1
|
Jaskiewicz L, Romaszko-Wojtowicz A, Doboszynska A, Skowronska A. The Role of Aquaporin 5 (AQP5) in Lung Adenocarcinoma: A Review Article. Cells 2023; 12:cells12030468. [PMID: 36766810 PMCID: PMC9913646 DOI: 10.3390/cells12030468] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 01/27/2023] [Accepted: 01/29/2023] [Indexed: 02/04/2023] Open
Abstract
Aquaporins (AQPs) are selective, transmembrane proteins, which are primarily responsible for the transport of water and small molecules. They have been demonstrated to play a key role in the development and progression of cancer. Lung adenocarcinoma is the most common primary lung cancer diagnosed in patients in Europe and the USA. The research done so far has provided firm evidence that some AQPs can be biomarkers for various diseases. The objective of this review article is to present a potential role of AQP5 in the development of lung adenocarcinoma. Original papers discussing the involvement of AQP5 in carcinogenesis and containing relevant clinical data were identified. In order to analyze the research material in accordance with PRISMA guidelines, a systematic search of the ScienceDirect, Web of Science, and Pubmed databases was conducted. Out of the total number of 199 papers identified, 14 original articles were subject to analysis. This article presents the pathophysiological role of AQP5 in the biology of lung adenocarcinoma as well as its prognostic value. The analysis substantiates the conclusion that the prognostic value of AQP5 in lung cancer requires further research. Another aim of this paper is to disseminate knowledge about AQPs among clinicians.
Collapse
Affiliation(s)
- Lukasz Jaskiewicz
- Department of Human Physiology and Pathophysiology, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, 10-082 Olsztyn, Poland
- Correspondence: (L.J.); (A.R.-W.)
| | - Anna Romaszko-Wojtowicz
- Department of Pulmonology, School of Public Health, Collegium Medicum, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland
- Correspondence: (L.J.); (A.R.-W.)
| | - Anna Doboszynska
- Department of Pulmonology, School of Public Health, Collegium Medicum, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland
| | - Agnieszka Skowronska
- Department of Human Physiology and Pathophysiology, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, 10-082 Olsztyn, Poland
| |
Collapse
|
2
|
D’Agostino C, Parisis D, Chivasso C, Hajiabbas M, Soyfoo MS, Delporte C. Aquaporin-5 Dynamic Regulation. Int J Mol Sci 2023; 24:ijms24031889. [PMID: 36768212 PMCID: PMC9915196 DOI: 10.3390/ijms24031889] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/09/2023] [Accepted: 01/10/2023] [Indexed: 01/21/2023] Open
Abstract
Aquaporin-5 (AQP5), belonging to the aquaporins (AQPs) family of transmembrane water channels, facilitates osmotically driven water flux across biological membranes and the movement of hydrogen peroxide and CO2. Various mechanisms have been shown to dynamically regulate AQP5 expression, trafficking, and function. Besides fulfilling its primary water permeability function, AQP5 has been shown to regulate downstream effectors playing roles in various cellular processes. This review provides a comprehensive overview of the current knowledge of the upstream and downstream effectors of AQP5 to gain an in-depth understanding of the physiological and pathophysiological processes involving AQP5.
Collapse
Affiliation(s)
- Claudia D’Agostino
- Laboratory of Pathophysiological and Nutritional Biochemistry, Université Libre de Bruxelles, 1070 Brussels, Belgium
| | - Dorian Parisis
- Laboratory of Pathophysiological and Nutritional Biochemistry, Université Libre de Bruxelles, 1070 Brussels, Belgium
- Rheumatology Department, CUB Hôpital Erasme, Hôpital Universitaire de Bruxelles (H.U.B), Université Libre de Bruxelles (ULB), Route de Lennik 808, 1070 Brussels, Belgium
| | - Clara Chivasso
- Laboratory of Pathophysiological and Nutritional Biochemistry, Université Libre de Bruxelles, 1070 Brussels, Belgium
| | - Maryam Hajiabbas
- Laboratory of Pathophysiological and Nutritional Biochemistry, Université Libre de Bruxelles, 1070 Brussels, Belgium
| | - Muhammad Shahnawaz Soyfoo
- Rheumatology Department, CUB Hôpital Erasme, Hôpital Universitaire de Bruxelles (H.U.B), Université Libre de Bruxelles (ULB), Route de Lennik 808, 1070 Brussels, Belgium
| | - Christine Delporte
- Laboratory of Pathophysiological and Nutritional Biochemistry, Université Libre de Bruxelles, 1070 Brussels, Belgium
- Correspondence:
| |
Collapse
|
3
|
Villandre J, White V, Lear TB, Chen Y, Tuncer F, Vaiz E, Tuncer B, Lockwood K, Camarco D, Liu Y, Chen BB, Evankovich J. A Repurposed Drug Screen for Compounds Regulating Aquaporin 5 Stability in Lung Epithelial Cells. Front Pharmacol 2022; 13:828643. [PMID: 35145418 PMCID: PMC8821664 DOI: 10.3389/fphar.2022.828643] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 01/03/2022] [Indexed: 11/13/2022] Open
Abstract
Aquaporin 5 (AQP5) is expressed in several cell types in the lung and regulates water transport, which contributes to barrier function during injury and the composition of glandular secretions. Reduced AQP5 expression is associated with barrier dysfunction during acute lung injury, and strategies to enhance its expression are associated with favorable phenotypes. Thus, pharmacologically enhancing AQP5 expression could be beneficial. Here, we optimized a high-throughput assay designed to detect AQP5 abundance using a cell line stably expressing bioluminescent-tagged AQP5. We then screened a library of 1153 compounds composed of FDA-approved drugs for their effects on AQP5 abundance. We show compounds Niclosamide, Panobinostat, and Candesartan Celexitil increased AQP5 abundance, and show that Niclosamide has favorable cellular toxicity profiles. We determine that AQP5 levels are regulated in part by ubiquitination and proteasomal degradation in lung epithelial cells, and mechanistically Niclosamide increases AQP5 levels by reducing AQP5 ubiquitination and proteasomal degradation. Functionally, Niclosamide stabilized AQP5 levels in response to hypotonic stress, a stimulus known to reduce AQP5 levels. In complementary assays, Niclosamide increased endogenous AQP5 in both A549 cells and in primary, polarized human bronchial epithelial cells compared to control-treated cells. Further, we measured rapid cell volume changes in A549 cells in response to osmotic stress, an effect controlled by aquaporin channels. Niclosamide-treated A549 cell volume changes occurred more rapidly compared to control-treated cells, suggesting that increased Niclosamide-mediated increases in AQP5 expression affects functional water transport. Taken together, we describe a strategy to identify repurposed compounds for their effect on AQP5 protein abundance. We validated the effects of Niclosamide on endogenous AQP5 levels and in regulating cell-volume changes in response to tonicity changes. Our findings highlight a unique approach to screen for drug effects on protein abundance, and our workflow can be applied broadly to study compound effects on protein abundance in lung epithelial cells.
Collapse
Affiliation(s)
- John Villandre
- Department of Medicine, Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, PA, United States
- Aging Institute, University of Pittsburgh, Pittsburgh, PA, United States
| | - Virginia White
- Aging Institute, University of Pittsburgh, Pittsburgh, PA, United States
| | - Travis B. Lear
- Aging Institute, University of Pittsburgh, Pittsburgh, PA, United States
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, United States
| | - Yanwen Chen
- Aging Institute, University of Pittsburgh, Pittsburgh, PA, United States
| | - Ferhan Tuncer
- Aging Institute, University of Pittsburgh, Pittsburgh, PA, United States
| | - Emily Vaiz
- Aging Institute, University of Pittsburgh, Pittsburgh, PA, United States
| | - Beyza Tuncer
- Aging Institute, University of Pittsburgh, Pittsburgh, PA, United States
| | - Karina Lockwood
- Aging Institute, University of Pittsburgh, Pittsburgh, PA, United States
| | - Dan Camarco
- Aging Institute, University of Pittsburgh, Pittsburgh, PA, United States
| | - Yuan Liu
- Department of Medicine, Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, PA, United States
- Aging Institute, University of Pittsburgh, Pittsburgh, PA, United States
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Bill B. Chen
- Department of Medicine, Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, PA, United States
- Aging Institute, University of Pittsburgh, Pittsburgh, PA, United States
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, United States
| | - John Evankovich
- Department of Medicine, Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, PA, United States
- Aging Institute, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
4
|
Yadav E, Yadav N, Hus A, Yadav JS. Aquaporins in lung health and disease: Emerging roles, regulation, and clinical implications. Respir Med 2020; 174:106193. [PMID: 33096317 DOI: 10.1016/j.rmed.2020.106193] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 08/17/2020] [Accepted: 10/13/2020] [Indexed: 12/16/2022]
Abstract
Aquaporins (AQPs) aka water channels are a family of conserved transmembrane proteins (~30 kDa monomers) expressed in various organ systems. Of the 13 AQPs (AQP0 through AQP12) in the human body, four (AQPs 1, 3, 4, and 5) are expressed in the respiratory system. These channels are conventionally known for mediating transcellular fluid movements. Certain AQPs (aquaglyceroporins) have the capability to transport glycerol and potentially other solutes. There is an emerging body of literature unveiling the non-conventional roles of AQPs such as in cell proliferation and migration, gas permeation, signal potentiation, etc. Initial gene knock-out studies established a physiological role for lung AQPs, particularly AQP5, in maintaining homeostasis, by mediating fluid secretion from submucosal glands onto the airway surface liquid (ASL) lining. Subsequent studies have highlighted the functional significance of AQPs, particularly AQP1 and AQP5 in lung pathophysiology and diseases, including but not limited to chronic and acute lung injury, chronic obstructive pulmonary disease (COPD), other inflammatory lung conditions, and lung cancer. AQP1 has been suggested as a potential prognostic marker for malignant mesothelioma. Recent efforts are directed toward exploiting AQPs as targets for diagnosis, prevention, intervention, and/or treatment of various lung conditions. Emerging information on regulatory pathways and directed mechanistic research are posited to unravel novel strategies for these clinical implications. Future considerations should focus on development of AQP inhibitors, blockers, and modulators for therapeutic needs, and better understanding the role of lung-specific AQPs in inter-individual susceptibility to chronic lung diseases such as COPD and cancer.
Collapse
Affiliation(s)
- Ekta Yadav
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA.
| | - Niket Yadav
- Medical Scientist Training Program, University of Virginia School of Medicine, Charlottesville, VA, 22908-0738, USA
| | - Ariel Hus
- Department of Biology, University of Miami, Coral Gables, Florida, 33146, USA
| | - Jagjit S Yadav
- Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA.
| |
Collapse
|
5
|
Fujima N, Kameda H, Shimizu Y, Harada T, Tha KK, Yoneyama M, Kudo K. Utility of a diffusion-weighted arterial spin labeling (DW-ASL) technique for evaluating the progression of brain white matter lesions. Magn Reson Imaging 2020; 69:81-87. [PMID: 32217128 DOI: 10.1016/j.mri.2020.03.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/02/2020] [Accepted: 03/19/2020] [Indexed: 12/13/2022]
Abstract
PURPOSE To investigate the utility of diffusion-weighted arterial spin labeling (DW-ASL) for detecting the progression of brain white matter lesions. MATERIALS AND METHODS A total of 492 regions of interest (ROIs) in 41 patients were prospectively analyzed. DW-ASL was performed using the diffusion gradient prepulse of five b-values (0, 25, 60, 102, and 189) before the ASL readout. We calculated the water exchange rate (Kw) with post-processing using the ASL signal information for each b-value. The cerebral blood flow (CBF) was also calculated using b0 images. Using the signal information in FLAIR (fluid-attenuated inversion recovery) images, we classified the severity of white matter lesions into three grades: non-lesion, moderate, and severe. In addition, the normal Kw level was measured from DW-ASL data of 60 ROIs in five control subjects. The degree of variance of the Kw values (Kw-var) was calculated by squaring the value of the difference between each Kw value and the normal Kw level. All patient's ROIs were divided into non-progressive and progressive white matter lesions by comparing the present FLAIR images with those obtained 2 years before this acquisition. RESULTS Compared to the non-progressive group, the progressive group had significantly lower CBF, significantly higher severity grades in FLAIR, and significantly greater Kw-var values. In a receiver operator characteristic curve analysis, a high area under the curve (AUC) of 0.89 was obtained with the use of Kw-var. In contrast, the AUCs of 0.59 for CBF and 0.72 for severity grades in FLAIR were obtained. CONCLUSIONS The DW-ASL technique can be useful to detect the progression of brain white matter lesions. This technique will become a clinical tool for patients with various degrees of white matter lesions.
Collapse
Affiliation(s)
- Noriyuki Fujima
- Department of Diagnostic and Interventional Radiology, Hokkaido University Hospital, N14 W5, Kita-Ku, Sapporo 0608638, Japan.
| | - Hiroyuki Kameda
- Department of Diagnostic and Interventional Radiology, Hokkaido University Hospital, N14 W5, Kita-Ku, Sapporo 0608638, Japan
| | - Yukie Shimizu
- Department of Diagnostic and Interventional Radiology, Hokkaido University Hospital, N14 W5, Kita-Ku, Sapporo 0608638, Japan
| | - Taisuke Harada
- Department of Diagnostic and Interventional Radiology, Hokkaido University Hospital, N14 W5, Kita-Ku, Sapporo 0608638, Japan
| | - Khin Khin Tha
- Department of Radiation Medicine, Hokkaido University Graduate School of Medicine, N15 W7, Kita-Ku, Sapporo 0608638, Japan; The Global Station for Quantum Medical Science and Engineering, Global Institution for Collaborative Research and Education, N15 W8, Kita-Ku, Sapporo 0608638, Japan
| | - Masami Yoneyama
- Philips Japan, 3-37 Kohnan 2-chome, Minato-ku, Tokyo 108-8507, Japan
| | - Kohsuke Kudo
- Department of Diagnostic and Interventional Radiology, Hokkaido University Hospital, N14 W5, Kita-Ku, Sapporo 0608638, Japan; The Global Station for Quantum Medical Science and Engineering, Global Institution for Collaborative Research and Education, N15 W8, Kita-Ku, Sapporo 0608638, Japan
| |
Collapse
|
6
|
Elkhider A, Wang B, Ouyang X, Al-Azab M, Walana W, Sun X, Li H, Tang Y, Wei J, Li X. Aquaporin 5 promotes tumor migration and angiogenesis in non-small cell lung cancer cell line H1299. Oncol Lett 2020; 19:1665-1672. [PMID: 32194658 PMCID: PMC7039099 DOI: 10.3892/ol.2020.11251] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 07/03/2019] [Indexed: 01/08/2023] Open
Abstract
Non-small cell lung cancer (NSCLC) constitutes the majority of all lung-cancer cases. Aquaporin 5 (AQP5) may be involved in NSCLC by promoting lung-cancer initiation and progression. The present study aimed to determine the role of AQP5 in migration and angiogenesis using NSCLC cells and HUVECs. AQPs 1, 3, 4, 5, 8 and 9 were screened in the NSCLC cell line H1299, and the present results showed that AQP5 mRNA was upregulated compared with the other AQP genes. At the protein level, AQP5 was significantly increased in H1299 cells compared with 16HBE cells. AQP5 knockdown in H1299 cells significantly decreased cell migration compared with untransfected cells, as demonstrated by both Transwell and wound closure assays. The present study further investigated H1299 ability to promote HUVEC vascularisation. The supernatants of both transfected and untransfected H1299 cells were used as conditioned medium for HUVECs, and tube formation was measured. The supernatant of AQP5-downregulated cells exhibited significantly low tube formation potential compared with untransfected cells. Similarly, vascular endothelial growth factor was significantly increased in control cells (si-NC) compared with cells transfected with small interfering RNA targeting AQP5. The present study found that AQP5 downregulation significantly decreased the phosphorylation level of epidermal growth factor receptor and the activity of the ERK1/2 pathway. In summary, the present study suggested that AQP5 influenced migration and angiogenesis in NSCLCs in vitro and may potentially exhibit similar in vivo effects.
Collapse
Affiliation(s)
- Abdalkhalig Elkhider
- Department of Immunology, College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| | - Bing Wang
- Department of Immunology, College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| | - Xunli Ouyang
- Department of Immunology, College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| | - Mahmoud Al-Azab
- Department of Immunology, College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| | - Williams Walana
- Department of Immunology, College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| | - Xiaotong Sun
- Department of Immunology, College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| | - Han Li
- Department of Immunology, College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| | - Yawei Tang
- Department of Immunology, College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| | - Jing Wei
- Department of Immunology, College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| | - Xia Li
- Department of Immunology, College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| |
Collapse
|
7
|
Liu Y, Wang Y, Song X, Dong L, Wang W, Wu H. P38 mitogen-activated protein kinase inhibition attenuates mechanical stress induced lung injury via up-regulating AQP5 expression in rats. BIOTECHNOL BIOTEC EQ 2019. [DOI: 10.1080/13102818.2019.1590159] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Affiliation(s)
- Yang Liu
- Department of Anesthesiology, Qianfoshan Hospital affiliated to Shandong University, Jinan, Shandong, PR China
| | - Yuelan Wang
- Department of Anesthesiology, Qianfoshan Hospital affiliated to Shandong University, Jinan, Shandong, PR China
| | - Xiumei Song
- Department of Anesthesiology, Qianfoshan Hospital affiliated to Shandong University, Jinan, Shandong, PR China
| | - Ling Dong
- Department of Anesthesiology, Qianfoshan Hospital affiliated to Shandong University, Jinan, Shandong, PR China
| | - Wei Wang
- Department of Anesthesiology, Qianfoshan Hospital affiliated to Shandong University, Jinan, Shandong, PR China
| | - Hongchao Wu
- Department of Anesthesiology, Qianfoshan Hospital affiliated to Shandong University, Jinan, Shandong, PR China
| |
Collapse
|
8
|
How Supraphysiological Oxygen Levels in Standard Cell Culture Affect Oxygen-Consuming Reactions. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:8238459. [PMID: 30363917 PMCID: PMC6186316 DOI: 10.1155/2018/8238459] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 08/01/2018] [Indexed: 12/31/2022]
Abstract
Most mammalian tissue cells experience oxygen partial pressures in vivo equivalent to 1–6% O2 (i.e., physioxia). In standard cell culture, however, headspace O2 levels are usually not actively regulated and under these conditions are ~18%. This drives hyperoxia in cell culture media that can affect a wide variety of cellular activities and may compromise the ability of in vitro models to reproduce in vivo biology. Here, we review and discuss some specific O2-consuming organelles and enzymes, including mitochondria, NADPH oxidases, the transplasma membrane redox system, nitric oxide synthases, xanthine oxidase, and monoamine oxidase with respect to their sensitivities to O2 levels. Many of these produce reactive oxygen and/or nitrogen species (ROS/RNS) as either primary end products or byproducts and are acutely sensitive to O2 levels in the range from 1% to 18%. Interestingly, many of them are also transcriptional targets of hypoxia-inducible factors (HIFs) and chronic cell growth at physioxia versus 18% O2 may alter their expression. Aquaporins, which facilitate hydrogen peroxide diffusion into and out of cells, are also regulated by HIFs, indicating that O2 levels may affect intercellular communication via hydrogen peroxide. The O2 sensitivities of these important activities emphasize the importance of maintaining physioxia in culture.
Collapse
|
9
|
Na/K Pump and Beyond: Na/K-ATPase as a Modulator of Apoptosis and Autophagy. Molecules 2017; 22:molecules22040578. [PMID: 28430151 PMCID: PMC6154632 DOI: 10.3390/molecules22040578] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 03/29/2017] [Accepted: 03/29/2017] [Indexed: 01/22/2023] Open
Abstract
Lung cancer is a leading cause of global cancer deaths. Na/K-ATPase has been studied as a target for cancer treatment. Cardiotonic steroids (CS) trigger intracellular signalling upon binding to Na/K-ATPase. Normal lung and tumour cells frequently express different pump isoforms. Thus, Na/K-ATPase is a powerful target for lung cancer treatment. Drugs targeting Na/K-ATPase may induce apoptosis and autophagy in transformed cells. We argue that Na/K-ATPase has a role as a potential target in chemotherapy in lung cancer treatment. We discuss the effects of Na/K-ATPase ligands and molecular pathways inducing deleterious effects on lung cancer cells, especially those leading to apoptosis and autophagy.
Collapse
|
10
|
Xu C, Jiang L, Zou Y, Xing J, Sun H, Zhu B, Zhang H, Wang J, Zhang J. Involvement of water channel Aquaporin 5 in H 2S-induced pulmonary edema. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2017; 49:202-211. [PMID: 28088675 DOI: 10.1016/j.etap.2016.12.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Revised: 12/23/2016] [Accepted: 12/27/2016] [Indexed: 06/06/2023]
Abstract
Acute exposure to hydrogen sulfide (H2S) poses a significant threat to life, and the lung is one of the primary target organs of H2S. However, the mechanisms involved in H2S-induced acute pulmonary edema are poorly understood. This study aims to investigate the effects of H2S on the expression of water channel aquaporin 5 (AQP5) and to elucidate the signaling pathways involved in AQP5 regulation. In an in vivo study, C57BL6 mice were exposed to sub-lethal concentrations of inhaled H2S, and histological injury of the lungs and ultrastructure injury of the epithelial cells were evaluated. With real-time PCR and western blot assays, we found that H2S exposure contributed to a significant decrease in AQP5 expression both in murine lung tissue and the A549 cell line, and the ERK1/2 and p38 MAPK signaling pathways were demonstrated to be implicated in AQP5 regulation. Therefore, adjusting AQP5 protein levels could be considered a therapeutic strategy for the treatment of APE induced by H2S and other hazardous gases.
Collapse
Affiliation(s)
- Chunyang Xu
- Department of Emergency Medicine, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu, 210029, China
| | - Lei Jiang
- Department of Emergency Medicine, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu, 210029, China
| | - Yuxia Zou
- Key Lab of Modern Toxicology (NJMU), Ministry of Education. Department of Toxicology, School of Public Health, Nanjing Medical University, 818 Tianyuan East Road, Nanjing, Jiangsu, 211166, China
| | - Jingjing Xing
- Department of Emergency Medicine, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu, 210029, China
| | - Hao Sun
- Department of Emergency Medicine, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu, 210029, China
| | - Baoli Zhu
- Department of Occupational Disease Prophylactic-Therapeutic Institution, Jiangsu Provincial Center for Disease Prevention and Control, 122 Heban Cun, Nanjing, Jiangsu, 210028, China
| | - Hengdong Zhang
- Department of Occupational Disease Prophylactic-Therapeutic Institution, Jiangsu Provincial Center for Disease Prevention and Control, 122 Heban Cun, Nanjing, Jiangsu, 210028, China
| | - Jun Wang
- Key Lab of Modern Toxicology (NJMU), Ministry of Education. Department of Toxicology, School of Public Health, Nanjing Medical University, 818 Tianyuan East Road, Nanjing, Jiangsu, 211166, China.
| | - Jinsong Zhang
- Department of Emergency Medicine, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu, 210029, China.
| |
Collapse
|
11
|
Direito I, Madeira A, Brito MA, Soveral G. Aquaporin-5: from structure to function and dysfunction in cancer. Cell Mol Life Sci 2016; 73:1623-40. [PMID: 26837927 PMCID: PMC11108570 DOI: 10.1007/s00018-016-2142-0] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 12/29/2015] [Accepted: 01/18/2016] [Indexed: 01/05/2023]
Abstract
Aquaporins, a highly conserved group of membrane proteins, are involved in the bidirectional transfer of water and small solutes across cell membranes taking part in many biological functions all over the human body. In view of the wide range of cancer malignancies in which aquaporin-5 (AQP5) has been detected, an increasing interest in its implication in carcinogenesis has emerged. Recent publications suggest that this isoform may enhance cancer cell proliferation, migration and survival in a variety of malignancies, with strong evidences pointing to AQP5 as a promising drug target and as a novel biomarker for cancer aggressiveness with high translational potential for therapeutics and diagnostics. This review addresses the structural and functional features of AQP5, detailing its tissue distribution and functions in human body, its expression pattern in a variety of tumors, and highlighting the underlying mechanisms involved in carcinogenesis. Finally, the actual progress of AQP5 research, implications in cancer biology and potential for cancer detection and prognosis are discussed.
Collapse
Affiliation(s)
- Inês Direito
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003, Lisbon, Portugal
- Department of Biochemistry and Human Biology, Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Ana Madeira
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003, Lisbon, Portugal
- Department of Biochemistry and Human Biology, Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Maria Alexandra Brito
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003, Lisbon, Portugal
- Department of Biochemistry and Human Biology, Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Graça Soveral
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003, Lisbon, Portugal.
- Department of Biochemistry and Human Biology, Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal.
| |
Collapse
|
12
|
Johnson ZI, Gogate SS, Day R, Binch A, Markova DZ, Chiverton N, Cole A, Conner M, Shapiro IM, Le Maitre CL, Risbud MV. Aquaporin 1 and 5 expression decreases during human intervertebral disc degeneration: Novel HIF-1-mediated regulation of aquaporins in NP cells. Oncotarget 2016; 6:11945-58. [PMID: 25844601 PMCID: PMC4494915 DOI: 10.18632/oncotarget.3631] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 03/05/2015] [Indexed: 01/07/2023] Open
Abstract
Objectives of this study were to investigate whether AQP1 and AQP5 expression is altered during intervertebral disc degeneration and if hypoxia and HIF-1 regulate their expression in NP cells. AQP expression was measured in human tissues from different degenerative grades; regulation by hypoxia and HIF-1 was studied using promoter analysis and gain- and loss-of-function experiments. We show that both AQPs are expressed in the disc and that mRNA and protein levels decline with human disease severity. Bioinformatic analyses of AQP promoters showed multiple evolutionarily conserved HREs. Surprisingly, hypoxia failed to induce promoter activity or expression of either AQP. While genomic chromatin immunoprecipitation showed limited binding of HIF-1α to conserved HREs, their mutation did not suppress promoter activities. Stable HIF-1α suppression significantly decreased mRNA and protein levels of both AQPs, but HIF-1α failed to induce AQP levels following accumulation. Together, our results demonstrate that AQP1 and AQP5 expression is sensitive to human disc degeneration and that HIF-1α uniquely maintains basal expression of both AQPs in NP cells, independent of oxemic tension and HIF-1 binding to promoter HREs. Diminished HIF-1 activity during degeneration may suppress AQP levels in NP cells, compromising their ability to respond to extracellular osmolarity changes.
Collapse
Affiliation(s)
- Zariel I Johnson
- Department of Orthopaedic Surgery and Graduate Program in Cell and Developmental Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Shilpa S Gogate
- Department of Orthopaedic Surgery and Graduate Program in Cell and Developmental Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Rebecca Day
- Biomedical Research Centre, Sheffield Hallam University, Sheffield, UK
| | - Abbie Binch
- Biomedical Research Centre, Sheffield Hallam University, Sheffield, UK
| | - Dessislava Z Markova
- Department of Orthopaedic Surgery and Graduate Program in Cell and Developmental Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Neil Chiverton
- Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Ashley Cole
- Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Matt Conner
- Biomedical Research Centre, Sheffield Hallam University, Sheffield, UK
| | - Irving M Shapiro
- Department of Orthopaedic Surgery and Graduate Program in Cell and Developmental Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | | | - Makarand V Risbud
- Department of Orthopaedic Surgery and Graduate Program in Cell and Developmental Biology, Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
13
|
Acute Respiratory Distress Syndrome: Role of Oleic Acid-Triggered Lung Injury and Inflammation. Mediators Inflamm 2015; 2015:260465. [PMID: 26640323 PMCID: PMC4660020 DOI: 10.1155/2015/260465] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 10/25/2015] [Indexed: 01/22/2023] Open
Abstract
Lung injury especially acute respiratory distress syndrome (ARDS) can be triggered by diverse stimuli, including fatty acids and microbes. ARDS affects thousands of people worldwide each year, presenting high mortality rate and having an economic impact. One of the hallmarks of lung injury is edema formation with alveoli flooding. Animal models are used to study lung injury. Oleic acid-induced lung injury is a widely used model resembling the human disease. The oleic acid has been linked to metabolic and inflammatory diseases; here we focus on lung injury. Firstly, we briefly discuss ARDS and secondly we address the mechanisms by which oleic acid triggers lung injury and inflammation.
Collapse
|
14
|
Palomares JA, Tummala S, Wang DJJ, Park B, Woo MA, Kang DW, St Lawrence KS, Harper RM, Kumar R. Water Exchange across the Blood-Brain Barrier in Obstructive Sleep Apnea: An MRI Diffusion-Weighted Pseudo-Continuous Arterial Spin Labeling Study. J Neuroimaging 2015; 25:900-5. [PMID: 26333175 DOI: 10.1111/jon.12288] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 07/17/2015] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND AND PURPOSE Obstructive sleep apnea (OSA) subjects show brain injury in sites that control autonomic, cognitive, and mood functions that are deficient in the condition. The processes contributing to injury may include altered blood-brain barrier (BBB) actions. Our aim was to examine BBB function, based on diffusion-weighted pseudo-continuous arterial spin labeling (DW-pCASL) procedures, in OSA compared to controls. METHODS We performed DW-pCASL imaging in nine OSA and nine controls on a 3.0-Tesla MRI scanner. Global mean gray and white matter arterial transient time (ATT, an index of large artery integrity), water exchange rate across the BBB (Kw, BBB function), DW-pCASL ratio, and cerebral blood flow (CBF) values were compared between OSA and control subjects. RESULTS Global mean gray and white matter ATT (OSA vs. controls; gray matter, 1.691 ± .120 vs. 1.658 ± .109 second, P = .49; white matter, 1.700 ± .115 vs. 1.650 ± .114 second, P = .44), and CBF values (gray matter, 57.4 ± 15.8 vs. 58.2 ± 10.7 ml/100 g/min, P = .67; white matter, 24.2 ± 7.0 vs. 24.6 ± 6.7 ml/100 g/min, P = .91) did not differ significantly, but global gray and white matter Kw (gray matter, 158.0 ± 28.9 vs. 220.8 ± 40.6 min(-1) , P = .002; white matter, 177.5 ± 57.2 vs. 261.1 ± 51.0 min(-1) , P = .006), and DW-pCASL ratio (gray matter, .727 ± .076 vs. .823 ± .069, P = .011; white matter, .722 ± .144 vs. .888 ± .100, P = .004) values were significantly reduced in OSA over controls. CONCLUSIONS OSA subjects show compromised BBB function, but intact large artery integrity. The BBB alterations may introduce neural damage contributing to abnormal functions in OSA, and suggest a need to repair BBB function with strategies commonly used in other fields.
Collapse
Affiliation(s)
- Jose A Palomares
- Department of Anesthesiology, University of California, Los Angeles, Los Angeles, CA
| | - Sudhakar Tummala
- Department of Anesthesiology, University of California, Los Angeles, Los Angeles, CA
| | - Danny J J Wang
- Department of Neurology, University of California, Los Angeles, Los Angeles, CA.,Department of Radiological Sciences, University of California, Los Angeles, Los Angeles, CA
| | - Bumhee Park
- Department of Anesthesiology, University of California, Los Angeles, Los Angeles, CA
| | - Mary A Woo
- UCLA School of Nursing, University of California, Los Angeles, Los Angeles, CA
| | - Daniel W Kang
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA
| | | | - Ronald M Harper
- Department of Neurobiology, University of California, Los Angeles, Los Angeles, CA.,Brain Research Institute, University of California, Los Angeles, Los Angeles, CA
| | - Rajesh Kumar
- Department of Anesthesiology, University of California, Los Angeles, Los Angeles, CA.,Department of Radiological Sciences, University of California, Los Angeles, Los Angeles, CA.,Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA.,Brain Research Institute, University of California, Los Angeles, Los Angeles, CA
| |
Collapse
|
15
|
Yin Y, Zhang J, Song D. Effects of lysine aspirin on lung AQP5 expression and lymphocyte apoptosis in paraquat-poisoned rats. TOXIN REV 2015. [DOI: 10.3109/15569543.2015.1015036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
16
|
Lu H, Wang R, Xiong J, Xie H, Kayser B, Jia ZP. In search for better pharmacological prophylaxis for acute mountain sickness: looking in other directions. Acta Physiol (Oxf) 2015; 214:51-62. [PMID: 25778288 DOI: 10.1111/apha.12490] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 02/23/2015] [Accepted: 03/11/2015] [Indexed: 12/15/2022]
Abstract
Despite decades of research, the exact pathogenic mechanisms underlying acute mountain sickness (AMS) are still poorly understood. This fact frustrates the search for novel pharmacological prophylaxis for AMS. The prevailing view is that AMS results from an insufficient physiological response to hypoxia and that prophylaxis should aim at stimulating the response. Starting off from the opposite hypothesis that AMS may be caused by an initial excessive response to hypoxia, we suggest that directly or indirectly blunting-specific parts of the response might provide promising research alternatives. This reasoning is based on the observations that (i) humans, once acclimatized, can climb Mt Everest experiencing arterial partial oxygen pressures (PaO2) as low as 25 mmHg without AMS symptoms; (ii) paradoxically, AMS usually develops at much higher PaO2 levels; and (iii) several biomarkers, suggesting initial activation of specific pathways at such PaO2, are correlated with AMS. Apart from looking for substances that stimulate certain hypoxia triggered effects, such as the ventilatory response to hypoxia, we suggest to also investigate pharmacological means aiming at blunting certain other specific hypoxia-activated pathways, or stimulating their agonists, in the quest for better pharmacological prophylaxis for AMS.
Collapse
Affiliation(s)
- H Lu
- Key Laboratory of the Plateau of Environmental Damage Control, Lanzhou General Hospital of Lanzhou Military Command, Lanzhou, China
| | | | | | | | | | | |
Collapse
|
17
|
Hollborn M, Vogler S, Reichenbach A, Wiedemann P, Bringmann A, Kohen L. Regulation of the hyperosmotic induction of aquaporin 5 and VEGF in retinal pigment epithelial cells: involvement of NFAT5. Mol Vis 2015; 21:360-77. [PMID: 25878490 PMCID: PMC4390809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 04/07/2015] [Indexed: 11/18/2022] Open
Abstract
PURPOSE High intake of dietary salt increases extracellular osmolarity, which results in hypertension, a risk factor of neovascular age-related macular degeneration. Neovascular retinal diseases are associated with edema. Various factors and channels, including vascular endothelial growth factor (VEGF) and aquaporins (AQPs), influence neovascularization and the development of edema. Therefore, we determined whether extracellular hyperosmolarity alters the expression of VEGF and AQPs in cultured human retinal pigment epithelial (RPE) cells. METHODS Human RPE cells obtained within 48 h of donor death were prepared and cultured. Hyperosmolarity was induced by the addition of 100 mM NaCl or sucrose to the culture medium. Alterations in gene expression and protein secretion were determined with real-time RT-PCR and ELISA, respectively. The levels of signaling proteins and nuclear factor of activated T cell 5 (NFAT5) were determined by western blotting. DNA binding of NFAT5 was determined with EMSA. NFAT5 was knocked down with siRNA. RESULTS Extracellular hyperosmolarity stimulated VEGF gene transcription and the secretion of VEGF protein. Hyperosmolarity also increased the gene expression of AQP5 and AQP8, induced the phosphorylation of p38 MAPK and ERK1/2, increased the expression of HIF-1α and NFAT5, and induced the DNA binding of NFAT5. The hyperosmotic expression of VEGF was dependent on the activation of p38 MAPK, ERK1/2, JNK, PI3K, HIF-1, and NFAT5. The hyperosmotic induction of AQP5 was in part dependent on the activation of p38 MAPK, ERK1/2, NF-κB, and NFAT5. Triamcinolone acetonide inhibited the hyperosmotic expression of VEGF but not AQP5. The expression of AQP5 was decreased by hypoosmolarity, serum, and hypoxia. CONCLUSIONS Hyperosmolarity induces the gene transcription of AQP5, AQP8, and VEGF, as well as the secretion of VEGF from RPE cells. The data suggest that high salt intake resulting in osmotic stress may aggravate neovascular retinal diseases and edema via the stimulation of VEGF production in RPE. The downregulation of AQP5 under hypoxic conditions may prevent the resolution of edema.
Collapse
Affiliation(s)
- Margrit Hollborn
- Department of Ophthalmology and Eye Hospital, University of Leipzig, Leipzig, Germany
| | - Stefanie Vogler
- Paul Flechsig Institute of Brain Research, University of Leipzig, Leipzig, Germany
| | - Andreas Reichenbach
- Paul Flechsig Institute of Brain Research, University of Leipzig, Leipzig, Germany
| | - Peter Wiedemann
- Department of Ophthalmology and Eye Hospital, University of Leipzig, Leipzig, Germany
| | - Andreas Bringmann
- Department of Ophthalmology and Eye Hospital, University of Leipzig, Leipzig, Germany
| | - Leon Kohen
- Department of Ophthalmology and Eye Hospital, University of Leipzig, Leipzig, Germany,Helios Klinikum Aue, Aue, Germany
| |
Collapse
|
18
|
Lu H, Wang R, Xiong J, Xie H, Kayser B, Jia ZP. In search for better pharmacological prophylaxis for acute mountain sickness: looking in other directions. Acta Physiol (Oxf) 2015; 214:51-62. [PMID: 25753758 DOI: 10.1111/apha.12486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 02/27/2015] [Accepted: 03/05/2015] [Indexed: 11/29/2022]
Abstract
Despite decades of research, the exact pathogenic mechanisms underlying acute mountain sickness (AMS) are still poorly understood. This fact frustrates the search for novel pharmacological prophylaxis for AMS. The prevailing view is that AMS results from an insufficient physiological response to hypoxia and that prophylaxis should aim at stimulating the response. Starting off from the opposite hypothesis that AMS may be caused by an initial excessive response to hypoxia we suggest that directly or indirectly blunting specific parts of the response might provide promising research alternatives. This reasoning is based on the observations that 1) humans, once acclimatized, can climb Mt Everest experiencing arterial partial oxygen pressures (PaO2 ) as low as 25 mmHg without AMS symptoms, 2) paradoxically AMS usually develops at much higher PaO2 levels, and 3) several biomarkers, suggesting initial activation of specific pathways at such PaO2 , are correlated with AMS. Apart from looking for substances that stimulate certain hypoxia triggered effects, such as the ventilatory response to hypoxia, we suggest to also investigate pharmacological means aiming at blunting certain other specific hypoxia activated pathways, or stimulating their agonists, in the quest for better pharmacological prophylaxis for AMS. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Hui Lu
- Key Laboratory of the plateau of environmental damage control, Lanzhou General Hospital of Lanzhou Military Command, Lanzhou, China
| | | | | | | | | | | |
Collapse
|
19
|
Liu YS, Huang ZW, Qin AQ, Huang Y, Giordano F, Lu QH, Jiang WD. The expression of epidermal growth factor-like domain 7 regulated by oxygen tension via hypoxia inducible factor (HIF)-1α activity. Postgrad Med 2014; 127:144-9. [PMID: 25539718 DOI: 10.1080/00325481.2015.996503] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
OBJECTIVE Hypoxia inducible factor-1α (HIF-1α) regulates many genes involved in angiogenesis during embryonic development. Epidermal growth factor-like domain 7 (Egfl7) is a specific marker for human arterial endothelial cells that are in an activated state of proliferation, migration, and remodeling. This study evaluates the intricate relationship between HIF-1α and Egfl7 under both hyperoxia and hypoxia states. METHODS The neonatal mice were exposed to either hyperoxia or hypoxia in order to detect the pulmonary and cardiac Egfl7 messenger RNA (mRNA) or protein expression regulated by oxygen tension in vivo by reverse transcriptase polymerase chain reaction or immunohistochemistry staining. Egfl7 expression in HIF-1α null pulmonary endothelial cells in hypoxia conditions and effects of overexpression or knockdown of HIF-1α on Egfl7 expression in human umbilical vein endothelial cells would be clarified in vitro by reverse transcriptase polymerase chain reaction and Western blot, respectively. RESULTS Hyperoxia exposure significantly reduced Egfl7 expression in neonatal mice lungs by 36% compared with age-matched normoxia control mice (P < 0.05, n = 6). The pulmonary Egfl7 transcription levels were increased by 1.7- and 1.9-fold in 24 hours and by day 8 in hypoxia groups compared with the normoxia control values (P < 0.05, n = 6). The cardiac Egfl7 mRNA expression was significantly increased by 4.5-fold in the day 8 group compared with the normoxia control values (P < 0.05, n = 6). The expression of Egfl7 decreased significantly in the HIF-1α(-/-) endothelial cells (ECs), which was only 26% of wild-type HIF-1α(+/+) ECs (P < 0.05, n = 3). Hypoxia caused a mild but significant increase of Egfl7 expression in HIF-1α(+/+) ECs (P < 0.05). In vitro, overexpression of HIF-1α enhanced Egfl7 expression, whereas knockdown of HIF-1α reduced Egfl7 expression. CONCLUSIONS Overexpression of HIF-1α enhanced Egfl7 expression, whereas knockdown of HIF-1α reduced Egfl7 expression. Egfl7 could be a HIF-1α responsive gene regulated by oxygen tension.
Collapse
Affiliation(s)
- Yu-Sheng Liu
- Department of Cardiology, Second Hospital of Shandong University , Jinan, Shandong , China
| | | | | | | | | | | | | |
Collapse
|
20
|
Liu H, Wang Z, Yu S, Xu J. Proteasomal degradation of O-GlcNAc transferase elevates hypoxia-induced vascular endothelial inflammatory response†. Cardiovasc Res 2014; 103:131-9. [PMID: 24788415 DOI: 10.1093/cvr/cvu116] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
AIMS Hypoxia induces vascular inflammation by a mechanism not fully understood. Emerging evidence implicates O-GlcNAc transferase (OGT) in inflammation. This study explored the role of OGT in hypoxia-induced vascular endothelial inflammatory response. METHODS AND RESULTS Hypoxia was either induced (1% O2 chamber) or mimicked by exposure to hypoxia-mimetic agents in cultured endothelial cells. Hypoxia increased hypoxia-inducible factor (HIF-1α) and inflammatory response (gene and protein expression of interleukin (IL)-6, IL-8, monocyte chemoattractant protein-1, and E-selectin) but, surprisingly, reduced OGT protein (not mRNA) levels. Hypoxia-mimetic CoCl2 failed to reduce OGT when proteasome inhibitors were present, suggesting proteasome involvement. Indeed, CoCl2 enhanced 26S proteasome functionality evidenced by diminished reporter (Ub(G76V)-GFP) proteins in proteasome reporter cells, likely due to increased chymotrypsin-like activities. Mechanistically, β-TrCP1 mediated OGT degradation, since siRNA ablation of this E3 ubiquitin ligase stabilized OGT. Administration of the oxidative stress inhibitors reversed both proteasome activation and OGT degradation. Furthermore, up-regulation of OGT by stabilization, overexpression, or activation mitigated CoCl2-elicited inflammatory response. These observations were recapitulated in a mouse (C57BL/6J) model mimicking hypoxia, in which lung tissues presented higher levels of HIF-1α, proteasome activity, and inflammatory response, but lower levels of OGT (n = 5/group, hypoxia vs. normoxia, P < 0.05). However, administration of an activator of OGT (glucosamine: 1 mg/g/day, vehicle: saline, ip, 5 days) abolished the up-regulation of proteasome activity and inflammatory response (n = 5/group, the treated vs. untreated hypoxia groups, P < 0.05). CONCLUSIONS 26S proteasome-mediated OGT reduction contributed to hypoxia-induced vascular endothelial inflammatory response. Modulation of OGT may represent a new approach to treat diseases characterized by hypoxic inflammation.
Collapse
Affiliation(s)
- Hongtao Liu
- Section of Endocrinology and Diabetes, Department of Medicine, Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Zhongxiao Wang
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Shujie Yu
- Section of Endocrinology and Diabetes, Department of Medicine, Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Jian Xu
- Section of Endocrinology and Diabetes, Department of Medicine, Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| |
Collapse
|
21
|
He J, Zhao Y, Deng W, Wang DX. Netrin-1 promotes epithelial sodium channel-mediated alveolar fluid clearance via activation of the adenosine 2B receptor in lipopolysaccharide-induced acute lung injury. Respiration 2014; 87:394-407. [PMID: 24663055 DOI: 10.1159/000358066] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Accepted: 12/09/2013] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The epithelial sodium channel (ENaC) is the driving force for pulmonary edema absorption in acute lung injury (ALI). Netrin-1 is a newly found anti-inflammatory factor that works by activating the adenosine 2B receptor (A2BAR). Meanwhile, activated A2BAR has the potential to enhance ENaC-dependent alveolar fluid clearance (AFC). However, whether netrin-1 can increase ENaC-mediated AFC by activating A2BAR remains unclear. OBJECTIVES To investigate the effect of netrin-1 on AFC in ALI and clarify the pathway via which netrin-1 regulates the expression of ENaC in vivo and in vitro. METHODS An ALI model was established by intratracheal instillation of lipopolysaccharide (LPS; 5 mg/kg) in C57BL/J mice, followed by netrin-1 with or without pretreatment with PSB1115, via the caudal vein. Twenty-four hours later, the lungs were isolated for determination of the bronchoalveolar lavage fluid, the lung wet/dry weight (W/D) ratio, AFC, the expressions of α-, β-, and γ-ENaC, and cyclic adenosine monophosphate (cAMP) levels. LPS-stimulated MLE-12 cells were incubated with netrin-1 with or without preincubation with PSB1115. Twenty-four hours later, the expressions of α-, β-, and γ-ENaC were detected. RESULTS In vivo, netrin-1 expression was significantly decreased during ALI. Substituted netrin-1 significantly dampened the lung injury, decreased the W/D ratio, and enhanced AFC, the expressions of α-, β-, and γ-ENaC, and cAMP levels in ALI, which were abolished by specific A2BAR inhibitor PSB1115. In vitro, netrin-1 increased the expressions of α-, β-, and γ-ENaC, which were prevented by PSB1115. CONCLUSION These results indicate that netrin-1 dampens pulmonary inflammation and increases ENaC-mediated AFC to alleviate pulmonary edema in LPS-induced ALI by enhancing cAMP levels through the activation of A2BAR.
Collapse
Affiliation(s)
- Jing He
- Respiratory Medicine, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | | | | | | |
Collapse
|
22
|
Chai RC, Jiang JH, Wong AYK, Jiang F, Gao K, Vatcher G, Hoi Yu AC. AQP5 is differentially regulated in astrocytes during metabolic and traumatic injuries. Glia 2013; 61:1748-65. [PMID: 23922257 DOI: 10.1002/glia.22555] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Revised: 05/30/2013] [Accepted: 06/17/2013] [Indexed: 01/14/2023]
Abstract
Water movement plays vital roles in both physiological and pathological conditions in the brain. Astrocytes are responsible for regulating this water movement and are the major contributors to brain edema in pathological conditions. Aquaporins (AQPs) in astrocytes play critical roles in the regulation of water movement in the brain. AQP1, 3, 4, 5, 8, and 9 have been reported in the brain. Compared with AQP1, 4, and 9, AQP3, 5, and 8 are less studied. Among the lesser known AQPs, AQP5, which has multiple functions identified outside the central nervous system, is also indicated to be involved in hypoxia injury in astrocytes. In our study, AQP5 expression could be detected both in primary cultures of astrocytes and neurons, and AQP5 expression in astrocytes was confirmed in 1- to 4-week old primary cultures of astrocytes. AQP5 was localized on the cytoplasmic membrane and in the cytoplasm of astrocytes. AQP5 expression was downregulated during ischemia treatment and upregulated after scratch-wound injury, which was also confirmed in a middle cerebral artery occlusion model and a stab-wound injury model in vivo. The AQP5 increased after scratch injury was polarized to the migrating processes and cytoplasmic membrane of astrocytes in the leading edge of the scratch-wound, and AQP5 over-expression facilitated astrocyte process elongation after scratch injury. Taken together, these results indicate that AQP5 might be an important water channel in astrocytes that is differentially expressed during various brain injuries.
Collapse
Affiliation(s)
- Rui Chao Chai
- Neuroscience Research Institute & Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | | | | | | | | | | | | |
Collapse
|
23
|
Liu S, Zhang S, Jiang H, Yang Y, Jiang Y. Co-expression of AQP3 and AQP5 in esophageal squamous cell carcinoma correlates with aggressive tumor progression and poor prognosis. Med Oncol 2013; 30:636. [DOI: 10.1007/s12032-013-0636-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Accepted: 06/10/2013] [Indexed: 11/27/2022]
|