1
|
Shi S, Tang X, Long S, Yang J, Wang T, Wang H, Hu T, Shi J, Huang G, Qiao S, Lin T. A novel homozygous LRRC6 mutation causes male infertility with asthenozoospermia and primary ciliary dyskinesia in humans. Andrology 2025; 13:459-472. [PMID: 38934611 DOI: 10.1111/andr.13685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 03/28/2024] [Accepted: 06/02/2024] [Indexed: 06/28/2024]
Abstract
BACKGROUND Dysfunction of motile cilia, including respiratory cilia and sperm flagella, typically leads to primary ciliary dyskinesia and male infertility or low fertility in humans. Genetic defects of LRRC6 have been associated with primary ciliary dyskinesia and asthenozoospermia due to abnormal ultrastructure of ciliated axonemes. OBJECTIVES To identify novel mutations of the LRRC6 gene related to multiple morphological abnormalities of the sperm flagella and male infertility and investigate the underlying molecular mechanisms involved. MATERIALS AND METHODS The LRRC6 mutations were identified by whole exome sequencing and confirmed with Sanger sequencing. Papanicolaou staining, scanning, and transmission electron microscopy were performed to investigate the morphological and ultrastructural characteristics of spermatozoa. Further tandem mass tagging proteomics analyses were performed to explore the effect of mutations and confirmed by immunostaining and western blotting. Intracytoplasmic sperm injection was applied for the assisted reproductive therapy of males harboring biallelic LRRC6 mutations. RESULTS In this study, we identified a novel homozygous LRRC6 mutation in a consanguineous family, characterized by asthenozoospermia and primary ciliary dyskinesia. Further Semen parameter and morphology analysis demonstrate that the novel LRRC6 mutation leads to a significant reduction in sperm flagella length, a decrease in sperm progressive motility parameters, and abnormalities of sperm ultrastructure. Specifically, the absence of outer dynein arms and inner dynein arms, and incomplete mitochondrial sheath in the flagellar mid-piece were observed by transmission electron microscopy. In addition, tandem mass tagging proteomics analysis revealed that spermatozoa obtained from patients harboring the LRRC6 mutation exhibited a significant decrease in the expression levels of proteins related to the assembly and function of dynein axonemal arms. Functional analysis revealed that this novel LRRC6 mutation disrupted the function of the leucine-rich repeat containing 6 protein, which in turn affects the expression of the dynein arm proteins and leucine-rich repeat containing 6-interacting proteins CCDC40, SPAG1, and ZMYND10. Finally, we reported a successful pregnancy through assisted reproductive technology with intracytoplasmic sperm injection in the female partner of the proband. DISCUSSION AND CONCLUSION This study highlights the identification of a novel homozygous LRRC6 mutation in a consanguineous family and its impact on sperm progressive motility, morphology, and sperm kinetics parameters, which could facilitate the genetic diagnosis of asthenozoospermia and offer valuable perspectives for future genetic counseling endeavors.
Collapse
Affiliation(s)
- Shengjia Shi
- Reproductive center, Northwest Women's and Children's Hospital, Xi'an, China
| | - Xiangrong Tang
- Chongqing Key Laboratory of Human Embryo Engineering, Center for Reproductive Medicine, Women and Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Shunhua Long
- Chongqing Key Laboratory of Human Embryo Engineering, Center for Reproductive Medicine, Women and Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Jie Yang
- Reproductive center, Northwest Women's and Children's Hospital, Xi'an, China
| | - Tianwei Wang
- Reproductive center, Northwest Women's and Children's Hospital, Xi'an, China
| | - Hongmei Wang
- Basic Medical College, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, China
| | - Tingwenyi Hu
- Chongqing Key Laboratory of Human Embryo Engineering, Center for Reproductive Medicine, Women and Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Juanzi Shi
- Reproductive center, Northwest Women's and Children's Hospital, Xi'an, China
| | - Guoning Huang
- Chongqing Key Laboratory of Human Embryo Engineering, Center for Reproductive Medicine, Women and Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Sen Qiao
- Reproductive center, Northwest Women's and Children's Hospital, Xi'an, China
| | - Tingting Lin
- Chongqing Key Laboratory of Human Embryo Engineering, Center for Reproductive Medicine, Women and Children's Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
2
|
Li Y, Xu W, Cheng Y, Djenoune L, Zhuang C, Cox AL, Britto CJ, Yuan S, Wang S, Sun Z. Cotranslational molecular condensation of cochaperones and assembly factors facilitates axonemal dynein biogenesis. Proc Natl Acad Sci U S A 2024; 121:e2402818121. [PMID: 39541357 PMCID: PMC11588059 DOI: 10.1073/pnas.2402818121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 10/10/2024] [Indexed: 11/16/2024] Open
Abstract
Axonemal dynein, the macromolecular machine that powers ciliary motility, assembles in the cytosol with the help of dynein axonemal assembly factors (DNAAFs). These DNAAFs localize in cytosolic foci thought to form via liquid-liquid phase separation. However, the functional significance of DNAAF foci formation and how the production and assembly of multiple components are so efficiently coordinated, at such enormous scale, remain unclear. Here, we unveil an axonemal dynein production and assembly hub enriched with translating heavy chains (HCs) and DNAAFs. We show that mRNAs encoding interacting HCs of outer dynein arms colocalize in cytosolic foci, along with nascent HCs. The formation of these mRNA foci and their colocalization relies on HC translation. We observe that a previously identified DNAAF assembly, containing the DNAAF Lrrc6 and cochaperones Ruvbl1 and Ruvbl2, colocalizes with these HC foci, and is also dependent on HC translation. We additionally show that Ruvbl1 is required for the recruitment of Lrrc6 into the HC foci and that both proteins function cotranslationally. We propose that these DNAAF foci are anchored by stable interactions between translating HCs, ribosomes, and encoding mRNAs, followed by cotranslational molecular condensation of cochaperones and assembly factors, providing a potential mechanism that coordinates HC translation, folding, and assembly at scale.
Collapse
Affiliation(s)
- Yuanyuan Li
- Department of Genetics, Yale University School of Medicine, New Haven, CT06510
| | - Wenyan Xu
- Department of Genetics, Yale University School of Medicine, New Haven, CT06510
| | - Yubao Cheng
- Department of Genetics, Yale University School of Medicine, New Haven, CT06510
| | - Lydia Djenoune
- Cardiovascular Research Center, Cardiology Division, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA02129
| | - Chuzhi Zhuang
- Department of Genetics, Yale University School of Medicine, New Haven, CT06510
| | - Andrew Lee Cox
- Department of Genetics, Yale University School of Medicine, New Haven, CT06510
| | - Clemente J. Britto
- Division of Pulmonary, Critical Care, and Sleep Medicine, Yale University School of Medicine, New Haven, CT06520
| | - Shiaulou Yuan
- Cardiovascular Research Center, Cardiology Division, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA02129
| | - Siyuan Wang
- Department of Genetics, Yale University School of Medicine, New Haven, CT06510
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT06510
| | - Zhaoxia Sun
- Department of Genetics, Yale University School of Medicine, New Haven, CT06510
| |
Collapse
|
3
|
Zlotina A, Barashkova S, Zhuk S, Skitchenko R, Usoltsev D, Sokolnikova P, Artomov M, Alekseenko S, Simanova T, Goloborodko M, Berleva O, Kostareva A. Characterization of pathogenic genetic variants in Russian patients with primary ciliary dyskinesia using gene panel sequencing and transcript analysis. Orphanet J Rare Dis 2024; 19:310. [PMID: 39180133 PMCID: PMC11344339 DOI: 10.1186/s13023-024-03318-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 08/08/2024] [Indexed: 08/26/2024] Open
Abstract
BACKGROUND Primary ciliary dyskinesia (PCD) is a group of rare genetically heterogeneous disorders caused by defective cilia and flagella motility. The clinical phenotype of PCD patients commonly includes chronic oto-sino-pulmonary disease, infertility, and, in about half of cases, laterality defects due to randomization of left-right body asymmetry. To date, pathogenic variants in more than 50 genes responsible for motile cilia structure and assembly have been reported in such patients. While multiple population-specific mutations have been described in PCD cohorts from different countries, the data on genetic spectrum of PCD in Russian population are still extremely limited. RESULTS The present study provides a comprehensive clinical and genetic characterization of 21 Russian families with PCD living in various country regions. Anomalies of ciliary beating in patients` respiratory epithelial cells were confirmed by high-speed video microscopy. In the most cases, custom-designed panel sequencing allowed to uncover causative variants in well-known or rarely mentioned PCD-related genes, including DNAH5, DNAH11, CFAP300, LRRC6, ZMYND10, CCDC103, HYDIN, ODAD4, DNAL1, and OFD1. The variations comprised common mutations, as well as novel genetic variants, some of which probably specific for Russian patients. Additional targeted analysis of mRNA transcripts from ciliated cells enabled us to specify functional effects of newly identified genetic variants in DNAH5 (c.2052+3G>T, c.3599-2A>G), HYDIN (c.10949-2A>G, c.1797C>G), and ZMYND10 (c.510+1G>C) on splicing process. In particular, the splice site variant c.2052+3G>T, detected in four unrelated families, resulted in skipping of exon 14 in DNAH5 transcripts and, according to haplotype analysis of affected probands, was proposed as an ancestral founder mutation in Udmurt population. CONCLUSIONS The reported data provide a vital insight into genetic background of primary ciliary dyskinesia in the Russian population. The findings clearly illustrate the utility of gene panel sequencing coupled with transcriptional analysis in identification and clinical interpretation of novel genetic variants.
Collapse
Affiliation(s)
- Anna Zlotina
- Almazov National Medical Research Centre, Saint-Petersburg, Russia, 197341.
| | - Svetlana Barashkova
- Almazov National Medical Research Centre, Saint-Petersburg, Russia, 197341
- K.A. Raukhfus Children's City Multidisciplinary Clinical Center for High Medical Technologies, Saint-Petersburg, Russia, 191036
| | - Sergey Zhuk
- Almazov National Medical Research Centre, Saint-Petersburg, Russia, 197341
| | | | - Dmitrii Usoltsev
- Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, 43205, USA
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, 43215, USA
| | - Polina Sokolnikova
- Almazov National Medical Research Centre, Saint-Petersburg, Russia, 197341
| | - Mykyta Artomov
- Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, 43205, USA
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, 43215, USA
| | - Svetlana Alekseenko
- K.A. Raukhfus Children's City Multidisciplinary Clinical Center for High Medical Technologies, Saint-Petersburg, Russia, 191036
| | - Tatiana Simanova
- Republican Children's Clinical Hospital of the Ministry of Health of the Udmurt Republic, Izhevsk, Russia, 426009
| | - Maria Goloborodko
- K.A. Raukhfus Children's City Multidisciplinary Clinical Center for High Medical Technologies, Saint-Petersburg, Russia, 191036
| | - Olga Berleva
- K.A. Raukhfus Children's City Multidisciplinary Clinical Center for High Medical Technologies, Saint-Petersburg, Russia, 191036
| | - Anna Kostareva
- Almazov National Medical Research Centre, Saint-Petersburg, Russia, 197341
- Department of Women's and Children's Health, Center for Molecular Medicine, Karolinska Institutet, 17176, Stockholm, Sweden
| |
Collapse
|
4
|
Shaikh Qureshi WM, Hentges KE. Functions of cilia in cardiac development and disease. Ann Hum Genet 2024; 88:4-26. [PMID: 37872827 PMCID: PMC10952336 DOI: 10.1111/ahg.12534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/08/2023] [Accepted: 10/02/2023] [Indexed: 10/25/2023]
Abstract
Errors in embryonic cardiac development are a leading cause of congenital heart defects (CHDs), including morphological abnormalities of the heart that are often detected after birth. In the past few decades, an emerging role for cilia in the pathogenesis of CHD has been identified, but this topic still largely remains an unexplored area. Mouse forward genetic screens and whole exome sequencing analysis of CHD patients have identified enrichment for de novo mutations in ciliary genes or non-ciliary genes, which regulate cilia-related pathways, linking cilia function to aberrant cardiac development. Key events in cardiac morphogenesis, including left-right asymmetric development of the heart, are dependent upon cilia function. Cilia dysfunction during left-right axis formation contributes to CHD as evidenced by the substantial proportion of heterotaxy patients displaying complex CHD. Cilia-transduced signaling also regulates later events during heart development such as cardiac valve formation, outflow tract septation, ventricle development, and atrioventricular septa formation. In this review, we summarize the role of motile and non-motile (primary cilia) in cardiac asymmetry establishment and later events during heart development.
Collapse
Affiliation(s)
- Wasay Mohiuddin Shaikh Qureshi
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine, and Health, Manchester Academic Health Science CentreUniversity of ManchesterManchesterUK
| | - Kathryn E. Hentges
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine, and Health, Manchester Academic Health Science CentreUniversity of ManchesterManchesterUK
| |
Collapse
|
5
|
Kim DY, Sub YJ, Kim HY, Cho KJ, Choi WI, Choi YJ, Lee MG, Hildebrandt F, Gee HY. LRRC6 regulates biogenesis of motile cilia by aiding FOXJ1 translocation into the nucleus. Cell Commun Signal 2023; 21:142. [PMID: 37328841 PMCID: PMC10273532 DOI: 10.1186/s12964-023-01135-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 04/22/2023] [Indexed: 06/18/2023] Open
Abstract
BACKGROUND LRRC6 is an assembly factor for dynein arms in the cytoplasm of motile ciliated cells, and when mutated, dynein arm components remained in the cytoplasm. Here, we demonstrate the role of LRRC6 in the active nuclear translocation of FOXJ1, a master regulator for cilia-associated gene transcription. METHODS We generated Lrrc6 knockout (KO) mice, and we investigated the role of LRRC6 on ciliopathy development by using proteomic, transcriptomic, and immunofluorescence analysis. Experiments on mouse basal cell organoids confirmed the biological relevance of our findings. RESULTS The absence of LRRC6 in multi-ciliated cells hinders the assembly of ODA and IDA components of cilia; in this study, we showed that the overall expression of proteins related to cilia decreased as well. Expression of cilia-related transcripts, specifically ODA and IDA components, dynein axonemal assembly factors, radial spokes, and central apparatus was lower in Lrrc6 KO mice than in wild-type mice. We demonstrated that FOXJ1 was present in the cytoplasm and translocated into the nucleus when LRRC6 was expressed and that this process was blocked by INI-43, an importin α inhibitor. CONCLUSIONS Taken together, these results hinted at the LRRC6 transcriptional regulation of cilia-related genes via the nuclear translocation of FOXJ1. Video Abstract.
Collapse
Affiliation(s)
- Dong Yun Kim
- Department of Pharmacology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
- Division of Gastroenterology, Department of Internal Medicine, Severance Hospital, Seoul, Republic of Korea
| | - Yu Jin Sub
- Department of Pharmacology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Hye-Youn Kim
- Department of Pharmacology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Kyeong Jee Cho
- Department of Pharmacology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Won Il Choi
- Division of Nephrology, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Yo Jun Choi
- Department of Pharmacology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Min Goo Lee
- Department of Pharmacology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Friedhelm Hildebrandt
- Division of Nephrology, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA.
| | - Heon Yung Gee
- Department of Pharmacology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea.
| |
Collapse
|
6
|
Horani A, Gupta DK, Xu J, Xu H, del Carmen Puga-Molina L, Santi CM, Ramagiri S, Brennan SK, Pan J, Koenitzer JR, Huang T, Hyland RM, Gunsten SP, Tzeng SC, Strahle JM, Mill P, Mahjoub MR, Dutcher SK, Brody SL. The effect of Dnaaf5 gene dosage on primary ciliary dyskinesia phenotypes. JCI Insight 2023; 8:e168836. [PMID: 37104040 PMCID: PMC10393236 DOI: 10.1172/jci.insight.168836] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 04/20/2023] [Indexed: 04/28/2023] Open
Abstract
DNAAF5 is a dynein motor assembly factor associated with the autosomal heterogenic recessive condition of motile cilia, primary ciliary dyskinesia (PCD). The effects of allele heterozygosity on motile cilia function are unknown. We used CRISPR-Cas9 genome editing in mice to recreate a human missense variant identified in patients with mild PCD and a second, frameshift-null deletion in Dnaaf5. Litters with Dnaaf5 heteroallelic variants showed distinct missense and null gene dosage effects. Homozygosity for the null Dnaaf5 alleles was embryonic lethal. Compound heterozygous animals with the missense and null alleles showed severe disease manifesting as hydrocephalus and early lethality. However, animals homozygous for the missense mutation had improved survival, with partially preserved cilia function and motor assembly observed by ultrastructure analysis. Notably, the same variant alleles exhibited divergent cilia function across different multiciliated tissues. Proteomic analysis of isolated airway cilia from mutant mice revealed reduction in some axonemal regulatory and structural proteins not previously reported in DNAAF5 variants. Transcriptional analysis of mouse and human mutant cells showed increased expression of genes coding for axonemal proteins. These findings suggest allele-specific and tissue-specific molecular requirements for cilia motor assembly that may affect disease phenotypes and clinical trajectory in motile ciliopathies.
Collapse
Affiliation(s)
- Amjad Horani
- Department of Pediatrics
- Department of Cell Biology and Physiology
| | | | | | | | | | | | - Sruthi Ramagiri
- Department of Neurosurgery, Washington University School of Medicine, St. Louis, Missouri, USA
| | | | | | | | | | | | | | | | - Jennifer M. Strahle
- Department of Neurosurgery, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Pleasantine Mill
- MRC Human Genetics Unit, University of Edinburgh, Edinburgh, United Kingdom
| | - Moe R. Mahjoub
- Department of Cell Biology and Physiology
- Department of Medicine
| | - Susan K. Dutcher
- Department of Cell Biology and Physiology
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, USA
| | | |
Collapse
|
7
|
Pereira R, Barbosa T, Cardoso AL, Sá R, Sousa M. Cystic fibrosis and primary ciliary dyskinesia: Similarities and differences. Respir Med 2023; 209:107169. [PMID: 36828173 DOI: 10.1016/j.rmed.2023.107169] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 02/06/2023] [Accepted: 02/18/2023] [Indexed: 02/25/2023]
Abstract
Cystic fibrosis (CF) and Primary ciliary dyskinesia (PCD) are both rare chronic diseases, inherited disorders associated with multiple complications, namely respiratory complications, due to impaired mucociliary clearance that affect severely patients' lives. Although both are classified as rare diseases, PCD has a much lower prevalence than CF, particularly among Caucasians. As a result, CF is well studied, better recognized by clinicians, and with some therapeutic approaches already available. Whereas PCD is still largely unknown, and thus the approach is based on consensus guidelines, expert opinion, and extrapolation from the larger evidence base available for patients with CF. Both diseases have some clinical similarities but are very different, necessitating different treatment by specialists who are familiar with the complexities of each disease.This review aims to provide an overview of the knowledge about the two diseases with a focus on the similarities and differences between both in terms of disease mechanisms, common clinical manifestations, genetics and the most relevant therapeutic options. We hoped to raise clinical awareness about PCD, what it is, how it differs from CF, and how much information is still lacking. Furthermore, this review emphasises the fact that both diseases require ongoing research to find better treatments and, in particular for PCD, to fill the medical and scientific gaps.
Collapse
Affiliation(s)
- Rute Pereira
- Laboratory of Cell Biology, Department of Microscopy, ICBAS-School of Medicine and Biomedical Sciences, University of Porto, Porto, Portugal; UMIB-Unit for Multidisciplinary Research in Biomedicine, ICBAS-UP/ ITR-Laboratory for Integrative and Translational Research in Population Health, UP, Porto, Portugal.
| | - Telma Barbosa
- UMIB-Unit for Multidisciplinary Research in Biomedicine, ICBAS-UP/ ITR-Laboratory for Integrative and Translational Research in Population Health, UP, Porto, Portugal; Department of Pediatrics, Maternal Child Centre of the North (CMIN), University Hospital Centre of Porto (CHUP), Largo da Maternidade, 4050-371, Porto, Portugal.
| | - Ana Lúcia Cardoso
- UMIB-Unit for Multidisciplinary Research in Biomedicine, ICBAS-UP/ ITR-Laboratory for Integrative and Translational Research in Population Health, UP, Porto, Portugal; Department of Pediatrics, Maternal Child Centre of the North (CMIN), University Hospital Centre of Porto (CHUP), Largo da Maternidade, 4050-371, Porto, Portugal.
| | - Rosália Sá
- Laboratory of Cell Biology, Department of Microscopy, ICBAS-School of Medicine and Biomedical Sciences, University of Porto, Porto, Portugal; UMIB-Unit for Multidisciplinary Research in Biomedicine, ICBAS-UP/ ITR-Laboratory for Integrative and Translational Research in Population Health, UP, Porto, Portugal.
| | - Mário Sousa
- Laboratory of Cell Biology, Department of Microscopy, ICBAS-School of Medicine and Biomedical Sciences, University of Porto, Porto, Portugal; UMIB-Unit for Multidisciplinary Research in Biomedicine, ICBAS-UP/ ITR-Laboratory for Integrative and Translational Research in Population Health, UP, Porto, Portugal.
| |
Collapse
|
8
|
Rumman N, Fassad MR, Driessens C, Goggin P, Abdelrahman N, Adwan A, Albakri M, Chopra J, Doherty R, Fashho B, Freke GM, Hasaballah A, Jackson CL, Mohamed MA, Abu Nema R, Patel MP, Pengelly RJ, Qaaqour A, Rubbo B, Thomas NS, Thompson J, Walker WT, Wheway G, Mitchison HM, Lucas JS. The Palestinian primary ciliary dyskinesia population: first results of the diagnostic and genetic spectrum. ERJ Open Res 2023; 9:00714-2022. [PMID: 37077557 PMCID: PMC10107064 DOI: 10.1183/23120541.00714-2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 02/04/2023] [Indexed: 04/21/2023] Open
Abstract
Background Diagnostic testing for primary ciliary dyskinesia (PCD) started in 2013 in Palestine. We aimed to describe the diagnostic, genetic and clinical spectrum of the Palestinian PCD population. Methods Individuals with symptoms suggestive of PCD were opportunistically considered for diagnostic testing: nasal nitric oxide (nNO) measurement, transmission electron microscopy (TEM) and/or PCD genetic panel or whole-exome testing. Clinical characteristics of those with a positive diagnosis were collected close to testing including forced expiratory volume in 1 s (FEV1) Global Lung Index z-scores and body mass index z-scores. Results 68 individuals had a definite positive PCD diagnosis, 31 confirmed by genetic and TEM results, 23 by TEM results alone, and 14 by genetic variants alone. 45 individuals from 40 families had 17 clinically actionable variants and four had variants of unknown significance in 14 PCD genes. CCDC39, DNAH11 and DNAAF11 were the most commonly mutated genes. 100% of variants were homozygous. Patients had a median age of 10.0 years at diagnosis, were highly consanguineous (93%) and 100% were of Arabic descent. Clinical features included persistent wet cough (99%), neonatal respiratory distress (84%) and situs inversus (43%). Lung function at diagnosis was already impaired (FEV1 z-score median -1.90 (-5.0-1.32)) and growth was mostly within the normal range (z-score mean -0.36 (-3.03-2.57). 19% individuals had finger clubbing. Conclusions Despite limited local resources in Palestine, detailed geno- and phenotyping forms the basis of one of the largest national PCD populations globally. There was notable familial homozygosity within the context of significant population heterogeneity.
Collapse
Affiliation(s)
- Nisreen Rumman
- Pediatric Department, Makassed Hospital, East Jerusalem, Palestine
- Caritas Hospital, Bethlehem, Palestine
- Al-Quds University, School of Medicine, East Jerusalem, Palestine
- Joint first authors
| | - Mahmoud R. Fassad
- Genetics and Genomic Medicine Department, University College London, UCL Great Ormond Street Institute of Child Health, London, UK
- Department of Human Genetics, Medical Research Institute, Alexandria University, Alexandria, Egypt
- Joint first authors
| | - Corine Driessens
- Clinical and Experimental Sciences, University of Southampton Faculty of Medicine, Southampton, UK
- Primary Ciliary Dyskinesia Centre, University Hospital Southampton NHS Foundation Trust, Southampton, UK
- NIHR Applied Research Collaboration Wessex, University of Southampton, Southampton, UK
- Joint first authors
| | - Patricia Goggin
- Primary Ciliary Dyskinesia Centre, University Hospital Southampton NHS Foundation Trust, Southampton, UK
- Biomedical Imaging Unit, University of Southampton Faculty of Medicine, Southampton, UK
- Joint first authors
| | - Nader Abdelrahman
- Internal Medicine Department, Makassed Hospital, East Jerusalem, Palestine
| | - Adel Adwan
- Al-Quds University, School of Medicine, East Jerusalem, Palestine
| | - Mutaz Albakri
- Internal Medicine Department, Makassed Hospital, East Jerusalem, Palestine
| | - Jagrati Chopra
- Clinical and Experimental Sciences, University of Southampton Faculty of Medicine, Southampton, UK
| | - Regan Doherty
- Primary Ciliary Dyskinesia Centre, University Hospital Southampton NHS Foundation Trust, Southampton, UK
- Biomedical Imaging Unit, University of Southampton Faculty of Medicine, Southampton, UK
| | | | - Grace M. Freke
- Genetics and Genomic Medicine Department, University College London, UCL Great Ormond Street Institute of Child Health, London, UK
| | | | - Claire L. Jackson
- Clinical and Experimental Sciences, University of Southampton Faculty of Medicine, Southampton, UK
- Primary Ciliary Dyskinesia Centre, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Mai A. Mohamed
- Genetics and Genomic Medicine Department, University College London, UCL Great Ormond Street Institute of Child Health, London, UK
- Biochemistry Division, Chemistry Department, Faculty of Science, Zagazig University, Ash Sharqiyah, Egypt
| | | | - Mitali P. Patel
- Genetics and Genomic Medicine Department, University College London, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Reuben J. Pengelly
- Human Development and Health, University of Southampton Faculty of Medicine, Southampton, UK
| | - Ahmad Qaaqour
- Internal Medicine Department, Makassed Hospital, East Jerusalem, Palestine
| | - Bruna Rubbo
- Clinical and Experimental Sciences, University of Southampton Faculty of Medicine, Southampton, UK
- Primary Ciliary Dyskinesia Centre, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - N. Simon Thomas
- Human Development and Health, University of Southampton Faculty of Medicine, Southampton, UK
- Wessex Regional Genetics Laboratory, Salisbury NHS Foundation Trust, Salisbury District Hospital, Salisbury, UK
| | - James Thompson
- Clinical and Experimental Sciences, University of Southampton Faculty of Medicine, Southampton, UK
- Primary Ciliary Dyskinesia Centre, University Hospital Southampton NHS Foundation Trust, Southampton, UK
- Biomedical Imaging Unit, University of Southampton Faculty of Medicine, Southampton, UK
| | - Woolf T. Walker
- Clinical and Experimental Sciences, University of Southampton Faculty of Medicine, Southampton, UK
- Primary Ciliary Dyskinesia Centre, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Gabrielle Wheway
- Human Development and Health, University of Southampton Faculty of Medicine, Southampton, UK
| | - Hannah M. Mitchison
- Genetics and Genomic Medicine Research and Teaching Department, University College London, UCL Great Ormond Street Institute of Child Health, London, UK
- Joint senior authors
| | - Jane S. Lucas
- Clinical and Experimental Sciences, University of Southampton Faculty of Medicine, Southampton, UK
- Primary Ciliary Dyskinesia Centre, University Hospital Southampton NHS Foundation Trust, Southampton, UK
- Joint senior authors
- Corresponding author: Jane S. Lucas ()
| |
Collapse
|
9
|
Horani A, Brody SL. One person can make a difference: identification of people with a rare genetic lung disease. ERJ Open Res 2023; 9:00122-2023. [PMID: 37077554 PMCID: PMC10107053 DOI: 10.1183/23120541.00122-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 02/24/2023] [Indexed: 04/21/2023] Open
Abstract
To improve access to care for rare conditions in resource-restricted regions, a concerted effort to establish centres of excellence and training of local physicians is needed https://bit.ly/3ZTBvaj.
Collapse
Affiliation(s)
- Amjad Horani
- Department of Pediatrics, Washington University School of Medicine, St Louis, MO, USA
- Department of Cell Biology and Physiology, Washington University School of Medicine, St Louis, MO, USA
| | - Steven L. Brody
- Department of Medicine, Washington University School of Medicine, St Louis, MO, USA
| |
Collapse
|
10
|
Horani A, Gupta DK, Xu J, Xu H, Del Carmen Puga-Molina L, Santi CM, Ramagiri S, Brennen SK, Pan J, Huang T, Hyland RM, Gunsten SP, Tzeng SC, Strahle JM, Mill P, Mahjoub MR, Dutcher SK, Brody SL. The effect of Dnaaf5 gene dosage on primary ciliary dyskinesia phenotypes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.13.523966. [PMID: 36712068 PMCID: PMC9882222 DOI: 10.1101/2023.01.13.523966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
DNAAF5 is a dynein motor assembly factor associated with the autosomal heterogenic recessive condition of motile cilia, primary ciliary dyskinesia (PCD). The effects of allele heterozygosity on motile cilia function are unknown. We used CRISPR-Cas9 genome editing in mice to recreate a human missense variant identified in patients with mild PCD and a second, frameshift null deletion in Dnaaf5 . Litters with Dnaaf5 heteroallelic variants showed distinct missense and null gene dosage effects. Homozygosity for the null Dnaaf5 alleles was embryonic lethal. Compound heterozygous animals with the missense and null alleles showed severe disease manifesting as hydrocephalus and early lethality. However, animals homozygous for the missense mutation had improved survival, with partial preserved cilia function and motor assembly observed by ultrastructure analysis. Notably, the same variant alleles exhibited divergent cilia function across different multiciliated tissues. Proteomic analysis of isolated airway cilia from mutant mice revealed reduction in some axonemal regulatory and structural proteins not previously reported in DNAAF5 variants. While transcriptional analysis of mouse and human mutant cells showed increased expression of genes coding for axonemal proteins. Together, these findings suggest allele-specific and tissue-specific molecular requirements for cilia motor assembly that may affect disease phenotypes and clinical trajectory in motile ciliopathies. Brief Summary A mouse model of human DNAAF5 primary ciliary dyskinesia variants reveals gene dosage effects of mutant alleles and tissue-specific molecular requirements for cilia motor assembly.
Collapse
|
11
|
Li Y, Li Y, Wang Y, Meng L, Tan C, Du J, Tan YQ, Nie H, Zhang Q, Lu G, Lin G, Li H, Zhang H, Tu C. Identification of novel biallelic LRRC6 variants in male Chinese patients with primary ciliary dyskinesia and infertility. J Assist Reprod Genet 2023; 40:41-51. [PMID: 36515799 PMCID: PMC9840726 DOI: 10.1007/s10815-022-02681-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 12/02/2022] [Indexed: 12/15/2022] Open
Abstract
PURPOSE The aim of this study is to identify the genetic cause of primary ciliary dyskinesia (PCD) and male infertility in two unrelated Han Chinese families. METHODS We performed whole-exome sequencing in two unrelated male Han Chinese patients suffering from infertility and PCD to identify the pathogenic variants. Ultrastructural and immunostaining analyses of patient's spermatozoa were performed to characterize the effect of the variants. The pathogenicity of the variants was validated using patient's spermatozoa by western blotting and immunostaining analysis. Intracytoplasmic sperm injection (ICSI) was conducted in the affected families. RESULTS Three variants in leucine-rich repeat containing 6 (LRRC6) [patient 1(compound heterozygote): NM_012472: c.538C > T, (p.R180*) and c.64dupT, (p.S22Ffs*19); patient 2 (homozygote): c.863C > A, (p.P288H)] were identified in two unrelated patients with PCD and male infertility. These variants were predicated deleterious and were absent or rare in human population genome data. LRRC6-mutant spermatozoa showed a highly aberrant morphology and ultrastructure with lacked inner and outer dynein arms. The LRRC6 protein was present along the normal sperm flagella, and was significantly decreased in the mutated spermatozoa. Interestingly, both patients were able to conceive through ICSI and birthed a healthy baby. CONCLUSION Our results extend the LRRC6 variant spectrum and provide reproductive guidance to families suffering from PCD-linked infertility caused by LRRC6 variants.
Collapse
Affiliation(s)
- Yunhao Li
- Hunan Guangxiu Hospital, Hunan Normal University, Changsha, 410081, China
| | - Yong Li
- Institute of Reproductive and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Science, Central South University, Changsha, 410008, China
| | - Ying Wang
- Institute of Reproductive and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Science, Central South University, Changsha, 410008, China
| | - Lanlan Meng
- Institute of Reproductive and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Science, Central South University, Changsha, 410008, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, 410008, China
| | - Chen Tan
- Institute of Reproductive and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Science, Central South University, Changsha, 410008, China
| | - Juan Du
- Institute of Reproductive and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Science, Central South University, Changsha, 410008, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, 410008, China
| | - Yue-Qiu Tan
- Hunan Guangxiu Hospital, Hunan Normal University, Changsha, 410081, China
- Institute of Reproductive and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Science, Central South University, Changsha, 410008, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, 410008, China
| | - Hongchuan Nie
- Institute of Reproductive and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Science, Central South University, Changsha, 410008, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, 410008, China
| | - Qianjun Zhang
- Institute of Reproductive and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Science, Central South University, Changsha, 410008, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, 410008, China
| | - Guangxiu Lu
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, 410008, China
| | - Ge Lin
- Institute of Reproductive and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Science, Central South University, Changsha, 410008, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, 410008, China
| | - Huanzhu Li
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, 410008, China.
- College of Life Sciences, Hunan Normal University, Changsha, China.
| | - Huan Zhang
- Institute of Reproductive and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Science, Central South University, Changsha, 410008, China.
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, 410008, China.
| | - Chaofeng Tu
- Institute of Reproductive and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Science, Central South University, Changsha, 410008, China.
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, 410008, China.
| |
Collapse
|
12
|
Schultz R, Elenius V, Fassad MR, Freke G, Rogers A, Shoemark A, Koistinen T, Mohamed MA, Lim JSY, Mitchison HM, Sironen AI. CFAP300 mutation causing primary ciliary dyskinesia in Finland. Front Genet 2022; 13:985227. [PMID: 36246608 PMCID: PMC9561811 DOI: 10.3389/fgene.2022.985227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 08/24/2022] [Indexed: 11/13/2022] Open
Abstract
Primary ciliary dyskinesia (PCD) is a rare genetic condition characterized by chronic respiratory tract infections and in some cases laterality defects and infertility. The symptoms of PCD are caused by malfunction of motile cilia, hair-like organelles protruding out of the cell that are responsible for removal of mucus from the airways and organizing internal organ positioning during embryonic development. PCD is caused by mutations in genes coding for structural or assembly proteins in motile cilia. Thus far mutations in over 50 genes have been identified and these variants explain around 70% of all known cases. Population specific genetics underlying PCD has been reported, thus highlighting the importance of characterizing gene variants in different populations for development of gene-based diagnostics. In this study, we identified a recurrent loss-of-function mutation c.198_200delinsCC in CFAP300 causing lack of the protein product. PCD patients homozygous for the identified CFAP300 mutation have immotile airway epithelial cilia associated with missing dynein arms in their ciliary axonemes. Furthermore, using super resolution microscopy we demonstrate that CFAP300 is transported along cilia in normal human airway epithelial cells suggesting a role for CFAP300 in dynein complex transport in addition to preassembly in the cytoplasm. Our results highlight the importance of CFAP300 in dynein arm assembly and improve diagnostics of PCD in Finland.
Collapse
Affiliation(s)
- Rüdiger Schultz
- Allergy Centre, Tampere University Hospital, Tampere, Finland
| | - Varpu Elenius
- Department of Pediatrics, Turku University Hospital, University of Turku, Turku, Finland
| | - Mahmoud R. Fassad
- Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
- Human Genetics Department, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Grace Freke
- Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Andrew Rogers
- PCD Diagnostic Team and Department of Paediatric Respiratory Medicine, Royal Brompton Hospita, London, United Kingdom
| | - Amelia Shoemark
- PCD Diagnostic Team and Department of Paediatric Respiratory Medicine, Royal Brompton Hospita, London, United Kingdom
- School of Medicine, University of Dundee, Dundee, United Kingdom
| | - Tiina Koistinen
- Department of Otorhinolaryngology, Head and Neck Surgery, Kuopio University Hospital and University of Eastern Finland, Kuopio, Finland
| | - Mai A. Mohamed
- Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
- Biochemistry Division, Chemistry Department, Faculty of Science, Zagazig University, Zagazig, Egypt
| | - Jacqueline S. Y. Lim
- Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Hannah M. Mitchison
- Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Anu I. Sironen
- Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
- Natural Resources Institute Finland (Luke), Helsinki, Finland
| |
Collapse
|
13
|
Yin Y, Mu W, Yu X, Wang Z, Xu K, Wu X, Cai Y, Zhang M, Lu G, Chan WY, Ma J, Huang T, Liu H. LRRC46 Accumulates at the Midpiece of Sperm Flagella and Is Essential for Spermiogenesis and Male Fertility in Mouse. Int J Mol Sci 2022; 23:8525. [PMID: 35955660 PMCID: PMC9369233 DOI: 10.3390/ijms23158525] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/25/2022] [Accepted: 07/28/2022] [Indexed: 11/16/2022] Open
Abstract
The sperm flagellum is essential for male fertility. Multiple morphological abnormalities of the sperm flagella (MMAF) is a severe form of asthenoteratozoospermia. MMAF phenotypes are understood to result from pathogenic variants of genes from multiple families including AKAP, DANI, DNAH, RSPH, CCDC, CFAP, TTC, and LRRC, among others. The Leucine-rich repeat protein (LRRC) family includes two members reported to cause MMAF phenotypes: Lrrc6 and Lrrc50. Despite vigorous research towards understanding the pathogenesis of MMAF-related diseases, many genes remain unknown underlying the flagellum biogenesis. Here, we found that Leucine-rich repeat containing 46 (LRRC46) is specifically expressed in the testes of adult mice, and show that LRRC46 is essential for sperm flagellum biogenesis. Both scanning electron microscopy (SEM) and Papanicolaou staining (PS) presents that the knockout of Lrrc46 in mice resulted in typical MMAF phenotypes, including sperm with short, coiled, and irregular flagella. The male KO mice had reduced total sperm counts, impaired sperm motility, and were completely infertile. No reproductive phenotypes were detected in Lrrc46-/- female mice. Immunofluorescence (IF) assays showed that LRRC46 was present throughout the entire flagella of control sperm, albeit with evident concentration at the mid-piece. Transmission electron microscopy (TEM) demonstrated striking flagellar defects with axonemal and mitochondrial sheath malformations. About the important part of the Materials and Methods, SEM and PS were used to observe the typical MMAF-related irregular flagella morphological phenotypes, TEM was used to further inspect the sperm flagellum defects in ultrastructure, and IF was chosen to confirm the location of protein. Our study suggests that LRRC46 is an essential protein for sperm flagellum biogenesis, and its mutations might be associated with MMAF that causes male infertility. Thus, our study provides insights for understanding developmental processes underlying sperm flagellum formation and contribute to further observe the pathogenic genes that cause male infertility.
Collapse
Affiliation(s)
- Yingying Yin
- Center for Reproductive Medicine, Shandong University, Jinan 250012, China; (Y.Y.); (W.M.); (X.Y.); (Z.W.); (K.X.); (X.W.); (Y.C.); (M.Z.); (J.M.)
- Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences, Jinan 250012, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan 250012, China
| | - Wenyu Mu
- Center for Reproductive Medicine, Shandong University, Jinan 250012, China; (Y.Y.); (W.M.); (X.Y.); (Z.W.); (K.X.); (X.W.); (Y.C.); (M.Z.); (J.M.)
- Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences, Jinan 250012, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan 250012, China
| | - Xiaochen Yu
- Center for Reproductive Medicine, Shandong University, Jinan 250012, China; (Y.Y.); (W.M.); (X.Y.); (Z.W.); (K.X.); (X.W.); (Y.C.); (M.Z.); (J.M.)
- Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences, Jinan 250012, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan 250012, China
| | - Ziqi Wang
- Center for Reproductive Medicine, Shandong University, Jinan 250012, China; (Y.Y.); (W.M.); (X.Y.); (Z.W.); (K.X.); (X.W.); (Y.C.); (M.Z.); (J.M.)
- Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences, Jinan 250012, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan 250012, China
| | - Ke Xu
- Center for Reproductive Medicine, Shandong University, Jinan 250012, China; (Y.Y.); (W.M.); (X.Y.); (Z.W.); (K.X.); (X.W.); (Y.C.); (M.Z.); (J.M.)
- Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences, Jinan 250012, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan 250012, China
| | - Xinyue Wu
- Center for Reproductive Medicine, Shandong University, Jinan 250012, China; (Y.Y.); (W.M.); (X.Y.); (Z.W.); (K.X.); (X.W.); (Y.C.); (M.Z.); (J.M.)
- Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences, Jinan 250012, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan 250012, China
| | - Yuling Cai
- Center for Reproductive Medicine, Shandong University, Jinan 250012, China; (Y.Y.); (W.M.); (X.Y.); (Z.W.); (K.X.); (X.W.); (Y.C.); (M.Z.); (J.M.)
- Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences, Jinan 250012, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan 250012, China
| | - Mingyu Zhang
- Center for Reproductive Medicine, Shandong University, Jinan 250012, China; (Y.Y.); (W.M.); (X.Y.); (Z.W.); (K.X.); (X.W.); (Y.C.); (M.Z.); (J.M.)
- Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences, Jinan 250012, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan 250012, China
| | - Gang Lu
- CUHK-SDU Joint Laboratory on Reproductive Genetics, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China; (G.L.); (W.-Y.C.)
| | - Wai-Yee Chan
- CUHK-SDU Joint Laboratory on Reproductive Genetics, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China; (G.L.); (W.-Y.C.)
| | - Jinlong Ma
- Center for Reproductive Medicine, Shandong University, Jinan 250012, China; (Y.Y.); (W.M.); (X.Y.); (Z.W.); (K.X.); (X.W.); (Y.C.); (M.Z.); (J.M.)
- Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences, Jinan 250012, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan 250012, China
- CUHK-SDU Joint Laboratory on Reproductive Genetics, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China; (G.L.); (W.-Y.C.)
| | - Tao Huang
- Center for Reproductive Medicine, Shandong University, Jinan 250012, China; (Y.Y.); (W.M.); (X.Y.); (Z.W.); (K.X.); (X.W.); (Y.C.); (M.Z.); (J.M.)
- Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences, Jinan 250012, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan 250012, China
| | - Hongbin Liu
- Center for Reproductive Medicine, Shandong University, Jinan 250012, China; (Y.Y.); (W.M.); (X.Y.); (Z.W.); (K.X.); (X.W.); (Y.C.); (M.Z.); (J.M.)
- Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences, Jinan 250012, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan 250012, China
- CUHK-SDU Joint Laboratory on Reproductive Genetics, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China; (G.L.); (W.-Y.C.)
| |
Collapse
|
14
|
The Role of Hsp90-R2TP in Macromolecular Complex Assembly and Stabilization. Biomolecules 2022; 12:biom12081045. [PMID: 36008939 PMCID: PMC9406135 DOI: 10.3390/biom12081045] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/19/2022] [Accepted: 07/25/2022] [Indexed: 01/27/2023] Open
Abstract
Hsp90 is a ubiquitous molecular chaperone involved in many cell signaling pathways, and its interactions with specific chaperones and cochaperones determines which client proteins to fold. Hsp90 has been shown to be involved in the promotion and maintenance of proper protein complex assembly either alone or in association with other chaperones such as the R2TP chaperone complex. Hsp90-R2TP acts through several mechanisms, such as by controlling the transcription of protein complex subunits, stabilizing protein subcomplexes before their incorporation into the entire complex, and by recruiting adaptors that facilitate complex assembly. Despite its many roles in protein complex assembly, detailed mechanisms of how Hsp90-R2TP assembles protein complexes have yet to be determined, with most findings restricted to proteomic analyses and in vitro interactions. This review will discuss our current understanding of the function of Hsp90-R2TP in the assembly, stabilization, and activity of the following seven classes of protein complexes: L7Ae snoRNPs, spliceosome snRNPs, RNA polymerases, PIKKs, MRN, TSC, and axonemal dynein arms.
Collapse
|
15
|
Silva C, Viana P, Barros A, Sá R, Sousa M, Pereira R. Further Insights on RNA Expression and Sperm Motility. Genes (Basel) 2022; 13:genes13071291. [PMID: 35886074 PMCID: PMC9319021 DOI: 10.3390/genes13071291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/14/2022] [Accepted: 07/18/2022] [Indexed: 12/10/2022] Open
Abstract
Asthenozoospermia is one of the main causes of male infertility and it is characterized by reduced sperm motility. Several mutations in genes that code for structural or functional constituents of the sperm have already been identified as known causes of asthenozoospermia. In contrast, the role of sperm RNA in regulating sperm motility is still not fully understood. Consequently, here we aim to contribute to the knowledge regarding the expression of sperm RNA, and ultimately, to provide further insights into its relationship with sperm motility. We investigated the expression of a group of mRNAs by using real-time PCR (CATSPER3, CFAP44, CRHR1, HIP1, IQCG KRT34, LRRC6, QRICH2, RSPH6A, SPATA33 and TEKT2) and the highest score corresponding to the target miRNA for each mRNA in asthenozoospermic and normozoospermic individuals. We observed a reduced expression of all mRNAs and miRNAs in asthenozoospermic patients compared to controls, with a more accentuated reduction in patients with progressive sperm motility lower than 15%. Our work provides further insights regarding the role of RNA in regulating sperm motility. Further studies are required to determine how these genes and their corresponding miRNA act regarding sperm motility, particularly KRT34 and CRHR1, which have not previously been seen to play a significant role in regulating sperm motility.
Collapse
Affiliation(s)
- Carolina Silva
- Laboratory of Cell Biology, Department of Microscopy, ICBAS-School of Medicine and Biomedical Sciences, University of Porto, UMIB-Unit for Multidisciplinary Research in Biomedicine, ICBAS/ITR-Laboratory for Integrative and Translational Research in Population Health, 4050-313 Porto, Portugal; (C.S.); (R.S.); (M.S.)
- Faculty of Medicine, University of Coimbra (FMUC), 3000-370 Coimbra, Portugal
| | - Paulo Viana
- Centre for Reproductive Genetics A. Barros, 4100-012 Porto, Portugal; (P.V.); (A.B.)
| | - Alberto Barros
- Centre for Reproductive Genetics A. Barros, 4100-012 Porto, Portugal; (P.V.); (A.B.)
- Department of Genetics, Faculty of Medicine, University of Porto (FMUP), 4200-319 Porto, Portugal
- Institute of Health Research and Innovation (IPATIMUP/i3S), University of Porto, 4200-135 Porto, Portugal
| | - Rosália Sá
- Laboratory of Cell Biology, Department of Microscopy, ICBAS-School of Medicine and Biomedical Sciences, University of Porto, UMIB-Unit for Multidisciplinary Research in Biomedicine, ICBAS/ITR-Laboratory for Integrative and Translational Research in Population Health, 4050-313 Porto, Portugal; (C.S.); (R.S.); (M.S.)
| | - Mário Sousa
- Laboratory of Cell Biology, Department of Microscopy, ICBAS-School of Medicine and Biomedical Sciences, University of Porto, UMIB-Unit for Multidisciplinary Research in Biomedicine, ICBAS/ITR-Laboratory for Integrative and Translational Research in Population Health, 4050-313 Porto, Portugal; (C.S.); (R.S.); (M.S.)
| | - Rute Pereira
- Laboratory of Cell Biology, Department of Microscopy, ICBAS-School of Medicine and Biomedical Sciences, University of Porto, UMIB-Unit for Multidisciplinary Research in Biomedicine, ICBAS/ITR-Laboratory for Integrative and Translational Research in Population Health, 4050-313 Porto, Portugal; (C.S.); (R.S.); (M.S.)
- Correspondence:
| |
Collapse
|
16
|
Ji W, Tang Z, Chen Y, Wang C, Tan C, Liao J, Tong L, Xiao G. Ependymal Cilia: Physiology and Role in Hydrocephalus. Front Mol Neurosci 2022; 15:927479. [PMID: 35903173 PMCID: PMC9315228 DOI: 10.3389/fnmol.2022.927479] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 06/20/2022] [Indexed: 01/10/2023] Open
Abstract
Cerebrospinal fluid (CSF), a colorless liquid that generally circulates from the lateral ventricles to the third and fourth ventricles, provides essential nutrients for brain homeostasis and growth factors during development. As evidenced by an increasing corpus of research, CSF serves a range of important functions. While it is considered that decreased CSF flow is associated to the development of hydrocephalus, it has recently been postulated that motile cilia, which line the apical surfaces of ependymal cells (ECs), play a role in stimulating CSF circulation by cilia beating. Ependymal cilia protrude from ECs, and their synchronous pulsing transports CSF from the lateral ventricle to the third and fourth ventricles, and then to the subarachnoid cavity for absorption. As a result, we postulated that malfunctioning ependymal cilia could disrupt normal CSF flow, raising the risk of hydrocephalus. This review aims to demonstrate the physiological functions of ependymal cilia, as well as how cilia immobility or disorientation causes problems. We also conclude conceivable ways of treatment of hydrocephalus currently for clinical application and provide theoretical support for regimen improvements by investigating the relationship between ependymal cilia and hydrocephalus development.
Collapse
Affiliation(s)
- Weiye Ji
- Department of Neurosurgery, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- Diagnosis and Treatment Center for Hydrocephalus, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Zhi Tang
- Department of Neurosurgery, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Yibing Chen
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- Diagnosis and Treatment Center for Hydrocephalus, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Chuansen Wang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- Diagnosis and Treatment Center for Hydrocephalus, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Changwu Tan
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- Diagnosis and Treatment Center for Hydrocephalus, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Junbo Liao
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- Diagnosis and Treatment Center for Hydrocephalus, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Lei Tong
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- Diagnosis and Treatment Center for Hydrocephalus, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Gelei Xiao
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- Diagnosis and Treatment Center for Hydrocephalus, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Gelei Xiao,
| |
Collapse
|
17
|
van der Vaart J, Böttinger L, Geurts MH, van de Wetering WJ, Knoops K, Sachs N, Begthel H, Korving J, Lopez‐Iglesias C, Peters PJ, Eitan K, Gileles‐Hillel A, Clevers H. Modelling of primary ciliary dyskinesia using patient-derived airway organoids. EMBO Rep 2021; 22:e52058. [PMID: 34693619 PMCID: PMC8647008 DOI: 10.15252/embr.202052058] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 09/19/2021] [Accepted: 09/21/2021] [Indexed: 01/08/2023] Open
Abstract
Patient-derived human organoids can be used to model a variety of diseases. Recently, we described conditions for long-term expansion of human airway organoids (AOs) directly from healthy individuals and patients. Here, we first optimize differentiation of AOs towards ciliated cells. After differentiation of the AOs towards ciliated cells, these can be studied for weeks. When returned to expansion conditions, the organoids readily resume their growth. We apply this condition to AOs established from nasal inferior turbinate brush samples of patients suffering from primary ciliary dyskinesia (PCD), a pulmonary disease caused by dysfunction of the motile cilia in the airways. Patient-specific differences in ciliary beating are observed and are in agreement with the patients' genetic mutations. More detailed organoid ciliary phenotypes can thus be documented in addition to the standard diagnostic procedure. Additionally, using genetic editing tools, we show that a patient-specific mutation can be repaired. This study demonstrates the utility of organoid technology for investigating hereditary airway diseases such as PCD.
Collapse
Affiliation(s)
- Jelte van der Vaart
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW)University Medical Centre UtrechtUtrechtThe Netherlands
- Oncode InstituteHubrecht InstituteUtrechtThe Netherlands
| | - Lena Böttinger
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW)University Medical Centre UtrechtUtrechtThe Netherlands
| | - Maarten H Geurts
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW)University Medical Centre UtrechtUtrechtThe Netherlands
- Oncode InstituteHubrecht InstituteUtrechtThe Netherlands
| | | | - Kèvin Knoops
- The Maastricht Multimodal Molecular Imaging InstituteMaastricht UniversityMaastrichtThe Netherlands
| | - Norman Sachs
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW)University Medical Centre UtrechtUtrechtThe Netherlands
- Present address:
Vertex IncSan DiegoCAUSA
| | - Harry Begthel
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW)University Medical Centre UtrechtUtrechtThe Netherlands
- Oncode InstituteHubrecht InstituteUtrechtThe Netherlands
| | - Jeroen Korving
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW)University Medical Centre UtrechtUtrechtThe Netherlands
- Oncode InstituteHubrecht InstituteUtrechtThe Netherlands
| | - Carmen Lopez‐Iglesias
- The Maastricht Multimodal Molecular Imaging InstituteMaastricht UniversityMaastrichtThe Netherlands
| | - Peter J Peters
- The Maastricht Multimodal Molecular Imaging InstituteMaastricht UniversityMaastrichtThe Netherlands
| | - Kerem Eitan
- Division of Cell Biology, Immunology and Cancer ResearchHebrew University‐Hadassah Medical SchoolJerusalemIsrael
| | - Alex Gileles‐Hillel
- Division of Cell Biology, Immunology and Cancer ResearchHebrew University‐Hadassah Medical SchoolJerusalemIsrael
- Department of Paediatrics, Paediatric Pulmonology and SleepHadassah Hebrew University Medical CentreJerusalemIsrael
| | - Hans Clevers
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW)University Medical Centre UtrechtUtrechtThe Netherlands
- Oncode InstituteHubrecht InstituteUtrechtThe Netherlands
| |
Collapse
|
18
|
Li DY, Yang XX, Tu CF, Wang WL, Meng LL, Lu GX, Tan YQ, Zhang QJ, Du J. Sperm flagellar 2 (SPEF2) is essential for sperm flagellar assembly in humans. Asian J Androl 2021; 24:359-366. [PMID: 34755699 PMCID: PMC9295471 DOI: 10.4103/aja202154] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Spermiogenesis is a complex and tightly regulated process, consisting of acrosomal biogenesis, condensation of chromatin, flagellar assembly, and disposal of extra cytoplasm. Previous studies have reported that sperm flagellar 2 (SPEF2) deficiency causes severe asthenoteratozoospermia owing to spermiogenesis failure, but the underlying molecular mechanism in humans remains unclear. Here, we performed proteomic analysis on spermatozoa from three SPEF2 mutant patients to study the functional role of SPEF2 during sperm tail development. A total of 1262 differentially expressed proteins were detected, including 486 upregulated and 776 downregulated. The constructed heat map of the differentially expressed proteins showed similar trends. Among these, the expression of proteins related to flagellar assembly, including SPEF2, sperm associated antigen 6 (SPAG6), dynein light chain tctex-type 1 (DYNLT1), radial spoke head component 1 (RSPH1), translocase of outer mitochondrial membrane 20 (TOM20), EF-hand domain containing 1 (EFHC1), meiosis-specific nuclear structural 1 (MNS1) and intraflagellar transport 20 (IFT20), was verified by western blot. Functional clustering analysis indicated that these differentially expressed proteins were specifically enriched for terms such as spermatid development and flagellar assembly. Furthermore, we showed that SPEF2 interacts with radial spoke head component 9 (RSPH9) and IFT20 in vitro, which are well-studied components of radial spokes or intra-flagellar transport and are essential for flagellar assembly. These results provide a rich resource for further investigation into the molecular mechanism underlying the role that SPEF2 plays in sperm tail development and could provide a theoretical basis for gene therapy in SPEF2 mutant patients in the future.
Collapse
Affiliation(s)
- Dong-Yan Li
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha 410078, China
| | - Xiao-Xuan Yang
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha 410078, China
| | - Chao-Feng Tu
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha 410078, China.,Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha 410078, China
| | - Wei-Li Wang
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha 410078, China
| | - Lan-Lan Meng
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha 410078, China
| | - Guang-Xiu Lu
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha 410078, China
| | - Yue-Qiu Tan
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha 410078, China.,Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha 410078, China
| | - Qian-Jun Zhang
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha 410078, China.,Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha 410078, China
| | - Juan Du
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha 410078, China.,Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha 410078, China
| |
Collapse
|
19
|
Alsafwani RS, Nasser KK, Shinawi T, Banaganapalli B, ElSokary HA, Zaher ZF, Shaik NA, Abdelmohsen G, Al-Aama JY, Shapiro AJ, O Al-Radi O, Elango R, Alahmadi T. Novel MYO1D Missense Variant Identified Through Whole Exome Sequencing and Computational Biology Analysis Expands the Spectrum of Causal Genes of Laterality Defects. Front Med (Lausanne) 2021; 8:724826. [PMID: 34589502 PMCID: PMC8473696 DOI: 10.3389/fmed.2021.724826] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 08/10/2021] [Indexed: 11/13/2022] Open
Abstract
Laterality defects (LDs) or asymmetrically positioned organs are a group of rare developmental disorders caused by environmental and/or genetic factors. However, the exact molecular pathophysiology of LD is not yet fully characterised. In this context, studying Arab population presents an ideal opportunity to discover the novel molecular basis of diseases owing to the high rate of consanguinity and genetic disorders. Therefore, in the present study, we studied the molecular basis of LD in Arab patients, using next-generation sequencing method. We discovered an extremely rare novel missense variant in MYO1D gene (Pro765Ser) presenting with visceral heterotaxy and left isomerism with polysplenia syndrome. The proband in this index family has inherited this homozygous variant from her heterozygous parents following the autosomal recessive pattern. This is the first report to show MYO1D genetic variant causing left-right axis defects in humans, besides previous known evidence from zebrafish, frog and Drosophila models. Moreover, our multilevel bioinformatics-based structural (protein variant structural modelling, divergence, and stability) analysis has suggested that Ser765 causes minor structural drifts and stability changes, potentially affecting the biophysical and functional properties of MYO1D protein like calmodulin binding and microfilament motor activities. Functional bioinformatics analysis has shown that MYO1D is ubiquitously expressed across several human tissues and is reported to induce severe phenotypes in knockout mouse models. In conclusion, our findings show the expanded genetic spectrum of LD, which could potentially pave way for the novel drug target identification and development of personalised medicine for high-risk families.
Collapse
Affiliation(s)
- Rabab Said Alsafwani
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Khalidah K Nasser
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia.,Princess Al-Jawhara Center of Excellence in Research of Hereditary Disorders, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Thoraia Shinawi
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Babajan Banaganapalli
- Princess Al-Jawhara Center of Excellence in Research of Hereditary Disorders, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Genetic Medicine, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Hanan Abdelhalim ElSokary
- Princess Al-Jawhara Center of Excellence in Research of Hereditary Disorders, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Zhaher F Zaher
- Department of Pediatrics, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia.,Pediatric Cardiac Center of Excellence, King Abdulaziz University Hospital, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Noor Ahmad Shaik
- Princess Al-Jawhara Center of Excellence in Research of Hereditary Disorders, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Genetic Medicine, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Genetics, Al Borg Medical Laboratories, Jeddah, Saudi Arabia
| | - Gaser Abdelmohsen
- Department of Pediatrics, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia.,Pediatric Cardiology Division, Department of Pediatrics, Cairo University, Kasr Al Ainy Faculty of Medicine, Cairo, Egypt
| | - Jumana Yousuf Al-Aama
- Princess Al-Jawhara Center of Excellence in Research of Hereditary Disorders, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Genetic Medicine, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Adam J Shapiro
- Division of Pediatric Respiratory Medicine, McGill University Health Centre Research Institute, Montreal Children's Hospital, Montreal, QC, Canada
| | - Osman O Al-Radi
- Department of Surgery Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ramu Elango
- Princess Al-Jawhara Center of Excellence in Research of Hereditary Disorders, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Genetic Medicine, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Turki Alahmadi
- Department of Pediatrics, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia.,Pediatric Department, Faculty of Medicine in Rabigh, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
20
|
Edelman HE, McClymont SA, Tucker TR, Pineda S, Beer RL, McCallion AS, Parsons MJ. SOX9 modulates cancer biomarker and cilia genes in pancreatic cancer. Hum Mol Genet 2021; 30:485-499. [PMID: 33693707 DOI: 10.1093/hmg/ddab064] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 02/02/2021] [Accepted: 02/24/2021] [Indexed: 12/21/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an aggressive form of cancer with high mortality. The cellular origins of PDAC are largely unknown; however, ductal cells, especially centroacinar cells (CACs), have several characteristics in common with PDAC, such as expression of SOX9 and components of the Notch-signaling pathway. Mutations in KRAS and alterations to Notch signaling are common in PDAC, and both these pathways regulate the transcription factor SOX9. To identify genes regulated by SOX9, we performed siRNA knockdown of SOX9 followed by RNA-seq in PANC-1s, a human PDAC cell line. We report 93 differentially expressed (DE) genes, with convergence on alterations to Notch-signaling pathways and ciliogenesis. These results point to SOX9 and Notch activity being in a positive feedback loop and SOX9 regulating cilia production in PDAC. We additionally performed ChIP-seq in PANC-1s to identify direct targets of SOX9 binding and integrated these results with our DE gene list. Nine of the top 10 downregulated genes have evidence of direct SOX9 binding at their promoter regions. One of these targets was the cancer stem cell marker EpCAM. Using whole-mount in situ hybridization to detect epcam transcript in zebrafish larvae, we demonstrated that epcam is a CAC marker and that Sox9 regulation of epcam expression is conserved in zebrafish. Additionally, we generated an epcam null mutant and observed pronounced defects in ciliogenesis during development. Our results provide a link between SOX9, EpCAM and ciliary repression that can be exploited in improving our understanding of the cellular origins and mechanisms of PDAC.
Collapse
Affiliation(s)
- Hannah E Edelman
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, 733 N. Broadway, 470 Miller Research Building, Baltimore, MD 21205, USA
| | - Sarah A McClymont
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, 733 N. Broadway, 470 Miller Research Building, Baltimore, MD 21205, USA
| | - Tori R Tucker
- Department of Developmental and Cell Biology, University of California, Irvine, Natural Sciences II, CA 92697, USA
| | - Santiago Pineda
- Department of Developmental and Cell Biology, University of California, Irvine, Natural Sciences II, CA 92697, USA
| | - Rebecca L Beer
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, 733 N. Broadway, 470 Miller Research Building, Baltimore, MD 21205, USA
| | - Andrew S McCallion
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, 733 N. Broadway, 470 Miller Research Building, Baltimore, MD 21205, USA
| | - Michael J Parsons
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, 733 N. Broadway, 470 Miller Research Building, Baltimore, MD 21205, USA.,Department of Developmental and Cell Biology, University of California, Irvine, Natural Sciences II, CA 92697, USA
| |
Collapse
|
21
|
Aprea I, Raidt J, Höben IM, Loges NT, Nöthe-Menchen T, Pennekamp P, Olbrich H, Kaiser T, Biebach L, Tüttelmann F, Horvath J, Schubert M, Krallmann C, Kliesch S, Omran H. Defects in the cytoplasmic assembly of axonemal dynein arms cause morphological abnormalities and dysmotility in sperm cells leading to male infertility. PLoS Genet 2021; 17:e1009306. [PMID: 33635866 PMCID: PMC7909641 DOI: 10.1371/journal.pgen.1009306] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 12/10/2020] [Indexed: 12/14/2022] Open
Abstract
Axonemal protein complexes, such as outer (ODA) and inner (IDA) dynein arms, are responsible for the generation and regulation of flagellar and ciliary beating. Studies in various ciliated model organisms have shown that axonemal dynein arms are first assembled in the cell cytoplasm and then delivered into axonemes during ciliogenesis. In humans, mutations in genes encoding for factors involved in this process cause structural and functional defects of motile cilia in various organs such as the airways and result in the hereditary disorder primary ciliary dyskinesia (PCD). Despite extensive knowledge about the cytoplasmic assembly of axonemal dynein arms in respiratory cilia, this process is still poorly understood in sperm flagella. To better define its clinical relevance on sperm structure and function, and thus male fertility, further investigations are required. Here we report the fertility status in different axonemal dynein preassembly mutant males (DNAAF2/ KTU, DNAAF4/ DYX1C1, DNAAF6/ PIH1D3, DNAAF7/ZMYND10, CFAP300/C11orf70 and LRRC6). Besides andrological examinations, we functionally and structurally analyzed sperm flagella of affected individuals by high-speed video- and transmission electron microscopy as well as systematically compared the composition of dynein arms in sperm flagella and respiratory cilia by immunofluorescence microscopy. Furthermore, we analyzed the flagellar length in dynein preassembly mutant sperm. We found that the process of axonemal dynein preassembly is also critical in sperm, by identifying defects of ODAs and IDAs in dysmotile sperm of these individuals. Interestingly, these mutant sperm consistently show a complete loss of ODAs, while some respiratory cilia from the same individual can retain ODAs in the proximal ciliary compartment. This agrees with reports of solely one distinct ODA type in sperm, compared to two different ODA types in proximal and distal respiratory ciliary axonemes. Consistent with observations in model organisms, we also determined a significant reduction of sperm flagellar length in these individuals. These findings are relevant to subsequent studies on the function and composition of sperm flagella in PCD patients and non-syndromic infertile males. Our study contributes to a better understanding of the fertility status in PCD-affected males and should help guide genetic and andrological counselling for affected males and their families. Impaired male fertility is a major issue and affects several men worldwide. Patients may present with reduced number or complete absence of sperm in the ejaculate, as well as functional and/or morphological sperm defects compromising sperm motility. Despite several diagnostic efforts, the underlying causes of these defects often remain unknown („idiopathic“). The beating of sperm flagella as well as motile cilia, such as those of the respiratory tract, is driven by dynein-based motor protein complexes, namely outer and inner dynein arms. In motile cilia these protein complexes are known to be first assembled in the cytoplasm and then delivered into the cilium. In sperm, this process is still poorly understood. Here we analyze sperm cells of male individuals with mutations in distinct genes encoding factors involved in the preassembly of these motor protein complexes. Consistent with defects in their respiratory ciliated cells, these individuals also demonstrate defects in sperm flagella that cause male infertility due to immotile sperm, with a reduction of flagellar length. Our results strengthen the assumption that the preassembly process of outer and inner dynein arms is clinically relevant also in sperm and provide knowledge that should guide genetic and andrological counselling for a subgroup of men with idiopathic infertility.
Collapse
Affiliation(s)
- Isabella Aprea
- Department of General Pediatrics, University Hospital Muenster, Muenster, Germany
| | - Johanna Raidt
- Department of General Pediatrics, University Hospital Muenster, Muenster, Germany
| | - Inga Marlena Höben
- Department of General Pediatrics, University Hospital Muenster, Muenster, Germany
| | - Niki Tomas Loges
- Department of General Pediatrics, University Hospital Muenster, Muenster, Germany
| | - Tabea Nöthe-Menchen
- Department of General Pediatrics, University Hospital Muenster, Muenster, Germany
| | - Petra Pennekamp
- Department of General Pediatrics, University Hospital Muenster, Muenster, Germany
| | - Heike Olbrich
- Department of General Pediatrics, University Hospital Muenster, Muenster, Germany
| | - Thomas Kaiser
- Department of General Pediatrics, University Hospital Muenster, Muenster, Germany
| | - Luisa Biebach
- Department of General Pediatrics, University Hospital Muenster, Muenster, Germany
| | - Frank Tüttelmann
- Institute of Reproductive Genetics, University of Muenster, Muenster, Germany
| | - Judit Horvath
- Institute of Human Genetics, University Hospital Muenster, Muenster, Germany
| | - Maria Schubert
- Department of Clinical and Surgical Andrology, Centre of Reproductive Medicine and Andrology, University Hospital Muenster, Muenster, Germany
| | - Claudia Krallmann
- Department of Clinical and Surgical Andrology, Centre of Reproductive Medicine and Andrology, University Hospital Muenster, Muenster, Germany
| | - Sabine Kliesch
- Institute of Human Genetics, University Hospital Muenster, Muenster, Germany
| | - Heymut Omran
- Department of General Pediatrics, University Hospital Muenster, Muenster, Germany
- * E-mail:
| |
Collapse
|
22
|
Adivitiya, Kaushik MS, Chakraborty S, Veleri S, Kateriya S. Mucociliary Respiratory Epithelium Integrity in Molecular Defense and Susceptibility to Pulmonary Viral Infections. BIOLOGY 2021; 10:95. [PMID: 33572760 PMCID: PMC7911113 DOI: 10.3390/biology10020095] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 01/20/2021] [Accepted: 01/21/2021] [Indexed: 01/08/2023]
Abstract
Mucociliary defense, mediated by the ciliated and goblet cells, is fundamental to respiratory fitness. The concerted action of ciliary movement on the respiratory epithelial surface and the pathogen entrapment function of mucus help to maintain healthy airways. Consequently, genetic or acquired defects in lung defense elicit respiratory diseases and secondary microbial infections that inflict damage on pulmonary function and may even be fatal. Individuals living with chronic and acute respiratory diseases are more susceptible to develop severe coronavirus disease-19 (COVID-19) illness and hence should be proficiently managed. In light of the prevailing pandemic, we review the current understanding of the respiratory system and its molecular components with a major focus on the pathophysiology arising due to collapsed respiratory epithelium integrity such as abnormal ciliary movement, cilia loss and dysfunction, ciliated cell destruction, and changes in mucus rheology. The review includes protein interaction networks of coronavirus infection-manifested implications on the molecular machinery that regulates mucociliary clearance. We also provide an insight into the alteration of the transcriptional networks of genes in the nasopharynx associated with the mucociliary clearance apparatus in humans upon infection by severe acute respiratory syndrome coronavirus-2.
Collapse
Affiliation(s)
- Adivitiya
- Laboratory of Optobiology, School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India; (A.); (M.S.K.); (S.C.)
| | - Manish Singh Kaushik
- Laboratory of Optobiology, School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India; (A.); (M.S.K.); (S.C.)
| | - Soura Chakraborty
- Laboratory of Optobiology, School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India; (A.); (M.S.K.); (S.C.)
| | - Shobi Veleri
- Drug Safety Division, ICMR-National Institute of Nutrition, Hyderabad 500007, India;
| | - Suneel Kateriya
- Laboratory of Optobiology, School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India; (A.); (M.S.K.); (S.C.)
| |
Collapse
|
23
|
Hawkins FJ, Suzuki S, Beermann ML, Barillà C, Wang R, Villacorta-Martin C, Berical A, Jean JC, Le Suer J, Matte T, Simone-Roach C, Tang Y, Schlaeger TM, Crane AM, Matthias N, Huang SXL, Randell SH, Wu J, Spence JR, Carraro G, Stripp BR, Rab A, Sorsher EJ, Horani A, Brody SL, Davis BR, Kotton DN. Derivation of Airway Basal Stem Cells from Human Pluripotent Stem Cells. Cell Stem Cell 2021; 28:79-95.e8. [PMID: 33098807 PMCID: PMC7796997 DOI: 10.1016/j.stem.2020.09.017] [Citation(s) in RCA: 137] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 08/03/2020] [Accepted: 09/26/2020] [Indexed: 12/26/2022]
Abstract
The derivation of tissue-specific stem cells from human induced pluripotent stem cells (iPSCs) would have broad reaching implications for regenerative medicine. Here, we report the directed differentiation of human iPSCs into airway basal cells ("iBCs"), a population resembling the stem cell of the airway epithelium. Using a dual fluorescent reporter system (NKX2-1GFP;TP63tdTomato), we track and purify these cells as they first emerge as developmentally immature NKX2-1GFP+ lung progenitors and subsequently augment a TP63 program during proximal airway epithelial patterning. In response to primary basal cell medium, NKX2-1GFP+/TP63tdTomato+ cells display the molecular and functional phenotype of airway basal cells, including the capacity to self-renew or undergo multi-lineage differentiation in vitro and in tracheal xenografts in vivo. iBCs and their differentiated progeny model perturbations that characterize acquired and genetic airway diseases, including the mucus metaplasia of asthma, chloride channel dysfunction of cystic fibrosis, and ciliary defects of primary ciliary dyskinesia.
Collapse
Affiliation(s)
- Finn J Hawkins
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, MA 02118, USA; The Pulmonary Center and Department of Medicine, Boston University and Boston Medical Center, Boston, MA 02118, USA
| | - Shingo Suzuki
- Center for Stem Cell and Regenerative Medicine, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center, Houston, TX 77030, USA
| | - Mary Lou Beermann
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, MA 02118, USA
| | - Cristina Barillà
- Center for Stem Cell and Regenerative Medicine, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center, Houston, TX 77030, USA
| | - Ruobing Wang
- Pulmonary and Respiratory Diseases, Boston Children's Hospital, Boston, MA 02115, USA
| | - Carlos Villacorta-Martin
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, MA 02118, USA
| | - Andrew Berical
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, MA 02118, USA; The Pulmonary Center and Department of Medicine, Boston University and Boston Medical Center, Boston, MA 02118, USA
| | - J C Jean
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, MA 02118, USA
| | - Jake Le Suer
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, MA 02118, USA; The Pulmonary Center and Department of Medicine, Boston University and Boston Medical Center, Boston, MA 02118, USA
| | - Taylor Matte
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, MA 02118, USA
| | | | - Yang Tang
- Boston Children's Hospital Stem Cell Program, Boston, MA 02115, USA
| | - Thorsten M Schlaeger
- Boston Children's Hospital Stem Cell Program, Boston, MA 02115, USA; Division of Pediatric Hematology/Oncology, Boston Children's Hospital, Dana-Farber Cancer Institute, Boston, MA 02115, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA
| | - Ana M Crane
- Center for Stem Cell and Regenerative Medicine, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center, Houston, TX 77030, USA
| | - Nadine Matthias
- Center for Stem Cell and Regenerative Medicine, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center, Houston, TX 77030, USA
| | - Sarah X L Huang
- Center for Stem Cell and Regenerative Medicine, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center, Houston, TX 77030, USA
| | - Scott H Randell
- Marsico Lung Institute and Cystic Fibrosis Research Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Joshua Wu
- Department of Internal Medicine, Gastroenterology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Jason R Spence
- Department of Internal Medicine, Gastroenterology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Department of Biomedical Engineering, University of Michigan College of Engineering, Ann Arbor, MI 48109, USA
| | - Gianni Carraro
- Department of Medicine, Lung and Regenerative Medicine Institutes, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Barry R Stripp
- Department of Medicine, Lung and Regenerative Medicine Institutes, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Andras Rab
- Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Eric J Sorsher
- Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Amjad Horani
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Steven L Brody
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Brian R Davis
- Center for Stem Cell and Regenerative Medicine, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center, Houston, TX 77030, USA.
| | - Darrell N Kotton
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, MA 02118, USA; The Pulmonary Center and Department of Medicine, Boston University and Boston Medical Center, Boston, MA 02118, USA.
| |
Collapse
|
24
|
Li Y, Jiang C, Zhang X, Liu M, Sun Y, Yang Y, Shen Y. The effect of a novel LRRC6 mutation on the flagellar ultrastructure in a primary ciliary dyskinesia patient. J Assist Reprod Genet 2021; 38:689-696. [PMID: 33403504 DOI: 10.1007/s10815-020-02036-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 12/10/2020] [Indexed: 10/22/2022] Open
Abstract
PURPOSE There are limited genes known to cause primary ciliary dyskinesia (PCD)-associated asthenozoospermia. In the present study, we aimed to expand the spectrum of mutations in PCD and to provide new information for genetic counseling diagnoses and the treatment of male infertility in PCD. METHODS One sterile patient with typical situs inversus was recruited to our center, and semen sample was collected. We performed whole-exome sequencing (WES) on the patient to identify the pathogenic mutations associated with PCD and used transmission electron microscopy to investigate spermatozoal ultrastructure. In addition, western blotting and immunofluorescence staining were used to confirm the untoward impact of the variant on the expression of LRRC6, as well as on the dynein arm proteins in the patient's spermatozoa. RESULTS We identified a homozygous nonsense variant c.749G>A (p.W250*) of LRRC6 in the PCD patient. This variant severely impaired LRRC6 expression and further led to negative effects on dynein arm protein expression in the spermatozoa of the affected individual, which eventually caused defects in sperm ultrastructure and motility. Moreover, we are the first to report a positive prognosis using intracytoplasmic sperm injection (ICSI) for LRRC6-associated male infertility. CONCLUSIONS Our findings strongly implicated the homozygous mutation of c.749G>A (p.W250*) in LRRC6 as a new genetic cause of PCD, uncovering its involvement in defective sperm flagella and poor sperm motility. Furthermore, we posit that patients with LRRC6 mutations may have good outcomes with ICSI treatment. These findings add to the literature on the genetic diagnoses and treatment of male infertility associated with PCD.
Collapse
Affiliation(s)
- Yaqian Li
- Department of Obstetrics/Gynecology, Joint Laboratory of Reproductive Medicine (SCU-CUHK), Key Laboratory of Obstetric, Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
| | - Chuan Jiang
- Department of Obstetrics/Gynecology, Joint Laboratory of Reproductive Medicine (SCU-CUHK), Key Laboratory of Obstetric, Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
| | - Xueguang Zhang
- Department of Obstetrics/Gynecology, Joint Laboratory of Reproductive Medicine (SCU-CUHK), Key Laboratory of Obstetric, Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
| | - Mohan Liu
- Department of Obstetrics/Gynecology, Joint Laboratory of Reproductive Medicine (SCU-CUHK), Key Laboratory of Obstetric, Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
| | - Yongkang Sun
- Department of Obstetrics/Gynecology, Joint Laboratory of Reproductive Medicine (SCU-CUHK), Key Laboratory of Obstetric, Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
| | - Yihong Yang
- Reproduction Medical Center of West China Second University Hospital, Key Laboratory of Obstetric, Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, Sichuan University, Chengdu, 610041, China.
| | - Ying Shen
- Department of Obstetrics/Gynecology, Joint Laboratory of Reproductive Medicine (SCU-CUHK), Key Laboratory of Obstetric, Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
25
|
Lee C, Cox RM, Papoulas O, Horani A, Drew K, Devitt CC, Brody SL, Marcotte EM, Wallingford JB. Functional partitioning of a liquid-like organelle during assembly of axonemal dyneins. eLife 2020; 9:e58662. [PMID: 33263282 PMCID: PMC7785291 DOI: 10.7554/elife.58662] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 12/01/2020] [Indexed: 12/20/2022] Open
Abstract
Ciliary motility is driven by axonemal dyneins that are assembled in the cytoplasm before deployment to cilia. Motile ciliopathy can result from defects in the dyneins themselves or from defects in factors required for their cytoplasmic pre-assembly. Recent work demonstrates that axonemal dyneins, their specific assembly factors, and broadly-acting chaperones are concentrated in liquid-like organelles in the cytoplasm called DynAPs (Dynein Axonemal Particles). Here, we use in vivo imaging in Xenopus to show that inner dynein arm (IDA) and outer dynein arm (ODA) subunits are partitioned into non-overlapping sub-regions within DynAPs. Using affinity- purification mass-spectrometry of in vivo interaction partners, we also identify novel partners for inner and outer dynein arms. Among these, we identify C16orf71/Daap1 as a novel axonemal dynein regulator. Daap1 interacts with ODA subunits, localizes specifically to the cytoplasm, is enriched in DynAPs, and is required for the deployment of ODAs to axonemes. Our work reveals a new complexity in the structure and function of a cell-type specific liquid-like organelle that is directly relevant to human genetic disease.
Collapse
Affiliation(s)
- Chanjae Lee
- Department of Molecular Biosciences, University of TexasAustinUnited States
| | - Rachael M Cox
- Department of Molecular Biosciences, University of TexasAustinUnited States
| | - Ophelia Papoulas
- Department of Molecular Biosciences, University of TexasAustinUnited States
| | - Amjad Horani
- Department of Pediatrics, Washington University School of MedicineSt. LouisUnited States
| | - Kevin Drew
- Department of Molecular Biosciences, University of TexasAustinUnited States
| | - Caitlin C Devitt
- Department of Molecular Biosciences, University of TexasAustinUnited States
| | - Steven L Brody
- Department of Medicine, Washington University School of MedicineSt. LouisUnited States
| | - Edward M Marcotte
- Department of Molecular Biosciences, University of TexasAustinUnited States
| | - John B Wallingford
- Department of Molecular Biosciences, University of TexasAustinUnited States
| |
Collapse
|
26
|
Lee L, Ostrowski LE. Motile cilia genetics and cell biology: big results from little mice. Cell Mol Life Sci 2020; 78:769-797. [PMID: 32915243 DOI: 10.1007/s00018-020-03633-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 08/11/2020] [Accepted: 09/03/2020] [Indexed: 12/13/2022]
Abstract
Our understanding of motile cilia and their role in disease has increased tremendously over the last two decades, with critical information and insight coming from the analysis of mouse models. Motile cilia form on specific epithelial cell types and typically beat in a coordinated, whip-like manner to facilitate the flow and clearance of fluids along the cell surface. Defects in formation and function of motile cilia result in primary ciliary dyskinesia (PCD), a genetically heterogeneous disorder with a well-characterized phenotype but no effective treatment. A number of model systems, ranging from unicellular eukaryotes to mammals, have provided information about the genetics, biochemistry, and structure of motile cilia. However, with remarkable resources available for genetic manipulation and developmental, pathological, and physiological analysis of phenotype, the mouse has risen to the forefront of understanding mammalian motile cilia and modeling PCD. This is evidenced by a large number of relevant mouse lines and an extensive body of genetic and phenotypic data. More recently, application of innovative cell biological techniques to these models has enabled substantial advancement in elucidating the molecular and cellular mechanisms underlying the biogenesis and function of mammalian motile cilia. In this article, we will review genetic and cell biological studies of motile cilia in mouse models and their contributions to our understanding of motile cilia and PCD pathogenesis.
Collapse
Affiliation(s)
- Lance Lee
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD, USA. .,Department of Pediatrics, Sanford School of Medicine of the University of South Dakota, Sioux Falls, SD, USA.
| | - Lawrence E Ostrowski
- Marsico Lung Institute/Cystic Fibrosis Center and Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
27
|
Bustamante-Marin XM, Horani A, Stoyanova M, Charng WL, Bottier M, Sears PR, Yin WN, Daniels LA, Bowen H, Conrad DF, Knowles MR, Ostrowski LE, Zariwala MA, Dutcher SK. Mutation of CFAP57, a protein required for the asymmetric targeting of a subset of inner dynein arms in Chlamydomonas, causes primary ciliary dyskinesia. PLoS Genet 2020; 16:e1008691. [PMID: 32764743 PMCID: PMC7444499 DOI: 10.1371/journal.pgen.1008691] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 08/19/2020] [Accepted: 02/22/2020] [Indexed: 01/10/2023] Open
Abstract
Primary ciliary dyskinesia (PCD) is characterized by chronic airway disease, reduced fertility, and randomization of the left/right body axis. It is caused by defects of motile cilia and sperm flagella. We screened a cohort of affected individuals that lack an obvious axonemal defect for pathogenic variants using whole exome capture, next generation sequencing, and bioinformatic analysis assuming an autosomal recessive trait. We identified one subject with an apparently homozygous nonsense variant [(c.1762C>T), p.(Arg588*)] in the uncharacterized CFAP57 gene. Interestingly, the variant results in the skipping of exon 11 (58 amino acids), which may be due to disruption of an exonic splicing enhancer. In normal human nasal epithelial cells, CFAP57 localizes throughout the ciliary axoneme. Nasal cells from the PCD patient express a shorter, mutant version of CFAP57 and the protein is not incorporated into the axoneme. The missing 58 amino acids include portions of WD repeats that may be important for loading onto the intraflagellar transport (IFT) complexes for transport or docking onto the axoneme. A reduced beat frequency and an alteration in ciliary waveform was observed. Knockdown of CFAP57 in human tracheobronchial epithelial cells (hTECs) recapitulates these findings. Phylogenetic analysis showed that CFAP57 is highly conserved in organisms that assemble motile cilia. CFAP57 is allelic with the BOP2/IDA8/FAP57 gene identified previously in Chlamydomonas reinhardtii. Two independent, insertional fap57 Chlamydomonas mutant strains show reduced swimming velocity and altered waveforms. Tandem mass tag (TMT) mass spectroscopy shows that FAP57 is missing, and the "g" inner dyneins (DHC7 and DHC3) and the "d" inner dynein (DHC2) are reduced, but the FAP57 paralog FBB7 is increased. Together, our data identify a homozygous variant in CFAP57 that causes PCD that is likely due to a defect in the inner dynein arm assembly process.
Collapse
Affiliation(s)
- Ximena M. Bustamante-Marin
- Department of Medicine, Marsico Lung Institute, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Amjad Horani
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Mihaela Stoyanova
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Wu-Lin Charng
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Mathieu Bottier
- Department of Mechanical Engineering, Washington University, St. Louis, Missouri, United States of America
| | - Patrick R. Sears
- Department of Medicine, Marsico Lung Institute, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Wei-Ning Yin
- Department of Medicine, Marsico Lung Institute, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Leigh Anne Daniels
- Department of Medicine, Marsico Lung Institute, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Hailey Bowen
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Donald F. Conrad
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Division of Genetics, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, United States of America
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Michael R. Knowles
- Department of Medicine, Marsico Lung Institute, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Lawrence E. Ostrowski
- Department of Medicine, Marsico Lung Institute, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Maimoona A. Zariwala
- Department of Pathology and Laboratory Medicine and the Marsico Lung Institute, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Susan K. Dutcher
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, United States of America
| |
Collapse
|
28
|
Zietkiewicz E, Bukowy-Bieryllo Z, Rabiasz A, Daca-Roszak P, Wojda A, Voelkel K, Rutkiewicz E, Pogorzelski A, Rasteiro M, Witt M. CFAP300: Mutations in Slavic Patients with Primary Ciliary Dyskinesia and a Role in Ciliary Dynein Arms Trafficking. Am J Respir Cell Mol Biol 2020; 61:440-449. [PMID: 30916986 DOI: 10.1165/rcmb.2018-0260oc] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Primary ciliary dyskinesia (PCD) is a rare, genetically heterogeneous hereditary disease from a class of ciliopathies. In spite of the recent progress, the genetic basis of PCD in one-third of patients remains unknown. In search for new genes and/or mutations, whole-exome sequencing was performed in 120 unrelated Polish patients with PCD, in whom no genetic cause of PCD was earlier identified. Among a number of pathogenic variants in PCD genes, mutations in CFAP300 (alias C11orf70) were detected. Extended screening in the whole Polish PCD cohort revealed the relatively high frequency (3.6%) of otherwise rare c.[198_200 del_insCC] variant, indicating that it should be included in population-specific genetic tests for PCD in Slavic populations. Immunofluorescence analysis of the respiratory epithelial cells from patients with CFAP300 mutations revealed the absence or aberrant localization of outer and inner dynein arm markers, consistent with transmission electron microscope images indicating the lack of both dynein arms. Interestingly, the disparate localization of DNAH5 and DNALI1 proteins in patients with CFAP300 mutations suggested differential mechanisms for the trafficking of preassembled outer and inner dynein arms to the axoneme. The profile of CFAP300 expression during ciliogenesis in suspension culture was consistent with its role in cilia assembly. Gene silencing experiments, performed in a model organism, Schmidtea mediterranea (flatworm), pointed to the conserved role of CFAP300 in ciliary function.
Collapse
Affiliation(s)
- Ewa Zietkiewicz
- Institute of Human Genetics, Polish Academy of Sciences, Poznan, Poland
| | | | - Alicja Rabiasz
- Institute of Human Genetics, Polish Academy of Sciences, Poznan, Poland
| | | | - Alina Wojda
- Institute of Human Genetics, Polish Academy of Sciences, Poznan, Poland
| | - Katarzyna Voelkel
- Institute of Human Genetics, Polish Academy of Sciences, Poznan, Poland
| | - Ewa Rutkiewicz
- Institute of Human Genetics, Polish Academy of Sciences, Poznan, Poland
| | - Andrzej Pogorzelski
- Department of Pneumology and Cystic Fibrosis, Institute of Tuberculosis and Lung Diseases, Rabka, Poland; and
| | - Margarida Rasteiro
- Chronic Diseases Research Centre (CEDOC), NOVA Medical School-Faculdade de Ciências Médicas, Lisbon, Portugal
| | - Michal Witt
- Institute of Human Genetics, Polish Academy of Sciences, Poznan, Poland
| |
Collapse
|
29
|
Postema MC, Carrion-Castillo A, Fisher SE, Vingerhoets G, Francks C. The genetics of situs inversus without primary ciliary dyskinesia. Sci Rep 2020; 10:3677. [PMID: 32111882 PMCID: PMC7048929 DOI: 10.1038/s41598-020-60589-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 02/13/2020] [Indexed: 12/14/2022] Open
Abstract
Situs inversus (SI), a left-right mirror reversal of the visceral organs, can occur with recessive Primary Ciliary Dyskinesia (PCD). However, most people with SI do not have PCD, and the etiology of their condition remains poorly studied. We sequenced the genomes of 15 people with SI, of which six had PCD, as well as 15 controls. Subjects with non-PCD SI in this sample had an elevated rate of left-handedness (five out of nine), which suggested possible developmental mechanisms linking brain and body laterality. The six SI subjects with PCD all had likely recessive mutations in genes already known to cause PCD. Two non-PCD SI cases also had recessive mutations in known PCD genes, suggesting reduced penetrance for PCD in some SI cases. One non-PCD SI case had recessive mutations in PKD1L1, and another in CFAP52 (also known as WDR16). Both of these genes have previously been linked to SI without PCD. However, five of the nine non-PCD SI cases, including three of the left-handers in this dataset, had no obvious monogenic basis for their condition. Environmental influences, or possible random effects in early development, must be considered.
Collapse
Affiliation(s)
- Merel C Postema
- Department of Language & Genetics, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
| | - Amaia Carrion-Castillo
- Department of Language & Genetics, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
| | - Simon E Fisher
- Department of Language & Genetics, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands.,Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Guy Vingerhoets
- Department of Experimental Psychology, Ghent University, Ghent, Belgium
| | - Clyde Francks
- Department of Language & Genetics, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands. .,Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands.
| |
Collapse
|
30
|
Rare Human Diseases: Model Organisms in Deciphering the Molecular Basis of Primary Ciliary Dyskinesia. Cells 2019; 8:cells8121614. [PMID: 31835861 PMCID: PMC6952885 DOI: 10.3390/cells8121614] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 12/02/2019] [Accepted: 12/10/2019] [Indexed: 12/17/2022] Open
Abstract
Primary ciliary dyskinesia (PCD) is a recessive heterogeneous disorder of motile cilia, affecting one per 15,000-30,000 individuals; however, the frequency of this disorder is likely underestimated. Even though more than 40 genes are currently associated with PCD, in the case of approximately 30% of patients, the genetic cause of the manifested PCD symptoms remains unknown. Because motile cilia are highly evolutionarily conserved organelles at both the proteomic and ultrastructural levels, analyses in the unicellular and multicellular model organisms can help not only to identify new proteins essential for cilia motility (and thus identify new putative PCD-causative genes), but also to elucidate the function of the proteins encoded by known PCD-causative genes. Consequently, studies involving model organisms can help us to understand the molecular mechanism(s) behind the phenotypic changes observed in the motile cilia of PCD affected patients. Here, we summarize the current state of the art in the genetics and biology of PCD and emphasize the impact of the studies conducted using model organisms on existing knowledge.
Collapse
|
31
|
Role of the Novel Hsp90 Co-Chaperones in Dynein Arms' Preassembly. Int J Mol Sci 2019; 20:ijms20246174. [PMID: 31817850 PMCID: PMC6940843 DOI: 10.3390/ijms20246174] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 12/04/2019] [Accepted: 12/04/2019] [Indexed: 12/12/2022] Open
Abstract
The outer and inner dynein arms (ODAs and IDAs) are composed of multiple subunits including dynein heavy chains possessing a motor domain. These complex structures are preassembled in the cytoplasm before being transported to the cilia. The molecular mechanism(s) controlling dynein arms’ preassembly is poorly understood. Recent evidence suggests that canonical R2TP complex, an Hsp-90 co-chaperone, in cooperation with dynein axonemal assembly factors (DNAAFs), plays a crucial role in the preassembly of ODAs and IDAs. Here, we have summarized recent data concerning the identification of novel chaperone complexes and their role in dynein arms’ preassembly and their association with primary cilia dyskinesia (PCD), a human genetic disorder.
Collapse
|
32
|
Matsushima N, Takatsuka S, Miyashita H, Kretsinger RH. Leucine Rich Repeat Proteins: Sequences, Mutations, Structures and Diseases. Protein Pept Lett 2019; 26:108-131. [PMID: 30526451 DOI: 10.2174/0929866526666181208170027] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 11/26/2018] [Accepted: 11/26/2018] [Indexed: 12/18/2022]
Abstract
Mutations in the genes encoding Leucine Rich Repeat (LRR) containing proteins are associated with over sixty human diseases; these include high myopia, mitochondrial encephalomyopathy, and Crohn's disease. These mutations occur frequently within the LRR domains and within the regions that shield the hydrophobic core of the LRR domain. The amino acid sequences of fifty-five LRR proteins have been published. They include Nod-Like Receptors (NLRs) such as NLRP1, NLRP3, NLRP14, and Nod-2, Small Leucine Rich Repeat Proteoglycans (SLRPs) such as keratocan, lumican, fibromodulin, PRELP, biglycan, and nyctalopin, and F-box/LRR-repeat proteins such as FBXL2, FBXL4, and FBXL12. For example, 363 missense mutations have been identified. Replacement of arginine, proline, or cysteine by another amino acid, or the reverse, is frequently observed. The diverse effects of the mutations are discussed based on the known structures of LRR proteins. These mutations influence protein folding, aggregation, oligomerization, stability, protein-ligand interactions, disulfide bond formation, and glycosylation. Most of the mutations cause loss of function and a few, gain of function.
Collapse
Affiliation(s)
- Norio Matsushima
- Center for Medical Education, Sapporo Medical University, Sapporo 060-8556, Japan.,Institute of Tandem Repeats, Noboribetsu 059-0464, Japan
| | - Shintaro Takatsuka
- Center for Medical Education, Sapporo Medical University, Sapporo 060-8556, Japan
| | - Hiroki Miyashita
- Institute of Tandem Repeats, Noboribetsu 059-0464, Japan.,Hokubu Rinsho Co., Ltd, Sapporo 060-0061, Japan
| | - Robert H Kretsinger
- Department of Biology, University of Virginia, Charlottesville, VA 22904, United States
| |
Collapse
|
33
|
Osinka A, Poprzeczko M, Zielinska MM, Fabczak H, Joachimiak E, Wloga D. Ciliary Proteins: Filling the Gaps. Recent Advances in Deciphering the Protein Composition of Motile Ciliary Complexes. Cells 2019; 8:cells8070730. [PMID: 31319499 PMCID: PMC6678824 DOI: 10.3390/cells8070730] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 07/12/2019] [Accepted: 07/16/2019] [Indexed: 12/15/2022] Open
Abstract
Cilia are highly evolutionarily conserved, microtubule-based cell protrusions present in eukaryotic organisms from protists to humans, with the exception of fungi and higher plants. Cilia can be broadly divided into non-motile sensory cilia, called primary cilia, and motile cilia, which are locomotory organelles. The skeleton (axoneme) of primary cilia is formed by nine outer doublet microtubules distributed on the cilium circumference. In contrast, the skeleton of motile cilia is more complex: in addition to outer doublets, it is composed of two central microtubules and several diverse multi-protein complexes that are distributed periodically along both types of microtubules. For many years, researchers have endeavored to fully characterize the protein composition of ciliary macro-complexes and the molecular basis of signal transduction between these complexes. Genetic and biochemical analyses have suggested that several hundreds of proteins could be involved in the assembly and function of motile cilia. Within the last several years, the combined efforts of researchers using cryo-electron tomography, genetic and biochemical approaches, and diverse model organisms have significantly advanced our knowledge of the ciliary structure and protein composition. Here, we summarize the recent progress in the identification of the subunits of ciliary complexes, their precise intraciliary localization determined by cryo-electron tomography data, and the role of newly identified proteins in cilia.
Collapse
Affiliation(s)
- Anna Osinka
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland
| | - Martyna Poprzeczko
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland
| | - Magdalena M Zielinska
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland
| | - Hanna Fabczak
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland
| | - Ewa Joachimiak
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland.
| | - Dorota Wloga
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland.
| |
Collapse
|
34
|
Leigh MW, Horani A, Kinghorn B, O'Connor MG, Zariwala MA, Knowles MR. Primary Ciliary Dyskinesia (PCD): A genetic disorder of motile cilia. ACTA ACUST UNITED AC 2019; 4:51-75. [PMID: 31572664 DOI: 10.3233/trd-190036] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Margaret W Leigh
- Department of Pediatrics and Marsico Lung Institute, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Amjad Horani
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri
| | - BreAnna Kinghorn
- Seattle Children's Hospital, Department of Pediatrics, University of Washington School of Medicine; Seattle, Washington
| | - Michael G O'Connor
- Department of Pediatrics, Vanderbilt University Medical Center and Monroe Carell Jr Children's Hospital at Vanderbilt, Nashville, Tennessee
| | - Maimoona A Zariwala
- Department of Pathology/Lab Medicine and Marsico Lung Institute, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Michael R Knowles
- Department of Medicine and Marsico Lung Institute, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| |
Collapse
|
35
|
Recent Developments in mRNA-Based Protein Supplementation Therapy to Target Lung Diseases. Mol Ther 2019; 27:803-823. [PMID: 30905577 DOI: 10.1016/j.ymthe.2019.02.019] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 02/25/2019] [Accepted: 02/25/2019] [Indexed: 12/20/2022] Open
Abstract
Protein supplementation therapy using in vitro-transcribed (IVT) mRNA for genetic diseases contains huge potential as a new class of therapy. From the early ages of synthetic mRNA discovery, a great number of studies showed the versatile use of IVT mRNA as a novel approach to supplement faulty or absent protein and also as a vaccine. Many modifications have been made to produce high expressions of mRNA causing less immunogenicity and more stability. Recent advancements in the in vivo lung delivery of mRNA complexed with various carriers encouraged the whole mRNA community to tackle various genetic lung diseases. This review gives a comprehensive overview of cells associated with various lung diseases and recent advancements in mRNA-based protein replacement therapy. This review also covers a brief summary of developments in mRNA modifications and nanocarriers toward clinical translation.
Collapse
|
36
|
Hammoudeh S, Gadelhak W, Janahi IA. Primary ciliary dyskinesia among Arabs: Where do we go from here? Paediatr Respir Rev 2019; 29:19-22. [PMID: 30792130 DOI: 10.1016/j.prrv.2018.09.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 08/05/2018] [Accepted: 09/07/2018] [Indexed: 01/10/2023]
Abstract
Primary ciliary dyskinesia (PCD), also known as immotile-cilia syndrome, is a rare genetic disease that is inherited in an autosomal recessive manner. Several studies have explored certain aspects of PCD in the Arab world, yet much is still lacking in terms of identifying the different characteristics of this disease. In this paper, we aim to briefly cover those studies published about PCD in Arab countries, as well as to provide recommendations and guidelines for future studies.
Collapse
Affiliation(s)
- Samer Hammoudeh
- Medical Research Center, Research Affairs, Hamad Medical Corporation, PO Box 3050, Doha, Qatar
| | - Wessam Gadelhak
- Medical Research Center, Research Affairs, Hamad Medical Corporation, PO Box 3050, Doha, Qatar
| | - Ibrahim A Janahi
- Medical Research Center, Research Affairs, Hamad Medical Corporation, PO Box 3050, Doha, Qatar; Pediatric Pulmonology, Sidra Medicine, PO Box 2699, Doha, Qatar.
| |
Collapse
|
37
|
Huizar RL, Lee C, Boulgakov AA, Horani A, Tu F, Marcotte EM, Brody SL, Wallingford JB. A liquid-like organelle at the root of motile ciliopathy. eLife 2018; 7:38497. [PMID: 30561330 PMCID: PMC6349401 DOI: 10.7554/elife.38497] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Accepted: 11/29/2018] [Indexed: 12/22/2022] Open
Abstract
Motile ciliopathies are characterized by specific defects in cilia beating that result in chronic airway disease, subfertility, ectopic pregnancy, and hydrocephalus. While many patients harbor mutations in the dynein motors that drive cilia beating, the disease also results from mutations in so-called dynein axonemal assembly factors (DNAAFs) that act in the cytoplasm. The mechanisms of DNAAF action remain poorly defined. Here, we show that DNAAFs concentrate together with axonemal dyneins and chaperones into organelles that form specifically in multiciliated cells, which we term DynAPs, for dynein axonemal particles. These organelles display hallmarks of biomolecular condensates, and remarkably, DynAPs are enriched for the stress granule protein G3bp1, but not for other stress granule proteins or P-body proteins. Finally, we show that both the formation and the liquid-like behaviors of DynAPs are disrupted in a model of motile ciliopathy. These findings provide a unifying cell biological framework for a poorly understood class of human disease genes and add motile ciliopathy to the growing roster of human diseases associated with disrupted biological phase separation.
Collapse
Affiliation(s)
- Ryan L Huizar
- Department of Molecular Biosciences, University of Texas, Austin, United States
| | - Chanjae Lee
- Department of Molecular Biosciences, University of Texas, Austin, United States
| | | | - Amjad Horani
- Department of Pediatrics, Washington University School of Medicine, St Louis, United States
| | - Fan Tu
- Department of Molecular Biosciences, University of Texas, Austin, United States
| | - Edward M Marcotte
- Department of Molecular Biosciences, University of Texas, Austin, United States
| | - Steven L Brody
- Department of Medicine, Washington University School of Medicine, St Louis, United States
| | - John B Wallingford
- Department of Molecular Biosciences, University of Texas, Austin, United States
| |
Collapse
|
38
|
Ependymal cilia beating induces an actin network to protect centrioles against shear stress. Nat Commun 2018; 9:2279. [PMID: 29891944 PMCID: PMC5996024 DOI: 10.1038/s41467-018-04676-w] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 05/04/2018] [Indexed: 02/02/2023] Open
Abstract
Multiciliated ependymal cells line all brain cavities. The beating of their motile cilia contributes to the flow of cerebrospinal fluid, which is required for brain homoeostasis and functions. Motile cilia, nucleated from centrioles, persist once formed and withstand the forces produced by the external fluid flow and by their own cilia beating. Here, we show that a dense actin network around the centrioles is induced by cilia beating, as shown by the disorganisation of the actin network upon impairment of cilia motility. Moreover, disruption of the actin network, or specifically of the apical actin network, causes motile cilia and their centrioles to detach from the apical surface of ependymal cell. In conclusion, cilia beating controls the apical actin network around centrioles; the mechanical resistance of this actin network contributes, in turn, to centriole stability. Ependymal ciliary beating contributes to the flow of cerebrospinal fluid in the brain ventricles and these cilia resist the flow forces. Here the authors show that the assembly of a dense actin network around the centrioles is induced by cilia beating to protect centrioles against the shear stress generated by ciliary motility.
Collapse
|
39
|
Ji ZY, Sha YW, Ding L, Li P. Genetic factors contributing to human primary ciliary dyskinesia and male infertility. Asian J Androl 2018; 19:515-520. [PMID: 27270341 PMCID: PMC5566842 DOI: 10.4103/1008-682x.181227] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Primary ciliary dyskinesia (PCD) is an autosomal-recessive disorder resulting from the loss of normal ciliary function. Symptoms include neonatal respiratory distress, chronic sinusitis, bronchiectasis, situs inversus, and infertility. However, only 15 PCD-associated genes have been identified to cause male infertility to date. Owing to the genetic heterogeneity of PCD, comprehensive molecular genetic testing is not considered the standard of care. Here, we provide an update of the progress on the identification of genetic factors related to PCD associated with male infertility, summarizing the underlying molecular mechanisms, and discuss the clinical implications of these findings. Further research in this field will impact the diagnostic strategy for male infertility, enabling clinicians to provide patients with informed genetic counseling, and help to adopt the best course of treatment for developing directly targeted personalized medicine.
Collapse
Affiliation(s)
- Zhi-Yong Ji
- The Center for Reproductive Medicine, Xiamen Maternity and Child Care Hospital, No. 10 Zhenhai Road, Xiamen, China
| | - Yan-Wei Sha
- The Center for Reproductive Medicine, Xiamen Maternity and Child Care Hospital, No. 10 Zhenhai Road, Xiamen, China
| | - Lu Ding
- The Center for Reproductive Medicine, Xiamen Maternity and Child Care Hospital, No. 10 Zhenhai Road, Xiamen, China
| | - Ping Li
- The Center for Reproductive Medicine, Xiamen Maternity and Child Care Hospital, No. 10 Zhenhai Road, Xiamen, China
| |
Collapse
|
40
|
C11orf70 Mutations Disrupting the Intraflagellar Transport-Dependent Assembly of Multiple Axonemal Dyneins Cause Primary Ciliary Dyskinesia. Am J Hum Genet 2018; 102:956-972. [PMID: 29727692 DOI: 10.1016/j.ajhg.2018.03.024] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Accepted: 03/23/2018] [Indexed: 01/05/2023] Open
Abstract
Primary ciliary dyskinesia (PCD) is a genetically and phenotypically heterogeneous disorder characterized by destructive respiratory disease and laterality abnormalities due to randomized left-right body asymmetry. PCD is mostly caused by mutations affecting the core axoneme structure of motile cilia that is essential for movement. Genes that cause PCD when mutated include a group that encode proteins essential for the assembly of the ciliary dynein motors and the active transport process that delivers them from their cytoplasmic assembly site into the axoneme. We screened a cohort of affected individuals for disease-causing mutations using a targeted next generation sequencing panel and identified two unrelated families (three affected children) with mutations in the uncharacterized C11orf70 gene (official gene name CFAP300). The affected children share a consistent PCD phenotype from early life with laterality defects and immotile respiratory cilia displaying combined loss of inner and outer dynein arms (IDA+ODA). Phylogenetic analysis shows C11orf70 is highly conserved, distributed across species similarly to proteins involved in the intraflagellar transport (IFT)-dependant assembly of axonemal dyneins. Paramecium C11orf70 RNAi knockdown led to combined loss of ciliary IDA+ODA with reduced cilia beating and swim velocity. Tagged C11orf70 in Paramecium and Chlamydomonas localizes mainly in the cytoplasm with a small amount in the ciliary component. IFT139/TTC21B (IFT-A protein) and FLA10 (IFT kinesin) depletion experiments show that its transport within cilia is IFT dependent. During ciliogenesis, C11orf70 accumulates at the ciliary tips in a similar distribution to the IFT-B protein IFT46. In summary, C11orf70 is essential for assembly of dynein arms and C11orf70 mutations cause defective cilia motility and PCD.
Collapse
|
41
|
ZMYND10 stabilizes intermediate chain proteins in the cytoplasmic pre-assembly of dynein arms. PLoS Genet 2018; 14:e1007316. [PMID: 29601588 PMCID: PMC5895051 DOI: 10.1371/journal.pgen.1007316] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 04/11/2018] [Accepted: 03/19/2018] [Indexed: 12/19/2022] Open
Abstract
Zinc finger MYND-type-containing 10 (ZMYND10), a cytoplasmic protein expressed in ciliated cells, causes primary ciliary dyskinesia (PCD) when mutated; however, its function is poorly understood. Therefore, in this study, we examined the roles of ZMYND10 using Zmynd10–/–mice exhibiting typical PCD phenotypes, including hydrocephalus and laterality defects. In these mutants, morphology, the number of motile cilia, and the 9+2 axoneme structure were normal; however, inner and outer dynein arms (IDA and ODA, respectively) were absent. ZMYND10 interacted with ODA components and proteins, including LRRC6, DYX1C1, and C21ORF59, implicated in the cytoplasmic pre-assembly of DAs, whose levels were significantly reduced in Zmynd10–/–mice. LRRC6 and DNAI1 were more stable when co-expressed with ZYMND10 than when expressed alone. DNAI2, which did not interact with ZMYND10, was not stabilized by co-expression with ZMYND10 alone, but was stabilized by co-expression with DNAI1 and ZMYND10, suggesting that ZMYND10 stabilized DNAI1, which subsequently stabilized DNAI2. Together, these results demonstrated that ZMYND10 regulated the early stage of DA cytoplasmic pre-assembly by stabilizing DNAI1. Dynein arm defects are linked to primary ciliary dyskinesia (PCD). ZMYND10 increased the stability of its interacting proteins and specifically regulated intermediate chain protein assembly, revealing tightly regulated mechanisms underlying dynein arm assembly and PCD-related pathogenesis. Increasing protein stability could be useful for developing PCD therapeutics.
Collapse
|
42
|
Horani A, Ustione A, Huang T, Firth AL, Pan J, Gunsten SP, Haspel JA, Piston DW, Brody SL. Establishment of the early cilia preassembly protein complex during motile ciliogenesis. Proc Natl Acad Sci U S A 2018; 115:E1221-E1228. [PMID: 29358401 PMCID: PMC5819421 DOI: 10.1073/pnas.1715915115] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Motile cilia are characterized by dynein motor units, which preassemble in the cytoplasm before trafficking into the cilia. Proteins required for dynein preassembly were discovered by finding human mutations that result in absent ciliary motors, but little is known about their expression, function, or interactions. By monitoring ciliogenesis in primary airway epithelial cells and MCIDAS-regulated induced pluripotent stem cells, we uncovered two phases of expression of preassembly proteins. An early phase, composed of HEATR2, SPAG1, and DNAAF2, preceded other preassembly proteins and was independent of MCIDAS regulation. The early preassembly proteins colocalized within perinuclear foci that also contained dynein arm proteins. These proteins also interacted based on immunoprecipitation and Förster resonance energy transfer (FRET) studies. FRET analysis of HEAT domain deletions and human mutations showed that HEATR2 interacted with itself and SPAG1 at multiple HEAT domains, while DNAAF2 interacted with SPAG1. Human mutations in HEATR2 did not affect this interaction, but triggered the formation of p62/Sequestosome-1-positive aggregates containing the early preassembly proteins, suggesting that degradation of an early preassembly complex is responsible for disease and pointing to key regions required for HEATR2 scaffold stability. We speculate that HEATR2 is an early scaffold for the initiation of dynein complex assembly in motile cilia.
Collapse
Affiliation(s)
- Amjad Horani
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110;
| | - Alessandro Ustione
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110
| | - Tao Huang
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Amy L Firth
- Department of Medicine, University of Southern California, Keck School of Medicine, Los Angeles, CA 90033
| | - Jiehong Pan
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Sean P Gunsten
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Jeffrey A Haspel
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - David W Piston
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110
| | - Steven L Brody
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| |
Collapse
|
43
|
Whole-Exome Sequencing Identified a Novel Compound Heterozygous Mutation of LRRC6 in a Chinese Primary Ciliary Dyskinesia Patient. BIOMED RESEARCH INTERNATIONAL 2018; 2018:1854269. [PMID: 29511670 PMCID: PMC5817365 DOI: 10.1155/2018/1854269] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 12/07/2017] [Indexed: 11/27/2022]
Abstract
Primary ciliary dyskinesia (PCD) is a clinical rare peculiar disorder, mainly featured by respiratory infection, tympanitis, nasosinusitis, and male infertility. Previous study demonstrated it is an autosomal recessive disease and by 2017 almost 40 pathologic genes have been identified. Among them are the leucine-rich repeat- (LRR-) containing 6 (LRRC6) codes for a 463-amino-acid cytoplasmic protein, expressed distinctively in motile cilia cells, including the testis cells and the respiratory epithelial cells. In this study, we applied whole-exome sequencing combined with PCD-known genes filtering to explore the genetic lesion of a PCD patient. A novel compound heterozygous mutation in LRRC6 (c.183T>G/p.N61K; c.179-1G>A) was identified and coseparated in this family. The missense mutation (c.183T>G/p.N61K) may lead to a substitution of asparagine by lysine at position 61 in exon 3 of LRRC6. The splice site mutation (c.179-1G>A) may cause a premature stop codon in exon 4 and decrease the mRNA levels of LRRC6. Both mutations were not present in our 200 local controls, dbSNP, and 1000 genomes. Three bioinformatics programs also predicted that both mutations are deleterious. Our study not only further supported the importance of LRRC6 in PCD, but also expanded the spectrum of LRRC6 mutations and will contribute to the genetic diagnosis and counseling of PCD patients.
Collapse
|
44
|
Li Y, Zhao L, Yuan S, Zhang J, Sun Z. Axonemal dynein assembly requires the R2TP complex component Pontin. Development 2017; 144:4684-4693. [PMID: 29113992 PMCID: PMC5769618 DOI: 10.1242/dev.152314] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 10/30/2017] [Indexed: 01/03/2023]
Abstract
Pontin (Ruvbl1) and Reptin (Ruvbl2) are closely related AAA ATPases. They are components of the Ruvbl1-Ruvbl2-Tah1-Pih1 (R2TP) complexes that function as co-chaperones for the assembly of multiple macromolecular protein complexes. Here, we show that Pontin is essential for cilia motility in both zebrafish and mouse and that Pontin and Reptin function cooperatively in this process. Zebrafish pontin mutants display phenotypes tightly associated with cilia defects, and cilia motility is lost in a number of ciliated tissues along with a reduction in the number of outer and inner dynein arms. Pontin protein is enriched in cytosolic puncta in ciliated cells in zebrafish embryos. In mouse testis, Pontin is essential for the stabilization of axonemal dynein intermediate chain 1 (DNAI1) and DNAI2, the first appreciated step in axonemal dynein arm assembly. Strikingly, multiple dynein arm assembly factors show structural similarities to either Tah1 or Pih1, the other two components of the R2TP complex. Based on these results, we propose that Pontin and Reptin function to facilitate dynein arm assembly in cytosolic foci enriched with R2TP-like complexes.
Collapse
Affiliation(s)
- Yuanyuan Li
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Lu Zhao
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Shiaulou Yuan
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06520, USA
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Jiefang Zhang
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06520, USA
- Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University of Medicine, Hangzhou 310016, Zhejiang, PR China
| | - Zhaoxia Sun
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06520, USA
| |
Collapse
|
45
|
Yamamoto R, Obbineni JM, Alford LM, Ide T, Owa M, Hwang J, Kon T, Inaba K, James N, King SM, Ishikawa T, Sale WS, Dutcher SK. Chlamydomonas DYX1C1/PF23 is essential for axonemal assembly and proper morphology of inner dynein arms. PLoS Genet 2017; 13:e1006996. [PMID: 28892495 PMCID: PMC5608425 DOI: 10.1371/journal.pgen.1006996] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 09/21/2017] [Accepted: 08/22/2017] [Indexed: 12/26/2022] Open
Abstract
Cytoplasmic assembly of ciliary dyneins, a process known as preassembly, requires numerous non-dynein proteins, but the identities and functions of these proteins are not fully elucidated. Here, we show that the classical Chlamydomonas motility mutant pf23 is defective in the Chlamydomonas homolog of DYX1C1. The pf23 mutant has a 494 bp deletion in the DYX1C1 gene and expresses a shorter DYX1C1 protein in the cytoplasm. Structural analyses, using cryo-ET, reveal that pf23 axonemes lack most of the inner dynein arms. Spectral counting confirms that DYX1C1 is essential for the assembly of the majority of ciliary inner dynein arms (IDA) as well as a fraction of the outer dynein arms (ODA). A C-terminal truncation of DYX1C1 shows a reduction in a subset of these ciliary IDAs. Sucrose gradients of cytoplasmic extracts show that preassembled ciliary dyneins are reduced compared to wild-type, which suggests an important role in dynein complex stability. The role of PF23/DYX1C1 remains unknown, but we suggest that DYX1C1 could provide a scaffold for macromolecular assembly. Most animal cells have antenna-like organelles called “cilia”. These organelles have various important functions both in motility and sensing the environment. Motile cilia are essential for moving cells as well as moving fluids across a surface. The waveform of motile cilia requires large macromolecular motors; these are the ciliary dyneins. These dynein complexes are assembled in the cytoplasm in a pathway called preassembly, and then transported into cilia. Defects in this process cause a heterogeneous human disease called primary ciliary dyskinesia that results, for example, in the disruption of the motility of respiratory tract cilia, sperm and nodal cilia during development. The mechanisms of the preassembly pathway are not fully understood. In this study, we use a mutation in the well-conserved DYX1C1/PF23 gene of the green alga, Chlamydomonas reinhardtii. Loss of a conserved domain (DYX) reveals a failure to assemble most ciliary dyneins. Preassembly of inner arm dyneins is particularly affected. We find that if dynein arms are not assembled, dynein subunits in the cytoplasm are unstable. We suggest that DYX1C1 may play a role as a scaffold for other preassembly factors and the dynein subunits.
Collapse
Affiliation(s)
- Ryosuke Yamamoto
- Department of Biological Sciences, Graduate School of Science, Osaka University, Osaka, Japan
| | - Jagan M. Obbineni
- Laboratory of Biomolecular Research, Paul Scherrer Institute, Villigen PSI, Switzerland
| | - Lea M. Alford
- Department of Biology, Oglethorpe University, Atlanta, Georgia, United States of America
| | - Takahiro Ide
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo, Japan
| | - Mikito Owa
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo, Japan
| | - Juyeon Hwang
- Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Takahide Kon
- Department of Biological Sciences, Graduate School of Science, Osaka University, Osaka, Japan
| | - Kazuo Inaba
- Shimoda Marine Research Center, University of Tsukuba, Shizuoka, Japan
| | - Noliyanda James
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Stephen M. King
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, Connecticut, United States of America
| | - Takashi Ishikawa
- Laboratory of Biomolecular Research, Paul Scherrer Institute, Villigen PSI, Switzerland
- * E-mail: (TI); (WSS); (SKD)
| | - Winfield S. Sale
- Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia, United States of America
- * E-mail: (TI); (WSS); (SKD)
| | - Susan K. Dutcher
- Shimoda Marine Research Center, University of Tsukuba, Shizuoka, Japan
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, United States of America
- * E-mail: (TI); (WSS); (SKD)
| |
Collapse
|
46
|
Reula A, Lucas JS, Moreno-Galdó A, Romero T, Milara X, Carda C, Mata-Roig M, Escribano A, Dasi F, Armengot-Carceller M. New insights in primary ciliary dyskinesia. Expert Opin Orphan Drugs 2017. [DOI: 10.1080/21678707.2017.1324780] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Ana Reula
- Universitat de Valencia, Valencia, Spain
- UCIM Department, Instituto de Investigación Sanitaria INCLIVA, Valencia, Spain
| | - JS Lucas
- Primary Ciliary Dyskinesia Centre, University of Southampton Faculty of Medicine, Southampton, UK
| | - Antonio Moreno-Galdó
- Pediatrics Pneumology and Cystic Fibrosis Unit, Hospital Vall d’Hebron, Barcelona, Spain
- Department of Pediatrics, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Teresa Romero
- Pediatrics Pneumology and Cystic Fibrosis Unit, Hospital Clínico Universitario de Valencia, Valencia, Spain
| | - Xavier Milara
- Department of Pharmacy, Universitat Jaume I, Castello de la Plana, Spain
| | | | | | - Amparo Escribano
- Universitat de Valencia, Valencia, Spain
- Pediatrics Pneumology and Cystic Fibrosis Unit, Hospital Clínico Universitario de Valencia, Valencia, Spain
| | - Francisco Dasi
- Universitat de Valencia, Valencia, Spain
- UCIM Department, Instituto de Investigación Sanitaria INCLIVA, Valencia, Spain
| | - Miguel Armengot-Carceller
- Universitat de Valencia, Valencia, Spain
- Oto-Rino- Laryngology Department, University and Polytechnic Hospital La Fe, Valencia, Spain
| |
Collapse
|
47
|
Olcese C, Patel MP, Shoemark A, Kiviluoto S, Legendre M, Williams HJ, Vaughan CK, Hayward J, Goldenberg A, Emes RD, Munye MM, Dyer L, Cahill T, Bevillard J, Gehrig C, Guipponi M, Chantot S, Duquesnoy P, Thomas L, Jeanson L, Copin B, Tamalet A, Thauvin-Robinet C, Papon JF, Garin A, Pin I, Vera G, Aurora P, Fassad MR, Jenkins L, Boustred C, Cullup T, Dixon M, Onoufriadis A, Bush A, Chung EMK, Antonarakis SE, Loebinger MR, Wilson R, Armengot M, Escudier E, Hogg C, Amselem S, Sun Z, Bartoloni L, Blouin JL, Mitchison HM. X-linked primary ciliary dyskinesia due to mutations in the cytoplasmic axonemal dynein assembly factor PIH1D3. Nat Commun 2017; 8:14279. [PMID: 28176794 PMCID: PMC5309803 DOI: 10.1038/ncomms14279] [Citation(s) in RCA: 116] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 12/15/2016] [Indexed: 01/06/2023] Open
Abstract
By moving essential body fluids and molecules, motile cilia and flagella govern respiratory mucociliary clearance, laterality determination and the transport of gametes and cerebrospinal fluid. Primary ciliary dyskinesia (PCD) is an autosomal recessive disorder frequently caused by non-assembly of dynein arm motors into cilia and flagella axonemes. Before their import into cilia and flagella, multi-subunit axonemal dynein arms are thought to be stabilized and pre-assembled in the cytoplasm through a DNAAF2-DNAAF4-HSP90 complex akin to the HSP90 co-chaperone R2TP complex. Here, we demonstrate that large genomic deletions as well as point mutations involving PIH1D3 are responsible for an X-linked form of PCD causing disruption of early axonemal dynein assembly. We propose that PIH1D3, a protein that emerges as a new player of the cytoplasmic pre-assembly pathway, is part of a complementary conserved R2TP-like HSP90 co-chaperone complex, the loss of which affects assembly of a subset of inner arm dyneins.
Collapse
Affiliation(s)
- Chiara Olcese
- Department of Genetic Medicine and Development, University of Geneva School of Medicine, CH-1211 Geneva, Switzerland
- Department of Life Sciences and Biotechnologies, University of Ferrara, 46-44121 Ferrara, Italy
| | - Mitali P. Patel
- Genetics and Genomic Medicine, University College London (UCL) Great Ormond Street Institute of Child Health, Guilford Street, London WC1N 1EH, UK
| | - Amelia Shoemark
- Paediatric Department, Royal Brompton Hospital, Sydney Street, London SW3 6NP, UK
| | - Santeri Kiviluoto
- Department of Genetics, Yale University School of Medicine, 333 Cedar Street, New Haven, Connecticut 06520, USA
| | - Marie Legendre
- Sorbonne Universités, UPMC Univ Paris 06, INSERM UMR_S933 and Service de Génétique et Embryologie Médicales, Hôpital Armand-Trousseau, AP-HP, Paris 75012, France
| | - Hywel J. Williams
- GOSgene, Genetics and Genomic Medicine Programme, University College London (UCL) Great Ormond Street Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK
| | - Cara K. Vaughan
- Institute of Structural and Molecular Biology, University College London and Birkbeck College, Biological Sciences, Malet Street, London, WC1E 7HX, UK
| | - Jane Hayward
- Genetics and Genomic Medicine, University College London (UCL) Great Ormond Street Institute of Child Health, Guilford Street, London WC1N 1EH, UK
| | - Alice Goldenberg
- Service de Génétique, CHU de Rouen, INSERM U1079, Université de Rouen, Centre Normand de Génomique Médicale et Médecine Personnalisée, Rouen, France
| | - Richard D. Emes
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Leicestershire LE12 5RD, UK
- Advanced Data Analysis Centre, University of Nottingham, Sutton Bonington Campus, Leicestershire LE12 5RD, UK
| | - Mustafa M. Munye
- Genetics and Genomic Medicine, University College London (UCL) Great Ormond Street Institute of Child Health, Guilford Street, London WC1N 1EH, UK
| | - Laura Dyer
- Genetics and Genomic Medicine, University College London (UCL) Great Ormond Street Institute of Child Health, Guilford Street, London WC1N 1EH, UK
| | - Thomas Cahill
- Paediatric Department, Royal Brompton Hospital, Sydney Street, London SW3 6NP, UK
| | - Jeremy Bevillard
- Department of Genetic Medicine and Development, University of Geneva School of Medicine, CH-1211 Geneva, Switzerland
| | - Corinne Gehrig
- Department of Genetic Medicine and Development, University of Geneva School of Medicine, CH-1211 Geneva, Switzerland
| | - Michel Guipponi
- Department of Genetic Medicine and Development, University of Geneva School of Medicine, CH-1211 Geneva, Switzerland
- Department of Genetic Medicine and Laboratory, University Hospitals of Geneva, CH-1211 Geneva, Switzerland
| | - Sandra Chantot
- Sorbonne Universités, UPMC Univ Paris 06, INSERM UMR_S933 and Service de Génétique et Embryologie Médicales, Hôpital Armand-Trousseau, AP-HP, Paris 75012, France
| | - Philippe Duquesnoy
- Sorbonne Universités, UPMC Univ Paris 06, INSERM UMR_S933 and Service de Génétique et Embryologie Médicales, Hôpital Armand-Trousseau, AP-HP, Paris 75012, France
| | - Lucie Thomas
- Sorbonne Universités, UPMC Univ Paris 06, INSERM UMR_S933 and Service de Génétique et Embryologie Médicales, Hôpital Armand-Trousseau, AP-HP, Paris 75012, France
| | - Ludovic Jeanson
- Sorbonne Universités, UPMC Univ Paris 06, INSERM UMR_S933 and Service de Génétique et Embryologie Médicales, Hôpital Armand-Trousseau, AP-HP, Paris 75012, France
| | - Bruno Copin
- Sorbonne Universités, UPMC Univ Paris 06, INSERM UMR_S933 and Service de Génétique et Embryologie Médicales, Hôpital Armand-Trousseau, AP-HP, Paris 75012, France
| | - Aline Tamalet
- Service de Pneumologie Pédiatrique, Centre National de Référence des Maladies Respiratoires Rares, Hôpital Armand-Trousseau, AP-HP, Paris 75012, France
| | - Christel Thauvin-Robinet
- Centre de génétique, CHU Dijon Bourgogne, Équipe EA4271 GAD, Université de Bourgogne, Hôpital François Mitterrand, 21000 Dijon, France
| | - Jean- François Papon
- Service d'Oto-Rhino-Laryngologie et de Chirurgie Cervico-Maxillo-Faciale, Hôpital Bicêtre, AP-HP, Le Kremlin-Bicêtre 94275, France
| | - Antoine Garin
- Service d'Oto-Rhino-Laryngologie et de Chirurgie Cervico-Maxillo-Faciale, Hôpital Bicêtre, AP-HP, Le Kremlin-Bicêtre 94275, France
| | - Isabelle Pin
- Pédiatrie, CHU Grenoble Alpes, INSERM U 1209, Institut for Advanced Biosciences, Université Grenoble Alpes, Grenoble, France
| | - Gabriella Vera
- Service de Génétique, CHU de Rouen, INSERM U1079, Université de Rouen, Centre Normand de Génomique Médicale et Médecine Personnalisée, Rouen, France
| | - Paul Aurora
- Department of Paediatric Respiratory Medicine, Great Ormond Street Hospital for Children, London WC1N 3JH, UK
- Department of Respiratory, Critical Care and Anaesthesia Unit, University College London (UCL) Great Ormond Street Institute of Child Health, Guilford Street, London WC1N 1EH, UK
| | - Mahmoud R. Fassad
- Genetics and Genomic Medicine, University College London (UCL) Great Ormond Street Institute of Child Health, Guilford Street, London WC1N 1EH, UK
- Human Genetics Department, Medical Research Institute, Alexandria University, El-Hadra Alexandria 21561, Egypt
| | - Lucy Jenkins
- North East Thames Regional Genetics Laboratory, Great Ormond Street Hospital for Children NHS Foundation Trust, Queen Square, London WC1N 3BH, UK
| | - Christopher Boustred
- North East Thames Regional Genetics Laboratory, Great Ormond Street Hospital for Children NHS Foundation Trust, Queen Square, London WC1N 3BH, UK
| | - Thomas Cullup
- North East Thames Regional Genetics Laboratory, Great Ormond Street Hospital for Children NHS Foundation Trust, Queen Square, London WC1N 3BH, UK
| | - Mellisa Dixon
- Paediatric Department, Royal Brompton Hospital, Sydney Street, London SW3 6NP, UK
| | - Alexandros Onoufriadis
- Department of Medical and Molecular Genetics, Division of Genetics and Molecular Medicine, King's College London School of Medicine, Guy's Hospital, London SE1 9RT, UK
| | - Andrew Bush
- Paediatric Department, Royal Brompton Hospital, Sydney Street, London SW3 6NP, UK
- Department of Paediatric Respiratory Medicine, National Heart and Lung Institute, Imperial College London, London SW3 6LR, UK
| | - Eddie M. K. Chung
- Population, Policy and Practice, University College London (UCL) Great Ormond Street Institute of Child Health, Guilford Street, London WC1N 1EH, UK
| | - Stylianos E. Antonarakis
- Department of Genetic Medicine and Development, University of Geneva School of Medicine, CH-1211 Geneva, Switzerland
- Department of Genetic Medicine and Laboratory, University Hospitals of Geneva, CH-1211 Geneva, Switzerland
- Institute of Genetics and Genomics in Geneva, iGE3, CH-1211 Geneva, Switzerland
| | - Michael R. Loebinger
- Host Defence Unit, Respiratory Medicine, Royal Brompton Hospital, London SW3 6NP, UK
| | - Robert Wilson
- Host Defence Unit, Respiratory Medicine, Royal Brompton Hospital, London SW3 6NP, UK
| | - Miguel Armengot
- Rhinology and Primary Ciliary Dyskinesia Unit, General and University Hospital, Medical School, Valencia University, Valencia E-46014, Spain
| | - Estelle Escudier
- Sorbonne Universités, UPMC Univ Paris 06, INSERM UMR_S933 and Service de Génétique et Embryologie Médicales, Hôpital Armand-Trousseau, AP-HP, Paris 75012, France
| | - Claire Hogg
- Paediatric Department, Royal Brompton Hospital, Sydney Street, London SW3 6NP, UK
| | - Serge Amselem
- Sorbonne Universités, UPMC Univ Paris 06, INSERM UMR_S933 and Service de Génétique et Embryologie Médicales, Hôpital Armand-Trousseau, AP-HP, Paris 75012, France
| | - Zhaoxia Sun
- Department of Genetics, Yale University School of Medicine, 333 Cedar Street, New Haven, Connecticut 06520, USA
| | - Lucia Bartoloni
- Department of Genetic Medicine and Development, University of Geneva School of Medicine, CH-1211 Geneva, Switzerland
- UOSD Laboratorio Analisi Venezia, ULSS12 Veneziana, 30121 Venezia, Italy
| | - Jean-Louis Blouin
- Department of Genetic Medicine and Development, University of Geneva School of Medicine, CH-1211 Geneva, Switzerland
- Department of Genetic Medicine and Laboratory, University Hospitals of Geneva, CH-1211 Geneva, Switzerland
| | - Hannah M. Mitchison
- Genetics and Genomic Medicine, University College London (UCL) Great Ormond Street Institute of Child Health, Guilford Street, London WC1N 1EH, UK
| |
Collapse
|
48
|
Lucas JS, Barbato A, Collins SA, Goutaki M, Behan L, Caudri D, Dell S, Eber E, Escudier E, Hirst RA, Hogg C, Jorissen M, Latzin P, Legendre M, Leigh MW, Midulla F, Nielsen KG, Omran H, Papon JF, Pohunek P, Redfern B, Rigau D, Rindlisbacher B, Santamaria F, Shoemark A, Snijders D, Tonia T, Titieni A, Walker WT, Werner C, Bush A, Kuehni CE. European Respiratory Society guidelines for the diagnosis of primary ciliary dyskinesia. Eur Respir J 2017; 49:13993003.01090-2016. [PMID: 27836958 DOI: 10.1183/13993003.01090-2016] [Citation(s) in RCA: 433] [Impact Index Per Article: 54.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 08/25/2016] [Indexed: 01/30/2023]
Abstract
The diagnosis of primary ciliary dyskinesia is often confirmed with standard, albeit complex and expensive, tests. In many cases, however, the diagnosis remains difficult despite the array of sophisticated diagnostic tests. There is no "gold standard" reference test. Hence, a Task Force supported by the European Respiratory Society has developed this guideline to provide evidence-based recommendations on diagnostic testing, especially in light of new developments in such tests, and the need for robust diagnoses of patients who might enter randomised controlled trials of treatments. The guideline is based on pre-defined questions relevant for clinical care, a systematic review of the literature, and assessment of the evidence using the GRADE (Grading of Recommendations, Assessment, Development and Evaluation) approach. It focuses on clinical presentation, nasal nitric oxide, analysis of ciliary beat frequency and pattern by high-speed video-microscopy analysis, transmission electron microscopy, genotyping and immunofluorescence. It then used a modified Delphi survey to develop an algorithm for the use of diagnostic tests to definitively confirm and exclude the diagnosis of primary ciliary dyskinesia; and to provide advice when the diagnosis was not conclusive. Finally, this guideline proposes a set of quality criteria for future research on the validity of diagnostic methods for primary ciliary dyskinesia.
Collapse
Affiliation(s)
- Jane S Lucas
- Primary Ciliary Dyskinesia Centre, University Hospital Southampton NHS Foundation Trust, Southampton, UK .,University of Southampton Faculty of Medicine, Academic Unit of Clinical and Experimental Medicine, Southampton, UK
| | - Angelo Barbato
- Primary Ciliary Dyskinesia Centre, Dept of Woman and Child Health (SDB), University of Padova, Padova, Italy
| | - Samuel A Collins
- Primary Ciliary Dyskinesia Centre, University Hospital Southampton NHS Foundation Trust, Southampton, UK.,University of Southampton Faculty of Medicine, Academic Unit of Clinical and Experimental Medicine, Southampton, UK
| | - Myrofora Goutaki
- Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland.,Dept of Paediatrics, Inselspital, University Hospital of Bern, University of Bern, Bern, Switzerland
| | - Laura Behan
- Primary Ciliary Dyskinesia Centre, University Hospital Southampton NHS Foundation Trust, Southampton, UK.,University of Southampton Faculty of Medicine, Academic Unit of Clinical and Experimental Medicine, Southampton, UK
| | - Daan Caudri
- Telethon Kids Institute, The University of Western Australia, Subiaco, Australia.,Dept of Pediatrics/Respiratory Medicine, Erasmus University, Rotterdam, The Netherlands
| | - Sharon Dell
- Division of Respiratory Medicine, The Hospital for Sick Children, Toronto, ON, Canada.,Dept of Pediatrics and Institute of Health Policy Management and Evaluation, University of Toronto, Toronto, ON, Canada
| | - Ernst Eber
- Division of Paediatric Pulmonology and Allergology, Dept of Paediatrics and Adolescent Medicine, Medical University of Graz, Graz, Austria
| | - Estelle Escudier
- Service de Génétique et Embryologie Médicales, Centre de Référence des Maladies Respiratoires Rares, Hôpital Armand Trousseau, Assistance Publique - Hôpitaux de Paris (AP-HP), Paris, France.,Inserm UMR_S933, Sorbonne Universités (UPMC Univ Paris 06), Paris, France
| | - Robert A Hirst
- Centre for PCD Diagnosis and Research, Dept of Infection, Immunity and Inflammation, University of Leicester, Leicester Royal Infirmary, Leicester, UK
| | - Claire Hogg
- Depts of Paediatrics and Paediatric Respiratory Medicine, Imperial College and Royal Brompton Hospital, London, UK
| | - Mark Jorissen
- ENT Dept, University Hospitals Leuven, Leuven, Belgium
| | - Philipp Latzin
- Dept of Paediatrics, Inselspital, University Hospital of Bern, University of Bern, Bern, Switzerland
| | - Marie Legendre
- Service de Génétique et Embryologie Médicales, Centre de Référence des Maladies Respiratoires Rares, Hôpital Armand Trousseau, Assistance Publique - Hôpitaux de Paris (AP-HP), Paris, France.,Inserm UMR_S933, Sorbonne Universités (UPMC Univ Paris 06), Paris, France
| | - Margaret W Leigh
- University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Fabio Midulla
- Paediatric Dept, Sapienza University of Rome, Rome, Italy
| | - Kim G Nielsen
- Danish PCD & chILD Centre, CF Centre Copenhagen, Paediatric Pulmonary Service, Dept of Paediatrics and Adolescent Medicine, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Heymut Omran
- Dept of Pediatrics, University Hospital Muenster, Münster Germany
| | - Jean-Francois Papon
- AP-HP, Hôpital Kremlin-Bicetre, service d'ORL et de chirurgie cervico-faciale, Le Kremlin-Bicetre, France.,Faculté de Médecine, Université Paris-Sud, Le Kremlin-Bicêtre, France
| | - Petr Pohunek
- Paediatric Dept, Second Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
| | | | - David Rigau
- Iberoamerican Cochrane Center, Barcelona, Spain
| | | | - Francesca Santamaria
- Pediatric Pulmonology, Dept of Translational Medical Sciences, Federico II University, Azienda Ospedaliera Universitaria Federico II, Naples, Italy
| | - Amelia Shoemark
- Depts of Paediatrics and Paediatric Respiratory Medicine, Imperial College and Royal Brompton Hospital, London, UK
| | - Deborah Snijders
- Primary Ciliary Dyskinesia Centre, Dept of Woman and Child Health (SDB), University of Padova, Padova, Italy
| | - Thomy Tonia
- Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland
| | - Andrea Titieni
- Dept of Pediatrics, University Hospital Muenster, Münster Germany
| | - Woolf T Walker
- Primary Ciliary Dyskinesia Centre, University Hospital Southampton NHS Foundation Trust, Southampton, UK.,University of Southampton Faculty of Medicine, Academic Unit of Clinical and Experimental Medicine, Southampton, UK
| | - Claudius Werner
- Dept of Pediatrics, University Hospital Muenster, Münster Germany
| | - Andrew Bush
- Depts of Paediatrics and Paediatric Respiratory Medicine, Imperial College and Royal Brompton Hospital, London, UK
| | - Claudia E Kuehni
- Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland
| |
Collapse
|
49
|
Munye MM, Shoemark A, Hirst RA, Delhove JM, Sharp TV, McKay TR, O'Callaghan C, Baines DL, Howe SJ, Hart SL. BMI-1 extends proliferative potential of human bronchial epithelial cells while retaining their mucociliary differentiation capacity. Am J Physiol Lung Cell Mol Physiol 2016; 312:L258-L267. [PMID: 27979861 DOI: 10.1152/ajplung.00471.2016] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 12/13/2016] [Accepted: 12/14/2016] [Indexed: 12/15/2022] Open
Abstract
Air-liquid interface (ALI) culture of primary airway epithelial cells enables mucociliary differentiation providing an in vitro model of the human airway, but their proliferative potential is limited. To extend proliferation, these cells were previously transduced with viral oncogenes or mouse Bmi-1 + hTERT, but the resultant cell lines did not undergo mucociliary differentiation. We hypothesized that use of human BMI-1 alone would increase the proliferative potential of bronchial epithelial cells while retaining their mucociliary differentiation potential. Cystic fibrosis (CF) and non-CF bronchial epithelial cells were transduced by lentivirus with BMI-1 and then their morphology, replication kinetics, and karyotype were assessed. When differentiated at ALI, mucin production, ciliary function, and transepithelial electrophysiology were measured. Finally, shRNA knockdown of DNAH5 in BMI-1 cells was used to model primary ciliary dyskinesia (PCD). BMI-1-transduced basal cells showed normal cell morphology, karyotype, and doubling times despite extensive passaging. The cell lines underwent mucociliary differentiation when cultured at ALI with abundant ciliation and production of the gel-forming mucins MUC5AC and MUC5B evident. Cilia displayed a normal beat frequency and 9+2 ultrastructure. Electrophysiological characteristics of BMI-1-transduced cells were similar to those of untransduced cells. shRNA knockdown of DNAH5 in BMI-1 cells produced immotile cilia and absence of DNAH5 in the ciliary axoneme as seen in cells from patients with PCD. BMI-1 delayed senescence in bronchial epithelial cells, increasing their proliferative potential but maintaining mucociliary differentiation at ALI. We have shown these cells are amenable to genetic manipulation and can be used to produce novel disease models for research and dissemination.
Collapse
Affiliation(s)
- Mustafa M Munye
- University College London Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Amelia Shoemark
- Imperial College London, UK Electron Microscopy Department, Royal Brompton and Harefield NHS Foundation Trust, London, United Kingdom
| | - Robert A Hirst
- Primary Ciliary Dyskinesia Centre Department of Infection, Immunity and Inflammation, University of Leicester, Leicester, United Kingdom
| | - Juliette M Delhove
- University College London Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Tyson V Sharp
- Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Tristan R McKay
- School of Healthcare Science, Manchester Metropolitan University, Manchester, United Kingdom; and
| | - Christopher O'Callaghan
- University College London Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Deborah L Baines
- Institute for Infection and Immunity, St George's, University of London, London, United Kingdom
| | - Steven J Howe
- University College London Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Stephen L Hart
- University College London Great Ormond Street Institute of Child Health, London, United Kingdom;
| |
Collapse
|
50
|
Sedykh I, TeSlaa JJ, Tatarsky RL, Keller AN, Toops KA, Lakkaraju A, Nyholm MK, Wolman MA, Grinblat Y. Novel roles for the radial spoke head protein 9 in neural and neurosensory cilia. Sci Rep 2016; 6:34437. [PMID: 27687975 PMCID: PMC5043386 DOI: 10.1038/srep34437] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 09/14/2016] [Indexed: 01/25/2023] Open
Abstract
Cilia are cell surface organelles with key roles in a range of cellular processes, including generation of fluid flow by motile cilia. The axonemes of motile cilia and immotile kinocilia contain 9 peripheral microtubule doublets, a central microtubule pair, and 9 connecting radial spokes. Aberrant radial spoke components RSPH1, 3, 4a and 9 have been linked with primary ciliary dyskinesia (PCD), a disorder characterized by ciliary dysmotility; yet, radial spoke functions remain unclear. Here we show that zebrafish Rsph9 is expressed in cells bearing motile cilia and kinocilia, and localizes to both 9 + 2 and 9 + 0 ciliary axonemes. Using CRISPR mutagenesis, we show that rsph9 is required for motility of presumptive 9 + 2 olfactory cilia and, unexpectedly, 9 + 0 neural cilia. rsph9 is also required for the structural integrity of 9 + 2 and 9 + 0 ciliary axonemes. rsph9 mutant larvae exhibit reduced initiation of the acoustic startle response consistent with hearing impairment, suggesting a novel role for Rsph9 in the kinocilia of the inner ear and/or lateral line neuromasts. These data identify novel roles for Rsph9 in 9 + 0 motile cilia and in sensory kinocilia, and establish a useful zebrafish PCD model.
Collapse
Affiliation(s)
- Irina Sedykh
- Department of Zoology, University of Wisconsin, Madison, WI, 53706, USA.,Department of Neuroscience, University of Wisconsin, Madison, WI, 53706, USA
| | - Jessica J TeSlaa
- Department of Zoology, University of Wisconsin, Madison, WI, 53706, USA.,Department of Neuroscience, University of Wisconsin, Madison, WI, 53706, USA.,Cellular and Molecular Biology Training Program, University of Wisconsin, Madison, WI, 53706, USA
| | - Rose L Tatarsky
- Department of Zoology, University of Wisconsin, Madison, WI, 53706, USA.,Department of Neuroscience, University of Wisconsin, Madison, WI, 53706, USA
| | - Abigail N Keller
- Department of Zoology, University of Wisconsin, Madison, WI, 53706, USA.,Department of Neuroscience, University of Wisconsin, Madison, WI, 53706, USA
| | - Kimberly A Toops
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA.,McPherson Eye Research Institute, University of Wisconsin, Madison, WI, 53706, USA
| | - Aparna Lakkaraju
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA.,McPherson Eye Research Institute, University of Wisconsin, Madison, WI, 53706, USA
| | - Molly K Nyholm
- Department of Zoology, University of Wisconsin, Madison, WI, 53706, USA.,Department of Neuroscience, University of Wisconsin, Madison, WI, 53706, USA
| | - Marc A Wolman
- Department of Zoology, University of Wisconsin, Madison, WI, 53706, USA
| | - Yevgenya Grinblat
- Department of Zoology, University of Wisconsin, Madison, WI, 53706, USA.,Department of Neuroscience, University of Wisconsin, Madison, WI, 53706, USA.,McPherson Eye Research Institute, University of Wisconsin, Madison, WI, 53706, USA
| |
Collapse
|