of them differentially expressed between ACVR2-deficient and -proficient cells. Among these, several candidates that had already been linked to colorectal cancer or were known to play a key role in cell growth or apoptosis control were identified, proving the utility of the presented experimental approach. In principle, this strategy can be adapted to analyze any gene of interest and its effect on the cellular de novo proteome.
Collapse
Affiliation(s)
- Seda Ballikaya
- From the ‡Department of Applied Tumor Biology, Institute of Pathology, University Hospital Heidelberg, INF 224, 69120 Heidelberg, Germany; §Cancer Early Detection, German Cancer Research Center (DKFZ), INF 280, 69120 Heidelberg, Germany
| | - Jennifer Lee
- From the ‡Department of Applied Tumor Biology, Institute of Pathology, University Hospital Heidelberg, INF 224, 69120 Heidelberg, Germany; §Cancer Early Detection, German Cancer Research Center (DKFZ), INF 280, 69120 Heidelberg, Germany
| | - Uwe Warnken
- ‖Functional Proteome Analysis, German Cancer Research Center (DKFZ), INF 280, 69120 Heidelberg, Germany
| | - Martina Schnölzer
- ‖Functional Proteome Analysis, German Cancer Research Center (DKFZ), INF 280, 69120 Heidelberg, Germany
| | - Johannes Gebert
- From the ‡Department of Applied Tumor Biology, Institute of Pathology, University Hospital Heidelberg, INF 224, 69120 Heidelberg, Germany; §Cancer Early Detection, German Cancer Research Center (DKFZ), INF 280, 69120 Heidelberg, Germany
| | - Jürgen Kopitz
- From the ‡Department of Applied Tumor Biology, Institute of Pathology, University Hospital Heidelberg, INF 224, 69120 Heidelberg, Germany; §Cancer Early Detection, German Cancer Research Center (DKFZ), INF 280, 69120 Heidelberg, Germany;
| |
Collapse
|
30
|
Dall'Olio F, Malagolini N, Trinchera M, Chiricolo M. Sialosignaling: Sialyltransferases as engines of self-fueling loops in cancer progression. Biochim Biophys Acta Gen Subj 2014; 1840:2752-64. [PMID: 24949982 DOI: 10.1016/j.bbagen.2014.06.006] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Revised: 05/13/2014] [Accepted: 06/10/2014] [Indexed: 02/03/2023]
|