1
|
Megli CJ, Carlin SM, Giacobe EJ, Hillebrand GH, Hooven TA. Virulence and pathogenicity of group B Streptococcus: Virulence factors and their roles in perinatal infection. Virulence 2025; 16:2451173. [PMID: 39844743 PMCID: PMC11758947 DOI: 10.1080/21505594.2025.2451173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 12/02/2024] [Accepted: 01/05/2025] [Indexed: 01/24/2025] Open
Abstract
This review summarizes key virulence factors associated with group B Streptococcus (GBS), a significant pathogen particularly affecting pregnant women, fetuses, and infants. Beginning with an introduction to the historical transition of GBS from a zoonotic pathogen to a prominent cause of human infections, particularly in the perinatal period, the review describes major disease manifestations caused by GBS, including sepsis, meningitis, chorioamnionitis, pneumonia, and others, linking each to specific virulence mechanisms. A detailed exploration of the genetic basis for GBS pathogenicity follows, emphasizing the roles of capsules in pathogenesis and immune evasion. The paper also examines the molecular structures and functions of key GBS surface proteins, such as pili, serine-rich repeat proteins, and fibrinogen-binding proteins, which facilitate colonization and disease. Additionally, the review discusses the significance of environmental sensing and response systems, like the two-component systems, in adapting GBS to different host environments. We conclude by addressing current efforts in vaccine development, underscoring the need for effective prevention strategies against this pervasive pathogen.
Collapse
Affiliation(s)
- Christina J. Megli
- Department of Obstetrics and Gynecology, University of Pittsburgh School of Medicine, Pittsburgh, USA
- Magee-Womens Research Institute, UPMC Medical Center, Pittsburgh, USA
| | - Sophia M. Carlin
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, USA
| | - Elizabeth J. Giacobe
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, USA
| | - Gideon H. Hillebrand
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, USA
| | - Thomas A. Hooven
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, USA
- R.K. Mellon Institute for Pediatric Research, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, USA
| |
Collapse
|
2
|
Bhavana VH, Hillebrand GH, Gopalakrishna KP, Rapp RA, Ratner AJ, Tettelin H, Hooven TA. A group B Streptococcus indexed transposon mutant library to accelerate genetic research on an important perinatal pathogen. Microbiol Spectr 2023; 11:e0204623. [PMID: 37933989 PMCID: PMC10714824 DOI: 10.1128/spectrum.02046-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 09/29/2023] [Indexed: 11/08/2023] Open
Abstract
IMPORTANCE Group B Streptococcus (GBS) is a significant global cause of serious infections, most of which affect pregnant women, newborns, and infants. Studying GBS genetic mutant strains is a valuable approach for learning more about how these infections are caused and is a key step toward developing more effective preventative and treatment strategies. In this resource report, we describe a newly created library of defined GBS genetic mutants, containing over 1,900 genetic variants, each with a unique disruption to its chromosome. An indexed library of this scale is unprecedented in the GBS field; it includes strains with mutations in hundreds of genes whose potential functions in human disease remain unknown. We have made this resource freely available to the broader research community through deposition in a publicly funded bacterial maintenance and distribution repository.
Collapse
Affiliation(s)
- Venkata H. Bhavana
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Gideon H. Hillebrand
- University of Pittsburgh, Graduate Program in Microbiology and Immunology, Pittsburgh, Pennsylvania, USA
| | | | - Rebekah A. Rapp
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- The Ellis School, Pittsburgh, Pennsylvania, USA
| | - Adam J. Ratner
- Department of Pediatrics, New York University, New York, New York, USA
- Department of Microbiology, New York University, New York, New York, USA
| | - Hervé Tettelin
- Department of Microbiology and Immunology, Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Thomas A. Hooven
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- University of Pittsburgh, Graduate Program in Microbiology and Immunology, Pittsburgh, Pennsylvania, USA
- Richard King Mellon Institute for Pediatric Research, University of Pittsburgh Medical School, Pittsburgh, Pennsylvania, USA
- UPMC Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
3
|
Wahlenmayer ER, Hammers DE. Streptococcal peptides and their roles in host-microbe interactions. Front Cell Infect Microbiol 2023; 13:1282622. [PMID: 37915845 PMCID: PMC10617681 DOI: 10.3389/fcimb.2023.1282622] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 10/02/2023] [Indexed: 11/03/2023] Open
Abstract
The genus Streptococcus encompasses many bacterial species that are associated with hosts, ranging from asymptomatic colonizers and commensals to pathogens with a significant global health burden. Streptococci produce numerous factors that enable them to occupy their host-associated niches, many of which alter their host environment to the benefit of the bacteria. The ability to manipulate host immune systems to either evade detection and clearance or induce a hyperinflammatory state influences whether bacteria are able to survive and persist in a given environment, while also influencing the propensity of the bacteria to cause disease. Several bacterial factors that contribute to this inter-species interaction have been identified. Recently, small peptides have become increasingly appreciated as factors that contribute to Streptococcal relationships with their hosts. Peptides are utilized by streptococci to modulate their host environment in several ways, including by directly interacting with host factors to disrupt immune system function and signaling to other bacteria to control the expression of genes that contribute to immune modulation. In this review, we discuss the many contributions of Streptococcal peptides in terms of their ability to contribute to pathogenesis and disruption of host immunity. This discussion will highlight the importance of continuing to elucidate the functions of these Streptococcal peptides and pursuing the identification of new peptides that contribute to modulation of host environments. Developing a greater understanding of how bacteria interact with their hosts has the potential to enable the development of techniques to inhibit these peptides as therapeutic approaches against Streptococcal infections.
Collapse
Affiliation(s)
| | - Daniel E. Hammers
- Biology Department, Houghton University, Houghton, NY, United States
| |
Collapse
|
4
|
Li L, Li Y, Yang J, Xie X, Chen H. The immune responses to different Uropathogens call individual interventions for bladder infection. Front Immunol 2022; 13:953354. [PMID: 36081496 PMCID: PMC9445553 DOI: 10.3389/fimmu.2022.953354] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 08/05/2022] [Indexed: 11/13/2022] Open
Abstract
Urinary tract infection (UTI) caused by uropathogens is the most common infectious disease and significantly affects all aspects of the quality of life of the patients. However, uropathogens are increasingly becoming antibiotic-resistant, which threatens the only effective treatment option available-antibiotic, resulting in higher medical costs, prolonged hospital stays, and increased mortality. Currently, people are turning their attention to the immune responses, hoping to find effective immunotherapeutic interventions which can be alternatives to the overuse of antibiotic drugs. Bladder infections are caused by the main nine uropathogens and the bladder executes different immune responses depending on the type of uropathogens. It is essential to understand the immune responses to diverse uropathogens in bladder infection for guiding the design and development of immunotherapeutic interventions. This review firstly sorts out and comparatively analyzes the immune responses to the main nine uropathogens in bladder infection, and summarizes their similarities and differences. Based on these immune responses, we innovatively propose that different microbial bladder infections should adopt corresponding immunomodulatory interventions, and the same immunomodulatory intervention can also be applied to diverse microbial infections if they share the same effective therapeutic targets.
Collapse
Affiliation(s)
- Linlong Li
- The School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Yangyang Li
- The School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Jiali Yang
- The School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Xiang Xie
- The School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
- Public Center of Experimental Technology, Model Animal and Human Disease Research of Luzhou Key Laboratory, Southwest Medical University, Luzhou, China
- *Correspondence: Xiang Xie, ; Huan Chen,
| | - Huan Chen
- The School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
- Nucleic Acid Medicine of Luzhou Key Laboratory, Southwest Medical University, Luzhou, China
- *Correspondence: Xiang Xie, ; Huan Chen,
| |
Collapse
|
5
|
Functional Insights into the High-Molecular-Mass Penicillin-Binding Proteins of Streptococcus agalactiae Revealed by Gene Deletion and Transposon Mutagenesis Analysis. J Bacteriol 2021; 203:e0023421. [PMID: 34124943 DOI: 10.1128/jb.00234-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
High-molecular-mass penicillin-binding proteins (PBPs) are enzymes that catalyze the biosynthesis of bacterial cell wall peptidoglycan. The Gram-positive bacterial pathogen Streptococcus agalactiae (group B streptococcus [GBS]) produces five high-molecular-mass PBPs, namely, PBP1A, PBP1B, PBP2A, PBP2B, and PBP2X. Among these, only PBP2X is essential for cell viability, whereas the other four PBPs are individually dispensable. The biological function of the four nonessential PBPs is poorly characterized in GBS. We deleted the pbp1a, pbp1b, pbp2a, and pbp2b genes individually from a genetically well-characterized serotype V GBS strain and studied the phenotypes of the four isogenic mutant strains. Compared to the wild-type parental strain, (i) none of the pbp isogenic mutant strains had a significant growth defect in Todd-Hewitt broth supplemented with 0.2% yeast extract (THY) rich medium, (ii) isogenic mutant Δpbp1a and Δpbp1b strains had significantly increased susceptibility to penicillin and ampicillin, and (iii) isogenic mutant Δpbp1a and Δpbp2b strains had significantly longer chain lengths. Using saturated transposon mutagenesis and transposon insertion site sequencing, we determined the genes essential for the viability of the wild-type GBS strain and each of the four isogenic pbp deletion mutant strains in THY rich medium. The pbp1a gene is essential for cell viability in the pbp2b deletion background. Reciprocally, pbp2b is essential in the pbp1a deletion background. Moreover, the gene encoding RodA, a peptidoglycan polymerase that works in conjunction with PBP2B, is also essential in the pbp1a deletion background. Together, our results suggest functional overlap between PBP1A and the PBP2B-RodA complex in GBS cell wall peptidoglycan biosynthesis. IMPORTANCE High-molecular-mass penicillin-binding proteins (HMM PBPs) are enzymes required for bacterial cell wall biosynthesis. Bacterial pathogen group B streptococcus (GBS) produces five distinct HMM PBPs. The biological functions of these proteins are not well characterized in GBS. In this study, we performed a comprehensive deletion analysis of genes encoding HMM PBPs in GBS. We found that deleting certain PBP-encoding genes altered bacterial susceptibility to beta-lactam antibiotics, cell morphology, and the essentiality of other enzymes involved in cell wall peptidoglycan synthesis. The results of our study shed new light on the biological functions of PBPs in GBS.
Collapse
|
6
|
Desai D, Goh KGK, Sullivan MJ, Chattopadhyay D, Ulett GC. Hemolytic activity and biofilm-formation among clinical isolates of group B streptococcus causing acute urinary tract infection and asymptomatic bacteriuria. Int J Med Microbiol 2021; 311:151520. [PMID: 34273854 DOI: 10.1016/j.ijmm.2021.151520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 05/20/2021] [Accepted: 07/01/2021] [Indexed: 10/20/2022] Open
Abstract
Streptococcus agalactiae, also known as group B Streptococcus, is an aetiological agent of urinary tract infection (UTI) in adults, including cystitis, pyelonephritis and asymptomatic bacteriuria (ABU). Whereas ABU-causing S. agalactiae (ABSA) have been shown to grow and achieve higher culture denstity in human urine compared to uropathogenic S. agalactiae (UPSA) other phenotypic distinctions between S. agalactiae isolated from different forms of UTI are not known. Here, we define the hemolytic activities and biofilm-formation of a collection of clinical isolates of UPSA, ABSA and recurrent S. agalactiae bacteriuria (rSAB) strains to explore these phenotypes in the context of clinical history of isolates. A total of 61 UPSA, 184 ABSA, and 47 rSAB isolates were analyzed for relative hemolytic activity by spot assay on blood agar, which was validated using a erythrocyte lysis suspension assay. Biofilm formation was determined by microtiter plate assay with Lysogeny and Todd-Hewitt broths supplemented with 1% glucose to induce biofilm formation. We also used multiplex PCR to analyze isolates for the presence of genes encoding adhesive pili, which contribute to biofilm formation. Comparing the hemolytic activities of 292 isolates showed, surprisingly, that ABSA strains were significantly more likely to be highly hemolytic compared to other strains. In contrast, there were no differences between the relative abilities of strains from the different clinical history groups to form biofilms. Taken together, these findings demonstrate a propensity of S. agalactiae causing ABU to be highly hemolytic but no link between clinical history of UTI strains and ability to form biofilm.
Collapse
Affiliation(s)
- Devika Desai
- School of Pharmacy and Medical Sciences, Australia
| | - Kelvin G K Goh
- School of Pharmacy and Medical Sciences, Australia; Menzies Health Institute Queensland, Griffith University, Parklands, 4222, Australia
| | - Matthew J Sullivan
- School of Pharmacy and Medical Sciences, Australia; Menzies Health Institute Queensland, Griffith University, Parklands, 4222, Australia
| | - Debasish Chattopadhyay
- Department of Medicine, University of Alabama at Birmingham, Birmingham, 35294, AL, United States
| | - Glen C Ulett
- School of Pharmacy and Medical Sciences, Australia; Menzies Health Institute Queensland, Griffith University, Parklands, 4222, Australia; Department of Medicine, University of Alabama at Birmingham, Birmingham, 35294, AL, United States.
| |
Collapse
|
7
|
Gaston JR, Johnson AO, Bair KL, White AN, Armbruster CE. Polymicrobial interactions in the urinary tract: is the enemy of my enemy my friend? Infect Immun 2021; 89:IAI.00652-20. [PMID: 33431702 DOI: 10.1128/iai.00652-20] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The vast majority of research pertaining to urinary tract infection has focused on a single pathogen in isolation, and predominantly Escherichia coli. However, polymicrobial urine colonization and infection are prevalent in several patient populations, including individuals with urinary catheters. The progression from asymptomatic colonization to symptomatic infection and severe disease is likely shaped by interactions between traditional pathogens as well as constituents of the normal urinary microbiota. Recent studies have begun to experimentally dissect the contribution of polymicrobial interactions to disease outcomes in the urinary tract, including their role in development of antimicrobial-resistant biofilm communities, modulating the innate immune response, tissue damage, and sepsis. This review aims to summarize the epidemiology of polymicrobial urine colonization, provide an overview of common urinary tract pathogens, and present key microbe-microbe and host-microbe interactions that influence infection progression, persistence, and severity.
Collapse
Affiliation(s)
- Jordan R Gaston
- Department of Medicine, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo
| | - Alexandra O Johnson
- Department of Microbiology and Immunology, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo
| | - Kirsten L Bair
- Department of Microbiology and Immunology, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo
| | - Ashley N White
- Department of Microbiology and Immunology, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo
| | - Chelsie E Armbruster
- Department of Microbiology and Immunology, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo
| |
Collapse
|
8
|
Genetic Basis Underlying the Hyperhemolytic Phenotype of Streptococcus agalactiae Strain CNCTC10/84. J Bacteriol 2020; 202:JB.00504-20. [PMID: 32958630 DOI: 10.1128/jb.00504-20] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 09/11/2020] [Indexed: 01/30/2023] Open
Abstract
Streptococcus agalactiae (group B streptococcus [GBS]) is a major cause of infections in newborns, pregnant women, and immunocompromised patients. GBS strain CNCTC10/84 is a clinical isolate that has high virulence in animal models of infection and has been used extensively to study GBS pathogenesis. Two unusual features of this strain are hyperhemolytic activity and hypo-CAMP factor activity. These two phenotypes are typical of GBS strains that are functionally deficient in the CovR-CovS two-component regulatory system. A previous whole-genome sequencing study found that strain CNCTC10/84 has intact covR and covS regulatory genes. We investigated CovR-CovS regulation in CNCTC10/84 and discovered that a single-nucleotide insertion in a homopolymeric tract in the covR promoter region underlies the strong hemolytic activity and weak CAMP activity of this strain. Using isogenic mutant strains, we demonstrate that this single-nucleotide insertion confers significantly decreased expression of covR and covS and altered expression of CovR-CovS-regulated genes, including that of genes encoding β-hemolysin and CAMP factor. This single-nucleotide insertion also confers significantly increased GBS survival in human whole blood ex vivo IMPORTANCE Group B streptococcus (GBS) is the leading cause of neonatal sepsis, pneumonia, and meningitis. GBS strain CNCTC10/84 is a highly virulent blood isolate that has been used extensively to study GBS pathogenesis for over 20 years. Strain CNCTC10/84 has an unusually strong hemolytic activity, but the genetic basis is unknown. In this study, we discovered that a single-nucleotide insertion in an intergenic homopolymeric tract is responsible for the elevated hemolytic activity of CNCTC10/84.
Collapse
|
9
|
Genome-Wide Assessment of Streptococcus agalactiae Genes Required for Survival in Human Whole Blood and Plasma. Infect Immun 2020; 88:IAI.00357-20. [PMID: 32747604 DOI: 10.1128/iai.00357-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 07/26/2020] [Indexed: 12/17/2022] Open
Abstract
Streptococcus agalactiae (group B streptococcus, or GBS) is a common cause of bacteremia and sepsis in newborns, pregnant women, and immunocompromised patients. The molecular mechanisms used by GBS to survive and proliferate in blood are not well understood. Here, using a highly virulent GBS strain and transposon-directed insertion site sequencing (TraDIS), we performed genome-wide screens to discover novel GBS genes required for bacterial survival in human whole blood and plasma. The screen identified 85 and 41 genes that are required for GBS growth in whole blood and plasma, respectively. A common set of 29 genes was required in both whole blood and plasma. Targeted gene deletion confirmed that (i) genes encoding methionine transporter (metP) and manganese transporter (mtsA) are crucial for GBS survival in whole blood and plasma, (ii) gene W903_1820, encoding a small multidrug export family protein, contributes significantly to GBS survival in whole blood, (iii) the shikimate pathway gene aroA is essential for GBS growth in whole blood and plasma, and (iv) deletion of srr1, encoding a fibrinogen-binding adhesin, increases GBS survival in whole blood. Our findings provide new insight into the GBS-host interactions in human blood.
Collapse
|
10
|
Lewis AL, Gilbert NM. Roles of the vagina and the vaginal microbiota in urinary tract infection: evidence from clinical correlations and experimental models. GMS INFECTIOUS DISEASES 2020; 8:Doc02. [PMID: 32373427 PMCID: PMC7186798 DOI: 10.3205/id000046] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Grants] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mounting evidence indicates that the vagina can harbor uropathogenic bacteria. Here, we consider three roles played by the vagina and its bacterial inhabitants in urinary tract infection (UTI) and urinary health. First, the vagina can serve as a reservoir for Escherichia coli, the most common cause of UTI, and other recognized uropathogens. Second, several vaginal bacterial species are frequently detected upon urine culture but are underappreciated as uropathogens, and other vaginal species are likely under-reported because of their fastidious nature. Third, some vaginal bacteria that are not widely viewed as uropathogens can transit briefly in the urinary tract, cause injury or immunomodulation, and shift the balance of host-pathogen interactions to influence the outcomes of uropathogenesis. This chapter describes the current literature in these three areas and summarizes the impact of the vaginal microbiota on susceptibility to UTI and other urologic conditions.
Collapse
Affiliation(s)
- Amanda L. Lewis
- Washington University School of Medicine, Department of Molecular Microbiology, St. Louis, United States
| | - Nicole M. Gilbert
- Washington University School of Medicine, Department of Obstetrics and Gynecology, St. Louis, United States
| |
Collapse
|
11
|
Shing SR, Ramos AR, Patras KA, Riestra AM, McCabe S, Nizet V, Coady A. The Fungal Pathogen Candida albicans Promotes Bladder Colonization of Group B Streptococcus. Front Cell Infect Microbiol 2020; 9:437. [PMID: 31998657 PMCID: PMC6966239 DOI: 10.3389/fcimb.2019.00437] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 12/05/2019] [Indexed: 12/16/2022] Open
Abstract
Group B Streptococcus (GBS) is a common cause of bacterial urinary tract infections (UTI) in susceptible populations, including pregnant women and the elderly. However, the factors that govern GBS persistence and disease severity in this niche are not fully understood. Here, we report that the presence of the fungus Candida albicans, a common urogenital colonizer, can promote GBS UTI. Co-inoculation of GBS with C. albicans increased bacterial adherence to bladder epithelium and promoted GBS colonization in vivo in a C. albicans adhesin-dependent manner. This study demonstrates that fungal colonization of the urogenital tract may be an important determinant of bacterial pathogenesis during UTI.
Collapse
Affiliation(s)
- Samuel R Shing
- Collaborative to Halt Antibiotic-Resistant Microbes, Department of Pediatrics, University of California, San Diego, La Jolla, CA, United States
| | - Anissa R Ramos
- Collaborative to Halt Antibiotic-Resistant Microbes, Department of Pediatrics, University of California, San Diego, La Jolla, CA, United States
| | - Kathryn A Patras
- Collaborative to Halt Antibiotic-Resistant Microbes, Department of Pediatrics, University of California, San Diego, La Jolla, CA, United States
| | - Angelica M Riestra
- Collaborative to Halt Antibiotic-Resistant Microbes, Department of Pediatrics, University of California, San Diego, La Jolla, CA, United States
| | - Sinead McCabe
- Collaborative to Halt Antibiotic-Resistant Microbes, Department of Pediatrics, University of California, San Diego, La Jolla, CA, United States
| | - Victor Nizet
- Collaborative to Halt Antibiotic-Resistant Microbes, Department of Pediatrics, University of California, San Diego, La Jolla, CA, United States.,Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, United States
| | - Alison Coady
- Collaborative to Halt Antibiotic-Resistant Microbes, Department of Pediatrics, University of California, San Diego, La Jolla, CA, United States
| |
Collapse
|
12
|
Vibrio vulnificus cytolysin induces inflammatory responses in RAW264.7 macrophages through calcium signaling and causes inflammation in vivo. Microb Pathog 2019; 137:103789. [PMID: 31605759 DOI: 10.1016/j.micpath.2019.103789] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 07/12/2019] [Accepted: 10/08/2019] [Indexed: 01/22/2023]
Abstract
Vibrio vulnificus is a food-borne marine pathogen that causes both life-threatening primary septicemia and necrotizing wound infections which accompany severe inflammation. Cytolysin is a very powerful virulence factor of V. vulnificus and is one of the likely candidates in the pathogenesis of V. vulnificus infections. However, the pathogenetic roles of cytolysin in V. vulnificus-induced inflammation are not well understood. In this study, we used the recombinant protein Vibrio vulnificus cytolysin (VVC) to demonstrate that VVC can induce inflammatory responses in RAW264.7 macrophages. Low dose (<5 μg/ml) VVC had no impact on cell viability and induced pro-inflammatory cytokines production in RAW264.7 macrophages such as IL-6 and TNF-α. Moreover, VVC induced p65, p38, ERK1/2, and AKT phosphorylation in RAW264.7 macrophages. We further demonstrated that BAPTA-AM, a specific intracellular calcium chelator, inhibited VVC-induced inflammatory responses including pro-inflammatory cytokines production and inflammatory signaling activation in RAW264.7 macrophages. In addition, VVC primed rather than actived NLRP3 inflammasome in RAW264.7 macrophages. To determine whether VVC have a direct inflammatory effect on the host, we examined the effects of VVC injected into the skin of mice. VVC stimulated a significant induction of mRNAs for the pro-inflammatory cytokine IL-6 and inflammatory chemokines such as MCP-1 and IP-10. Histology data also showed that VVC caused inflammatory responses in the skin of mice. Collectively, our findings indicated that VVC induced inflammatory responses in RAW264.7 macrophages and in vivo and suggested the possibility of targeting VVC as a strategy for the clinical management of V. vulnificus-induced inflammatory responses.
Collapse
|
13
|
Sullivan MJ, Ulett GC. Evaluation of hematogenous spread and ascending infection in the pathogenesis of acute pyelonephritis due to group B streptococcus in mice. Microb Pathog 2019; 138:103796. [PMID: 31614193 DOI: 10.1016/j.micpath.2019.103796] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 10/11/2019] [Accepted: 10/11/2019] [Indexed: 11/26/2022]
Abstract
Group B streptococcus (GBS) causes pyelonephritis in adults but the mechanisms of infection by which GBS infects the kidneys in vivo are unknown. We investigated GBS infection of the kidneys in mice following experimental challenge via the hematogenous route (transient bacteremia model) or transurethral route (bladder infection and cystitis model). Adult female mice were examined for bacterial dissemination to the kidneys and other organ systems at 24-72 h and tissue samples were assessed for histopathological changes. Comparisons included analysis of different challenge inoculum doses ranging between 107-109 CFU and investigation of several GBS serotypes, including representative strains of serotype V (NEM316), III (BM110, 874391) and Ia (807). Mice with transient, low-level GBS bacteremia routinely developed acute pyelonephritis secondary to high-level kidney infection; infection progressed with high GBS burdens that were sustained in the tissue for days in contrast to bacterial clearance in other organs, including spleen, liver and heart. The histopathological changes of acute pyelonephritis due to GBS were characterized using hematoxylin and eosin, and stains for bacteria, neutrophils, macrophages, mast cells and T lymphocytes; this revealed recruitment of a mixed inflammatory cell population that infiltrated the renal medulla of infected mice in focal areas of discrete micro-abscesses. In contrast, bladder infection leading to cystitis in mice did not result in ascending spread of GBS to the kidneys. We conclude that transient bacteremia, rather than preceding infection of the lower urinary tract, is the predominant condition that leads to GBS kidney infection and subsequent development of acute pyelonephritis.
Collapse
Affiliation(s)
- Matthew J Sullivan
- School of Medical Science, and Menzies Health Institute Queensland, Griffith University, Gold Coast, 4222, QLD, Australia
| | - Glen C Ulett
- School of Medical Science, and Menzies Health Institute Queensland, Griffith University, Gold Coast, 4222, QLD, Australia.
| |
Collapse
|
14
|
Gizachew M, Tiruneh M, Moges F, Adefris M, Tigabu Z, Tessema B. Newborn colonization and antibiotic susceptibility patterns of Streptococcus agalactiae at the University of Gondar Referral Hospital, Northwest Ethiopia. BMC Pediatr 2018; 18:378. [PMID: 30501616 PMCID: PMC6271408 DOI: 10.1186/s12887-018-1350-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 11/19/2018] [Indexed: 01/01/2023] Open
Abstract
Background Group B Streptococcus (GBS) that asymptomatically colonizing the recto-vaginal area of women is the most important cause of neonatal colonization. There is paucity of evidence about newborn colonization with GBS in Ethiopia. Thus, this study was aimed to determine the prevalence of newborn colonization with GBS, antibiotic susceptibility patterns of the isolates and associated risk factors at the University of Gondar Referral Hospital in Northwest Ethiopia Methods A prospective cross sectional study was conducted from December 2016 to November 2017. A total of 1,155 swabs from nasal, ear and umbilical areas of the newborns were collected from the 385 newborns. Identifications of the isolates and antibiotic susceptibility testing were done by using conventional methods. Results Sixty two (16.1%, 95% CI: 12.2% - 20%) of the newborns were colonized by GBS. Seven percent of the total specimens were positive for GBS. The antibiotics susceptibility rates of GBS (average of the three body sites tested) were 95.1%, 89.6%, 88.9%, 85.7%, 85.3%, 81.3%, 76.9%, 76.1%, 73.8%, and 34.4% to ampicillin, penicillin, ciprofloxacin, chloramphenicol, vancomycin, azitromycin, erythromycin, clindamycin, ceftriaxone, and tetracycline, respectively. A multilogistic regression analyses were shown that the newborns that were from mothers whose education status was below tertiary level, and newborns from mothers who were: being employed, being nullipara and multigravida were at risk for colonization with GBS. Conclusion Prevalence of neonatal colonization with GBS was higher than it was reported in three decades ago in Ethiopia. Ciprofloxacin, chloramphenicol, vancomycin and azithromycin were identified as the drug of choice next to ampicillin and penicillin. Electronic supplementary material The online version of this article (10.1186/s12887-018-1350-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Mucheye Gizachew
- Department of Medical Microbiology, School of Biomedical and Laboratory Sciences, College of Medicine and Health Sciences, University of Gondar, P. O. Box 196, Gondar, Ethiopia.
| | - Moges Tiruneh
- Department of Medical Microbiology, School of Biomedical and Laboratory Sciences, College of Medicine and Health Sciences, University of Gondar, P. O. Box 196, Gondar, Ethiopia
| | - Feleke Moges
- Department of Medical Microbiology, School of Biomedical and Laboratory Sciences, College of Medicine and Health Sciences, University of Gondar, P. O. Box 196, Gondar, Ethiopia
| | - Mulat Adefris
- Department of Gynecology and Obstetrics, School of Medicine, College of Medicine and Health Sciences, University of Gondar, P. O. Box 196, Gondar, Ethiopia
| | - Zemene Tigabu
- Department of Pediatrics, School of Medicine, College of Medicine and Health Sciences, University of Gondar, P. O. Box 196, Gondar, Ethiopia
| | - Belay Tessema
- Department of Medical Microbiology, School of Biomedical and Laboratory Sciences, College of Medicine and Health Sciences, University of Gondar, P. O. Box 196, Gondar, Ethiopia
| |
Collapse
|
15
|
Patras KA, Nizet V. Group B Streptococcal Maternal Colonization and Neonatal Disease: Molecular Mechanisms and Preventative Approaches. Front Pediatr 2018; 6:27. [PMID: 29520354 PMCID: PMC5827363 DOI: 10.3389/fped.2018.00027] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Group B Streptococcus (GBS) colonizes the gastrointestinal and vaginal epithelium of a significant percentage of healthy women, with potential for ascending intrauterine infection or transmission during parturition, creating a risk of serious disease in the vulnerable newborn. This review highlights new insights on the bacterial virulence determinants, host immune responses, and microbiome interactions that underpin GBS vaginal colonization, the proximal step in newborn infectious disease pathogenesis. From the pathogen perspective, the function GBS adhesins and biofilms, β-hemolysin/cytolysin toxin, immune resistance factors, sialic acid mimicry, and two-component transcriptional regulatory systems are reviewed. From the host standpoint, pathogen recognition, cytokine responses, and the vaginal mucosal and placental immunity to the pathogen are detailed. Finally, the rationale, efficacy, and potential unintended consequences of current universal recommended intrapartum antibiotic prophylaxis are considered, with updates on new developments toward a GBS vaccine or alternative approaches to reducing vaginal colonization.
Collapse
Affiliation(s)
- Kathryn A Patras
- Division of Host-Microbe Systems & Therapeutics, Department of Pediatrics, University of California, San Diego, La Jolla, CA, United States
| | - Victor Nizet
- Division of Host-Microbe Systems & Therapeutics, Department of Pediatrics, University of California, San Diego, La Jolla, CA, United States.,Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, United States
| |
Collapse
|
16
|
Gram-Positive Uropathogens, Polymicrobial Urinary Tract Infection, and the Emerging Microbiota of the Urinary Tract. Microbiol Spectr 2017; 4. [PMID: 27227294 DOI: 10.1128/microbiolspec.uti-0012-2012] [Citation(s) in RCA: 225] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Gram-positive bacteria are a common cause of urinary-tract infection (UTI), particularly among individuals who are elderly, pregnant, or who have other risk factors for UTI. Here we review the epidemiology, virulence mechanisms, and host response to the most frequently isolated Gram-positive uropathogens: Staphylococcus saprophyticus, Enterococcus faecalis, and Streptococcus agalactiae. We also review several emerging, rare, misclassified, and otherwise underreported Gram-positive pathogens of the urinary tract including Aerococcus, Corynebacterium, Actinobaculum, and Gardnerella. The literature strongly suggests that urologic diseases involving Gram-positive bacteria may be easily overlooked due to limited culture-based assays typically utilized for urine in hospital microbiology laboratories. Some UTIs are polymicrobial in nature, often involving one or more Gram-positive bacteria. We herein review the risk factors and recent evidence for mechanisms of bacterial synergy in experimental models of polymicrobial UTI. Recent experimental data has demonstrated that, despite being cleared quickly from the bladder, some Gram-positive bacteria can impact pathogenic outcomes of co-infecting organisms. When taken together, the available evidence argues that Gram-positive bacteria are important uropathogens in their own right, but that some can be easily overlooked because they are missed by routine diagnostic methods. Finally, a growing body of evidence demonstrates that a surprising variety of fastidious Gram-positive bacteria may either reside in or be regularly exposed to the urinary tract and further suggests that their presence is widespread among women, as well as men. Experimental studies in this area are needed; however, there is a growing appreciation that the composition of bacteria found in the bladder could be a potentially important determinant in urologic disease, including susceptibility to UTI.
Collapse
|
17
|
Sullivan MJ, Leclercq SY, Ipe DS, Carey AJ, Smith JP, Voller N, Cripps AW, Ulett GC. Effect of the Streptococcus agalactiae Virulence Regulator CovR on the Pathogenesis of Urinary Tract Infection. J Infect Dis 2017; 215:475-483. [PMID: 28011914 DOI: 10.1093/infdis/jiw589] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 12/02/2016] [Indexed: 12/22/2022] Open
Abstract
Background Streptococcus agalactiae can cause urinary tract infection (UTI). The role of the S. agalactiae global virulence regulator, CovR, in UTI pathogenesis is unknown. Methods We used murine and human bladder uroepithelial cell models of UTI and S. agalactiae mutants in covR and related factors, including β-hemolysin/cytolysin (β-h/c), surface-anchored adhesin HvgA, and capsule to study the role of CovR in UTI. Results We found that covR-deficient serotype III S. agalactiae 874391 was significantly attenuated for colonization in mice and adhesion to uroepithelial cells. Mice infected with covR-deficient S. agalactiae produced less proinflammatory cytokines than those infected with wild-type 874391. Acute cytotoxicity in uroepithelial cells triggered by covR-deficient but not wild-type 874391 was associated with significant caspase 3 activation. Mechanistically, covR mutation significantly altered the expression of several genes in S. agalactiae 874391 that encode key virulence factors, including β-h/c and HvgA, but not capsule. Subsequent mutational analyses revealed that HvgA and capsule, but not the β-h/c, exerted significant effects on colonization of the murine urinary tract in vivo. Conclusions S. agalactiae CovR promotes bladder infection and inflammation, as well as adhesion to and viability of uroepithelial cells. The pathogenesis of S. agalactiae UTI is complex, multifactorial, and influenced by virulence effects of CovR, HvgA, and capsule.
Collapse
Affiliation(s)
- Matthew J Sullivan
- School of Medical Science, and Menzies Health Institute Queensland, Griffith University, Gold Coast, Australia
| | - Sophie Y Leclercq
- School of Medical Science, and Menzies Health Institute Queensland, Griffith University, Gold Coast, Australia.,Research and Development Center, Ezequiel Dias Foundation (FUNED), Belo Horizonte, Brazil
| | - Deepak S Ipe
- School of Medical Science, and Menzies Health Institute Queensland, Griffith University, Gold Coast, Australia
| | - Alison J Carey
- School of Medical Science, and Menzies Health Institute Queensland, Griffith University, Gold Coast, Australia
| | - Joshua P Smith
- School of Medical Science, and Menzies Health Institute Queensland, Griffith University, Gold Coast, Australia
| | - Nathan Voller
- School of Medical Science, and Menzies Health Institute Queensland, Griffith University, Gold Coast, Australia.,School of Biological Sciences, University of East Anglia, Norwich Research Park, United Kingdom
| | - Allan W Cripps
- School of Medical Science, and Menzies Health Institute Queensland, Griffith University, Gold Coast, Australia
| | - Glen C Ulett
- School of Medical Science, and Menzies Health Institute Queensland, Griffith University, Gold Coast, Australia
| |
Collapse
|
18
|
Gilbert NM, O'Brien VP, Lewis AL. Transient microbiota exposures activate dormant Escherichia coli infection in the bladder and drive severe outcomes of recurrent disease. PLoS Pathog 2017; 13:e1006238. [PMID: 28358889 PMCID: PMC5373645 DOI: 10.1371/journal.ppat.1006238] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 02/14/2017] [Indexed: 12/27/2022] Open
Abstract
Pathogens often inhabit the body asymptomatically, emerging to cause disease in response to unknown triggers. In the bladder, latent intracellular Escherichia coli reservoirs are regarded as likely origins of recurrent urinary tract infection (rUTI), a problem affecting millions of women worldwide. However, clinically plausible triggers that activate these reservoirs are unknown. Clinical studies suggest that the composition of a woman’s vaginal microbiota influences her susceptibility to rUTI, but the mechanisms behind these associations are unclear. Several lines of evidence suggest that the urinary tract is routinely exposed to vaginal bacteria, including Gardnerella vaginalis, a dominant member of the vaginal microbiota in some women. Using a mouse model, we show that bladder exposure to G. vaginalis triggers E. coli egress from latent bladder reservoirs and enhances the potential for life-threatening outcomes of the resulting E. coli rUTI. Transient G. vaginalis exposures were sufficient to cause bladder epithelial apoptosis and exfoliation and interleukin-1-receptor-mediated kidney injury, which persisted after G. vaginalis clearance from the urinary tract. These results support a broader view of UTI pathogenesis in which disease can be driven by short-lived but powerful urinary tract exposures to vaginal bacteria that are themselves not “uropathogenic” in the classic sense. This “covert pathogenesis” paradigm may apply to other latent infections, (e.g., tuberculosis), or for diseases currently defined as noninfectious because routine culture fails to detect microbes of recognized significance. Millions of women suffer from recurrent urinary tract infections (rUTI) and the only treatment option is prophylactic antibiotics, which contributes to antibiotic resistance. In experimental models, Escherichia coli, the dominant UTI pathogen, establishes reservoirs inside the bladder lining; it is believed that some cases of rUTI in women may be due to these reservoirs awakening in response to triggers that are still unknown. Here we present a new mouse model that demonstrates the first clinically plausible trigger of rUTI arising from these reservoirs. Specifically, we show that bladder exposure to Gardnerella vaginalis, a common member of the vaginal microbial community, can drive the emergence of E. coli from bladder reservoirs. Furthermore, upon its exposure to the urinary tract, this vaginal organism caused severe kidney damage and other complications, suggesting that carriage of particular vaginal bacteria could also impact a woman’s risk for kidney infection. Bladder exposure to G. vaginalis is likely to occur during sexual activity in many women. Taken together, these data provide the first explanation for why certain characteristics of the vaginal microbiota have been linked with rUTI. Finally, our findings suggest that targeting specific members of the vaginal community may be an effective strategy for treating rUTI.
Collapse
Affiliation(s)
- Nicole M Gilbert
- Department of Obstetrics and Gynecology, Center for Reproductive Health Sciences, Washington University School of Medicine, St. Louis, Missouri, United States of America.,Department of Molecular Microbiology, Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Valerie P O'Brien
- Department of Molecular Microbiology, Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Amanda L Lewis
- Department of Obstetrics and Gynecology, Center for Reproductive Health Sciences, Washington University School of Medicine, St. Louis, Missouri, United States of America.,Department of Molecular Microbiology, Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, Missouri, United States of America
| |
Collapse
|
19
|
Sullivan MJ, Carey AJ, Leclercq SY, Tan CK, Ulett GC. Increased Age, but Not Parity Predisposes to Higher Bacteriuria Burdens Due to Streptococcus Urinary Tract Infection and Influences Bladder Cytokine Responses, Which Develop Independent of Tissue Bacterial Loads. PLoS One 2016; 11:e0167732. [PMID: 27936166 PMCID: PMC5147962 DOI: 10.1371/journal.pone.0167732] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 11/18/2016] [Indexed: 12/18/2022] Open
Abstract
Streptococcus agalactiae causes urinary tract infection (UTI) in pregnant adults, non-pregnant adults, immune-compromised individuals and the elderly. The pathogenesis of S. agalactiae UTI in distinct patient populations is poorly understood. In this study, we used murine models of UTI incorporating young mice, aged and dam mice to show that uropathogenic S. agalactiae causes bacteriuria at significantly higher levels in aged mice compared to young mice and this occurs coincident with equivalent levels of bladder tissue colonisation at 24 h post-infection (p.i.). In addition, aged mice exhibited significantly higher bacteriuria burdens at 48 h compared to young mice, confirming a divergent pattern of bacterial colonization in the urinary tract of aged and young mice. Multiparous mice, in contrast, exhibited significantly lower urinary titres of S. agalactiae compared to age-matched nulliparous mice suggesting that parity enhances the ability of the host to control S. agalactiae bacteriuria. Additionally, we show that both age and parity alter the expression levels of several key regulatory and pro-inflammatory cytokines, which are known to be important the immune response to UTI, including Interleukin (IL)-1β, IL-12(p40), and Monocyte Chemoattractant Protein-1 (MCP-1). Finally, we demonstrate that other cytokines, including IL-17 are induced significantly in the S. agalactiae-infected bladder regardless of age and parity status. Collectively, these findings show that the host environment plays an important role in influencing the severity of S. agalactiae UTI; infection dynamics, particularly in the context of bacteriuria, depend on age and parity, which also affect the nature of innate immune responses to infection.
Collapse
Affiliation(s)
- Matthew J. Sullivan
- School of Medical Science, and Menzies Health Institute Queensland, Griffith University, Gold Coast, Queensland, Australia
| | - Alison J. Carey
- School of Medical Science, and Menzies Health Institute Queensland, Griffith University, Gold Coast, Queensland, Australia
| | - Sophie Y. Leclercq
- School of Medical Science, and Menzies Health Institute Queensland, Griffith University, Gold Coast, Queensland, Australia
- Research and Development Center, Ezequiel Dias Foundation (Funed), Belo Horizonte, MG, Brazil
| | - Chee K. Tan
- School of Medical Science, and Menzies Health Institute Queensland, Griffith University, Gold Coast, Queensland, Australia
| | - Glen C. Ulett
- School of Medical Science, and Menzies Health Institute Queensland, Griffith University, Gold Coast, Queensland, Australia
- * E-mail:
| |
Collapse
|
20
|
Jiang H, Chen M, Li T, Liu H, Gong Y, Li M. Molecular Characterization of Streptococcus agalactiae Causing Community- and Hospital-Acquired Infections in Shanghai, China. Front Microbiol 2016; 7:1308. [PMID: 27625635 PMCID: PMC5003847 DOI: 10.3389/fmicb.2016.01308] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 08/08/2016] [Indexed: 12/21/2022] Open
Abstract
Streptococcus agalactiae, a colonizing agent in pregnant women and the main cause of neonatal sepsis and meningitis, has been increasingly associated with invasive disease in nonpregnant adults. We collected a total of 87 non-repetitive S. agalactiae isolates causing community-acquired (CA) and hospital-acquired (HA) infections in nonpregnant adults from a teaching hospital in Shanghai between 2009 and 2013. We identified and characterized their antibiotic resistance, sequence type (ST), serotype, virulence, and biofilm formation. The most frequent STs were ST19 (29.9%), ST23 (16.1%), ST12 (13.8%), and ST1 (12.6%). ST19 had significantly different distributions between CA- and HA-group B Streptococci (GBS) isolates. The most frequent serotypes were III (32.2%), Ia (26.4%), V (14.9%), Ib (13.8%), and II (5.7%). Serotype III/ST19 was significantly associated with levofloxacin resistance in all isoates. The HA-GBS multidrug resistant rate was much higher than that of CA-GBS. Virulence genes pavA, cfb were found in all isolates. Strong correlations exist between serotype Ib (CA and HA) and surface protein genes spb1 and bac, serotype III (HA) and surface protein gene cps and GBS pilus cluster. The serotype, epidemic clone, PFGE-based genotype, and virulence gene are closely related between CA-GBS and HA-GBS, and certain serotypes and clone types were significantly associated with antibiotic resistance. However, CA-GBS and HA-GBS still had significant differences in their distribution of clone types, antibiotic resistance, and specific virulence genes, which may provide a basis for infection control.
Collapse
Affiliation(s)
- Haoqin Jiang
- Department of Laboratory Medicine, Shanghai Medical College, Huashan Hospital, Fudan University Shanghai, China
| | - Mingliang Chen
- Shanghai Municipal Center for Disease Control and PreventionShanghai, China; Shanghai Institutes of Preventive MedicineShanghai, China
| | - Tianming Li
- Department of Laboratory Medicine, School of Medicine, Renji Hospital, Shanghai Jiao Tong University Shanghai, China
| | - Hong Liu
- Department of Laboratory Medicine, Shanghai Medical College, Huashan Hospital, Fudan University Shanghai, China
| | - Ye Gong
- Department of Critical Care Medicine, Shanghai Medical College, Huashan Hospital, Fudan University Shanghai, China
| | - Min Li
- Department of Laboratory Medicine, School of Medicine, Renji Hospital, Shanghai Jiao Tong University Shanghai, China
| |
Collapse
|
21
|
Leclercq SY, Sullivan MJ, Ipe DS, Smith JP, Cripps AW, Ulett GC. Pathogenesis of Streptococcus urinary tract infection depends on bacterial strain and β-hemolysin/cytolysin that mediates cytotoxicity, cytokine synthesis, inflammation and virulence. Sci Rep 2016; 6:29000. [PMID: 27383371 PMCID: PMC4935997 DOI: 10.1038/srep29000] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 06/07/2016] [Indexed: 01/22/2023] Open
Abstract
Streptococcus agalactiae can cause urinary tract infection (UTI) including cystitis and asymptomatic bacteriuria (ABU). The early host-pathogen interactions that occur during S. agalactiae UTI and subsequent mechanisms of disease pathogenesis are poorly defined. Here, we define the early interactions between human bladder urothelial cells, monocyte-derived macrophages, and mouse bladder using uropathogenic S. agalactiae (UPSA) 807 and ABU-causing S. agalactiae (ABSA) 834 strains. UPSA 807 adhered, invaded and killed bladder urothelial cells more efficiently compared to ABSA 834 via mechanisms including low-level caspase-3 activation, and cytolysis, according to lactate dehydrogenase release measures and cell viability. Severe UPSA 807-induced cytotoxicity was mediated entirely by the bacterial β-hemolysin/cytolysin (β-H/C) because an β-H/C-deficient UPSA 807 isogenic mutant, UPSA 807ΔcylE, was not cytotoxic in vitro; the mutant was also significantly attenuated for colonization in the bladder in vivo. Analysis of infection-induced cytokines, including IL-8, IL-1β, IL-6 and TNF-α in vitro and in vivo revealed that cytokine and chemokine responses were dependent on expression of β-H/C that also elicited severe bladder neutrophilia. Thus, virulence of UPSA 807 encompasses adhesion to, invasion of and killing of bladder cells, pro-inflammatory cytokine/chemokine responses that elicit neutrophil infiltration, and β-H/C-mediated subversion of innate immune-mediated bacterial clearance from the bladder.
Collapse
Affiliation(s)
- Sophie Y Leclercq
- School of Medical Science, and Menzies Health Institute Queensland, Griffith University, Parklands 4222, Australia.,Research and Development Center, Ezequiel Dias Foundation (Funed), Belo Horizonte, MG, Brazil
| | - Matthew J Sullivan
- School of Medical Science, and Menzies Health Institute Queensland, Griffith University, Parklands 4222, Australia
| | - Deepak S Ipe
- School of Medical Science, and Menzies Health Institute Queensland, Griffith University, Parklands 4222, Australia
| | - Joshua P Smith
- School of Medical Science, and Menzies Health Institute Queensland, Griffith University, Parklands 4222, Australia
| | - Allan W Cripps
- School of Medical Science, and Menzies Health Institute Queensland, Griffith University, Parklands 4222, Australia
| | - Glen C Ulett
- School of Medical Science, and Menzies Health Institute Queensland, Griffith University, Parklands 4222, Australia
| |
Collapse
|
22
|
Molecular Characterization of Nonhemolytic and Nonpigmented Group B Streptococci Responsible for Human Invasive Infections. J Clin Microbiol 2015; 54:75-82. [PMID: 26491182 DOI: 10.1128/jcm.02177-15] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2015] [Accepted: 10/12/2015] [Indexed: 12/22/2022] Open
Abstract
Group B Streptococcus (GBS) is a common commensal bacterium in adults, but is also the leading cause of invasive bacterial infections in neonates in developed countries. The β-hemolysin/cytolysin (β-h/c), which is always associated with the production of an orange-to-red pigment, is a major virulence factor that is also used for GBS diagnosis. A collection of 1,776 independent clinical GBS strains isolated in France between 2006 and 2013 was evaluated on specific medium for β-h/c activity and pigment production. The genomic sequences of nonhemolytic and nonpigmented (NH/NP) strains were analyzed to identify the molecular basis of this phenotype. Gene deletions or complementations were carried out to confirm the genotype-phenotype association. Sixty-three GBS strains (3.5%) were NH/NP, and 47 of these (74.6%) originated from invasive infections, including bacteremia and meningitis, in neonates or adults. The mutations are localized predominantly in the cyl operon, encoding the β-h/c pigment biosynthetic pathway and, in the abx1 gene, encoding a CovSR regulator partner. In conclusion, although usually associated with GBS virulence, β-h/c pigment production is not absolutely required to cause human invasive infections. Caution should therefore be taken in the use of hemolysis and pigmentation as criteria for GBS diagnosis in routine clinical laboratory settings.
Collapse
|
23
|
Complete Genome Sequence of Streptococcus agalactiae CNCTC 10/84, a Hypervirulent Sequence Type 26 Strain. GENOME ANNOUNCEMENTS 2014; 2:2/6/e01338-14. [PMID: 25540350 PMCID: PMC4276828 DOI: 10.1128/genomea.01338-14] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Streptococcus agalactiae (group B Streptococcus [GBS]) is a human pathogen with a propensity to cause neonatal infections. We report the complete genome sequence of GBS strain CNCTC 10/84, a hypervirulent clinical isolate frequently used to study GBS pathogenesis. Comparative analysis of this sequence may shed light on novel pathogenic mechanisms.
Collapse
|