1
|
Gutiérrez-García B, Cáceres CM, Núñez-Marín F, Molero J, Prats L, Mestre N, Martínez S, Teixidor P, Comas S, Balañà C, Villà S. Early region-specific impact of adjuvant radiation therapy on cognition and quality of life in adult patients with primary brain tumors. Clin Transl Oncol 2025; 27:2143-2159. [PMID: 39367900 DOI: 10.1007/s12094-024-03740-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 09/16/2024] [Indexed: 10/07/2024]
Abstract
PURPOSE While treatments for primary brain tumors increase survival, they have cognitive sequelae. Neurocognition's anatomical distribution makes it susceptible to brain damage. This study aims to evaluate the contribution of radiotherapy on short-term cognitive impairment. METHODS/PATIENTS Using a prospective database of cognitive rehabilitation in adults operated on for primary brain tumors, a retrospective sub-analysis of the contribution of radiotherapy was performed. Thirty-four subdivisions of 12 neurocognitive regions were delineated in 48 irradiated patients and 30 non-irradiated patients. In the first group, the correlation between radiation dose and deterioration was evaluated. In all patients, the impact of tumor and surgical changes on dysfunction was calculated and compared with dose-dependent response. RESULTS The correlation between cognitive status and radiation dose is especially strong and significant in the left hemisphere and in specific subdivisions such as the posterior hippocampus or the dorsolateral prefrontal cortex, with the left prevailing over posterior dominance. Memory is the most affected domain 1 month after radiotherapy, as attention is three months later. The hippocampus is involved in various cognitive domains in addition to memory. The prefrontal subregions and the genu of the corpus callosum are more affected by the relationship with disease and surgical changes than by radiation exposure. Patients ongoing a course of radiotherapy do not benefit from concurrent cognitive rehabilitation. CONCLUSIONS There is a correlation between the dose of radiation received by several encephalic regions and degree of short-term domain-specific cognition decline, considering other factors of risk and cognitive rehabilitation.
Collapse
Affiliation(s)
- Beatriz Gutiérrez-García
- Radiation Oncology, Institut Català d'Oncologia, Hospital Universitari Germans Trias i Pujol, Badalona, Spain.
| | - Cynthia M Cáceres
- Neuropsychology, Hospital Universitari Germans Trias i Pujol, Badalona, Spain
| | | | - Jaume Molero
- Radiophysics and Radiological Protection, Institut Català d'Oncologia, Hospital Universitari Germans Trias i Pujol, Badalona, Spain
| | - Lluis Prats
- Radiophysics and Radiological Protection, Institut Català d'Oncologia, Hospital Universitari Germans Trias i Pujol, Badalona, Spain
| | - Neus Mestre
- Biostatistics, Centro de Regulación Genómica, Barcelona, Spain
| | - Silvia Martínez
- Neuropsychology, Hospital Universitari Germans Trias i Pujol, Badalona, Spain
| | - Pilar Teixidor
- Neurosurgery, Hospital Universitari Germans Trias i Pujol, Badalona, Spain
| | - Silvia Comas
- Radiation Oncology, Institut Català d'Oncologia, Hospital Universitari Germans Trias i Pujol, Badalona, Spain
| | - Carme Balañà
- Medical Oncology, Institut Català d'Oncologia, Hospital Universitari Germans Trias i Pujol, Badalona, Spain
| | - Salvador Villà
- Radiation Oncology, Institut Català d'Oncologia, Hospital Universitari Germans Trias i Pujol, Badalona, Spain
| |
Collapse
|
2
|
Rahmani B, Rahimian A, Mansourian M, Abedi I. Evaluation of the potential of diffusion tensor imaging biomarkers in prediction of white matter changes after brain radiation therapy: A systematic review. JOURNAL OF RESEARCH IN MEDICAL SCIENCES : THE OFFICIAL JOURNAL OF ISFAHAN UNIVERSITY OF MEDICAL SCIENCES 2025; 30:20. [PMID: 40391343 PMCID: PMC12087910 DOI: 10.4103/jrms.jrms_234_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 02/23/2025] [Accepted: 02/26/2025] [Indexed: 05/21/2025]
Abstract
Background The objective of this study was to systematically review the use of diffusion tensor imaging (DTI) biomarkers in the early detection of radiation-induced white matter (WM) changes. Materials and Methods The PubMed and Scopus databases were searched for peer-reviewed articles published in English up to November 28, 2022, according to the PRISMA guidelines to identify studies that related to changes in DTI parameters after radiotherapy. Results After reviewing the literature, eight studies met the inclusion criteria. The results indicated that changes in the late delay phase were completely related to changes in the acute phase. There was a difference in the sensitivity of the biomarkers between studies. Still, there was substantial evidence for the early detection of changes by axial diffusivity (AD), radial diffusivity (RD), and fractional anisotropy (FA). However, further research is still necessary on the potential of mean diffusivity (MD) sensitivity for detecting early changes. The majority of the included studies demonstrated progressive changes in DTI parameters over time and with dose. Conclusion There is significant potential for DTI biomarkers to predict WM changes caused by radiation after brain radiation therapy by having significant predictive power.
Collapse
Affiliation(s)
- Baranoosh Rahmani
- Department of Medical Physics, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Abdurrahim Rahimian
- Department of Medical Physics, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mahsa Mansourian
- Department of Medical Physics, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Iraj Abedi
- Department of Medical Physics, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
3
|
Witzmann K, Raschke F, Wesemann T, Löck S, Funer F, Linn J, Troost EGC. Diffusion decrease in normal-appearing white matter structures following photon or proton irradiation indicates differences in regional radiosensitivity. Radiother Oncol 2024; 199:110459. [PMID: 39069087 DOI: 10.1016/j.radonc.2024.110459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/10/2024] [Accepted: 07/22/2024] [Indexed: 07/30/2024]
Abstract
PURPOSE Radio(chemo)therapy (RCT) as part of the standard treatment of glioma patients, inevitably leads to radiation exposure of the tumor-surrounding normal-appearing (NA) tissues. The effect of radiotherapy on the brain microstructure can be assessed by magnetic resonance imaging (MRI) using diffusion tensor imaging (DTI). The aim of this study was to analyze regional DTI changes of white matter (WM) structures and to determine their dose- and time-dependency. METHODS As part of a longitudinal prospective clinical study (NCT02824731), MRI data of 23 glioma patients treated with proton or photon beam therapy were acquired at three-monthly intervals until 36 months following irradiation. Mean, radial and axial diffusivity (MD, RD, AD) as well as fractional anisotropy (FA) were investigated in the NA tissue of 15 WM structures and their dependence on radiation dose, follow-up time and distance to the clinical target volume (CTV) was analyzed in a multivariate linear regression model. Due to the small and non-comparable patient numbers for proton and photon beam irradiation, a separate assessment of the findings per treatment modality was not performed. RESULTS Four WM structures (i.e., internal capsule, corona radiata, posterior thalamic radiation, and superior longitudinal fasciculus) showed statistically significantly decreased RD and MD after RT, whereas AD decrease and FA increase occurred less frequently. The posterior thalamic radiation showed the most pronounced changes after RCT [i.e., ΔRD = -8.51 % (p = 0.012), ΔMD = -6.14 % (p = 0.012)]. The DTI changes depended significantly on mean dose and time. CONCLUSION Significant changes in DTI for WM substructures were found even at low radiation doses. These findings may prompt new radiation dose constraints sparing the vulnerable structures from damage and subsequent side-effects.
Collapse
Affiliation(s)
- Katharina Witzmann
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology - OncoRay, Dresden, Germany; OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Felix Raschke
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology - OncoRay, Dresden, Germany; OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Tim Wesemann
- Institute of Diagnostic and Interventional Neuroradiology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Steffen Löck
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany; Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Germany; National Center for Tumor Diseases (NCT), Partner Site Dresden, Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universitat Dresden; Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Fabian Funer
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany; Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Jennifer Linn
- Institute of Diagnostic and Interventional Neuroradiology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; National Center for Tumor Diseases (NCT), Partner Site Dresden, Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universitat Dresden; Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Esther G C Troost
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology - OncoRay, Dresden, Germany; OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany; Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Germany; National Center for Tumor Diseases (NCT), Partner Site Dresden, Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universitat Dresden; Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany.
| |
Collapse
|
4
|
Mohammadi M, Banisharif S, Moradi F, Zamanian M, Tanzifi G, Ghaderi S. Brain diffusion MRI biomarkers after oncology treatments. Rep Pract Oncol Radiother 2024; 28:823-834. [PMID: 38515826 PMCID: PMC10954263 DOI: 10.5603/rpor.98728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 12/04/2023] [Indexed: 03/23/2024] Open
Abstract
In addition to providing a measurement of the tumor's size and dimensions, magnetic resonance imaging (MRI) provides excellent noninvasive radiographic detection of tumor location. The MRI technique is an important modality that has been shown to be useful in the prognosis, diagnosis, treatment planning, and evaluation of response and recurrence in solid cancers. Diffusion-weighted imaging (DWI) is an imaging technique that quantifies water mobility. This imaging approach is good for identifying sub-voxel microstructure of tissues, correlates with tumor cellularity, and has been proven to be valuable in the early assessment of cytotoxic treatment for a variety of malignancies. Diffusion tensor imaging (DTI) is an MRI method that assesses the preferred amount of water transport inside tissues. This enables precise measurements of water diffusion, which changes according to the direction of white matter fibers, their density, and myelination. This measurement corresponds to some related variables: fractional anisotropy (FA), mean diffusivity (MD), radial diffusivity (RD), axial diffusivity (AD), and others. DTI biomarkers can detect subtle changes in white matter microstructure and integrity following radiation therapy (RT) or chemoradiotherapy, which may have implications for cognitive function and quality of life. In our study, these indices were evaluated after brain chemoradiotherapy.
Collapse
Affiliation(s)
- Mahdi Mohammadi
- Department of Medical Physics and Biomedical Engineering, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Shabnam Banisharif
- Department of Medical Physics, School of Medicine, Isfahan University of Medical Science, Isfahan, Iran
| | - Fatemeh Moradi
- Department of Energy Engineering & Physics, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Maryam Zamanian
- Department of Medical Physics, School of Medicine, Isfahan University of Medical Science, Isfahan, Iran
| | - Ghazal Tanzifi
- Department of Nuclear Engineering, Islamic Azad University, Central Tehran Branch, Tehran, Iran
| | - Sadegh Ghaderi
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Simó M, Rodríguez-Fornells A, Navarro V, Navarro-Martín A, Nadal E, Bruna J. Mitigating radiation-induced cognitive toxicity in brain metastases: More questions than answers. Neurooncol Adv 2024; 6:vdae137. [PMID: 39247496 PMCID: PMC11379916 DOI: 10.1093/noajnl/vdae137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2024] Open
Abstract
The emergence of advanced systemic therapies added to the use of cranial radiation techniques has significantly improved outcomes for cancer patients with multiple brain metastases (BM), leading to a considerable increase in long-term survivors. In this context, the rise of radiation-induced cognitive toxicity (RICT) has become increasingly relevant. In this critical narrative review, we address the controversies arising from clinical trials aimed at mitigating RICT. We thoroughly examine interventions such as memantine, hippocampal avoidance irradiation during BM treatment or in a prophylactic setting, and the assessment of cognitive safety in stereotactic radiosurgery (SRS). Our focus extends to recent neuroscience research findings, emphasizing the importance of preserving not only the hippocampal cortex but also other cortical regions involved in neural dynamic networks and their intricate role in encoding new memories. Despite treatment advancements, effectively managing patients with multiple BM and determining the optimal timing and integration of radiation and systemic treatments remain areas requiring further elucidation. Future trials are required to delineate optimal indications and ensure SRS safety. Additionally, the impact of new systemic therapies and the potential effects of delaying irradiation on cognitive functioning also need to be addressed. Inclusive trial designs, encompassing patients with multiple BM and accounting for diverse treatment scenarios, are essential for advancing effective strategies in managing RICT and the treatment of BM patients.
Collapse
Affiliation(s)
- Marta Simó
- Cognition and Brain Plasticity Group, Bellvitge Biomedical Research Institute (IDIBELL); Department of Cognition, Development and Educational Science, Campus Bellvitge, University of Barcelona, Barcelona, Spain
- Neuro-Oncology Unit, Bellvitge University Hospital - Catalan Institute of Oncology (ICO), Bellvitge Biomedical Research Institute (IDIBELL) Barcelona, Spain
| | - Antoni Rodríguez-Fornells
- Catalan Institution for Research and Advanced Studies, ICREA, Barcelona, Spain
- Cognition and Brain Plasticity Group, Bellvitge Biomedical Research Institute (IDIBELL); Department of Cognition, Development and Educational Science, Campus Bellvitge, University of Barcelona, Barcelona, Spain
| | - Valentín Navarro
- Department of Medical Oncology, Catalan Institute of Oncology (ICO), Barcelona, Spain
| | - Arturo Navarro-Martín
- Department of Radiation Oncology, Catalan Institute of Oncology (ICO), Barcelona, Spain
| | - Ernest Nadal
- Preclinical and Experimental Research in Thoracic Tumors (PReTT), Molecular Mechanisms and Experimental Therapy in Oncology Program (Oncobell), Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
- Department of Medical Oncology, Catalan Institute of Oncology (ICO), Barcelona, Spain
| | - Jordi Bruna
- Neuro-Oncology Unit, Bellvitge University Hospital - Catalan Institute of Oncology (ICO), Bellvitge Biomedical Research Institute (IDIBELL) Barcelona, Spain
| |
Collapse
|
6
|
Alirezaei Z, Amouheidari A, Iraji S, Hassanpour M, Hejazi SH, Davanian F, Nami MT, Rastaghi S, Shokrani P, Tsien CI, Nazem-Zadeh MR. Prediction of Normal Tissue Complication Probability (NTCP) After Radiation Therapy Using Imaging and Molecular Biomarkers and Multivariate Modelling. J Mol Neurosci 2023; 73:587-597. [PMID: 37462853 DOI: 10.1007/s12031-023-02136-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 06/12/2023] [Indexed: 09/24/2023]
Abstract
The aim of this study was to design a predictive radiobiological model of normal brain tissue in low-grade glioma following radiotherapy based on imaging and molecular biomarkers. Fifteen patients with primary brain tumors prospectively participated in this study and underwent radiation therapy. Magnetic resonance imaging (MRI) was obtained from the patients, including T1- and T2-weighted imaging and diffusion tensor imaging (DTI), and a generalized equivalent dose (gEUD) was calculated. The radiobiological model of the normal tissue complication probability (NTCP) was performed using the variables gEUD; axial diffusivity (AD) and radial diffusivity (RD) of the corpus callosum; and serum protein S100B by univariate and multivariate logistic regression XLIIIrd Sir Peter Freyer Memorial Lecture and Surgical Symposium (2018). Changes in AD, RD, and S100B from baseline up to the 6 months after treatment had an increasing trend and were significant in some time points (P-value < 0.05). The model resulting from RD changes in the 6 months after treatment was significantly more predictable of necrosis than other univariate models. The bivariate model combining RD changes in Gy40 dose-volume and gEUD, as well as the trivariate model obtained using gEUD, RD, and S100B, had a higher predictive value among multivariate models at the sixth month of the treatment. Changes in RD diffusion indices and in serum protein S100B value were used in the early-delayed stage as reliable biomarkers for predicting late-delayed damage (necrosis) caused by radiation in the corpus callosum. Current findings could pave the way for intervention therapies to delay the severity of damage to white matter structures, minimize cognitive impairment, and improve the quality of life of patients with low-grade glioma.
Collapse
Affiliation(s)
- Zahra Alirezaei
- Medical Physics Department, Isfahan University of Medical Science, Isfahan, Iran
| | - Alireza Amouheidari
- Research & Education, Department of Radiation Oncology, Isfahan Milad Hospital, Isfahan, Iran
| | - Sajjad Iraji
- Medical Physics and Biomedical Engineering Department, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Masoud Hassanpour
- Research Center for Molecular and Cellular Imaging, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Hosein Hejazi
- Skin Diseases and Leishmaniosis Research Center, Department of Parasitology and Mycology, School of Medicine, Isfahan University of Medical Science, Isfahan, Iran
| | - Fariba Davanian
- Radiology Department, School of Medicine, Isfahan University of Medical Science, Isfahan, Iran
| | | | - Sedighe Rastaghi
- Biostatistics Department, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Parvaneh Shokrani
- Medical Physics Department, Isfahan University of Medical Science, Isfahan, Iran
| | - Christina I Tsien
- Radiation Oncology Department, Washington University, St. Louis, MO, USA
| | - Mohammad-Reza Nazem-Zadeh
- Medical Physics and Biomedical Engineering Department, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
- Research Center for Molecular and Cellular Imaging, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
7
|
Friedrich M, Farrher E, Caspers S, Lohmann P, Lerche C, Stoffels G, Filss CP, Weiss Lucas C, Ruge MI, Langen KJ, Shah NJ, Fink GR, Galldiks N, Kocher M. Alterations in white matter fiber density associated with structural MRI and metabolic PET lesions following multimodal therapy in glioma patients. Front Oncol 2022; 12:998069. [PMID: 36452509 PMCID: PMC9702073 DOI: 10.3389/fonc.2022.998069] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 10/17/2022] [Indexed: 02/29/2024] Open
Abstract
BACKGROUND In glioma patients, multimodality therapy and recurrent tumor can lead to structural brain tissue damage characterized by pathologic findings in MR and PET imaging. However, little is known about the impact of different types of damage on the fiber architecture of the affected white matter. PATIENTS AND METHODS This study included 121 pretreated patients (median age, 52 years; ECOG performance score, 0 in 48%, 1-2 in 51%) with histomolecularly characterized glioma (WHO grade IV glioblastoma, n=81; WHO grade III anaplastic astrocytoma, n=28; WHO grade III anaplastic oligodendroglioma, n=12), who had a resection, radiotherapy, alkylating chemotherapy, or combinations thereof. After a median follow-up time of 14 months (range, 1-214 months), anatomic MR and O-(2-[18F]fluoroethyl)-L-tyrosine (FET) PET images were acquired on a 3T hybrid PET/MR scanner. Post-therapeutic findings comprised resection cavities, regions with contrast enhancement or increased FET uptake and T2/FLAIR hyperintensities. Local fiber density was determined from high angular-resolution diffusion-weighted imaging and advanced tractography methods. A cohort of 121 healthy subjects selected from the 1000BRAINS study matched for age, gender and education served as a control group. RESULTS Lesion types differed in both affected tissue volumes and relative fiber densities compared to control values (resection cavities: median volume 20.9 mL, fiber density 16% of controls; contrast-enhanced lesions: 7.9 mL, 43%; FET uptake areas: 30.3 mL, 49%; T2/FLAIR hyperintensities: 53.4 mL, 57%, p<0.001). In T2/FLAIR-hyperintense lesions caused by peritumoral edema due to recurrent glioma (n=27), relative fiber density was as low as in lesions associated with radiation-induced gliosis (n=13, 48% vs. 53%, p=0.17). In regions with pathologically increased FET uptake, local fiber density was inversely related (p=0.005) to the extent of uptake. Total fiber loss associated with contrast-enhanced lesions (p=0.006) and T2/FLAIR hyperintense lesions (p=0.013) had a significant impact on overall ECOG score. CONCLUSIONS These results suggest that apart from resection cavities, reduction in local fiber density is greatest in contrast-enhancing recurrent tumors, but total fiber loss induced by edema or gliosis has an equal detrimental effect on the patients' performance status due to the larger volume affected.
Collapse
Affiliation(s)
- Michel Friedrich
- Institute of Neuroscience and Medicine (INM-1, -3, -4, -11), Research Center Juelich, Juelich, Germany
| | - Ezequiel Farrher
- Institute of Neuroscience and Medicine (INM-1, -3, -4, -11), Research Center Juelich, Juelich, Germany
| | - Svenja Caspers
- Institute of Neuroscience and Medicine (INM-1, -3, -4, -11), Research Center Juelich, Juelich, Germany
- Institute for Anatomy I, Medical Faculty and University Hospital Duesseldorf, Heinrich Heine University Duesseldorf, Duesseldorf, Germany
| | - Philipp Lohmann
- Institute of Neuroscience and Medicine (INM-1, -3, -4, -11), Research Center Juelich, Juelich, Germany
- Department of Stereotaxy and Functional Neurosurgery, Center for Neurosurgery, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Christoph Lerche
- Institute of Neuroscience and Medicine (INM-1, -3, -4, -11), Research Center Juelich, Juelich, Germany
| | - Gabriele Stoffels
- Institute of Neuroscience and Medicine (INM-1, -3, -4, -11), Research Center Juelich, Juelich, Germany
| | - Christian P. Filss
- Institute of Neuroscience and Medicine (INM-1, -3, -4, -11), Research Center Juelich, Juelich, Germany
- Department of Nuclear Medicine, University Hospital Aachen, Rheinisch-Westfaelische Technische Hochschule (RWTH) Aachen University, Aachen, Germany
| | - Carolin Weiss Lucas
- Center of Integrated Oncology (CIO), Universities of Aachen, Bonn, Cologne, and Duesseldorf, Cologne, Germany
- Department of General Neurosurgery, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Maximilian I. Ruge
- Department of Stereotaxy and Functional Neurosurgery, Center for Neurosurgery, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
- Center of Integrated Oncology (CIO), Universities of Aachen, Bonn, Cologne, and Duesseldorf, Cologne, Germany
| | - Karl-Josef Langen
- Institute of Neuroscience and Medicine (INM-1, -3, -4, -11), Research Center Juelich, Juelich, Germany
- Department of Nuclear Medicine, University Hospital Aachen, Rheinisch-Westfaelische Technische Hochschule (RWTH) Aachen University, Aachen, Germany
- Center of Integrated Oncology (CIO), Universities of Aachen, Bonn, Cologne, and Duesseldorf, Cologne, Germany
| | - Nadim J. Shah
- Institute of Neuroscience and Medicine (INM-1, -3, -4, -11), Research Center Juelich, Juelich, Germany
- Juelich-Aachen Research Alliance (JARA), Section JARA-Brain, Juelich, Germany
- Department of Neurology, University Hospital Aachen, Rheinisch-Westfaelische Technische Hochschule (RWTH) Aachen University, Aachen, Germany
| | - Gereon R. Fink
- Institute of Neuroscience and Medicine (INM-1, -3, -4, -11), Research Center Juelich, Juelich, Germany
- Center of Integrated Oncology (CIO), Universities of Aachen, Bonn, Cologne, and Duesseldorf, Cologne, Germany
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Norbert Galldiks
- Institute of Neuroscience and Medicine (INM-1, -3, -4, -11), Research Center Juelich, Juelich, Germany
- Center of Integrated Oncology (CIO), Universities of Aachen, Bonn, Cologne, and Duesseldorf, Cologne, Germany
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Martin Kocher
- Institute of Neuroscience and Medicine (INM-1, -3, -4, -11), Research Center Juelich, Juelich, Germany
- Department of Stereotaxy and Functional Neurosurgery, Center for Neurosurgery, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
- Center of Integrated Oncology (CIO), Universities of Aachen, Bonn, Cologne, and Duesseldorf, Cologne, Germany
| |
Collapse
|
8
|
Dinkel JG, Lahmer G, Mennecke A, Hock SW, Richter-Schmidinger T, Fietkau R, Distel L, Putz F, Dörfler A, Schmidt MA. Effects of Hippocampal Sparing Radiotherapy on Brain Microstructure-A Diffusion Tensor Imaging Analysis. Brain Sci 2022; 12:brainsci12070879. [PMID: 35884686 PMCID: PMC9312994 DOI: 10.3390/brainsci12070879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/28/2022] [Accepted: 06/30/2022] [Indexed: 11/16/2022] Open
Abstract
Hippocampal-sparing radiotherapy (HSR) is a promising approach to alleviate cognitive side effects following cranial radiotherapy. Microstructural brain changes after irradiation have been demonstrated using Diffusion Tensor Imaging (DTI). However, evidence is conflicting for certain parameters and anatomic structures. This study examines the effects of radiation on white matter and hippocampal microstructure using DTI and evaluates whether these may be mitigated using HSR. A total of 35 tumor patients undergoing a prospective randomized controlled trial receiving either conventional or HSR underwent DTI before as well as 6, 12, 18, 24, and 30 (±3) months after radiotherapy. Fractional Anisotropy (FA), Mean Diffusivity (MD), Axial Diffusivity (AD), and Radial Diffusivity (RD) were measured in the hippocampus (CA), temporal, and frontal lobe white matter (TL, FL), and corpus callosum (CC). Longitudinal analysis was performed using linear mixed models. Analysis of the entire patient collective demonstrated an overall FACC decrease and RDCC increase compared to baseline in all follow-ups; ADCC decreased after 6 months, and MDCC increased after 12 months (p ≤ 0.001, 0.001, 0.007, 0.018). ADTL decreased after 24 and 30 months (p ≤ 0.004, 0.009). Hippocampal FA increased after 6 and 12 months, driven by a distinct increase in ADCA and MDCA, with RDCA not increasing until 30 months after radiotherapy (p ≤ 0.011, 0.039, 0.005, 0.040, 0.019). Mean radiation dose correlated positively with hippocampal FA (p < 0.001). These findings may indicate complex pathophysiological changes in cerebral microstructures after radiation, insufficiently explained by conventional DTI models. Hippocampal microstructure differed between patients undergoing HSR and conventional cranial radiotherapy after 6 months with a higher ADCA in the HSR subgroup (p ≤ 0.034).
Collapse
Affiliation(s)
- Johannes G. Dinkel
- Neuroradiologisches Institut des Universitätsklinikums Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (J.G.D.); (A.M.); (S.W.H.); (A.D.)
| | - Godehard Lahmer
- Strahlenklinik des Universitätsklinikums Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (G.L.); (R.F.); (L.D.); (F.P.)
| | - Angelika Mennecke
- Neuroradiologisches Institut des Universitätsklinikums Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (J.G.D.); (A.M.); (S.W.H.); (A.D.)
| | - Stefan W. Hock
- Neuroradiologisches Institut des Universitätsklinikums Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (J.G.D.); (A.M.); (S.W.H.); (A.D.)
| | - Tanja Richter-Schmidinger
- Psychiatrische und Psychotherapeutische Klinik des Universitätsklinikums Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany;
| | - Rainer Fietkau
- Strahlenklinik des Universitätsklinikums Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (G.L.); (R.F.); (L.D.); (F.P.)
| | - Luitpold Distel
- Strahlenklinik des Universitätsklinikums Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (G.L.); (R.F.); (L.D.); (F.P.)
| | - Florian Putz
- Strahlenklinik des Universitätsklinikums Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (G.L.); (R.F.); (L.D.); (F.P.)
| | - Arnd Dörfler
- Neuroradiologisches Institut des Universitätsklinikums Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (J.G.D.); (A.M.); (S.W.H.); (A.D.)
| | - Manuel A. Schmidt
- Neuroradiologisches Institut des Universitätsklinikums Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (J.G.D.); (A.M.); (S.W.H.); (A.D.)
- Correspondence:
| |
Collapse
|
9
|
Rydelius A, Lampinen B, Rundcrantz A, Bengzon J, Engelholm S, van Westen D, Kinhult S, Knutsson L, Lätt J, Nilsson M, Sundgren PC. Diffusion tensor imaging in glioblastoma patients treated with volumetric modulated arc radiotherapy: a longitudinal study. Acta Oncol 2022; 61:680-687. [PMID: 35275512 DOI: 10.1080/0284186x.2022.2045036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
BACKGROUND Chemo- and radiotherapy (RT) is standard treatment for patients with high-grade glioma, but may cause side-effects on the patient's cognitive function. AIM Use of diffusion tensor imaging (DTI) to investigate the longitudinal changes in normal-appearing brain tissue in glioblastoma patients undergoing modern arc-based RT with volumetric modulated arc therapy (VMAT) or helical tomotherapy. MATERIALS AND METHODS The study included 27 patients newly diagnosed with glioblastoma and planned for VMAT or tomotherapy. All subjects underwent magnetic resonance imaging at the start of RT and at week 3, 6, 15, and 26. Fourteen subjects were additionally imaged at week 52. The DTI data were co-registered to the dose distribution maps. Longitudinal changes in fractional anisotropy (FA), mean diffusivity (MD), radial diffusivity (RD), and axial diffusivity (AD) were assessed in the corpus callosum, the centrum semiovale, the hippocampus, and the amygdala. RESULTS Significant longitudinal changes in FA, MD, and RD were mainly found in the corpus callosum. In the other examined brain structures, only sparse and transient changes were seen. No consistent correlations were found between biodose, age, or gender and changes in DTI parameters. CONCLUSION Longitudinal changes in MD, FA, and RD were observed but only in a limited number of brain structures and the changes were smaller than expected from literature. The results suggest that modern, arc-based RT may have less negative effect on normal-appearing parts of the brain tissue up to 12 months after radiotherapy.
Collapse
Affiliation(s)
- Anna Rydelius
- Department of Radiology, Clinical Sciences Lund, Lund University, Lund, Sweden
- Department of Neurology, Skane University Hospital, Lund, Sweden
| | - Björn Lampinen
- Department of Medical Radiation Physics, Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Andreas Rundcrantz
- Department of Radiology, Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Johan Bengzon
- Department of Neurosurgery, Clinical Sciences Lund, Lund University and Skane University Hospital, Lund, Sweden
| | - Silke Engelholm
- Deptarments of Hematology, Oncology and Radiation Physics, Skane University Hospital, Lund, Sweden
| | - Danielle van Westen
- Department of Radiology, Clinical Sciences Lund, Lund University, Lund, Sweden
- Department for Medical Imaging and Physiology, Skåne University Hospital, Lund, Sweden
| | - Sara Kinhult
- Department of Oncology, Department of Clinical Sciences, Lund University, Skane University Hospital, Lund, Sweden
| | - Linda Knutsson
- Department of Medical Radiation Physics, Clinical Sciences Lund, Lund University, Lund, Sweden
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jimmy Lätt
- Lund University BioImaging Centre (LBIC), Lund University, Lund, Sweden
| | - Markus Nilsson
- Department of Radiology, Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Pia C. Sundgren
- Department of Radiology, Clinical Sciences Lund, Lund University, Lund, Sweden
- Department for Medical Imaging and Physiology, Skåne University Hospital, Lund, Sweden
- Lund University BioImaging Centre (LBIC), Lund University, Lund, Sweden
- Department of Radiology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
10
|
Şahin S, Ertekin E, Şahin T, Özsunar Y. Evaluation of normal-appearing white matter with perfusion and diffusion MRI in patients with treated glioblastoma. MAGMA (NEW YORK, N.Y.) 2022; 35:153-162. [PMID: 34951690 DOI: 10.1007/s10334-021-00990-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 12/10/2021] [Accepted: 12/12/2021] [Indexed: 06/14/2023]
Abstract
OBJECTIVE We tried to reveal how the normal appearing white matter (NAWM) was affected in patients with glioblastoma treated with chemo-radiotherapy (CRT) in the period following the treatment, by multiparametric MRI. MATERIALS AND METHODS 43 multiparametric MRI examinations of 17 patients with glioblastoma treated with CRT were examined. A total of six different series or maps were analyzed in the examinations: Apparent Diffusion Coefficient (ADC) and Fractional Anisotropy (FA) maps, Gradient Echo (GRE) sequence, Dynamic susceptibility contrast (DSC) and Arterial spin labeling (ASL) perfusion sequences. Each sequence in each examination was examined in detail with 14 Region of Interest (ROI) measurements. The obtained values were proportioned to the contralateral NAWM values and the results were recorded as normalized values. Time dependent changes of normalized values were statistically analyzed. RESULTS The most prominent changes in follow-up imaging occurred in the perilesional region. In perilesional NAWM, we found a decrease in normalized FA (nFA), rCBV (nrCBV), rCBF (nrCBF), ASL (nASL)values (p < 0.005) in the first 3 months after treatment, followed by a plateau and an increase approaching pretreatment values, although it did not reach. Similar but milder findings were present in other NAWM areas. In perilesional NAWM, nrCBV values were found to be positively high correlated with nrCBF and nASL, and negatively high correlated with nADC values (r: 0.963, 0.736, - 0.973, respectively). We also found high correlations between the mean values of nrCBV, nrCBF, nASL in other NAWM areas (r: 0.891, 0.864, respectively). DISCUSSION We showed that both DSC and ASL perfusion values decreased correlatively in the first 3 months and showed a plateau after 1 year in patients with glioblastoma treated with CRT, unlike the literature. Although it was not as evident as perfusion MRI, it was observed that the ADC values also showed a plateau pattern following the increase in the first 3 months. Further studies are needed to explain late pathophysiological changes. Because of the high correlation, our results support ASL perfusion instead of contrast enhanced perfusion methods.
Collapse
Affiliation(s)
- Sinan Şahin
- Department of Radiology, Adnan Menderes University, Aydın, Turkey
| | - Ersen Ertekin
- Department of Radiology, Adnan Menderes University, Aydın, Turkey.
| | - Tuna Şahin
- Department of Radiology, Adnan Menderes University, Aydın, Turkey
| | - Yelda Özsunar
- Department of Radiology, Adnan Menderes University, Aydın, Turkey
| |
Collapse
|
11
|
Acharya S, Guo Y, Patni T, Li Y, Wang C, Gargone M, Ashford JM, Wilson L, Faught A, Reddick WE, Patay Z, Gajjar A, Conklin HM, Merchant TE. Association Between Brain Substructure Dose and Cognitive Outcomes in Children With Medulloblastoma Treated on SJMB03: A Step Toward Substructure-Informed Planning. J Clin Oncol 2022; 40:83-95. [PMID: 34714708 PMCID: PMC8683226 DOI: 10.1200/jco.21.01480] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 08/31/2021] [Accepted: 09/29/2021] [Indexed: 01/03/2023] Open
Abstract
PURPOSE To characterize the association between neurocognitive outcomes (memory and processing speed) and radiation (RT) dose to the hippocampus, corpus callosum (CC), and frontal white matter (WM) in children with medulloblastoma treated on a prospective study, SJMB03. PATIENTS AND METHODS Patients age 3-21 years with medulloblastoma were treated at a single institution on a phase III study. The craniospinal RT dose was 23.4 Gy for average-risk patients and 36-39.6 Gy for high-risk patients. The boost dose was 55.8 Gy to the tumor bed. Patients underwent cognitive testing at baseline and once yearly for 5 years. Performance on tests of memory (associative memory and working memory) and processing speed (composite processing speed and perceptual speed) was analyzed. Mixed-effects models were used to estimate longitudinal trends in neurocognitive outcomes. Reliable change index and logistic regression were used to define clinically meaningful neurocognitive decline and identify variables associated with decline. RESULTS One hundred and twenty-four patients were eligible for inclusion, with a median neurocognitive follow-up of 5 years. Mean right and left hippocampal doses were significantly associated with decline in associative memory in patients without posterior fossa syndrome (all P < .05). Mean CC and frontal WM doses were significantly associated with decline in both measures of processing speed (all P < .05). Median brain substructure dose-volume histograms were shifted to the right for patients with a decline in associative memory or processing speed. The odds of decline in associative memory and composite processing speed increased by 23%-26% and by 10%-15% for every 1-Gy increase in mean hippocampal dose and mean CC or frontal WM dose, respectively. CONCLUSION Increasing RT dose to the CC or frontal WM and hippocampus is associated with worse performance on tests of processing speed and associative memory, respectively. Brain substructure-informed RT planning may mitigate neurocognitive impairment.
Collapse
Affiliation(s)
- Sahaja Acharya
- Department of Radiation Oncology, St Jude Children's Research Hospital, Memphis, TN
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins Medicine, Baltimore, MD
| | - Yian Guo
- Department of Biostatistics, St Jude Children's Research Hospital, Memphis, TN
| | - Tushar Patni
- Department of Biostatistics, St Jude Children's Research Hospital, Memphis, TN
| | - Yimei Li
- Department of Biostatistics, St Jude Children's Research Hospital, Memphis, TN
| | - Chuang Wang
- Department of Radiation Oncology, St Jude Children's Research Hospital, Memphis, TN
| | - Melissa Gargone
- Department of Radiation Oncology, St Jude Children's Research Hospital, Memphis, TN
| | - Jason M. Ashford
- Department of Psychology, St Jude Children's Research Hospital, Memphis, TN
| | - Lydia Wilson
- Department of Radiation Oncology, St Jude Children's Research Hospital, Memphis, TN
| | - Austin Faught
- Department of Radiation Oncology, St Jude Children's Research Hospital, Memphis, TN
| | - Wilburn E. Reddick
- Department of Diagnostic Imaging, St Jude Children's Research Hospital, Memphis, TN
| | - Zoltan Patay
- Department of Diagnostic Imaging, St Jude Children's Research Hospital, Memphis, TN
| | - Amar Gajjar
- Division of Neuro-Oncology, St Jude Children's Research Hospital, Memphis, TN
| | - Heather M. Conklin
- Department of Psychology, St Jude Children's Research Hospital, Memphis, TN
| | - Thomas E. Merchant
- Department of Radiation Oncology, St Jude Children's Research Hospital, Memphis, TN
| |
Collapse
|
12
|
Dünger L, Seidlitz A, Jentsch C, Platzek I, Kotzerke J, Beuthien-Baumann B, Baumann M, Krause M, Troost EGC, Raschke F. Reduced diffusion in white matter after radiotherapy with photons and protons. Radiother Oncol 2021; 164:66-72. [PMID: 34537290 DOI: 10.1016/j.radonc.2021.09.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 08/30/2021] [Accepted: 09/10/2021] [Indexed: 11/30/2022]
Abstract
BACKGROUND AND PURPOSE Radio(chemo)therapy is standard in the adjuvant treatment of glioblastoma. Inevitably, brain tissue surrounding the target volume is also irradiated, potentially causing acute and late side-effects. Diffusion imaging has been shown to be a sensitive method to detect early changes in the cerebral white matter (WM) after radiation. The aim of this work was to assess possible changes in the mean diffusivity (MD) of WM after radio(chemo)therapy using Diffusion-weighted imaging (DWI) and to compare these effects between patients treated with proton and photon irradiation. MATERIALS AND METHODS 70 patients with glioblastoma underwent adjuvant radio(chemo)therapy with protons (n = 20) or photons (n = 50) at the University Hospital Dresden. MRI follow-ups were performed at three-monthly intervals and in this study were evaluated until 33 months after the end of therapy. Relative white matter MD changes between baseline and all follow-up visits were calculated in different dose regions. RESULTS We observed a significant decrease of MD (p < 0.05) in WM regions receiving more than 20 Gy. MD reduction was progressive with dose and time after radio(chemo)therapy (maximum: -7.9 ± 1.2% after 24 months, ≥50 Gy). In patients treated with photons, significant reductions of MD in the entire WM (p < 0.05) were seen at all time points. Conversely, in proton patients, whole brain MD did not change significantly. CONCLUSIONS Irradiation leads to measurable MD reduction in white matter, progressing with both increasing dose and time. Treatment with protons reduces this effect most likely due to a lower total dose in the surrounding white matter. Further investigations are needed to assess whether those MD changes correlate with known radiation induced side-effects.
Collapse
Affiliation(s)
- L Dünger
- ABX-CRO Advanced Pharmaceutical Services Forschungsgesellschaft mbH, Dresden, Germany; OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - A Seidlitz
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany; Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - C Jentsch
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany; Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - I Platzek
- Department of Diagnostic and Interventional Radiology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - J Kotzerke
- Department of Nuclear Medicine, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | | | - M Baumann
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany; National Center for Tumor Diseases (NCT), Partner Site Heidelberg, Germany
| | - M Krause
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany; Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology - OncoRay, Dresden, Germany; German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Germany; National Center for Tumor Diseases (NCT), Partner Site Dresden, Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany, and; Helmholtz Association / Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
| | - E G C Troost
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany; Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology - OncoRay, Dresden, Germany; German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Germany; National Center for Tumor Diseases (NCT), Partner Site Dresden, Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany, and; Helmholtz Association / Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
| | - F Raschke
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany; Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.
| |
Collapse
|
13
|
Bontempi P, Scartoni D, Amelio D, Cianchetti M, Turkaj A, Amichetti M, Farace P. Multicomponent T 2 relaxometry reveals early myelin white matter changes induced by proton radiation treatment. Magn Reson Med 2021; 86:3236-3245. [PMID: 34268786 DOI: 10.1002/mrm.28913] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/21/2021] [Accepted: 06/14/2021] [Indexed: 11/11/2022]
Abstract
PURPOSE To investigate MRI myelin water imaging (MWI) by multicomponent T2 relaxometry as a quantitative imaging biomarker for brain radiation-induced changes and to compare it with DTI. METHODS Sixteen patients underwent fractionated proton therapy (PT) receiving dose to the healthy tissue because of direct or indirect (base skull tumors) irradiation. MWI was performed by a multi-echo sequence with 32 equally spaced echoes (10-320 ms). Decay data were processed to identify 3 T2 compartments: myelin water (Mw) below 40 ms, intra-extracellular water (IEw) between 40 and 250 ms, and free water (CSFw) above 250 ms. Both MWI and DTI scans were acquired pre (pre)-treatment and immediately at the end (end) of PT. After image registration, voxel-wise difference maps, obtained by subtracting MWI and DTI pre from those acquired at the end of PT, were compared with the corresponding biological equivalent dose (BED). RESULTS Mw difference showed a positive correlation and IEw difference showed a negative correlation with BED considering end-pre changes (P < .01). The changes in CSFw were not significantly correlated with the delivered BED. The changes in DTI data, considering end-pre acquisitions, showed a positive correlation between fractional anisotropy and the delivered BED. CONCLUSION MWI might detect early white matter radiation-induced alterations, providing additional information to DTI, which might improve the understanding of the pathogenesis of the radiation damage.
Collapse
Affiliation(s)
- Pietro Bontempi
- Proton Therapy Unit, Hospital of Trento, Azienda Provinciale per i Servizi Sanitari (APSS), Trento, Italy
| | - Daniele Scartoni
- Proton Therapy Unit, Hospital of Trento, Azienda Provinciale per i Servizi Sanitari (APSS), Trento, Italy
| | - Dante Amelio
- Proton Therapy Unit, Hospital of Trento, Azienda Provinciale per i Servizi Sanitari (APSS), Trento, Italy
| | - Marco Cianchetti
- Proton Therapy Unit, Hospital of Trento, Azienda Provinciale per i Servizi Sanitari (APSS), Trento, Italy
| | - Ana Turkaj
- Proton Therapy Unit, Hospital of Trento, Azienda Provinciale per i Servizi Sanitari (APSS), Trento, Italy
| | - Maurizio Amichetti
- Proton Therapy Unit, Hospital of Trento, Azienda Provinciale per i Servizi Sanitari (APSS), Trento, Italy
| | - Paolo Farace
- Proton Therapy Unit, Hospital of Trento, Azienda Provinciale per i Servizi Sanitari (APSS), Trento, Italy
| |
Collapse
|
14
|
Skaarup M, Lundemann MJ, Darkner S, Jørgensen M, Marner L, Mirkovic D, Grosshans D, Peeler C, Mohan R, Vogelius IR, Appelt A. A framework for voxel-based assessment of biological effect after proton radiotherapy in pediatric brain cancer patients using multi-modal imaging. Med Phys 2021; 48:4110-4121. [PMID: 34021597 DOI: 10.1002/mp.14989] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 04/19/2021] [Accepted: 05/13/2021] [Indexed: 01/12/2023] Open
Abstract
INTRODUCTION The exact dependence of biological effect on dose and linear energy transfer (LET) in human tissue when delivering proton therapy is unknown. In this study, we propose a framework for measuring this dependency using multi-modal image-based assays with deformable registrations within imaging sessions and across time. MATERIALS AND METHODS 3T MRI scans were prospectively collected from 6 pediatric brain cancer patients before they underwent proton therapy treatment, and every 3 months for a year after treatment. Scans included T1-weighted with contrast enhancement (T1), T2-FLAIR (T2) and fractional anisotropy (FA) images. In addition, the planning CT, dose distributions and Monte Carlo-calculated LET distributions were collected. A multi-modal deformable image registration framework was used to create a dataset of dose, LET and imaging intensities at baseline and follow-up on a voxel-by-voxel basis. We modelled the biological effect of dose and LET from proton therapy using imaging changes over time as a surrogate for biological effect. We investigated various models to show the feasibility of the framework to model imaging changes. To account for interpatient and intrapatient variations, we used a nested generalized linear mixed regression model. The models were applied to predict imaging changes over time as a function of dose and LET for each modality. RESULTS Using the nested models to predict imaging changes, we saw a decrease in the FA signal as a function of dose; however, the signal increased with increasing LET. Similarly, we saw an increase in T2 signal as a function of dose, but a decrease in signal with LET. We saw no changes in T1 voxel values as a function of either dose or LET. CONCLUSIONS The imaging changes could successfully model biological effect as a function of dose and LET using our proposed framework. Due to the low number of patients, the imaging changes observed for FA and T2 scans were not marked enough to draw any firm conclusions.
Collapse
Affiliation(s)
- Mikkel Skaarup
- Department of Oncology, Rigshospitalet, Copenhagen, Denmark
- Faculty of Science, Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark
| | | | - Sune Darkner
- Department of Computer Science, University of Copenhagen, Copenhagen, Denmark
| | | | - Lisbeth Marner
- Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Physiology and Nuclear Medicine, Copenhagen University Hospital Bispebjerg, Copenhagen, Denmark
| | - Dragan Mirkovic
- Department of Radiation Physics, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - David Grosshans
- Department of Radiation Physics, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Christopher Peeler
- Department of Radiation Physics, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Radhe Mohan
- Department of Radiation Physics, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Ivan Richter Vogelius
- Department of Oncology, Rigshospitalet, Copenhagen, Denmark
- Faculty of Health and Medical Science, Copenhagen University, Copenhagen, Denmark
| | - Ane Appelt
- Leeds Institute of Medical Research at St James's, University of Leeds and Leeds Cancer Centre, St. James's University Hospital, Leeds, UK
| |
Collapse
|
15
|
Redmond KJ, Milano MT, Kim MM, Trifiletti DM, Soltys SG, Hattangadi-Gluth JA. Reducing Radiation-Induced Cognitive Toxicity: Sparing the Hippocampus and Beyond. Int J Radiat Oncol Biol Phys 2021; 109:1131-1136. [PMID: 33714520 DOI: 10.1016/j.ijrobp.2021.01.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 01/03/2021] [Indexed: 12/25/2022]
Affiliation(s)
- Kristin J Redmond
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Baltimore, Maryland.
| | - Michael T Milano
- Department of Radiation Oncology, University of Rochester, Rochester, New York
| | - Michelle M Kim
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan
| | - Daniel M Trifiletti
- Department of Radiation Oncology, Mayo Clinic Florida, Jacksonville, Florida
| | - Scott G Soltys
- Department of Radiation Oncology, Stanford University, Stanford, California
| | - Jona A Hattangadi-Gluth
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, California
| |
Collapse
|
16
|
Witzmann K, Raschke F, Troost EGC. MR Image Changes of Normal-Appearing Brain Tissue after Radiotherapy. Cancers (Basel) 2021; 13:cancers13071573. [PMID: 33805542 PMCID: PMC8037886 DOI: 10.3390/cancers13071573] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 03/13/2021] [Accepted: 03/23/2021] [Indexed: 12/24/2022] Open
Abstract
Simple Summary Radiotherapy is one of the most important treatment options against cancer. Irradiation of cancerous tissue either directly destroys the cancer cells or damages them such that they cannot reproduce. One side-effect of radiotherapy is that tumor-surrounding normal tissue is inevitably also irradiated, albeit at a lower dose. The resulting long-term damage can significantly affect cognitive performance and quality of life. Many studies investigated the effect of irradiation on normal-appearing brain tissues and some of these correlated imaging findings with functional outcome. This article provides an overview of the examination of radiation-induced injuries using conventional and enhanced MRI methods and summarizes conclusions about the underlying tissue changes. Radiation-induced morphologic, microstructural, vascular, and metabolic tissue changes have been observed, in which the effect of irradiation was evident in terms of decreased perfusion and neuronal health as well as increased diffusion and atrophy. Abstract Radiotherapy is part of the standard treatment of most primary brain tumors. Large clinical target volumes and physical characteristics of photon beams inevitably lead to irradiation of surrounding normal brain tissue. This can cause radiation-induced brain injury. In particular, late brain injury, such as cognitive dysfunction, is often irreversible and progressive over time, resulting in a significant reduction in quality of life. Since 50% of patients have survival times greater than six months, radiation-induced side effects become more relevant and need to be balanced against radiation treatment given with curative intent. To develop adequate treatment and prevention strategies, the underlying cause of radiation-induced side-effects needs to be understood. This paper provides an overview of radiation-induced changes observed in normal-appearing brains measured with conventional and advanced MRI techniques and summarizes the current findings and conclusions. Brain atrophy was observed with anatomical MRI. Changes in tissue microstructure were seen on diffusion imaging. Vascular changes were examined with perfusion-weighted imaging and susceptibility-weighted imaging. MR spectroscopy revealed decreasing N-acetyl aspartate, indicating decreased neuronal health or neuronal loss. Based on these findings, multicenter prospective studies incorporating advanced MR techniques as well as neurocognitive function tests should be designed in order to gain more evidence on radiation-induced sequelae.
Collapse
Affiliation(s)
- Katharina Witzmann
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology—OncoRay, Dresden, Germany; (K.W.); (F.R.)
- OncoRay—National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Felix Raschke
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology—OncoRay, Dresden, Germany; (K.W.); (F.R.)
- OncoRay—National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Esther G. C. Troost
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology—OncoRay, Dresden, Germany; (K.W.); (F.R.)
- OncoRay—National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Partner Site Dresden of the German Cancer Research Center (DKFZ), Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden and Helmholtz Association/Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
- Correspondence:
| |
Collapse
|
17
|
Early Detection of Radiation-Induced Injury and Prediction of Cognitive Deficit by MRS Metabolites in Radiotherapy of Low-Grade Glioma. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6616992. [PMID: 34258272 PMCID: PMC8260313 DOI: 10.1155/2021/6616992] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 02/04/2021] [Accepted: 02/21/2021] [Indexed: 12/18/2022]
Abstract
Purpose To compare the sensitivity of MRS metabolites and MoCA and ACE-R cognitive tests in the detection of radiation-induced injury in low grade glioma (LGG) patients in early and early delayed postradiation stages. Methods MRS metabolite ratios of NAA/Cr and Cho/Cr, ACE-R and MoCA cognitive tests, and dosimetric parameters in corpus callosum were analyzed during RT and up to 6-month post-RT for ten LGG patients. Results Compared to pre RT baseline, a significant decline in both NAA/Cr and Cho/Cr in the corpus callosum was seen at the 4th week of RT, 1, 3, and 6-month post-RT. These declines were detected at least 3 months before the detection of declines in cognitive functions by ACE-R and MoCA tools. Moreover, NAA/Cr alterations at 4th week of RT and 1-month post-RT were significantly negatively correlated with the mean dose received by the corpus callosum, as well as the corpus callosum 40 Gy dose volume, i.e., the volume of the corpus callosum receiving a dose greater than 40 Gy. Conclusion MRS-based biomarkers may be more sensitive than the state-of-the-art cognitive tests in the prediction of postradiation cognitive impairments. They would be utilized in treatment planning and dose sparing protocols, with a specific focus on the corpus callosum in the radiation therapy of LGG patients.
Collapse
|
18
|
Recommendation for the contouring of limbic system in patients receiving radiation treatment: A pictorial review for the everyday practice and education. Crit Rev Oncol Hematol 2021; 159:103229. [PMID: 33482343 DOI: 10.1016/j.critrevonc.2021.103229] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 12/09/2020] [Accepted: 01/16/2021] [Indexed: 01/01/2023] Open
Abstract
AIMS The limbic circuit (LC) is devoted to linking emotion to behavior and cognition. The injury this system results in post-RT cognitive dysfunction. The aim of this study is to create the first radiation oncologist's practical MR-based contouring guide for the delineation of the LC for the everyday clinical practice and education. METHODS An anonymized diagnostic 3.0 T T1-weighted BRAVO MRI sequence from a healthy patient with typical brain anatomy was used to delineate LC. For each structure key anatomical contours were completed by radiation oncologists, along with a neuro-radiologist to generate the final version of the LC atlas. RESULTS a step-by-step MR-based atlas of LC was created. Key structures of the LC, such as, cingulate gyrus, fornix, septal region, mammillary bodies, thalamus and the hippocampal-amygdala formation were contoured. CONCLUSIONS This article provides the recommendations for the first contouring atlas of LC in the setting of patients receiving RT and education.
Collapse
|
19
|
van der Weide HL, Kramer MCA, Scandurra D, Eekers DBP, Klaver YLB, Wiggenraad RGJ, Méndez Romero A, Coremans IEM, Boersma L, van Vulpen M, Langendijk JA. Proton therapy for selected low grade glioma patients in the Netherlands. Radiother Oncol 2020; 154:283-290. [PMID: 33197495 DOI: 10.1016/j.radonc.2020.11.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 11/06/2020] [Accepted: 11/08/2020] [Indexed: 12/12/2022]
Abstract
Proton therapy offers an attractive alternative to conventional photon-based radiotherapy in low grade glioma patients, delivering radiotherapy with equivalent efficacy to the tumour with less radiation exposure to the brain. In the Netherlands, patients with favourable prognosis based on tumour and patient characteristics can be offered proton therapy. Radiation-induced neurocognitive function decline is a major concern in these long surviving patients. Although level 1 evidence of superior clinical outcome with proton therapy is lacking, the Dutch National Health Care Institute concluded that there is scientific evidence to assume that proton therapy can have clinical benefit by reducing radiation-induced brain damage. Based on this decision, proton therapy is standard insured care for selected low grade glioma patients. Patients with other intracranial tumours can also qualify for proton therapy, based on the same criteria. In this paper, the evidence and considerations that led to this decision are summarised. Additionally, the eligibility criteria for proton therapy and the steps taken to obtain high-quality data on treatment outcome are discussed.
Collapse
Affiliation(s)
- Hiska L van der Weide
- University of Groningen, University Medical Center Groningen, Department of Radiation Oncology, the Netherlands.
| | - Miranda C A Kramer
- University of Groningen, University Medical Center Groningen, Department of Radiation Oncology, the Netherlands
| | - Daniel Scandurra
- University of Groningen, University Medical Center Groningen, Department of Radiation Oncology, the Netherlands
| | - Daniëlle B P Eekers
- Department of Radiation Oncology (Maastro), GROW School for Oncology, Maastricht University Medical Centre+, the Netherlands
| | | | | | - Alejandra Méndez Romero
- Holland Proton Therapy Center, Delft, the Netherlands; Department of Radiation Oncology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Ida E M Coremans
- Department of Radiation Oncology, Leiden University Medical Center, the Netherlands
| | - Liesbeth Boersma
- Department of Radiation Oncology (Maastro), GROW School for Oncology, Maastricht University Medical Centre+, the Netherlands
| | - Marco van Vulpen
- Holland Proton Therapy Center, Delft, the Netherlands; Department of Radiation Oncology, Erasmus University Medical Center, Rotterdam, the Netherlands; Department of Radiation Oncology, Leiden University Medical Center, the Netherlands
| | - Johannes A Langendijk
- University of Groningen, University Medical Center Groningen, Department of Radiation Oncology, the Netherlands
| | | |
Collapse
|
20
|
Yahya N, Manan HA. Diffusion tensor imaging indices to predict cognitive changes following adult radiotherapy. Eur J Cancer Care (Engl) 2020; 30:e13329. [PMID: 32909654 DOI: 10.1111/ecc.13329] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 05/01/2020] [Accepted: 08/07/2020] [Indexed: 12/26/2022]
Abstract
BACKGROUND Diffusion tensor imaging (DTI) can detect changes to white matter tracts following assaults including high dose radiation. This study aimed to systematically evaluate DTI indices to predict cognitive changes following adult radiotherapy. MATERIALS AND METHODS We searched PubMed and Scopus electronic databases to identify eligible studies according to PRISMA guidelines. Studies were extracted for information on demographics, DTI changes and associations to cognitive outcomes. RESULTS Six studies were selected for inclusion with 110 patients (median study size: 20). 5/6 studies found significant cognitive decline and analysed relationships to DTI changes. Decreased fractional anisotropy (FA) was consistently associated with cognitive decline. Associations clustered at specific regions of cingulum and corpus callosum. Only one study conducted multivariable analysis. CONCLUSION Fractional anisotropy is a clinically meaningful biomarker for radiotherapy-related cognitive decline. Studies accruing larger patient cohorts are needed to guide therapeutic changes that can abate the decline.
Collapse
Affiliation(s)
- Noorazrul Yahya
- Diagnostic Imaging and Radiotherapy, Faculty of Health Sciences, National University of Malaysia, Kuala Lumpur, Malaysia
| | - Hanani A Manan
- Functional Image Processing Laboratory, Department of Radiology, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| |
Collapse
|
21
|
Zhou C, Zhuang Y, Lin X, Michelson AD, Zhang A. Changes in neurocognitive function and central nervous system structure in childhood acute lymphoblastic leukaemia survivors after treatment: a meta-analysis. Br J Haematol 2019; 188:945-961. [PMID: 31823355 DOI: 10.1111/bjh.16279] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 09/18/2019] [Indexed: 12/25/2022]
Abstract
Acute lymphoblastic leukaemia (ALL) is the most common malignancy in children. Although the survival rate has increased dramatically over the last decades, patients struggle with the adverse side effects of treatment. Treatment for ALL includes chemotherapy and irradiation - both of which are linked to cognitive impairments and alterations in central nervous system (CNS) structure and function detected by neuroimaging and in neurocognitive studies. The present article is a meta-analysis of the existing evidence for the mechanisms underlying changes in the CNS and neurocognitive function in ALL survivors after treatment. We found that compared with controls, ALL survivors develop: (i) cognitive sequelae in intelligence, academics, attention, memory, processing speed and executive function domains; (ii) decreased grey and white matter volume in cortical and several subcortical brain regions, with functional changes particularly in frontal regions and the hippocampus; (iii) neurocognitive impairments related to CNS changes; and (iv) reduction, but not resolution, of late neurocognitive sequelae in patients in whom prophylactic irradiation was replaced by systemic/intrathecal chemotherapy. Continued work with advanced functional magnetic resonance imaging techniques will hopefully allow the detection of early CNS changes as biomarkers to help guide early diagnosis and intervention for neurocognitive defects in patients with childhood ALL.
Collapse
Affiliation(s)
- Chendan Zhou
- Department of Pediatrics, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Yong Zhuang
- Department of Pediatrics, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Xingjie Lin
- Department of Pediatrics, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Alan D Michelson
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Harvard Medical School, Boston, MA, USA
| | - Aijun Zhang
- Department of Pediatrics, Qilu Hospital, Shandong University, Jinan, Shandong, China.,Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
22
|
Tringale KR, Nguyen TT, Karunamuni R, Seibert T, Huynh-Le MP, Connor M, Moiseenko V, Gorman MK, Marshall A, Tibbs MD, Farid N, Simpson D, Sanghvi P, McDonald CR, Hattangadi-Gluth JA. Quantitative Imaging Biomarkers of Damage to Critical Memory Regions Are Associated With Post-Radiation Therapy Memory Performance in Brain Tumor Patients. Int J Radiat Oncol Biol Phys 2019; 105:773-783. [PMID: 31408667 PMCID: PMC6876859 DOI: 10.1016/j.ijrobp.2019.08.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 05/23/2019] [Accepted: 08/05/2019] [Indexed: 01/06/2023]
Abstract
PURPOSE We used quantitative magnetic resonance imaging to prospectively analyze the association between microstructural damage to memory-associated structures within the medial temporal lobe and longitudinal memory performance after brain radiation therapy (RT). METHODS AND MATERIALS Patients with a primary brain tumor receiving fractionated brain RT were enrolled on a prospective trial (n = 27). Patients underwent high-resolution volumetric brain magnetic resonance imaging, diffusion-weighted imaging, and neurocognitive testing before and 3, 6, and 12 months post-RT. Medial temporal lobe regions (hippocampus; entorhinal, parahippocampal, and temporal pole white matter [WM]) were autosegmented, quantifying volume and diffusion biomarkers of WM integrity (mean diffusivity [MD]; fractional anisotropy [FA]). Reliable change indices measured changes in verbal (Hopkins Verbal Learning Test-Revised) and visuospatial (Brief Visuospatial Memory Test-Revised [BVMT-R]) memory. Linear mixed-effects models assessed longitudinal associations between imaging parameters and memory. RESULTS Visuospatial memory significantly declined at 6 months post-RT (mean reliable change indices, -1.3; P = .012). Concurrent chemotherapy and seizures trended toward a significant association with greater decline in visuospatial memory (P = .053 and P = .054, respectively). Higher mean dose to the left temporal pole WM was significantly associated with decreased FA (r = -0.667; P = .002). Over all time points, smaller right hippocampal volume (P = .021), lower right entorhinal FA (P = .023), greater right entorhinal MD (P = .047), and greater temporal pole MD (BVMT-R total recall, P = .003; BVMT-R delayed recall, P = .042) were associated with worse visuospatial memory. The interaction between right entorhinal MD (BVMT-R total recall, P = .021; BVMT-R delayed recall, P = .004) and temporal pole FA (BVMT-R delayed recall, P = .024) significantly predicted visuospatial memory performance. CONCLUSIONS Brain tumor patients exhibited visuospatial memory decline post-RT. Microstructural damage to critical memory regions, including the hippocampus and medial temporal lobe WM, were associated with post-RT memory decline. The integrity of medial temporal lobe structures is critical to memory performance post-RT, representing possible avoidance targets for memory preservation.
Collapse
Affiliation(s)
- Kathryn R Tringale
- Department of Radiation Medicine and Applied Sciences; Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | | | - Roshan Karunamuni
- Department of Radiation Medicine and Applied Sciences; Center for Multimodal Imaging and Genetics
| | - Tyler Seibert
- Department of Radiation Medicine and Applied Sciences; Center for Multimodal Imaging and Genetics
| | | | | | | | | | | | | | - Nikdokht Farid
- Department of Radiology, University of California, San Diego, La Jolla, California
| | | | - Parag Sanghvi
- Department of Radiation Medicine and Applied Sciences
| | - Carrie R McDonald
- Department of Radiation Medicine and Applied Sciences; Department of Psychiatry; Center for Multimodal Imaging and Genetics
| | - Jona A Hattangadi-Gluth
- Department of Radiation Medicine and Applied Sciences; Center for Multimodal Imaging and Genetics.
| |
Collapse
|
23
|
Chen BT, Ye N, Wong CW, Patel SK, Jin T, Sun CL, Rockne RC, Kim H, Root JC, Saykin AJ, Ahles TA, Holodny AI, Prakash N, Mortimer J, Sedrak MS, Waisman J, Yuan Y, Li D, Vazquez J, Katheria V, Dale W. Effects of chemotherapy on aging white matter microstructure: A longitudinal diffusion tensor imaging study. J Geriatr Oncol 2019; 11:290-296. [PMID: 31685415 DOI: 10.1016/j.jgo.2019.09.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 08/20/2019] [Accepted: 09/25/2019] [Indexed: 12/22/2022]
Abstract
OBJECTIVE We aimed to use diffusion tensor imaging (DTI) to detect alterations in white matter microstructure in older patients with breast cancer receiving chemotherapy. METHODS We recruited women age ≥60 years with stage I-III breast cancer (chemotherapy [CT] group; n = 19) to undergo two study assessments: at baseline and within one month after chemotherapy. Each assessment consisted of a brain magnetic resonance imaging scan with DTI and neuropsychological (NP) testing using the National Institutes of Health (NIH) Toolbox Cognition Battery. An age- and sex-matched group of healthy controls (HC, n = 14) underwent the same assessments at matched intervals. Four DTI parameters (fractional anisotropy [FA], mean diffusivity [MD], axial diffusivity [AD], and radial diffusivity [RD]) were calculated and correlated with NP testing scores. RESULTS For CT group but not HCs, we detected statistically significant increases in MD and RD in the genu of the corpus callosum from time point 1 to time point 2 at p < 0.01, effect size:0.3655 and 0.3173, and 95% confidence interval: from 0.1490 to 0.5821, and from 0.1554 to 0.4792, for MD and RD respectively. AD values increased for the CT group and decreased for the HC group over time, resulting in significant between-group differences (p = 0.0056, effect size:1.0215, 95% confidence interval: from 0.2773 to 1.7657). There were no significant correlations between DTI parameters and NP scores (p > 0.05). CONCLUSIONS We identified alterations in white matter microstructures in older women with breast cancer undergoing chemotherapy. These findings may potentially serve as neuroimaging biomarkers for identifying cognitive impairment in older adults with cancer.
Collapse
Affiliation(s)
- Bihong T Chen
- Department of Diagnostic Radiology, City of Hope National Medical Center, Duarte, CA 91010, United States; Center for Cancer and Aging, City of Hope National Medical Center, Duarte, CA 91010, United States.
| | - Ningrong Ye
- Department of Diagnostic Radiology, City of Hope National Medical Center, Duarte, CA 91010, United States.
| | - Chi Wah Wong
- Center for Informatics, City of Hope National Medical Center, Duarte, CA 91010, United States.
| | - Sunita K Patel
- Department of Population Science, City of Hope National Medical Center, Duarte, CA 91010, United States.
| | - Taihao Jin
- Department of Diagnostic Radiology, City of Hope National Medical Center, Duarte, CA 91010, United States.
| | - Can-Lan Sun
- Center for Cancer and Aging, City of Hope National Medical Center, Duarte, CA 91010, United States.
| | - Russell C Rockne
- Division of Mathematical Oncology, City of Hope National Medical Center, Duarte, CA 91010, United States.
| | - Heeyoung Kim
- Center for Cancer and Aging, City of Hope National Medical Center, Duarte, CA 91010, United States.
| | - James C Root
- Neurocognitive Research Lab, Memorial Sloan Kettering Cancer Center, New York, NY, United States.
| | - Andrew J Saykin
- Center for Neuroimaging, Indiana University School of Medicine, Indianapolis, IN, United States.
| | - Tim A Ahles
- Neurocognitive Research Lab, Memorial Sloan Kettering Cancer Center, New York, NY, United States.
| | - Andrei I Holodny
- Department of Radiology, Memorial Sloan-Kettering Cancer Center, New York, NY, United States.
| | - Neal Prakash
- Division of Neurology, City of Hope National Medical Center, Duarte, CA 91010, United States.
| | - Joanne Mortimer
- Department of Medical Oncology, City of Hope National Medical Center, Duarte, CA 91010, United States.
| | - Mina S Sedrak
- Department of Medical Oncology, City of Hope National Medical Center, Duarte, CA 91010, United States.
| | - James Waisman
- Department of Medical Oncology, City of Hope National Medical Center, Duarte, CA 91010, United States.
| | - Yuan Yuan
- Department of Medical Oncology, City of Hope National Medical Center, Duarte, CA 91010, United States.
| | - Daneng Li
- Department of Medical Oncology, City of Hope National Medical Center, Duarte, CA 91010, United States.
| | - Jessica Vazquez
- Center for Cancer and Aging, City of Hope National Medical Center, Duarte, CA 91010, United States.
| | - Vani Katheria
- Center for Cancer and Aging, City of Hope National Medical Center, Duarte, CA 91010, United States.
| | - William Dale
- Center for Cancer and Aging, City of Hope National Medical Center, Duarte, CA 91010, United States; Department of Supportive Care Medicine, City of Hope National Medical Center, Duarte, CA 91010, United States.
| |
Collapse
|
24
|
Raschke F, Wesemann T, Wahl H, Appold S, Krause M, Linn J, Troost EGC. Reduced diffusion in normal appearing white matter of glioma patients following radio(chemo)therapy. Radiother Oncol 2019; 140:110-115. [PMID: 31265941 DOI: 10.1016/j.radonc.2019.06.022] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 06/04/2019] [Accepted: 06/14/2019] [Indexed: 02/08/2023]
Abstract
BACKGROUND AND PURPOSE Standard treatment of high grade gliomas includes gross tumour resection followed by radio(chemo)therapy. Radiotherapy inevitably leads to irradiation of normal brain tissue. The goal of this prospective, longitudinal study was to use MRI to quantify normal appearing white and grey matter changes following radiation treatment as a function of dose and time after radiotherapy. MATERIALS AND METHODS Pre-radiotherapy (proton or photon therapy) MRI and follow-up MRIs collected in 3 monthly intervals thereafter were analysed for 22 glioma patients and included diffusion tensor imaging, quantitative T1, T2* and proton density mapping. Abnormal tissue was excluded from analysis. MR signal changes were quantified within different dose bin regions for grey and white matter and subsequently for whole brain white matter. RESULTS We found significant reductions in mean diffusivity, radial diffusivity, axial diffusivity and T2* in normal appearing white matter regions receiving a radiation dose as low as 10-20 Gy within the observational period of up to 18 months. The magnitude of these changes increased with the received radiation dose and progressed with time after radiotherapy. Whole brain white matter also showed a significant reduction in radial diffusivity as a function of radiation dose and time after radiotherapy. No significant changes were observed in grey matter. CONCLUSION Diffusion tensor imaging and T2* imaging revealed normal appearing white matter changes following radiation treatment. The changes were dose dependant and progressed over time. Further work is needed to understand the underlying tissue changes and to correlate the observed diffusion changes with late brain malfunctions.
Collapse
Affiliation(s)
- F Raschke
- Institute of Radiooncology - OncoRay, Helmholtz-Zentrum Dresden-Rossendorf, Rossendorf, Germany; OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden - Rossendorf, Germany; National Center for Tumor Diseases (NCT), Partner Site Dresden, Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany, and; Helmholtz Association / Helmholtz-Zentrum Dresden -Rossendorf (HZDR), Dresden, Germany.
| | - T Wesemann
- Institute of Neuroradiology, University Hospital Carl Gustav Carus and Medical Faculty of Technische Universität, Dresden, Germany
| | - H Wahl
- Institute of Neuroradiology, University Hospital Carl Gustav Carus and Medical Faculty of Technische Universität, Dresden, Germany
| | - S Appold
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden - Rossendorf, Germany; Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany
| | - M Krause
- Institute of Radiooncology - OncoRay, Helmholtz-Zentrum Dresden-Rossendorf, Rossendorf, Germany; OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden - Rossendorf, Germany; National Center for Tumor Diseases (NCT), Partner Site Dresden, Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany, and; Helmholtz Association / Helmholtz-Zentrum Dresden -Rossendorf (HZDR), Dresden, Germany; Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany; German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - J Linn
- Institute of Neuroradiology, University Hospital Carl Gustav Carus and Medical Faculty of Technische Universität, Dresden, Germany
| | - E G C Troost
- Institute of Radiooncology - OncoRay, Helmholtz-Zentrum Dresden-Rossendorf, Rossendorf, Germany; OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden - Rossendorf, Germany; National Center for Tumor Diseases (NCT), Partner Site Dresden, Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany, and; Helmholtz Association / Helmholtz-Zentrum Dresden -Rossendorf (HZDR), Dresden, Germany; Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany; German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
25
|
Tringale KR, Nguyen T, Bahrami N, Marshall DC, Leyden KM, Karunamuni R, Seibert TM, Kay Gorman M, Connor M, Burkeen J, Piccioni DE, Farid N, Hattangadi-Gluth JA, McDonald CR. Identifying early diffusion imaging biomarkers of regional white matter injury as indicators of executive function decline following brain radiotherapy: A prospective clinical trial in primary brain tumor patients. Radiother Oncol 2019; 132:27-33. [PMID: 30825966 PMCID: PMC6400307 DOI: 10.1016/j.radonc.2018.11.018] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 11/26/2018] [Accepted: 11/27/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND AND PURPOSE Executive function (EF) decline is common after brain radiation therapy (RT), yet the etiology is unclear. We analyzed the association between longitudinal changes in frontal lobe white matter microstructure and decline in EF following RT in brain tumor patients on a prospective clinical trial. MATERIALS AND METHODS Diffusion tensor imaging was obtained on 22 patients with brain tumors prior to RT, as well as 3- and 6-months post-RT, in a prospective, observational trial. Fractional anisotropy (FA), mean diffusivity (MD), radial diffusivity (RD), and axial diffusivity (AD) were calculated within the superficial white matter (SWM) of the anterior cingulate (AC) and dorsolateral prefrontal cortex. Measures of cognitive flexibility, verbal fluency, and verbal set-shifting were obtained pre- and post-RT. Reliable change indices were calculated to determine significant baseline to 6-month EF changes. RESULTS Decreases in FA and increases in MD were observed in the caudal AC (CAC) at 3-months post-RT. CAC changes were characterized by increased RD bilaterally. From baseline to 6-months post-RT, decreased FA and increased MD and RD of the CAC was associated with decline in verbal set-shifting ability, whereas increased MD in the CAC was associated with a decline in cognitive flexibility. CONCLUSION White matter underlying the AC may be particularly vulnerable to radiation effects. Early microstructural loss within AC SWM represents an important biomarker for EF decline, and dose reduction in this region may represent a possibility for cognitive preservation for patients receiving radiotherapy.
Collapse
Affiliation(s)
| | - Tanya Nguyen
- Department of Psychiatry, University of California, San Diego, USA
| | - Naeim Bahrami
- Center for Multimodal Imaging and Genetics, University of California, San Diego, USA
| | - Deborah C Marshall
- Department of Radiation Medicine and Applied Sciences, University of California, San Diego, USA
| | - Kelly M Leyden
- Center for Multimodal Imaging and Genetics, University of California, San Diego, USA
| | - Roshan Karunamuni
- Center for Multimodal Imaging and Genetics, University of California, San Diego, USA; Department of Radiation Medicine and Applied Sciences, University of California, San Diego, USA
| | - Tyler M Seibert
- Center for Multimodal Imaging and Genetics, University of California, San Diego, USA; Department of Radiation Medicine and Applied Sciences, University of California, San Diego, USA
| | - Mary Kay Gorman
- Department of Radiation Medicine and Applied Sciences, University of California, San Diego, USA
| | - Michael Connor
- Department of Radiation Medicine and Applied Sciences, University of California, San Diego, USA
| | - Jeff Burkeen
- Department of Radiation Medicine and Applied Sciences, University of California, San Diego, USA
| | - David E Piccioni
- Department of Neurosciences, University of California, San Diego, USA
| | - Nikdokht Farid
- Department of Radiology, University of California, San Diego, USA
| | - Jona A Hattangadi-Gluth
- Center for Multimodal Imaging and Genetics, University of California, San Diego, USA; Department of Radiation Medicine and Applied Sciences, University of California, San Diego, USA
| | - Carrie R McDonald
- Department of Psychiatry, University of California, San Diego, USA; Center for Multimodal Imaging and Genetics, University of California, San Diego, USA; Department of Radiation Medicine and Applied Sciences, University of California, San Diego, USA.
| |
Collapse
|
26
|
Wilke C, Grosshans D, Duman J, Brown P, Li J. Radiation-induced cognitive toxicity: pathophysiology and interventions to reduce toxicity in adults. Neuro Oncol 2019; 20:597-607. [PMID: 29045710 DOI: 10.1093/neuonc/nox195] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Radiotherapy is ubiquitous in the treatment of patients with both primary brain tumors as well as disease which is metastatic to the brain. This therapy is not without cost, however, as cognitive decline is frequently associated with cranial radiation, particularly with whole brain radiotherapy (WBRT). The precise mechanisms responsible for radiation-induced morbidity remain incompletely understood and continue to be an active area of ongoing research. In this article, we review the hypothetical means by which cranial radiation induces cognitive decline as well as potential therapeutic approaches to prevent, minimize, or reverse treatment-induced cognitive deterioration. We additionally review advances in imaging modalities that can potentially be used to identify site-specific radiation-induced anatomic or functional changes in the brain and their correlation with clinical outcomes.
Collapse
Affiliation(s)
- Christopher Wilke
- Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas (C.W., D.G., J.L.); Department of Neuroscience, Baylor College of Medicine, Houston, Texas (J.D.); Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota (P.B.)
| | - David Grosshans
- Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas (C.W., D.G., J.L.); Department of Neuroscience, Baylor College of Medicine, Houston, Texas (J.D.); Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota (P.B.)
| | - Joseph Duman
- Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas (C.W., D.G., J.L.); Department of Neuroscience, Baylor College of Medicine, Houston, Texas (J.D.); Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota (P.B.)
| | - Paul Brown
- Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas (C.W., D.G., J.L.); Department of Neuroscience, Baylor College of Medicine, Houston, Texas (J.D.); Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota (P.B.)
| | - Jing Li
- Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas (C.W., D.G., J.L.); Department of Neuroscience, Baylor College of Medicine, Houston, Texas (J.D.); Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota (P.B.)
| |
Collapse
|
27
|
Li Y, Zhang W. Quantitative evaluation of diffusion tensor imaging for clinical management of glioma. Neurosurg Rev 2018; 43:881-891. [PMID: 30417213 DOI: 10.1007/s10143-018-1050-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 09/26/2018] [Accepted: 11/01/2018] [Indexed: 11/26/2022]
Abstract
Diffusion tensor imaging (DTI), assessing physiological motion of water in vivo, provides macroscopic view of microstructures of white matter in the central nervous system, and such imaging technique had been extensively used for the clinical treatment and research of glioma. This review mainly focuses on illuminating the merits of quantitative evaluation of DTI for glioma management. The content of the article includes DTI's application on tissue characterization, white matter tracts mapping, radiotherapy delineation, post-therapy outcome assessment, and multimodal imaging. At last, we elucidate a synoptic presentation of DTI limitation, which is critical for physicians making DTI-based clinical decisions in glioma management.
Collapse
Affiliation(s)
- Ye Li
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, 45 Changchun Street, Xicheng District, Beijing, 100853, China.
| | - Wenyao Zhang
- Beijing Key Laboratory of Intelligent Information Technology, School of Computer Science, Beijing Institute of Technology, Beijing, 100081, China
| |
Collapse
|
28
|
Jacob J, Durand T, Feuvret L, Mazeron JJ, Delattre JY, Hoang-Xuan K, Psimaras D, Douzane H, Ribeiro M, Capelle L, Carpentier A, Ricard D, Maingon P. Cognitive impairment and morphological changes after radiation therapy in brain tumors: A review. Radiother Oncol 2018; 128:221-228. [PMID: 30041961 DOI: 10.1016/j.radonc.2018.05.027] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 05/25/2018] [Accepted: 05/28/2018] [Indexed: 11/18/2022]
Abstract
Life expectancy of patients treated for brain tumors has lengthened due to the therapeutic improvements. Cognitive impairment has been described following brain radiotherapy, but the mechanisms leading to this adverse event remain mostly unknown. Technical evolutions aim at enhancing the therapeutic ratio. Sparing of the healthy tissues has been improved using various approaches; however, few dose constraints have been established regarding brain structures associated with cognitive functions. The aims of this literature review are to report the main brain areas involved in cognitive adverse effects induced by radiotherapy as described in literature, to better understand brain radiosensitivity and to describe potential future improvements.
Collapse
Affiliation(s)
- Julian Jacob
- Sorbonne Université, Assistance Publique-Hôpitaux de Paris, Groupe Hospitalier Pitié-Salpêtrière-Charles Foix, Department of Radiation Oncology, France; Sorbonne Université, CNRS, Service de Santé des Armées, Cognition and Action Group, Paris, France.
| | - Thomas Durand
- Sorbonne Université, CNRS, Service de Santé des Armées, Cognition and Action Group, Paris, France; Sorbonne Université, Assistance Publique-Hôpitaux de Paris, Groupe Hospitalier Pitié-Salpêtrière-Charles Foix, Department of Neurology, France
| | - Loïc Feuvret
- Sorbonne Université, Assistance Publique-Hôpitaux de Paris, Groupe Hospitalier Pitié-Salpêtrière-Charles Foix, Department of Radiation Oncology, France
| | - Jean-Jacques Mazeron
- Sorbonne Université, Assistance Publique-Hôpitaux de Paris, Groupe Hospitalier Pitié-Salpêtrière-Charles Foix, Department of Radiation Oncology, France
| | - Jean-Yves Delattre
- Sorbonne Université, Assistance Publique-Hôpitaux de Paris, Groupe Hospitalier Pitié-Salpêtrière-Charles Foix, Department of Neurology, France; Sorbonne Université, INSERM, CNRS, Assistance Publique-Hôpitaux de Paris, Institut du Cerveau et de la Moelle épinière, France
| | - Khê Hoang-Xuan
- Sorbonne Université, Assistance Publique-Hôpitaux de Paris, Groupe Hospitalier Pitié-Salpêtrière-Charles Foix, Department of Neurology, France; Sorbonne Université, INSERM, CNRS, Assistance Publique-Hôpitaux de Paris, Institut du Cerveau et de la Moelle épinière, France
| | - Dimitri Psimaras
- Sorbonne Université, Assistance Publique-Hôpitaux de Paris, Groupe Hospitalier Pitié-Salpêtrière-Charles Foix, Department of Neurology, France; Sorbonne Université, INSERM, CNRS, Assistance Publique-Hôpitaux de Paris, Institut du Cerveau et de la Moelle épinière, France
| | - Hassen Douzane
- Sorbonne Université, Assistance Publique-Hôpitaux de Paris, Groupe Hospitalier Pitié-Salpêtrière-Charles Foix, Department of Neurology, France
| | - Monica Ribeiro
- Sorbonne Université, CNRS, Service de Santé des Armées, Cognition and Action Group, Paris, France; Sorbonne Université, Assistance Publique-Hôpitaux de Paris, Groupe Hospitalier Pitié-Salpêtrière-Charles Foix, Department of Neurology, France
| | - Laurent Capelle
- Sorbonne Université, Assistance Publique-Hôpitaux de Paris, Groupe Hospitalier Pitié-Salpêtrière-Charles Foix, Department of Neurosurgery, France
| | - Alexandre Carpentier
- Sorbonne Université, INSERM, CNRS, Assistance Publique-Hôpitaux de Paris, Institut du Cerveau et de la Moelle épinière, France; Sorbonne Université, Assistance Publique-Hôpitaux de Paris, Groupe Hospitalier Pitié-Salpêtrière-Charles Foix, Department of Neurosurgery, France
| | - Damien Ricard
- Sorbonne Université, CNRS, Service de Santé des Armées, Cognition and Action Group, Paris, France; Service de Santé des Armées, Hôpital d'Instruction des Armées Percy, Department of Neurology, Clamart, France; Service de Santé des Armées, Ecole du Val-de-Grâce, Paris, France
| | - Philippe Maingon
- Sorbonne Université, Assistance Publique-Hôpitaux de Paris, Groupe Hospitalier Pitié-Salpêtrière-Charles Foix, Department of Radiation Oncology, France
| |
Collapse
|
29
|
Houri J, Karunamuni R, Connor M, Pettersson N, McDonald C, Farid N, White N, Dale A, Hattangadi-Gluth JA, Moiseenko V. Analyses of regional radiosensitivity of white matter structures along tract axes using novel white matter segmentation and diffusion imaging biomarkers. Phys Imaging Radiat Oncol 2018; 6:39-46. [PMID: 33458387 PMCID: PMC7807616 DOI: 10.1016/j.phro.2018.04.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Revised: 04/12/2018] [Accepted: 04/13/2018] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND AND PURPOSE Brain radiotherapy (RT) can cause white matter damage and downstream neurocognitive decline. We developed a computational neuroimaging tool to regionally partition individual white matter tracts, then analyze regional changes in diffusion metrics of white matter damage following brain RT. MATERIALS AND METHODS RT dose, diffusion metrics and white matter tract structures were extracted and mapped to a reference brain for 49 patients who received brain RT, and underwent diffusion tensor imaging pre- and 9-12 months post-RT. Based on their elongation, 23 of 48 white matter tracts were selected. The Tract-Crawler software was developed in MATLAB to create cross-sectional slice planes normal to a tract's computed medial axis. We then performed slice- and voxel-wise analysis of radiosensitivity, defined as percent change in mean diffusivity (MD) and fractional anisotropy (FA) as a function of dose relative to baseline. RESULTS Distinct patterns of FA/MD radiosensitivity were seen for specific tracts, including the corticospinal tract, medial lemniscus, and inferior cerebellar peduncle, in particular at terminal ends. These patterns persisted for corresponding tracts in left and right hemispheres. Local sensitivities were as high as 40%/Gy (e.g., voxel-wise: -39 ± 31%/Gy in right corticospinal tract FA, -45 ± 25%/Gy in right inferior cerebellar peduncle FA), p < 0.05. CONCLUSIONS Tract-Crawler, a novel tool to visualize and analyze cuts of white matter structures normal to medial axes, was used to demonstrate that particular white matter tracts exhibit significant regional variations in radiosensitivity based on diffusion biomarkers.
Collapse
Affiliation(s)
- Jordan Houri
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, CA, USA
- Department of Physics, University of Oxford, Oxford, UK
| | - Roshan Karunamuni
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, CA, USA
| | - Michael Connor
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, CA, USA
| | - Niclas Pettersson
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, CA, USA
- Department of Medical Physics and Biomedical Engineering, Sahlgrenska University Hospital, Göteborg, Sweden
| | - Carrie McDonald
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, CA, USA
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Nikdokht Farid
- Department of Radiology, University of California San Diego, La Jolla, CA, USA
| | - Nathan White
- Department of Radiology, University of California San Diego, La Jolla, CA, USA
| | - Anders Dale
- Department of Radiology, University of California San Diego, La Jolla, CA, USA
| | - Jona A. Hattangadi-Gluth
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, CA, USA
| | - Vitali Moiseenko
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
30
|
Zhang FF, Peng W, Sweeney JA, Jia ZY, Gong QY. Brain structure alterations in depression: Psychoradiological evidence. CNS Neurosci Ther 2018; 24:994-1003. [PMID: 29508560 DOI: 10.1111/cns.12835] [Citation(s) in RCA: 299] [Impact Index Per Article: 42.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 02/07/2018] [Accepted: 02/08/2018] [Indexed: 02/05/2023] Open
Abstract
Depression is the leading cause of disability around the world, but little is known about its pathology. Currently, the diagnosis of depression is made based on clinical manifestations, with little objective evidence. Magnetic resonance imaging (MRI) has been used to investigate the pathological changes in brain anatomy associated with this disorder. MRI can identify structural alterations in depressive patients in vivo, which could make considerable contributions to clinical diagnosis and treatment. Numerous studies that focused on gray and white matter have found significant brain region alterations in major depressive disorder patients, such as in the frontal lobe, hippocampus, temporal lobe, thalamus, striatum, and amygdala. The results are inconsistent and controversial because of the different demographic and clinical characteristics. However, some regions overlapped; thus, we think that there may be a "hub" in MDD and that an impairment in these regions contributes to disease severity. Brain connections contain both structural connections and functional connections, which reflect disease from a different view and support that MDD may be caused by the interaction of multiple brain regions. According to previous reports, significant circuits include the frontal-subcortical circuit, the suicide circuit, and the reward circuit. As has been recognized, the pathophysiology of major depressive disorder is complex and changeable. The current review focuses on the significant alterations in the gray and white matter of patients with the depressive disorder to generate a better understanding of the circuits. Moreover, identifying the nuances of depressive disorder and finding a biomarker will make a significant contribution to the guidance of clinical diagnosis and treatment.
Collapse
Affiliation(s)
- Fei-Fei Zhang
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
| | - Wei Peng
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
| | - John A Sweeney
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China.,Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, OH, USA
| | - Zhi-Yun Jia
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China.,Department of Nuclear Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Qi-Yong Gong
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China.,Department of Psychology, School of Public Administration, Sichuan University, Chengdu, China
| |
Collapse
|
31
|
Cao Y, Tseng CL, Balter JM, Teng F, Parmar HA, Sahgal A. MR-guided radiation therapy: transformative technology and its role in the central nervous system. Neuro Oncol 2017; 19:ii16-ii29. [PMID: 28380637 DOI: 10.1093/neuonc/nox006] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
This review article describes advancement of magnetic resonance imaging technologies in radiation therapy planning, guidance, and adaptation of brain tumors. The potential for MR-guided radiation therapy to improve outcomes and the challenges in its adoption are discussed.
Collapse
Affiliation(s)
- Yue Cao
- Departments of Radiation Oncology, University of Michigan, Ann Arbor, Michigan, USA
- Radiology, University of Michigan, Ann Arbor, Michigan, USA
- Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Chia-Lin Tseng
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
| | - James M Balter
- Departments of Radiation Oncology, University of Michigan, Ann Arbor, Michigan, USA
| | - Feifei Teng
- Departments of Radiation Oncology, University of Michigan, Ann Arbor, Michigan, USA
- Department of Radiation Oncology, Shandong Cancer Hospital, Shandong University, Jinan, China
| | | | - Arjun Sahgal
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
32
|
Connor M, Karunamuni R, McDonald C, Seibert T, White N, Moiseenko V, Bartsch H, Farid N, Kuperman J, Krishnan A, Dale A, Hattangadi-Gluth JA. Regional susceptibility to dose-dependent white matter damage after brain radiotherapy. Radiother Oncol 2017; 123:209-217. [PMID: 28460824 PMCID: PMC5518466 DOI: 10.1016/j.radonc.2017.04.006] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 03/31/2017] [Accepted: 04/04/2017] [Indexed: 01/07/2023]
Abstract
BACKGROUND AND PURPOSE Regional differences in sensitivity to white matter damage after brain radiotherapy (RT) are not well-described. We characterized the spatial heterogeneity of dose-response across white matter tracts using diffusion tensor imaging (DTI). MATERIALS AND METHODS Forty-nine patients with primary brain tumors underwent MRI with DTI before and 9-12months after partial-brain RT. Maps of fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD), and radial diffusivity (RD) were generated. Atlas-based white matter tracts were identified. A secondary analysis using skeletonized tracts was also performed. Linear mixed-model analysis of the relationship between mean and max dose and percent change in DTI metrics was performed. RESULTS Tracts with the strongest correlation of FA change with mean dose were the fornix (-0.46 percent/Gy), cingulum bundle (-0.44 percent/Gy), and body of corpus callosum (-0.23 percent/Gy), p<.001. These tracts also showed dose-sensitive changes in MD and RD. In the skeletonized analysis, the fornix and cingulum bundle remained highly dose-sensitive. Maximum and mean dose were similarly predictive of DTI change. CONCLUSIONS The corpus callosum, cingulum bundle, and fornix show the most prominent dose-dependent changes following RT. Future studies examining correlation with cognitive functioning and potential avoidance of critical white matter regions are warranted.
Collapse
Affiliation(s)
- Michael Connor
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, California, United States
| | - Roshan Karunamuni
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, California, United States; Center for Multimodal Imaging and Genetics, University of California San Diego, La Jolla, California, United States
| | - Carrie McDonald
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, California, United States; Department of Psychiatry, University of California San Diego, La Jolla, California, United States; Center for Multimodal Imaging and Genetics, University of California San Diego, La Jolla, California, United States
| | - Tyler Seibert
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, California, United States; Center for Multimodal Imaging and Genetics, University of California San Diego, La Jolla, California, United States
| | - Nathan White
- Department of Radiology, University of California San Diego, La Jolla, California, United States; Center for Multimodal Imaging and Genetics, University of California San Diego, La Jolla, California, United States
| | - Vitali Moiseenko
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, California, United States
| | - Hauke Bartsch
- Department of Radiology, University of California San Diego, La Jolla, California, United States; Center for Multimodal Imaging and Genetics, University of California San Diego, La Jolla, California, United States
| | - Nikdokht Farid
- Department of Radiology, University of California San Diego, La Jolla, California, United States; Center for Multimodal Imaging and Genetics, University of California San Diego, La Jolla, California, United States
| | - Joshua Kuperman
- Department of Radiology, University of California San Diego, La Jolla, California, United States; Center for Multimodal Imaging and Genetics, University of California San Diego, La Jolla, California, United States
| | - Anitha Krishnan
- Department of Radiology, University of California San Diego, La Jolla, California, United States; Center for Multimodal Imaging and Genetics, University of California San Diego, La Jolla, California, United States
| | - Anders Dale
- Department of Radiology, University of California San Diego, La Jolla, California, United States; Department of Psychiatry, University of California San Diego, La Jolla, California, United States; Department of Neurosciences, University of California San Diego, La Jolla, California, United States; Center for Multimodal Imaging and Genetics, University of California San Diego, La Jolla, California, United States
| | - Jona A Hattangadi-Gluth
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, California, United States; Center for Multimodal Imaging and Genetics, University of California San Diego, La Jolla, California, United States.
| |
Collapse
|
33
|
Prevention of radiotherapy-induced neurocognitive dysfunction in survivors of paediatric brain tumours: the potential role of modern imaging and radiotherapy techniques. Lancet Oncol 2017; 18:e91-e100. [DOI: 10.1016/s1470-2045(17)30030-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 10/24/2016] [Accepted: 10/26/2016] [Indexed: 02/06/2023]
|
34
|
Mechanisms of radiotherapy-associated cognitive disability in patients with brain tumours. Nat Rev Neurol 2016; 13:52-64. [PMID: 27982041 DOI: 10.1038/nrneurol.2016.185] [Citation(s) in RCA: 351] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Standard treatment of primary and metastatic brain tumours includes high-dose megavoltage-range radiation to the cranial vault. About half of patients survive >6 months, and many attain long-term control or cure. However, 50-90% of survivors exhibit disabling cognitive dysfunction. The radiation-associated cognitive syndrome is poorly understood and has no effective prevention or long-term treatment. Attention has primarily focused on mechanisms of disability that appear at 6 months to 1 year after radiotherapy. However, recent studies show that CNS alterations and dysfunction develop much earlier following radiation exposure. This finding has prompted the hypothesis that subtle early forms of radiation-induced CNS damage could drive chronic pathophysiological processes that lead to permanent cognitive decline. This Review presents evidence of acute radiation-triggered CNS inflammation, injury to neuronal lineages, accessory cells and their progenitors, and loss of supporting structure integrity. Moreover, injury-related processes initiated soon after irradiation could synergistically alter the signalling microenvironment in progenitor cell niches in the brain and the hippocampus, which is a structure critical to memory and cognition. Progenitor cell niche degradation could cause progressive neuronal loss and cognitive disability. The concluding discussion addresses future directions and potential early treatments that might reverse degenerative processes before they can cause permanent cognitive disability.
Collapse
|
35
|
Kimura M, da Cruz LCH. Multiparametric MR Imaging in the Assessment of Brain Tumors. Magn Reson Imaging Clin N Am 2016; 24:87-122. [PMID: 26613877 DOI: 10.1016/j.mric.2015.09.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Functional MR imaging methods make possible the quantification of dynamic physiologic processes that occur in the brain. Moreover, the use of these advanced imaging techniques in the setting of oncologic treatment of the brain is widely accepted and has found worldwide routine clinical use.
Collapse
Affiliation(s)
- Margareth Kimura
- Magnetic Resonance Department of Clínica de Diagnóstico por Imagem (CDPI), Centro Médico Barrashopping, Av. das Américas, 4666, grupo 325, Barra da Tijuca, Rio de Janeiro, RJ, CEP: 22649-900, Brazil.
| | - L Celso Hygino da Cruz
- Magnetic Resonance Department of Clínica de Diagnóstico por Imagem (CDPI), IRM Ressonância Magnética, Av. das Américas, 4666, grupo 325, Barra da Tijuca, Rio de Janeiro, RJ, CEP: 22649-900, Brazil
| |
Collapse
|
36
|
Chapman CH, Zhu T, Nazem-Zadeh M, Tao Y, Buchtel HA, Tsien CI, Lawrence TS, Cao Y. Diffusion tensor imaging predicts cognitive function change following partial brain radiotherapy for low-grade and benign tumors. Radiother Oncol 2016; 120:234-40. [PMID: 27418525 PMCID: PMC5003665 DOI: 10.1016/j.radonc.2016.06.021] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 06/27/2016] [Accepted: 06/30/2016] [Indexed: 11/28/2022]
Abstract
PURPOSE/OBJECTIVES Radiation injury to parahippocampal cingulum white matter is associated with cognitive decline. Diffusion tensor imaging (DTI) detects micropathologic changes in white matter. Increased radial diffusion (RD) and decreased axial diffusion (AD) correspond to demyelination and axonal degeneration/gliosis respectively. We aimed to develop a predictive model for radiation-induced cognitive changes based upon DTI changes. MATERIALS/METHODS Twenty-seven adults with benign or low-grade tumors received partial brain radiation therapy (RT) to a median dose of 54Gy. Patients underwent DTI before RT, during RT, and at the end of RT. Cognitive testing was performed before RT, and 6 and 18months after RT. Parahippocampal cingulum white matter was contoured to obtain mean values of AD and RD. RESULTS By univariate analysis, decreasing AD and increasing RD during RT predicted declines in verbal memory and verbal fluency. By multivariate analysis, baseline neurocognitive score was the only clinical variable predicting verbal memory change; no clinical variables predicted verbal fluency change. In a multivariate model, increased RD at the end of RT significantly predicted decline in verbal fluency 18months after RT. CONCLUSIONS Imaging biomarkers of white matter injury contributed to predictive models of cognitive function change after RT.
Collapse
Affiliation(s)
- Christopher H Chapman
- Department of Radiation Oncology, University of Michigan, Ann Arbor, USA; Department of Radiation Oncology, University of California San Francisco, USA.
| | - Tong Zhu
- Department of Radiation Oncology, University of Michigan, Ann Arbor, USA
| | - Mohamad Nazem-Zadeh
- Department of Radiation Oncology, University of Michigan, Ann Arbor, USA; Radiology and Research Administration Departments, Henry Ford Hospital, Detroit, USA
| | - Yebin Tao
- Department of Biostatistics, University of Michigan, Ann Arbor, USA
| | - Henry A Buchtel
- Department of Psychiatry, University of Michigan, Ann Arbor, USA; VA Ann Arbor Healthcare System, Ann Arbor, USA
| | - Christina I Tsien
- Department of Radiation Oncology, University of Michigan, Ann Arbor, USA; Department of Radiation Oncology, Washington University, St. Louis, USA
| | | | - Yue Cao
- Department of Radiation Oncology, University of Michigan, Ann Arbor, USA; Department of Biomedical Engineering, University of Michigan, Ann Arbor, USA; Department of Radiology, University of Michigan, Ann Arbor, USA
| |
Collapse
|
37
|
Zhu T, Chapman CH, Tsien C, Kim M, Spratt DE, Lawrence TS, Cao Y. Effect of the Maximum Dose on White Matter Fiber Bundles Using Longitudinal Diffusion Tensor Imaging. Int J Radiat Oncol Biol Phys 2016; 96:696-705. [PMID: 27681767 DOI: 10.1016/j.ijrobp.2016.07.010] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 06/02/2016] [Accepted: 07/13/2016] [Indexed: 12/25/2022]
Abstract
PURPOSE Previous efforts to decrease neurocognitive effects of radiation focused on sparing isolated cortical structures. We hypothesize that understanding temporal, spatial, and dosimetric patterns of radiation damage to whole-brain white matter (WM) after partial-brain irradiation might also be important. Therefore, we carried out a study to develop the methodology to assess radiation therapy (RT)-induced damage to whole-brain WM bundles. METHODS AND MATERIALS An atlas-based, automated WM tractography analysis was implemented to quantify longitudinal changes in indices of diffusion tensor imaging (DTI) of 22 major WM fibers in 33 patients with predominantly low-grade or benign brain tumors treated by RT. Six DTI scans per patient were performed from before RT to 18 months after RT. The DTI indices and planned doses (maximum and mean doses) were mapped onto profiles of each of 22 WM bundles. A multivariate linear regression was performed to determine the main dose effect as well as the influence of other clinical factors on longitudinal percentage changes in axial diffusivity (AD) and radial diffusivity (RD) from before RT. RESULTS Among 22 fiber bundles, AD or RD changes in 12 bundles were affected significantly by doses (P<.05), as the effect was progressive over time. In 9 elongated tracts, decreased AD or RD was significantly related to maximum doses received, consistent with a serial structure. In individual bundles, AD changes were up to 11.5% at the maximum dose locations 18 months after RT. The dose effect on WM was greater in older female patients than younger male patients. CONCLUSIONS Our study demonstrates for the first time that the maximum dose to the elongated WM bundles causes post-RT damage in WM. Validation and correlative studies are necessary to determine the ability and impact of sparing these bundles on preserving neurocognitive function after RT.
Collapse
Affiliation(s)
- Tong Zhu
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan
| | | | - Christina Tsien
- Department of Radiation Oncology, Washington University at St Louis, St Louis, Missouri
| | - Michelle Kim
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan
| | - Daniel E Spratt
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan
| | - Theodore S Lawrence
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan
| | - Yue Cao
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan; Department of Radiology, University of Michigan, Ann Arbor, Michigan; Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan.
| |
Collapse
|
38
|
de Blank PMK, Berman JI, Fisher MJ. Systemic Chemotherapy and White Matter Integrity in Tracts Associated with Cognition Among Children With Neurofibromatosis Type 1. Pediatr Blood Cancer 2016; 63:818-24. [PMID: 26757156 DOI: 10.1002/pbc.25896] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 11/24/2015] [Accepted: 12/14/2015] [Indexed: 12/13/2022]
Abstract
BACKGROUND Children with neurofibromatosis type 1 (NF1) are predisposed to both brain tumors and cognitive deficits. While changes in white matter integrity after multimodal therapy are associated with cognitive dysfunction, the effect of isolated chemotherapy in NF1 is unknown. To determine whether chemotherapy is associated with white matter microstructural changes, we examined diffusion tensor imaging (DTI) in NF1 subjects. PROCEDURE We reviewed DTI measures in tracts associated with cognition but free from tumor in 24 children with NF1-associated optic pathway gliomas unexposed to surgery or radiation. Twelve age-matched pairs were identified based on exposure to chemotherapy. A paired t-test was used to compare fractional anisotropy (FA) in tracts of interest between subjects with and without chemotherapy exposure. RESULTS On paired t-test, FA was significantly lower in the corpus callosum (P = 0.015) and cerebellothalamic (P = 0.038) tracts of subjects exposed to chemotherapy. There was no effect of age or time from chemotherapy on the difference between groups. In multivariable analysis, FA of these tracts was associated with chemotherapy exposure after adjusting for age, tumor location, and DTI acquisition. In longitudinal measures, FA decreased after chemotherapy exposure while FA increased with age in unexposed subjects. CONCLUSIONS Exposure to low-intensity chemotherapy in NF1 is associated with changes in white matter microstructure in tracts associated with cognition. Future studies should determine whether these changes are associated with cognitive decline. While chemotherapy may spare cognition relative to radiation and surgery, children with NF1 exposed to chemotherapy may benefit from early cognitive testing to allow for earlier intervention.
Collapse
Affiliation(s)
- Peter Matthew Kennedy de Blank
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, Rainbow Babies and Children's Hospital, Case Western Reserve University, Cleveland, Ohio
| | - Jeffrey I Berman
- Department of Radiology, The Children's Hospital of Philadelphia and the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Michael Jay Fisher
- Division of Oncology, Department of Pediatrics, The Children's Hospital of Philadelphia and the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
39
|
Simó M, Vaquero L, Ripollés P, Gurtubay-Antolin A, Jové J, Navarro A, Cardenal F, Bruna J, Rodríguez-Fornells A. Longitudinal Brain Changes Associated with Prophylactic Cranial Irradiation in Lung Cancer. J Thorac Oncol 2016; 11:475-86. [PMID: 26804637 DOI: 10.1016/j.jtho.2015.12.110] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 12/24/2015] [Accepted: 12/27/2015] [Indexed: 12/22/2022]
Abstract
INTRODUCTION The toxic effects of prophylactic cranial irradiation (PCI) and platinum-based chemotherapy on cognition in the lung cancer population have not yet been well established. In the present study we examined the longitudinal neuropsychological and brain structural changes observed in patients with lung cancer who were undergoing these treatments. METHODS Twenty-two patients with small cell lung cancer (SCLC) who underwent platinum-based chemotherapy and PCI were compared with two control groups: an age- and education-matched group of healthy controls (n = 21) and a group of patients with non-SCLC (NSCLC, n = 13) who underwent platinum-based chemotherapy. All groups were evaluated using a neuropsychological battery and multimodal structural magnetic resonance imaging: T1-weighted and diffusion tensor imaging at baseline (before PCI for SCLC and chemotherapy for NSCLC) and at 3 months after treatment. T1 voxel-based morphometry and tract-based spatial statistics were used to analyze microstructural changes in gray matter (GM) and white matter (WM). The European Organisation for Research and Treatment of Cancer Quality of Life Questionnaire-Core Questionnaire was also completed. RESULTS Patients with SCLC exhibited cognitive deterioration in verbal fluency over time. Structural magnetic resonance imaging showed decreases in GM at 3 months in the right subcortical regions, bilateral insular cortex, and superior temporal gyrus in patients with SCLC compared with both control groups. Additionally, patients with SCLC showed decreases in GM over time in the aforementioned regions plus in the right parahippocampal gyrus and hippocampus, together with changes in the WM microstructure of the entire corpus callosum. These changes had a limited impact on responses to the European Organisation for Research and Treatment of Cancer Quality of Life Questionnaire-Core Questionnaire, however. Patients with NSCLC showed no cognitive or brain structural differences after chemotherapy. CONCLUSIONS This longitudinal study documents moderate neuropsychological deficits together with notable brain-specific structural changes (in GM and WM) in patients with SCLC after chemotherapy and PCI, suggesting that chemotherapy and especially PCI are associated with the development of cognitive and structural brain toxic effects.
Collapse
Affiliation(s)
- Marta Simó
- Cognition and Brain Plasticity Group, Bellvitge Biomedical Research Institute-IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain; Neuro-Oncology Unit, Hospital Universitari de Bellvitge - Institut Català d'Oncologia Hospital Duran i Reynals, L'Hospitalet del Llobregat, Barcelona, Spain
| | - Lucía Vaquero
- Cognition and Brain Plasticity Group, Bellvitge Biomedical Research Institute-IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Pablo Ripollés
- Cognition and Brain Plasticity Group, Bellvitge Biomedical Research Institute-IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Ane Gurtubay-Antolin
- Cognition and Brain Plasticity Group, Bellvitge Biomedical Research Institute-IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Josep Jové
- Radiation Oncology Department, Hospital Germans Trias i Pujol- Institut Català d'Oncologia Badalona, Badalona, Barcelona, Spain
| | - Arturo Navarro
- Lung Cancer Unit, Radiation Oncology Department, Institut Català d'Oncologia Duran i Reynals, L'Hospitalet del Llobregat, Barcelona, Spain
| | - Felipe Cardenal
- Lung Cancer Unit, Medical Oncology Department, Institut Català d'Oncologia Hospital Duran i Reynals, L'Hospitalet del Llobregat, Barcelona, Spain
| | - Jordi Bruna
- Neuro-Oncology Unit, Hospital Universitari de Bellvitge - Institut Català d'Oncologia Hospital Duran i Reynals, L'Hospitalet del Llobregat, Barcelona, Spain
| | - Antoni Rodríguez-Fornells
- Cognition and Brain Plasticity Group, Bellvitge Biomedical Research Institute-IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain; Department of Basic Psychology, Bellvitge Campus, University of Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain; Catalan Institution for Research and Advanced Studies, Instituciá Catalana de Recerca i Estudis Avançats, Barcelona, Spain.
| |
Collapse
|
40
|
Farjam R, Pramanik P, Aryal MP, Srinivasan A, Chapman CH, Tsien CI, Lawrence TS, Cao Y. A Radiation-Induced Hippocampal Vascular Injury Surrogate Marker Predicts Late Neurocognitive Dysfunction. Int J Radiat Oncol Biol Phys 2015; 93:908-15. [PMID: 26530761 DOI: 10.1016/j.ijrobp.2015.08.014] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Revised: 07/10/2015] [Accepted: 08/05/2015] [Indexed: 12/17/2022]
Abstract
PURPOSE We aimed to develop a hippocampal vascular injury surrogate marker for early prediction of late neurocognitive dysfunction in patients receiving brain radiation therapy (RT). METHODS AND MATERIALS Twenty-seven patients (17 males and 10 females, 31-80 years of age) were enrolled in an institutional review board-approved prospective longitudinal study. Patients received diagnoses of low-grade glioma or benign tumor and were treated by (3D) conformal or intensity-modulated RT with a median dose of 54 Gy (50.4-59.4 Gy in 1.8-Gy fractions). Six dynamic-contrast enhanced MRI scans were performed from pre-RT to 18-month post-RT, and quantified for vascular parameters related to blood-brain barrier permeability, K(trans), and the fraction of blood plasma volume, Vp. The temporal changes in the means of hippocampal transfer constant K(trans) and Vp after starting RT were modeled by integrating the dose effects with age, sex, hippocampal laterality, and presence of tumor or edema near a hippocampus. Finally, the early vascular dose response in hippocampi was correlated with neurocognitive dysfunction at 6 and 18 months post-RT. RESULTS The mean K(trans) Increased significantly from pre-RT to 1-month post-RT (P<.0004), which significantly depended on sex (P<.0007) and age (P<.00004), with the dose response more pronounced in older females. Also, the vascular dose response in the left hippocampus of females correlated significantly with changes in memory function at 6 (r=-0.95, P<.0006) and 18-months (r=-0.88, P<.02) post-RT. CONCLUSIONS The early hippocampal vascular dose response could be a predictor of late neurocognitive dysfunction. A personalized hippocampus sparing strategy may be considered in the future.
Collapse
Affiliation(s)
- Reza Farjam
- Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Priyanka Pramanik
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan
| | - Madhava P Aryal
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan
| | - Ashok Srinivasan
- Department of Radiology, University of Michigan, Ann Arbor, Michigan
| | | | - Christina I Tsien
- Department of Radiation Oncology, Washington University in St. Louis, St. Louis, Missouri
| | - Theodore S Lawrence
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan
| | - Yue Cao
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan; Department of Radiology, University of Michigan, Ann Arbor, Michigan; Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan.
| |
Collapse
|
41
|
Prust MJ, Jafari-Khouzani K, Kalpathy-Cramer J, Polaskova P, Batchelor TT, Gerstner ER, Dietrich J. Standard chemoradiation for glioblastoma results in progressive brain volume loss. Neurology 2015. [PMID: 26208964 DOI: 10.1212/wnl.0000000000001861] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE To investigate the effects of chemotherapy and cranial irradiation on normal brain tissue using in vivo neuroimaging in patients with glioblastoma. METHODS We used longitudinal MRI to monitor structural brain changes during standard treatment in patients newly diagnosed with glioblastoma. We assessed volumetric and diffusion tensor imaging measures in 14 patients receiving 6 weeks of chemoradiation, followed by up to 6 months of temozolomide chemotherapy alone. We examined changes in whole brain, gray matter (GM), white matter (WM), anterior lateral ventricle, and hippocampal volumes. Normal-appearing GM, WM, and hippocampal analyses were conducted within the hemisphere of lowest/absent tumor burden. We examined diffusion tensor imaging measures within the subventricular zone. RESULTS Whole brain (F = 2.41; p = 0.016) and GM (F = 2.13; p = 0.036) volume decreased during treatment, without significant WM volume change. Anterior lateral ventricle volume increased significantly (F = 65.51; p < 0.001). In participants analyzed beyond 23 weeks, mean ventricular volume increased by 42.2% (SE: 8.8%; t = 4.94; p < 0.005). Apparent diffusion coefficient increased within the subventricular zone (F = 7.028; p < 0.001). No significant changes were identified in hippocampal volume. CONCLUSIONS We present evidence of significant and progressive treatment-associated structural brain changes in patients with glioblastoma treated with standard chemoradiation. Future studies using longitudinal neuropsychological evaluation are needed to characterize the functional consequences of these structural changes.
Collapse
Affiliation(s)
- Morgan J Prust
- From Harvard Medical School (M.J.P., J.D.), Boston; and Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology (M.J.P., K.J.-K., J.K.-C., P.P., E.R.G.), and Department of Neurology, Center for Neuro-Oncology (T.T.B., E.R.G., J.D.), Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Kourosh Jafari-Khouzani
- From Harvard Medical School (M.J.P., J.D.), Boston; and Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology (M.J.P., K.J.-K., J.K.-C., P.P., E.R.G.), and Department of Neurology, Center for Neuro-Oncology (T.T.B., E.R.G., J.D.), Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Jayashree Kalpathy-Cramer
- From Harvard Medical School (M.J.P., J.D.), Boston; and Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology (M.J.P., K.J.-K., J.K.-C., P.P., E.R.G.), and Department of Neurology, Center for Neuro-Oncology (T.T.B., E.R.G., J.D.), Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Pavlina Polaskova
- From Harvard Medical School (M.J.P., J.D.), Boston; and Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology (M.J.P., K.J.-K., J.K.-C., P.P., E.R.G.), and Department of Neurology, Center for Neuro-Oncology (T.T.B., E.R.G., J.D.), Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Tracy T Batchelor
- From Harvard Medical School (M.J.P., J.D.), Boston; and Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology (M.J.P., K.J.-K., J.K.-C., P.P., E.R.G.), and Department of Neurology, Center for Neuro-Oncology (T.T.B., E.R.G., J.D.), Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Elizabeth R Gerstner
- From Harvard Medical School (M.J.P., J.D.), Boston; and Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology (M.J.P., K.J.-K., J.K.-C., P.P., E.R.G.), and Department of Neurology, Center for Neuro-Oncology (T.T.B., E.R.G., J.D.), Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Jorg Dietrich
- From Harvard Medical School (M.J.P., J.D.), Boston; and Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology (M.J.P., K.J.-K., J.K.-C., P.P., E.R.G.), and Department of Neurology, Center for Neuro-Oncology (T.T.B., E.R.G., J.D.), Massachusetts General Hospital, Harvard Medical School, Boston, MA.
| |
Collapse
|
42
|
Lupo JM, Molinaro AM, Essock-Burns E, Butowski N, Chang SM, Cha S, Nelson SJ. The effects of anti-angiogenic therapy on the formation of radiation-induced microbleeds in normal brain tissue of patients with glioma. Neuro Oncol 2015. [PMID: 26206774 DOI: 10.1093/neuonc/nov128] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Radiotherapy (RT) is an integral component in managing patients with glioma, but the damage it may cause to healthy brain tissue and quality of life is of concern. Susceptibility-weighted imaging (SWI) is highly sensitive to the detection of microbleeds that occur years after RT. This study's goals were to characterize the evolution of radiation-induced microbleeds in normal-appearing brain and determine whether the administration of an anti-angiogenic agent altered this process. METHODS Serial high-resolution SWI was acquired on 17 patients with high-grade glioma between 8 months and 4.5 years posttreatment with RT and adjuvant chemotherapy. Nine of these patients were also treated with the anti-angiogenic agent enzastaurin. Microbleeds were identified as discrete foci of susceptibility not corresponding to vessels, tumor, or postoperative infarct, and counted in normal-appearing brain. Analysis of covariance was performed to compare slopes of regression of individual patients' microbleed counts over time, Wilcoxon rank-sum tests examined significant differences in rates of microbleed formation between groups, and linear and quadratic mixed-effects models were employed. RESULTS The number of microbleeds increased with time for all patients, with initial onset occurring at 8-22 months. No microbleeds disappeared once formed. The average rate of microbleed formation significantly increased after 2 years post-RT (P < .001). Patients receiving anti-angiogenic therapy exhibited fewer microbleeds overall (P < .05) and a significant reduction in initial rate of microbleed appearance (P = .01). CONCLUSIONS We have demonstrated a dramatic increase in microbleed formation after 2 years post-RT that was decelerated by the concomitant administration of anti-angiogenic therapy, which may aid in determining brain regions susceptible to RT.
Collapse
Affiliation(s)
- Janine M Lupo
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California (J.M.L., E.E.-B., S.C., S.J.N.); Department of Neurosurgery, University of California San Francisco, San Francisco, California (A.M.M., N.B., S.M.C., S.C.); Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, California (A.M.M.); Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, California (S.J.N.)
| | - Annette M Molinaro
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California (J.M.L., E.E.-B., S.C., S.J.N.); Department of Neurosurgery, University of California San Francisco, San Francisco, California (A.M.M., N.B., S.M.C., S.C.); Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, California (A.M.M.); Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, California (S.J.N.)
| | - Emma Essock-Burns
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California (J.M.L., E.E.-B., S.C., S.J.N.); Department of Neurosurgery, University of California San Francisco, San Francisco, California (A.M.M., N.B., S.M.C., S.C.); Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, California (A.M.M.); Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, California (S.J.N.)
| | - Nicholas Butowski
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California (J.M.L., E.E.-B., S.C., S.J.N.); Department of Neurosurgery, University of California San Francisco, San Francisco, California (A.M.M., N.B., S.M.C., S.C.); Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, California (A.M.M.); Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, California (S.J.N.)
| | - Susan M Chang
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California (J.M.L., E.E.-B., S.C., S.J.N.); Department of Neurosurgery, University of California San Francisco, San Francisco, California (A.M.M., N.B., S.M.C., S.C.); Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, California (A.M.M.); Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, California (S.J.N.)
| | - Soonmee Cha
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California (J.M.L., E.E.-B., S.C., S.J.N.); Department of Neurosurgery, University of California San Francisco, San Francisco, California (A.M.M., N.B., S.M.C., S.C.); Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, California (A.M.M.); Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, California (S.J.N.)
| | - Sarah J Nelson
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California (J.M.L., E.E.-B., S.C., S.J.N.); Department of Neurosurgery, University of California San Francisco, San Francisco, California (A.M.M., N.B., S.M.C., S.C.); Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, California (A.M.M.); Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, California (S.J.N.)
| |
Collapse
|
43
|
Jiang W, Gong G, Wu F, Kong L, Chen K, Cui W, Ren L, Fan G, Sun W, Ma H, Xu K, Tang Y, Wang F. The papez circuit in first-episode, treatment-naive adults with major depressive disorder: combined atlas-based tract-specific quantification analysis and voxel-based analysis. PLoS One 2015; 10:e0126673. [PMID: 25996480 PMCID: PMC4440648 DOI: 10.1371/journal.pone.0126673] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 04/06/2015] [Indexed: 11/18/2022] Open
Abstract
Previous findings suggest that the Papez Circuit may have a role in major depressive disorders. We used atlas-based tract-specific quantification analysis and voxel-based analysis to examine the integrity of white matter tracts involved in mood regulation (including tracts in the Papez Circuit). Diffusion tensor imaging acquired from 35 first-episode, treatment-naive adults with major depressive disorders and 34 healthy adult controls were compared. Our statistical approach compared structural integrity of 11 major white matter tracts between the major depressive disorder and adult controls, as well as illness duration influence in patients. Fractional anisotropy was decreased in the hippocampal cingulum and in the anterior thalamic radiation according to both analytical approaches, all of which were important tracts included in the Papez Circuit. Our results support the role of the Papez Circuit in major depressive disorders with the minimal probability of false positive due to similar findings in both analyses that have complementary advantages. Dysfunction of the Papez Circuit may be a potential marker for studying the pathogenesis of major depressive disorders.
Collapse
Affiliation(s)
- Wenyan Jiang
- Department of Psychiatry, The First Affiliated Hospital, China Medical University, Shenyang 110001, Liaoning, PR China
- Department of Radiology, The Liaoning Cancer Hospital & Institute, Shenyang 110042, Liaoning, PR China
| | - Gaolang Gong
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, 100875, PR China
| | - Feng Wu
- Department of Psychiatry, The First Affiliated Hospital, China Medical University, Shenyang 110001, Liaoning, PR China
| | - Lingtao Kong
- Department of Psychiatry, The First Affiliated Hospital, China Medical University, Shenyang 110001, Liaoning, PR China
| | - Kaiyuan Chen
- Department of Psychiatry, The First Affiliated Hospital, China Medical University, Shenyang 110001, Liaoning, PR China
| | - Wenhui Cui
- Department of Psychiatry, The First Affiliated Hospital, China Medical University, Shenyang 110001, Liaoning, PR China
| | - Ling Ren
- Department of Radiology, The First Affiliated Hospital, China Medical University, Shenyang 110001, Liaoning, PR China
| | - Guoguang Fan
- Department of Radiology, The First Affiliated Hospital, China Medical University, Shenyang 110001, Liaoning, PR China
| | - Wenge Sun
- Department of Radiology, The First Affiliated Hospital, China Medical University, Shenyang 110001, Liaoning, PR China
| | - Huan Ma
- Department of Psychiatry, The First Affiliated Hospital, China Medical University, Shenyang 110001, Liaoning, PR China
| | - Ke Xu
- Department of Radiology, The First Affiliated Hospital, China Medical University, Shenyang 110001, Liaoning, PR China
- * E-mail: (KX); (YT)
| | - Yanqing Tang
- Department of Psychiatry, The First Affiliated Hospital, China Medical University, Shenyang 110001, Liaoning, PR China
- * E-mail: (KX); (YT)
| | - Fei Wang
- Department of Psychiatry, The First Affiliated Hospital, China Medical University, Shenyang 110001, Liaoning, PR China
- Department of Radiology, The First Affiliated Hospital, China Medical University, Shenyang 110001, Liaoning, PR China
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut, United States of America
| |
Collapse
|
44
|
Effects of Surgery and Proton Therapy on Cerebral White Matter of Craniopharyngioma Patients. Int J Radiat Oncol Biol Phys 2015; 93:64-71. [PMID: 26279025 DOI: 10.1016/j.ijrobp.2015.05.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 04/22/2015] [Accepted: 05/12/2015] [Indexed: 11/20/2022]
Abstract
PURPOSE The purpose of this study was to determine radiation dose effect on the structural integrity of cerebral white matter in craniopharyngioma patients receiving surgery and proton therapy. METHODS AND MATERIALS Fifty-one patients (2.1-19.3 years of age) with craniopharyngioma underwent surgery and proton therapy in a prospective therapeutic trial. Anatomical magnetic resonance images acquired after surgery but before proton therapy were inspected to identify white matter structures intersected by surgical corridors and catheter tracks. Longitudinal diffusion tensor imaging (DTI) was performed to measure microstructural integrity changes in cerebral white matter. Fractional anisotropy (FA) derived from DTI was statistically analyzed for 51 atlas-based white matter structures of the brain to determine radiation dose effect. FA in surgery-affected regions in the corpus callosum was compared to that in its intact counterpart to determine whether surgical defects affect radiation dose effect. RESULTS Surgical defects were seen most frequently in the corpus callosum because of transcallosal resection of tumors and insertion of ventricular or cyst catheters. Longitudinal DTI data indicated reductions in FA 3 months after therapy, which was followed by a recovery in most white matter structures. A greater FA reduction was correlated with a higher radiation dose in 20 white matter structures, indicating a radiation dose effect. The average FA in the surgery-affected regions before proton therapy was smaller (P=.0001) than that in their non-surgery-affected counterparts with more intensified subsequent reduction of FA (P=.0083) after therapy, suggesting that surgery accentuated the radiation dose effect. CONCLUSIONS DTI data suggest that mild radiation dose effects occur in patients with craniopharyngioma receiving surgery and proton therapy. Surgical defects present at the time of proton therapy appear to accentuate the radiation dose effect longitudinally. This study supports consideration of pre-existing surgical defects and their locations in proton therapy planning and studies of treatment effect.
Collapse
|
45
|
Dunlop A, Welsh L, McQuaid D, Dean J, Gulliford S, Hansen V, Bhide S, Nutting C, Harrington K, Newbold K. Brain-sparing methods for IMRT of head and neck cancer. PLoS One 2015; 10:e0120141. [PMID: 25781636 PMCID: PMC4364536 DOI: 10.1371/journal.pone.0120141] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 01/19/2015] [Indexed: 01/11/2023] Open
Abstract
PURPOSE Radical radiotherapy for head and neck cancer (HNC) may deliver significant doses to brain structures. There is evidence that this may cause a decline in neurocognitive function (NCF). Radiation dose to the medial temporal lobes, and particularly to the hippocampi, seems to be critical in determining NCF outcomes. We evaluated the feasibility of two alternative intensity-modulated radiotherapy (IMRT) techniques to generate hippocampus- and brain-sparing HNC treatment plans to preserve NCF. METHODS AND MATERIALS A planning study was undertaken for ten patients with HNC whose planning target volume (PTV) included the nasopharynx. Patients had been previously treated using standard (chemo)-IMRT techniques. Bilateral hippocampi were delineated according to the RTOG atlas, on T1w MRI co-registered to the RT planning CT. Hippocampus-sparing plans (HSRT), and whole-brain/hippocampus-sparing fixed-field non-coplanar IMRT (BSRT) plans, were generated. DVHs and dose difference maps were used to compare plans. NTCP calculations for NCF impairment, based on hippocampal dosimetry, were performed for all plans. RESULTS Significant reductions in hippocampal doses relative to standard plans were achieved in eight of ten cases for both HSRT and BSRT. EQD2 D40% to bilateral hippocampi was significantly reduced from a mean of 23.5 Gy (range 14.5-35.0) in the standard plans to a mean of 8.6 Gy (4.2-24.7) for HSRT (p = 0.001) and a mean of 9.0 Gy (4.3-17.3) for BSRT (p < 0.001). Both HSRT and BSRT resulted in a significant reduction in doses to the whole brain, brain stem, and cerebellum. CONCLUSION We demonstrate that IMRT plans for HNC involving the nasopharynx can be successfully optimised to significantly reduce dose to the bilateral hippocampi and whole brain. The magnitude of the achievable dose reductions results in significant reductions in the probability of radiation-induced NCF decline. These results could readily be translated into a future clinical trial.
Collapse
Affiliation(s)
- Alex Dunlop
- Joint Department of Physics, Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Liam Welsh
- The Royal Marsden Hospital, London, United Kingdom
- The Institute of Cancer Research, London, United Kingdom
| | - Dualta McQuaid
- Joint Department of Physics, Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Jamie Dean
- The Institute of Cancer Research, London, United Kingdom
| | - Sarah Gulliford
- Joint Department of Physics, Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Vibeke Hansen
- Joint Department of Physics, Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Shreerang Bhide
- The Royal Marsden Hospital, London, United Kingdom
- The Institute of Cancer Research, London, United Kingdom
| | | | - Kevin Harrington
- The Royal Marsden Hospital, London, United Kingdom
- The Institute of Cancer Research, London, United Kingdom
| | - Kate Newbold
- The Royal Marsden Hospital, London, United Kingdom
| |
Collapse
|
46
|
Welsh L, Dunlop A, McGovern T, McQuaid D, Dean J, Gulliford S, Bhide S, Harrington K, Nutting C, Newbold K. Neurocognitive Function After (Chemo)-Radiotherapy for Head and Neck Cancer. Clin Oncol (R Coll Radiol) 2014; 26:765-75. [DOI: 10.1016/j.clon.2014.06.014] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 06/09/2014] [Accepted: 06/16/2014] [Indexed: 02/09/2023]
|
47
|
Hope TR, Vardal J, Bjørnerud A, Larsson C, Arnesen MR, Salo RA, Groote IR. Serial diffusion tensor imaging for early detection of radiation-induced injuries to normal-appearing white matter in high-grade glioma patients. J Magn Reson Imaging 2014; 41:414-23. [PMID: 24399480 DOI: 10.1002/jmri.24533] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Accepted: 11/18/2013] [Indexed: 11/07/2022] Open
Abstract
PURPOSE To study the potential of diffusion tensor imaging (DTI) to serve as a biomarker for radiation-induced brain injury during chemo-radiotherapy (RT) treatment. MATERIALS AND METHODS Serial DTI data were collected from 18 high-grade glioma (HGG) patients undergoing RT and 7 healthy controls. Changes across time in mean, standard deviation (SD), skewness, and kurtosis of fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (λa ), and transversal diffusivity (λt ) within the normal-appearing white matter (NAWM) were modeled using a linear mixed-effects model to assess dose dependent changes of five dose bins (0-60 Gy), and global changes compared with a control group. RESULTS Mean MD, λa and λt were all significantly increasing in >41 Gy dose regions (0.14%, 0.10%, and 0.18% per week) compared with <12 Gy regions. SD λt had significant dose dependent time evolution of 0.019*dose per week. Mean and SD MD, λa and λt in the global NAWM of the patient group significantly increased (mean; 0.06%, 0.03%, 0.09%, and SD; 0.57%, 0.34%, 0.51 per week) compared with the control group. The changes were significant at week 6 of, or immediately after RT. CONCLUSION DTI is not sensitive to acute global NAWM changes during the treatment of HGG, but sensitive to early posttreatment changes.
Collapse
Affiliation(s)
- Tuva R Hope
- Norwegian University of Science and Technology, Trondheim, Norway; The Intervention Centre, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | | | | | | | | | | | | |
Collapse
|
48
|
Nguyen NP, Nguyen ML, Vock J, Lemanski C, Kerr C, Vinh-Hung V, Chi A, Khan R, Woods W, Altdorfer G, D'Andrea M, Karlsson U, Hamilton R, Ampil F. Potential applications of imaging and image-guided radiotherapy for brain metastases and glioblastoma to improve patient quality of life. Front Oncol 2013; 3:284. [PMID: 24312897 PMCID: PMC3832799 DOI: 10.3389/fonc.2013.00284] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Accepted: 11/04/2013] [Indexed: 11/17/2022] Open
Abstract
Treatment of glioblastoma multiforme (GBM) and brain metastasis remains a challenge because of the poor survival and the potential for brain damage following radiation. Despite concurrent chemotherapy and radiation dose escalation, local recurrence remains the predominant pattern of failure in GBM most likely secondary to repopulation of cancer stem cells. Even though radiotherapy is highly effective for local control of radio-resistant tumors such as melanoma and renal cell cancer, systemic disease progression is the cause of death in most patients with brain metastasis. Preservation of quality of life (QOL) of cancer survivors is the main issue for patients with brain metastasis. Image-guided radiotherapy (IGRT) by virtue of precise radiation dose delivery may reduce treatment time of patients with GBM without excessive toxicity and potentially improve neurocognitive function with preservation of local control in patients with brain metastasis. Future prospective trials for primary brain tumors or brain metastasis should include IGRT to assess its efficacy to improve patient QOL.
Collapse
Affiliation(s)
- Nam P Nguyen
- Department of Radiation Oncology, The University of Arizona , Tucson, AZ , USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Concurrent whole brain radiotherapy and bortezomib for brain metastasis. Radiat Oncol 2013; 8:204. [PMID: 23965287 PMCID: PMC3765365 DOI: 10.1186/1748-717x-8-204] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Accepted: 08/16/2013] [Indexed: 12/24/2022] Open
Abstract
Background Survival of patients with brain metastasis particularly from historically more radio-resistant malignancies remains dismal. A phase I study of concurrent bortezomib and whole brain radiotherapy was conducted to determine the tolerance and safety of this approach in patients with previously untreated brain metastasis. Methods A phase I dose escalation study evaluated the safety of bortezomib (0.9, 1.1, 1.3, 1.5, and 1.7 mg/m2) given on days 1, 4, 8 and 11 of whole brain radiotherapy. Patients with confirmed brain metastasis were recruited for participation. The primary endpoint was the dose-limiting toxicity, defined as any ≥ grade 3 non-hematologic toxicity or grade ≥ 4 hematologic toxicity from the start of treatment to one month post irradiation. Time-to-Event Continual Reassessment Method (TITE-CRM) was used to determine dose escalation. A companion study of brain diffusion tensor imaging MRI was conducted on a subset of patients to assess changes in the brain that might predict delayed cognitive effects. Results Twenty-four patients were recruited and completed the planned therapy. Patients with melanoma accounted for 83% of all participants. The bortezomib dose was escalated as planned to the highest dose of 1.7 mg/m2/dose. No grade 4/5 toxicities related to treatment were observed. Two patients had grade 3 dose-limiting toxicities (hyponatremia and encephalopathy). A partial or minor response was observed in 38% of patients. Bortezomib showed greater demyelination in hippocampus-associated white matter structures on MRI one month after radiotherapy compared to patients not treated with bortezomib (increase in radial diffusivity +16.8% versus 4.8%; p = 0.0023). Conclusions Concurrent bortezomib and whole brain irradiation for brain metastasis is well tolerated at one month follow-up, but MRI changes that have been shown to predict delayed cognitive function can be detected within one month of treatment.
Collapse
|
50
|
Nazem-Zadeh MR, Chapman CH, Lawrence TS, Tsien CI, Cao Y. Uncertainty in assessment of radiation-induced diffusion index changes in individual patients. Phys Med Biol 2013; 58:4277-96. [PMID: 23732399 PMCID: PMC4963002 DOI: 10.1088/0031-9155/58/12/4277] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The purpose of this study is to evaluate repeatability coefficients of diffusion tensor indices to assess whether longitudinal changes in diffusion indices were true changes beyond the uncertainty for individual patients undergoing radiation therapy (RT). Twenty-two patients who had low-grade or benign tumors and were treated by partial brain radiation therapy (PBRT) participated in an IRB-approved MRI protocol. The diffusion tensor images in the patients were acquired pre-RT, week 3 during RT, at the end of RT, and 1, 6, and 18 months after RT. As a measure of uncertainty, repeatability coefficients (RC) of diffusion indices in the segmented cingulum, corpus callosum, and fornix were estimated by using test-retest diffusion tensor datasets from the National Biomedical Imaging Archive (NBIA) database. The upper and lower limits of the 95% confidence interval of the estimated RC from the test and retest data were used to evaluate whether the longitudinal percentage changes in diffusion indices in the segmented structures in the individual patients were beyond the uncertainty and thus could be considered as true radiation-induced changes. Diffusion indices in different white matter structures showed different uncertainty ranges. The estimated RC for fractional anisotropy (FA) ranged from 5.3% to 9.6%, for mean diffusivity (MD) from 2.2% to 6.8%, for axial diffusivity (AD) from 2.4% to 5.5%, and for radial diffusivity (RD) from 2.9% to 9.7%. Overall, 23% of the patients treated by RT had FA changes, 44% had MD changes, 50% had AD changes, and 50% had RD changes beyond the uncertainty ranges. In the fornix, 85.7% and 100% of the patients showed changes beyond the uncertainty range at 6 and 18 months after RT, demonstrating that radiation has a pronounced late effect on the fornix compared to other segmented structures. It is critical to determine reliability of a change observed in an individual patient for clinical decision making. Assessments of the repeatability and confidence interval of diffusion tensor measurements in white matter structures allow us to determine the true longitudinal change in individual patients.
Collapse
|