1
|
Watts HE, Cornelius JM. Toward understanding the endocrine regulation of diverse facultative migration strategies. Horm Behav 2024; 158:105465. [PMID: 38061233 DOI: 10.1016/j.yhbeh.2023.105465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 11/20/2023] [Accepted: 11/21/2023] [Indexed: 02/05/2024]
Abstract
Migration is an important event in the annual cycle of many animals that facilitates the use of resources that vary across space and time. It can occur with regular and predictable timing, as in obligate migration, or with much greater flexibility, as in facultative migration. Most research aimed at understanding the endocrine mechanisms regulating the transition to a migratory stage has focused on obligate migration, whereas less is known about facultative forms of migration. One challenge for research into the endocrine regulation of facultative migration is that facultative migrations encompass a diverse array of migratory movements. Here, we present a framework to describe and conceptualize variation in facultative migrations that focuses on conditions at departure. Within the context of this framework, we review potential endocrine mechanisms involved in the initiation of facultative migrations in vertebrates. We first focus on glucocorticoids, which have been the subject of most research on the topic. We then examine other potential hormones and neurohormones that have received less attention, but are exciting candidates to consider. We conclude by highlighting areas where future research is particularly needed.
Collapse
Affiliation(s)
- Heather E Watts
- School of Biological Sciences, Washington State University, Pullman, WA 99164, USA; Center for Reproductive Biology, Washington State University, Pullman, WA 99164, USA.
| | - Jamie M Cornelius
- Department of Integrative Biology, Oregon State University, Corvallis, OR 97331, USA
| |
Collapse
|
2
|
Elowe CR, Stager M, Gerson AR. Sarcolipin relates to fattening, but not sarco/endoplasmic reticulum Ca2+-ATPase uncoupling, in captive migratory gray catbirds. J Exp Biol 2024; 227:jeb246897. [PMID: 38044822 DOI: 10.1242/jeb.246897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 11/24/2023] [Indexed: 12/05/2023]
Abstract
In order to complete their energetically demanding journeys, migratory birds undergo a suite of physiological changes to prepare for long-duration endurance flight, including hyperphagia, fat deposition, reliance on fat as a fuel source, and flight muscle hypertrophy. In mammalian muscle, SLN is a small regulatory protein which binds to sarco/endoplasmic reticulum Ca2+-ATPase (SERCA) and uncouples Ca2+ transport from ATP hydrolysis, increasing energy consumption, heat production, and cytosolic Ca2+ transients that signal for mitochondrial biogenesis, fatigue resistance and a shift to fatty acid oxidation. Using a photoperiod manipulation of captive gray catbirds (Dumetella carolinensis), we investigated whether SLN may play a role in coordinating the development of the migratory phenotype. In response to long-day photostimulation, catbirds demonstrated migratory restlessness and significant body fat stores, alongside higher SLN transcription while SERCA2 remained constant. SLN transcription was strongly correlated with h-FABP and PGC1α transcription, as well as fat mass. However, SLN was not significantly correlated with HOAD or CD36 transcripts or measurements of SERCA activity, SR membrane Ca2+ leak, Ca2+ uptake rates, pumping efficiency or mitochondrial biogenesis. Therefore, SLN may be involved in the process of storing fat and shifting to fat as a fuel, but the mechanism of its involvement remains unclear.
Collapse
Affiliation(s)
- Cory R Elowe
- Department of Biology, University of Massachusetts, 221 Morrill Science Center III, 611 North Pleasant Street, Amherst, MA 01003-9297, USA
- Organismic and Evolutionary Biology Graduate Program, University of Massachusetts, Amherst, MA 01003-9316, USA
| | - Maria Stager
- Department of Biology, University of Massachusetts, 221 Morrill Science Center III, 611 North Pleasant Street, Amherst, MA 01003-9297, USA
- Organismic and Evolutionary Biology Graduate Program, University of Massachusetts, Amherst, MA 01003-9316, USA
| | - Alexander R Gerson
- Department of Biology, University of Massachusetts, 221 Morrill Science Center III, 611 North Pleasant Street, Amherst, MA 01003-9297, USA
- Organismic and Evolutionary Biology Graduate Program, University of Massachusetts, Amherst, MA 01003-9316, USA
| |
Collapse
|
3
|
Churchman E, MacDougall-Shackleton SA. Leptin administration does not influence migratory behaviour in white-throated sparrows ( Zonotrichia albicollis). PeerJ 2022; 10:e13584. [PMID: 35726262 PMCID: PMC9206435 DOI: 10.7717/peerj.13584] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 05/23/2022] [Indexed: 01/17/2023] Open
Abstract
Migratory flights by birds are among the most energetically demanding forms of animal movement, and are primarily fueled by fat as an energy source. Leptin is a critical fat-regulation hormone associated with energy balance in non-avian species but its function in birds is highly controversial. Prior research indicated the effects of leptin differed between birds in migratory condition or not, but no research has assessed the effect of leptin on migratory behaviour itself. In this study, our objective was to determine if leptin affects migratory restlessness and fat deposition in migratory songbirds. We used photoperiod manipulation to induce spring migratory condition, and measured migratory restlessness in leptin-injected and saline-injected white-throated sparrows (Zonotrichia albicollis). Leptin treatment had no effect on migratory restlessness nor fat deposition, providing evidence that leptin does not influence avian migratory motivation or behaviour. Our results also further support the idea that birds in a hyperphagic migratory condition may be insensitive to leptin.
Collapse
Affiliation(s)
- Emma Churchman
- Department of Biology, University of Western Ontario, London, Ontario, Canada
| | - Scott A. MacDougall-Shackleton
- Department of Biology, University of Western Ontario, London, Ontario, Canada,Department of Psychology, University of Western Ontario, London, Ontario, Canada,Advanced Facility for Avian Research, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
4
|
Kim JE, Bennett DC, Wright K, Cheng KM. Seasonal and sexual variation in mRNA expression of selected adipokine genes affecting fat deposition and metabolism of the emu (Dromaius novaehollandiae). Sci Rep 2022; 12:6325. [PMID: 35428830 PMCID: PMC9012844 DOI: 10.1038/s41598-022-10232-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 03/29/2022] [Indexed: 11/16/2022] Open
Abstract
Emus are farmed for fat production. Oil rendered from their back and abdominal fat pads has good anti-oxidant and anti-inflammatory properties and has ingredients that promote cell growth. Our objective is to examine the mRNA expression of 7 emu adipokine genes (eFABP4, eSCD1, eAdipoQ, eAdipoR1, eAdipoR2, eLEP and eLepR) to identify gene markers that may help improve emu fat production. Back and abdominal fat tissues from 11 adult emus were biopsied at four time points (April, June, August and November). Total RNA was isolated and cDNA was synthesized. Gene specific primers were designed for partial cloning fragments to amplify the open reading frame of the 7 genes. eLEP was not expressed in emu fat tissue. Nucleotides and amino acids sequences of the 6 expressed gene were compared with homologs from other species and phylogenetic relationships established. Seasonal mRNA expression of each gene was assessed by quantitative RT-PCR and differential expression analysed by the 2-ΔΔCT method. The 6 expressed genes showed seasonal variation in expression and showed association of expression level with back fat adiposity. More whole-genome scanning studies are needed to develop novel molecular markers that can be applied to improve fat production in emus.
Collapse
Affiliation(s)
- Ji Eun Kim
- Faculty of Land and Food Systems, Avian Research Centre, University of British Columbia, 2357 Main Mall, Vancouver, BC, V6T 1Z4, Canada
| | - Darin C Bennett
- Faculty of Land and Food Systems, Avian Research Centre, University of British Columbia, 2357 Main Mall, Vancouver, BC, V6T 1Z4, Canada
- Animal Science Department, California Polytechnic State University, San Luis Obispo, CA, 93407, USA
| | - Kristina Wright
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Research Institute, 570 West 7th Avenue, Vancouver, BC, V5Z 4S6, Canada
| | - Kimberly M Cheng
- Faculty of Land and Food Systems, Avian Research Centre, University of British Columbia, 2357 Main Mall, Vancouver, BC, V6T 1Z4, Canada.
| |
Collapse
|
5
|
Rzucidlo CL, Sperou ES, Holser RR, Khudyakov JI, Costa DP, Crocker DE. Changes in serum adipokines during natural extended fasts in female northern elephant seals. Gen Comp Endocrinol 2021; 308:113760. [PMID: 33781740 DOI: 10.1016/j.ygcen.2021.113760] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 12/30/2020] [Accepted: 03/10/2021] [Indexed: 12/31/2022]
Abstract
Adipose tissue is essential to endotherms for thermoregulation and energy storage as well as functioning as an endocrine organ. Adipose derived hormones, or adipokines, regulate metabolism, energy expenditure, reproduction, and immune function in model systems but are less well studied in wildlife. Female northern elephant seals (NES) achieve high adiposity during foraging and then undergo natural fasts up to five weeks long during haul-outs associated with reproduction and molting, resulting in large changes in adipose reserves. We measured circulating levels of four adipokines: leptin, resistin, adiponectin, and kisspeptin-54, in 196 serum samples from female NES at the beginning and end of their breeding and molting fasts. We examined the relationships between these adipokines and life-history stage, adiposity, mass, cortisol, and an immune cytokine involved in the innate immune response interleukin 6 (IL-6). All four adipokines varied with life-history stage. Leptin concentrations were highest at the beginning of the breeding haul-out. Resistin concentrations were higher throughout the breeding haul-out compared to the molt haul-out. Adiponectin concentrations were highest at the beginning of both haul-outs. Kisspeptin-54 concentrations were highest at the end of the breeding haul-out. Leptin, resistin, and adiponectin were associated with measures of body condition, either adiposity, mass, or both. Resistin, adiponectin, and kisspeptin-54 were associated with circulating cortisol concentrations. Resistin was strongly associated with circulating IL-6, a multifunctional cytokine. Adiponectin was associated with glucose concentrations, suggesting a potential role in tissue-specific insulin sensitivity during life-history stages categorized by high adiposity. Increased cortisol concentrations late in lactation were associated with increased kisspeptin-54, suggesting a link to ovulation initiation in NES. This study suggests dramatic changes in circulating adipokines with life-history and body condition that may exert important regulatory roles in NES. The positive relationship between adiponectin and adiposity as well as the lack of a relationship between leptin and kisspeptin-54 differed from model systems. These differences from biomedical model systems suggest the potential for modifications of expression and function of adipose-derived hormones in species that undergo natural changes in adiposity as part of their life-history.
Collapse
Affiliation(s)
- Caroline L Rzucidlo
- Department of Biology, Sonoma State University, Rohnert Park, CA 94928, United States.
| | - Emily S Sperou
- Department of Biology, Sonoma State University, Rohnert Park, CA 94928, United States
| | - Rachel R Holser
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, Santa Cruz, CA 95064, United States
| | - Jane I Khudyakov
- Department of Biological Sciences, University of the Pacific, Stockton, CA 95211, United States
| | - Daniel P Costa
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, Santa Cruz, CA 95064, United States
| | - Daniel E Crocker
- Department of Biology, Sonoma State University, Rohnert Park, CA 94928, United States
| |
Collapse
|
6
|
Khudyakov JI, Abdollahi E, Ngo A, Sandhu G, Stephan A, Costa DP, Crocker DE. Expression of obesity-related adipokine genes during fasting in a naturally obese marine mammal. Am J Physiol Regul Integr Comp Physiol 2019; 317:R521-R529. [DOI: 10.1152/ajpregu.00182.2019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Northern elephant seals ( Mirounga angustirostris) are exceptional among fasting-adapted animals in coupling prolonged fasting with energetically costly activities, relying on oxidation of fat stores accrued during foraging to power metabolic demands of reproduction and molting. We hypothesized that high rates of energy expenditure, insulin resistance, and immune responses to colonial breeding in fasting seals are mediated by adipokines, or signaling molecules secreted by adipose tissue that are associated with obesity and inflammation in humans. We measured mRNA expression of 10 adipokine genes in blubber tissue of adult female elephant seals sampled early and late during their lactation and molting fasts and correlated gene expression with adiposity and circulating levels of corticosteroid and immune markers. Expression of adiponectin ( ADIPOQ) and its receptor ADIPOR2, leptin receptor ( LEPR), resistin ( RETN), retinol binding protein 4 ( RBP4), and visfatin/nicotinamide phosphoribosyltransferase ( NAMPT) was increased, whereas that of fat mass and obesity-associated protein ( FTO) was decreased in late-fasted compared with early-fasted groups. Abundance of adipokine transcripts that increased in late fasting was negatively associated with body mass and positively associated with cortisol, suggesting that they may mediate local metabolic effects of cortisol in blubber during fasting. Expression of several adipokines was correlated with the immune markers IL-6, haptoglobin, IgM, and IgE, suggesting a potential role in modulating immune responses to colonial breeding and molting. Since many of these adipokines have not been measured in other wild animals, this study provides preliminary insights into their local regulation in fat tissue and targeted assays for future studies.
Collapse
Affiliation(s)
- Jane I. Khudyakov
- Department of Biological Sciences, University of the Pacific, Stockton, California
- National Marine Mammal Foundation, San Diego, California
| | - Eileen Abdollahi
- Department of Biological Sciences, University of the Pacific, Stockton, California
| | - Angela Ngo
- Department of Biological Sciences, University of the Pacific, Stockton, California
| | - Gureet Sandhu
- Department of Biological Sciences, University of the Pacific, Stockton, California
| | - Alicia Stephan
- Department of Biological Sciences, University of the Pacific, Stockton, California
| | - Daniel P. Costa
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, California
| | - Daniel E. Crocker
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, California
| |
Collapse
|
7
|
Association of three SNPs in adiponectin gene with lipid traits of Tianzhu Black Muscovy (Cairina moschata). Mol Biol Rep 2018; 46:325-332. [DOI: 10.1007/s11033-018-4475-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 11/07/2018] [Indexed: 02/06/2023]
|
8
|
Eikenaar C, Hessler S, Ballstaedt E, Schmaljohann H, Kaiya H. Ghrelin, corticosterone and the resumption of migration from stopover, an automated telemetry study. Physiol Behav 2018; 194:450-455. [DOI: 10.1016/j.physbeh.2018.06.036] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 06/24/2018] [Accepted: 06/25/2018] [Indexed: 01/23/2023]
|
9
|
Eikenaar C, Ballstaedt E, Hessler S, Klinner T, Müller F, Schmaljohann H. Cues, corticosterone and departure decisions in a partial migrant. Gen Comp Endocrinol 2018; 261:59-66. [PMID: 29397064 DOI: 10.1016/j.ygcen.2018.01.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 01/17/2018] [Accepted: 01/24/2018] [Indexed: 11/20/2022]
Abstract
Most migrating birds make multiple stopovers to fuel and/or rest. The decision to resume migration from stopover is based on various cues, such as time within the season and wind conditions. There are hints that the strength of these departure cues shapes corticosterone level, which in its turn appears to regulate the timing of departure. We here provide results that very strongly indicate that indeed departure cues jointly shape corticosterone level of migrants at stopover. We compared corticosterone level between migrating and sedentary common blackbirds (Turdus merula) sampled simultaneously at the same location during autumn migration. As expected, in migrating individuals corticosterone level was positively associated with time within the season and with current wind conditions. The latter was only apparent in adult birds and not in 1st year migrants, thus matching the observation that 1st year autumnal migrants are less wind selective than adults. In contrast to the migrants, in sedentary blackbirds these "cues" did not explain variation in corticosterone level. Furthermore, stopover departure seemed more likely and to occur earlier in the night in migrants with high corticosterone level. Our unique comparative study thus supports the newly developed concept that corticosterone mediates between departure cues and stopover departure timing in avian migrants.
Collapse
Affiliation(s)
- Cas Eikenaar
- Institute of Avian Research, An der Vogelwarte 21, 26386 Wilhelmshaven, Germany.
| | - Elmar Ballstaedt
- Institute of Avian Research, An der Vogelwarte 21, 26386 Wilhelmshaven, Germany
| | - Sven Hessler
- Institute of Avian Research, An der Vogelwarte 21, 26386 Wilhelmshaven, Germany
| | - Thomas Klinner
- Institute of Avian Research, An der Vogelwarte 21, 26386 Wilhelmshaven, Germany
| | - Florian Müller
- Institute of Avian Research, An der Vogelwarte 21, 26386 Wilhelmshaven, Germany
| | - Heiko Schmaljohann
- Institute of Avian Research, An der Vogelwarte 21, 26386 Wilhelmshaven, Germany; Institute for Biology and Environmental Sciences (IBU), Carl von Ossietzky University of Oldenburg, Carl-von-Ossietzky-Straße 9-11, D-26129 Oldenburg, Germany
| |
Collapse
|
10
|
Abstract
Migratory birds are physiologically specialized to accumulate massive fat stores (up to 50-60% of body mass), and to transport and oxidize fatty acids at very high rates to sustain flight for many hours or days. Target gene, protein and enzyme analyses and recent -omic studies of bird flight muscles confirm that high capacities for fatty acid uptake, cytosolic transport, and oxidation are consistent features that make fat-fueled migration possible. Augmented circulatory transport by lipoproteins is suggested by field data but has not been experimentally verified. Migratory bats have high aerobic capacity and fatty acid oxidation potential; however, endurance flight fueled by adipose-stored fat has not been demonstrated. Patterns of fattening and expression of muscle fatty acid transporters are inconsistent, and bats may partially fuel migratory flight with ingested nutrients. Changes in energy intake, digestive capacity, liver lipid metabolism and body temperature regulation may contribute to migratory fattening. Although control of appetite is similar in birds and mammals, neuroendocrine mechanisms regulating seasonal changes in fuel store set-points in migrants remain poorly understood. Triacylglycerol of birds and bats contains mostly 16 and 18 carbon fatty acids with variable amounts of 18:2n-6 and 18:3n-3 depending on diet. Unsaturation of fat converges near 70% during migration, and unsaturated fatty acids are preferentially mobilized and oxidized, making them good fuel. Twenty and 22 carbon n-3 and n-6 polyunsaturated fatty acids (PUFA) may affect membrane function and peroxisome proliferator-activated receptor signaling. However, evidence for dietary PUFA as doping agents in migratory birds is equivocal and requires further study.
Collapse
Affiliation(s)
- Christopher G Guglielmo
- Department of Biology, Advanced Facility for Avian Research, University of Western Ontario, London, Ontario, Canada N6A5B7
| |
Collapse
|
11
|
Eikenaar C, Müller F, Leutgeb C, Hessler S, Lebus K, Taylor PD, Schmaljohann H. Corticosterone and timing of migratory departure in a songbird. Proc Biol Sci 2018; 284:rspb.2016.2300. [PMID: 28077768 DOI: 10.1098/rspb.2016.2300] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 11/24/2016] [Indexed: 11/12/2022] Open
Abstract
Bird migration entails replenishing fuel stores at stopover sites. There, individuals make daily decisions whether to resume migration, and must also decide their time of departure. Variation in departure timing affects the total time required to complete a migratory journey, which in turn affects fitness through arrival time at the breeding and wintering grounds. It is well established that stopover departure decisions are based on cues from innate rhythms, intrinsic factors and extrinsic factors. Yet, virtually nothing is known about the physiological mechanism(s) linking these cues to departure decisions. Here, we show for a nocturnal migratory songbird, the northern wheatear (Oenanthe oenanthe), that baseline corticosterone levels of birds at stopover increased both over the migratory season and with wind assistance towards the migratory destination. Corticosterone in turn predicted departure probability; individuals with high baseline corticosterone levels were more likely to resume migration on a given night. Corticosterone further predicted the departure time within the night, with high baseline levels being associated with early departures. These novel findings indicate that corticosterone may be mediating between departure cues and the timing of departure from a stopover site, which is a major step towards understanding the hormonal control of animal migration.
Collapse
Affiliation(s)
- Cas Eikenaar
- Institute of Avian Research, An der Vogelwarte 21, 26386 Wilhelmshaven, Germany
| | - Florian Müller
- Institute of Avian Research, An der Vogelwarte 21, 26386 Wilhelmshaven, Germany
| | - Clara Leutgeb
- Institute of Avian Research, An der Vogelwarte 21, 26386 Wilhelmshaven, Germany
| | - Sven Hessler
- Institute of Avian Research, An der Vogelwarte 21, 26386 Wilhelmshaven, Germany
| | - Konstantin Lebus
- Institute of Avian Research, An der Vogelwarte 21, 26386 Wilhelmshaven, Germany
| | - Philip D Taylor
- Bird Studies Canada Chair of Ornithology, Acadia University, Wolfville, Nova Scotia, Canada
| | - Heiko Schmaljohann
- Institute of Avian Research, An der Vogelwarte 21, 26386 Wilhelmshaven, Germany
| |
Collapse
|
12
|
Watts HE, Cornelius JM, Fudickar AM, Pérez J, Ramenofsky M. Understanding variation in migratory movements: A mechanistic approach. Gen Comp Endocrinol 2018; 256:112-122. [PMID: 28756245 DOI: 10.1016/j.ygcen.2017.07.027] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 07/20/2017] [Accepted: 07/25/2017] [Indexed: 12/15/2022]
Abstract
Spatial and temporal fluctuations in resource availability have led to the evolution of varied migration patterns. In order to appropriately time movements in relation to resources, environmental cues are used to provide proximate information for timing and the endocrine system serves to integrate these external cues and behavioral and physiological responses. Yet, the regulatory mechanisms underlying migratory timing have rarely been compared across a broad range of migratory patterns. First, we offer an updated nomenclature of migration using a mechanistic perspective to clarify terminology describing migratory types in relation to ecology, behavior and endocrinology. We divide migratory patterns into three types: obligate, nomadic, and fugitive. Obligate migration is characterized by regular and directed annual movements between locations, most commonly for breeding and overwintering, where resources are predictable and sufficient. Nomadic migrations occur less predictably than do obligate migrations as animals make use of potentially rich but ephemeral resources that occur unpredictably in space or time. Fugitive migrations move animals away from an area in response to severe disruption of environmental conditions and occur as part of an emergency life history stage. We also consider partially migratory populations, which include a mix of sedentary and migratory individuals; the movement patterns of partial migrants are expected to fall into one of the three types above. For these various forms of migration, we review our understanding of the environmental cues and endocrine mechanisms that underlie the expression of a migratory state. Several common hormonal mechanisms exist across the varied migratory forms, but there are also important areas where further investigations are needed in order to gain broad insight into the origin of movements and the diversity of migratory patterns. We propose that taking a comparative approach across the migratory types that considers endocrine mechanisms will advance a new understanding of migration biology.
Collapse
Affiliation(s)
- Heather E Watts
- Department of Biology, Loyola Marymount University, Los Angeles, CA 90045, USA; School of Biological Sciences, Washington State University, Pullman, WA 99164, USA.
| | | | - Adam M Fudickar
- Environmental Resilience Institute, Indiana University, Bloomington, IN 47405, USA
| | - Jonathan Pérez
- Department of Neurobiology, Physiology & Behavior, University of California, Davis, CA 95616, USA
| | - Marilyn Ramenofsky
- Department of Neurobiology, Physiology & Behavior, University of California, Davis, CA 95616, USA
| |
Collapse
|
13
|
Mishra I, Singh D, Kumar V. Daily levels and rhythm in circulating corticosterone and insulin are altered with photostimulated seasonal states in night-migratory blackheaded buntings. Horm Behav 2017; 94:114-123. [PMID: 28729017 DOI: 10.1016/j.yhbeh.2017.07.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 07/13/2017] [Accepted: 07/14/2017] [Indexed: 12/22/2022]
Abstract
The circadian rhythms are involved in the photostimulation of seasonal responses in migratory blackheaded buntings. Here, we investigated whether changes in daily levels and rhythm in corticosterone (cort) and insulin secretions were associated with transitions in the photoperiodic seasonal states. Buntings were exposed to short days to maintain the winter (photosensitive) non-migratory state, and to long days for varying durations to induce the premigratory, migratory (shown by migratory restlessness at night, Zugunruhe) and summer non-migratory (photorefractory) states. We monitored activity patterns, and measured plasma cort and insulin levels at six and four times, respectively, over 24h in each seasonal state. Buntings were fattened and weighed heavier, and exhibited intense nighttime activity in the migratory state. The daytime activity patterns also showed seasonal differences, with a bimodal pattern with morning and evening activity bouts only in the summer non-migratory state. Further, the average baseline hormone levels were significantly higher in premigratory and migratory than in the winter non-migratory state. Both cort and insulin levels showed a significant daily rhythm, but with seasonal differences. Whereas, cort rhythm acrophases (estimated time of peak secretion over 24h) were at night in the winter non-migratory, premigratory and migratory states, the insulin rhythm acrophases were found early in the day and night in winter and summer non-migratory states, respectively. These results suggest that changes in daily levels and rhythm in cort and insulin mediate changes in the physiology and behavior with photostimulated transition in seasonal states in migratory blackheaded buntings.
Collapse
Affiliation(s)
- Ila Mishra
- IndoUS Center for Biological Timing, Department of Zoology, University of Delhi, Delhi 110 007, India
| | - Devraj Singh
- IndoUS Center for Biological Timing, Department of Zoology, University of Delhi, Delhi 110 007, India
| | - Vinod Kumar
- IndoUS Center for Biological Timing, Department of Zoology, University of Delhi, Delhi 110 007, India.
| |
Collapse
|
14
|
Eikenaar C. Endocrine regulation of fueling by hyperphagia in migratory birds. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2017; 203:439-445. [DOI: 10.1007/s00359-017-1152-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 01/05/2017] [Accepted: 01/28/2017] [Indexed: 02/07/2023]
|
15
|
Ghrelin affects stopover decisions and food intake in a long-distance migrant. Proc Natl Acad Sci U S A 2017; 114:1946-1951. [PMID: 28167792 DOI: 10.1073/pnas.1619565114] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Billions of birds migrate long distances to either reach breeding areas or to spend the winter at more benign places. On migration, most passerines frequently stop over to rest and replenish their fuel reserves. To date, we know little regarding how they decide that they are ready to continue their journey. What physiological signals tell a bird's brain that its fuel reserves are sufficient to resume migration? A network of hormones regulates food intake and body mass in vertebrates, including the recently discovered peptide hormone, ghrelin. Here, we show that ghrelin reflects body condition and influences migratory behavior of wild birds. We measured ghrelin levels of wild garden warblers (Sylvia borin) captured at a stopover site. Further, we manipulated blood concentrations of ghrelin to test its effects on food intake and migratory restlessness. We found that acylated ghrelin concentrations of garden warblers with larger fat scores were higher than those of birds without fat stores. Further, injections of unacylated ghrelin decreased food intake and increased migratory restlessness. These results represent experimental evidence that appetite-regulating hormones control migratory behavior. Our study lays a milestone in migration physiology because it provides the missing link between ecologically dependent factors such as condition and timing of migration. In addition, it offers insights in the regulation of the hormonal system controlling food intake and energy stores in vertebrates, whose disruption causes eating disorders and obesity.
Collapse
|
16
|
Eikenaar C, Schläfke JL. Size and accumulation of fuel reserves at stopover predict nocturnal restlessness in a migratory bird. Biol Lett 2013; 9:20130712. [PMID: 24132097 DOI: 10.1098/rsbl.2013.0712] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Early arrival at the breeding site positively affects the breeding success of migratory birds. During migration, birds spend most of their time at stopovers. Therefore, determining which factors shape stopover duration is essential to our understanding of avian migration. Because the main purpose of stopover is to accumulate fat as fuel for the next flight bout, fuel reserves at arrival and the accumulation of fuel are both expected to affect stopover departure decisions. Here, we determined whether fuel reserves and fuel accumulation predict a bird's motivation to depart, as quantified by nocturnal migratory restlessness (Zugunruhe), using northern wheatears (Oenanthe oenanthe) that were captured and temporarily contained at spring stopover. We found that fuel reserves at capture were positively correlated with Zugunruhe, and negatively correlated with fuel accumulation. This indicates that fat birds were motivated to depart, whereas lean birds were set on staying and accumulating fuel. Moreover, the change in fuel reserves was positively correlated with the concurrent change in Zugunruhe, providing the first empirical evidence for a direct link between fuel accumulation and Zugunruhe during stopover. Our study indicates that, together with innate rhythms and weather, the size and accumulation of fuel reserves shape stopover duration, and hence overall migration time.
Collapse
Affiliation(s)
- Cas Eikenaar
- Institute of Avian Research, , An der Vogelwarte 21, 26386 Wilhelmshaven, Germany
| | | |
Collapse
|