1
|
Bode HF, He L, Hjelmborg JVB, Kaprio J, Ollikainen M. Pre-diagnosis blood DNA methylation profiling of twin pairs discordant for breast cancer points to the importance of environmental risk factors. Clin Epigenetics 2024; 16:160. [PMID: 39558433 PMCID: PMC11574988 DOI: 10.1186/s13148-024-01767-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 10/23/2024] [Indexed: 11/20/2024] Open
Abstract
BACKGROUND Assessment of breast cancer (BC) risk generally relies on mammography, family history, reproductive history, and genotyping of major mutations. However, assessing the impact of environmental factors, such as lifestyle, health-related behavior, or external exposures, is still challenging. DNA methylation (DNAm), capturing both genetic and environmental effects, presents a promising opportunity. Previous studies have identified associations and predicted the risk of BC using DNAm in blood; however, these studies did not distinguish between genetic and environmental contributions to these DNAm sites. In this study, associations between DNAm and BC are assessed using paired twin models, which control for shared genetic and environmental effects, allowing testing for associations between DNAm and non-shared environmental exposures and behavior. RESULTS Pre-diagnosis blood samples of 32 monozygotic (MZ) and 76 dizygotic (DZ) female twin pairs discordant for BC were collected at the mean age of 56.0 years, with the mean age at diagnosis 66.8 years and censoring 75.2 years. We identified 212 CpGs (p < 6.4*10-8) and 15 DMRs associated with BC risk across all pairs using paired Cox proportional hazard models. All but one of the BC risks associated with CpGs were hypomethylated, and 198/212 CpGs had their DNAm associated with BC risk independent of genetic effects. According to previous literature, at least five of the top CpGs were related to estrogen signaling. Following a comprehensive two-sample Mendelian randomization analysis, we found evidence supporting a dual causal impact of DNAm at cg20145695 (gene body of NXN, rs480351) with increased risk for estrogen receptor positive BC and decreased risk for estrogen receptor negative BC. CONCLUSION While causal effects of DNAm on BC risk are rare, most of the identified CpGs associated with the risk of BC appear to be independent of genetic effects. This suggests that DNAm could serve as a valuable biomarker for environmental risk factors for BC, and may offer potential benefits as a complementary tool to current risk assessment procedures.
Collapse
Affiliation(s)
- Hannes Frederik Bode
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Tukholmankatu 8, 00290, Helsinki, Finland.
- Minerva Foundation Institute for Medical Research, Tukholmankatu 8, 00290, Helsinki, Finland.
| | - Liang He
- Research Unit for Epidemiology, Biostatistics and Biodemography, Department of Public Health, University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark
| | - Jacob V B Hjelmborg
- Research Unit for Epidemiology, Biostatistics and Biodemography, Department of Public Health, University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark
| | - Jaakko Kaprio
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Tukholmankatu 8, 00290, Helsinki, Finland
| | - Miina Ollikainen
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Tukholmankatu 8, 00290, Helsinki, Finland
- Minerva Foundation Institute for Medical Research, Tukholmankatu 8, 00290, Helsinki, Finland
| |
Collapse
|
2
|
Kim H, Barua A, Huang L, Zhou T, Bolaji M, Zachariah S, Mitra A, Jung SY, He B, Feng Q. The cancer testis antigen TDRD1 regulates prostate cancer proliferation by associating with the snRNP biogenesis machinery. Oncogene 2023:10.1038/s41388-023-02690-x. [PMID: 37041411 DOI: 10.1038/s41388-023-02690-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 03/27/2023] [Accepted: 03/29/2023] [Indexed: 04/13/2023]
Abstract
Prostate cancer is the most commonly diagnosed noncutaneous cancer in American men. TDRD1, a germ cell-specific gene, is erroneously expressed in more than half of prostate tumors, but its role in prostate cancer development remains elusive. In this study, we identified a PRMT5-TDRD1 signaling axis that regulates the proliferation of prostate cancer cells. PRMT5 is a protein arginine methyltransferase essential for small nuclear ribonucleoprotein (snRNP) biogenesis. Methylation of Sm proteins by PRMT5 is a critical initiation step for assembling snRNPs in the cytoplasm, and the final snRNP assembly takes place in Cajal bodies in the nucleus. By mass spectrum analysis, we found that TDRD1 interacts with multiple subunits of the snRNP biogenesis machinery. In the cytoplasm, TDRD1 interacts with methylated Sm proteins in a PRMT5-dependent manner. In the nucleus, TDRD1 interacts with Coilin, the scaffold protein of Cajal bodies. Ablation of TDRD1 in prostate cancer cells disrupted the integrity of Cajal bodies, affected the snRNP biogenesis, and reduced cell proliferation. Taken together, this study represents the first characterization of TDRD1 functions in prostate cancer development and suggests TDRD1 as a potential therapeutic target for prostate cancer treatment.
Collapse
Affiliation(s)
- Hong Kim
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, TX, USA
| | - Amrita Barua
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, TX, USA
| | - Luping Huang
- Immunobiology and Transplant Science Center, Houston Methodist Research Institute, Houston, TX, USA
| | - Tianyi Zhou
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, TX, USA
| | - Modupeola Bolaji
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, TX, USA
| | - Sharon Zachariah
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, TX, USA
| | - Aroshi Mitra
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, TX, USA
| | - Sung Yun Jung
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Bin He
- Immunobiology and Transplant Science Center, Houston Methodist Research Institute, Houston, TX, USA.
- Department of Medicine-Cancer Biology, Weill Cornell Medicine, Cornell University, New York, NY, 10065, USA.
| | - Qin Feng
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, TX, USA.
| |
Collapse
|
3
|
Feng Q, Kim H, Barua A, Huang L, Bolaji M, Zachariah S, Jung SY, He B, Zhou T, Mitra A. The cancer testis antigen TDRD1 regulates prostate cancer proliferation by associating with snRNP biogenesis machinery. RESEARCH SQUARE 2023:rs.3.rs-2035901. [PMID: 36865141 PMCID: PMC9980208 DOI: 10.21203/rs.3.rs-2035901/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
Prostate cancer is the most commonly diagnosed noncutaneous cancer in American men. TDRD1, a germ cell-specific gene, is erroneously expressed in more than half of prostate tumors, but its role in prostate cancer development remains elusive. In this study, we identified a PRMT5-TDRD1 signaling axis that regulates the proliferation of prostate cancer cells. PRMT5 is a protein arginine methyltransferase essential for small nuclear ribonucleoprotein (snRNP) biogenesis. Methylation of Sm proteins by PRMT5 is a critical initiation step for assembling snRNPs in the cytoplasm, and the final snRNP assembly takes place in Cajal bodies in the nucleus. By mass spectrum analysis, we found that TDRD1 interacts with multiple subunits of the snRNP biogenesis machinery. In the cytoplasm, TDRD1 interacts with methylated Sm proteins in a PRMT5-dependent manner. In the nucleus, TDRD1 interacts with Coilin, the scaffold protein of Cajal bodies. Ablation of TDRD1 in prostate cancer cells disrupted the integrity of Cajal bodies, affected the snRNP biogenesis, and reduced cell proliferation. Taken together, this study represents the first characterization of TDRD1 functions in prostate cancer development and suggests TDRD1 as a potential therapeutic target for prostate cancer treatment.
Collapse
|
4
|
Goel S, Bhatia V, Kundu S, Biswas T, Carskadon S, Gupta N, Asim M, Morrissey C, Palanisamy N, Ateeq B. Transcriptional network involving ERG and AR orchestrates Distal-less homeobox-1 mediated prostate cancer progression. Nat Commun 2021; 12:5325. [PMID: 34493733 PMCID: PMC8423767 DOI: 10.1038/s41467-021-25623-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 08/20/2021] [Indexed: 02/07/2023] Open
Abstract
Distal-less homeobox-1 (DLX1) is a well-established non-invasive biomarker for prostate cancer (PCa) diagnosis, however, its mechanistic underpinnings in disease pathobiology are not known. Here, we reveal the oncogenic role of DLX1 and show that abrogating its function leads to reduced tumorigenesis and metastases. We observed that ~60% of advanced-stage and metastatic patients display higher DLX1 levels. Moreover, ~96% of TMPRSS2-ERG fusion-positive and ~70% of androgen receptor (AR)-positive patients show elevated DLX1, associated with aggressive disease and poor survival. Mechanistically, ERG coordinates with enhancer-bound AR and FOXA1 to drive transcriptional upregulation of DLX1 in ERG-positive background. However, in ERG-negative context, AR/AR-V7 and FOXA1 suffice to upregulate DLX1. Notably, inhibiting ERG/AR-mediated DLX1 transcription using BET inhibitor (BETi) or/and anti-androgen drugs reduce its expression and downstream oncogenic effects. Conclusively, this study establishes DLX1 as a direct-target of ERG/AR with an oncogenic role and demonstrates the clinical significance of BETi and anti-androgens for DLX1-positive patients.
Collapse
Affiliation(s)
- Sakshi Goel
- grid.417965.80000 0000 8702 0100Molecular Oncology Laboratory, Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, U.P. India
| | - Vipul Bhatia
- grid.417965.80000 0000 8702 0100Molecular Oncology Laboratory, Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, U.P. India
| | - Sushmita Kundu
- grid.417965.80000 0000 8702 0100Molecular Oncology Laboratory, Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, U.P. India
| | - Tanay Biswas
- grid.417965.80000 0000 8702 0100Molecular Oncology Laboratory, Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, U.P. India
| | - Shannon Carskadon
- grid.239864.20000 0000 8523 7701Vattikuti Urology Institute, Department of Urology, Henry Ford Health System, Detroit, MI USA
| | - Nilesh Gupta
- grid.239864.20000 0000 8523 7701Department of Pathology, Henry Ford Health System, Detroit, MI USA
| | - Mohammad Asim
- grid.5475.30000 0004 0407 4824Department of Clinical and Experimental Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| | - Colm Morrissey
- grid.34477.330000000122986657Department of Urology, University of Washington, Seattle, WA USA
| | - Nallasivam Palanisamy
- grid.239864.20000 0000 8523 7701Vattikuti Urology Institute, Department of Urology, Henry Ford Health System, Detroit, MI USA
| | - Bushra Ateeq
- grid.417965.80000 0000 8702 0100Molecular Oncology Laboratory, Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, U.P. India ,grid.417965.80000 0000 8702 0100The Mehta Family Center for Engineering in Medicine, Indian Institute of Technology Kanpur, Kanpur, U.P. India
| |
Collapse
|
5
|
Wei T, Lu J, Ma T, Huang H, Kocher JP, Wang L. Re-Evaluate Fusion Genes in Prostate Cancer. Cancer Inform 2021; 20:11769351211027592. [PMID: 34234399 PMCID: PMC8226361 DOI: 10.1177/11769351211027592] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 06/06/2021] [Indexed: 11/15/2022] Open
Abstract
Background: Thousands of gene fusions have been reported in prostate cancer, but their
authenticity, incidence, and tumor specificity have not been thoroughly
evaluated, nor have their genomic characteristics been carefully
explored. Methods: We developed FusionVet to dedicatedly validate known fusion genes using
RNA-seq alignments. Using FusionVet, we re-assessed 2727 gene fusions
reported from 36 studies using the RNA-seq data generated by The Cancer
Genome Atlas (TCGA). We also explored their genomic characteristics and
interrogated the transcriptomic and DNA methylomic consequences of the E26
transformation-specific (ETS) fusions. Results: We found that nearly two-thirds of reported fusions are intra-chromosomal,
and 80% of them were formed between 2 protein-coding genes. Although most
(76%) genes were fused to only 1 partner, we observed many fusion hub genes
that have multiple fusion partners, including ETS family genes, androgen
receptor signaling pathway genes, tumor suppressor genes, and
proto-oncogenes. More than 90% of the reported fusions cannot be validated
by TCGA RNA-seq data. For those fusions that can be validated, 5% were
detected from tumor and normal samples with similar frequencies, and only 4%
(120 fusions) were tumor-specific. The occurrences of ERG,
ETV1, and ETV4 fusions were mutually
exclusive, and their fusion statuses were tightly associated with
overexpressions. Besides, we found ERG fusions were
significantly co-occurred with PTEN deletion but mutually
exclusive with common genomic alterations such as SPOP
mutation and FOXA1 mutation. Conclusions: Most of the reported fusion genes cannot be validated by TCGA samples. The
ETS family and androgen response genes were significantly enriched in
prostate cancer–specific fusion genes. Transcription activity was
significantly repressed, and the DNA methylation was significantly increased
in samples carrying ERG fusion.
Collapse
Affiliation(s)
- Ting Wei
- Division of Computational Biology, College of Medicine and Science, Mayo Clinic, Rochester, MN, USA
| | - Ji Lu
- Department of Urology, The First Hospital of Jilin University, Changchun, People's Republic of China
| | - Tao Ma
- Division of Computational Biology, College of Medicine and Science, Mayo Clinic, Rochester, MN, USA
| | - Haojie Huang
- Department of Biochemistry and Molecular Biology, College of Medicine and Science, Mayo Clinic, Rochester, MN, USA
| | - Jean-Pierre Kocher
- Division of Computational Biology, College of Medicine and Science, Mayo Clinic, Rochester, MN, USA
| | - Liguo Wang
- Division of Computational Biology, College of Medicine and Science, Mayo Clinic, Rochester, MN, USA.,Department of Biochemistry and Molecular Biology, College of Medicine and Science, Mayo Clinic, Rochester, MN, USA.,Bioinformatics and Computational Biology Graduate Program, University of Minnesota Rochester, Rochester, MN, USA
| |
Collapse
|
6
|
Lee E, Lokman NA, Oehler MK, Ricciardelli C, Grutzner F. A Comprehensive Molecular and Clinical Analysis of the piRNA Pathway Genes in Ovarian Cancer. Cancers (Basel) 2020; 13:cancers13010004. [PMID: 33374923 PMCID: PMC7792616 DOI: 10.3390/cancers13010004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 12/09/2020] [Accepted: 12/18/2020] [Indexed: 12/28/2022] Open
Abstract
Simple Summary Although ovarian cancer (OC) is one of the most lethal gynecological cancers, its development and progression remain poorly understood. The piRNA pathway is important for transposon defense and genome stability. piRNA maturation and function involve a number of genes known as the piRNA pathway genes. These genes have recently been implicated in cancer development and progression but information about their role in OC is limited. Our work aimed to provide a better understanding of the roles of piRNA pathway genes in OC. Through analyzing changes in the abundance of 10 piRNA pathway genes, we discovered gene expression differences in benign vs. cancer, chemosensitive vs. chemoresistant and post hormone treatment in OC samples and cells. Furthermore, we observed the differential effects of these genes on patient survival and OC cell invasion. Overall, this work supports a role of the piRNA pathway genes in OC progression and encourages further study of their clinical relevance. Abstract Ovarian cancer (OC) is one of the most lethal gynecological malignancies, yet molecular mechanisms underlying its origin and progression remain poorly understood. With increasing reports of piRNA pathway deregulation in various cancers, we aimed to better understand its role in OC through a comprehensive analysis of key genes: PIWIL1-4, DDX4, HENMT1, MAEL, PLD6, TDRD1,9 and mutants of PIWIL1 (P1∆17) and PIWIL2 (PL2L60). High-throughput qRT-PCR (n = 45) and CSIOVDB (n = 3431) showed differential gene expression when comparing benign ovarian tumors, low grade OC and high grade serous OC (HGSOC). Significant correlation of disparate piRNA pathway gene expression levels with better progression free, post-progression free and overall survival suggests a complex role of this pathway in OC. We discovered PIWIL3 expression in chemosensitive but not chemoresistant primary HGSOC cells, providing a potential target against chemoresistant disease. As a first, we revealed that follicle stimulating hormone increased PIWIL2 expression in OV-90 cells. PIWIL1, P1∆17, PIWIL2, PL2L60 and MAEL overexpression in vitro and in vivo decreased motility and invasion of OVCAR-3 and OV-90 cells. Interestingly, P1∆17 and PL2L60, induced increased motility and invasion compared to PIWIL1 and PIWIL2. Our results in HGSOC highlight the intricate role piRNA pathway genes play in the development of malignant neoplasms.
Collapse
Affiliation(s)
- Eunice Lee
- Department of Molecular and Biomedical Sciences, Robinson Research Institute, University of Adelaide, Adelaide, SA 5000, Australia;
| | - Noor A. Lokman
- Discipline of Obstetrics and Gynaecology, Robinson Research Institute, Adelaide Medical School, University of Adelaide, Adelaide, SA 5000, Australia; (N.A.L.); (M.K.O.)
- Future Industries Institute, University of South Australia, Mawson Lakes, SA 5095, Australia
| | - Martin K. Oehler
- Discipline of Obstetrics and Gynaecology, Robinson Research Institute, Adelaide Medical School, University of Adelaide, Adelaide, SA 5000, Australia; (N.A.L.); (M.K.O.)
- Future Industries Institute, University of South Australia, Mawson Lakes, SA 5095, Australia
- Department of Gynaecological Oncology, Royal Adelaide Hospital, Adelaide, SA 5005, Australia
| | - Carmela Ricciardelli
- Discipline of Obstetrics and Gynaecology, Robinson Research Institute, Adelaide Medical School, University of Adelaide, Adelaide, SA 5000, Australia; (N.A.L.); (M.K.O.)
- Correspondence: (C.R.); (F.G.); Tel.: +61-8-8313-8255 (C.R.); +61-8-8313-4812 (F.G.)
| | - Frank Grutzner
- Department of Molecular and Biomedical Sciences, Robinson Research Institute, University of Adelaide, Adelaide, SA 5000, Australia;
- Correspondence: (C.R.); (F.G.); Tel.: +61-8-8313-8255 (C.R.); +61-8-8313-4812 (F.G.)
| |
Collapse
|
7
|
Kaczorowski A, Tolstov Y, Falkenstein M, Vasioukhin V, Prigge ES, Geisler C, Kippenberger M, Nientiedt C, Ratz L, Kuryshev V, Herpel E, Kristiansen G, Sültmann H, Stenzinger A, Doeberitz MVK, Hohenfellner M, Duensing A, Duensing S. Rearranged ERG confers robustness to prostate cancer cells by subverting the function of p53. Urol Oncol 2020; 38:736.e1-736.e10. [PMID: 32674955 DOI: 10.1016/j.urolonc.2020.06.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 05/06/2020] [Accepted: 06/15/2020] [Indexed: 12/25/2022]
Abstract
OBJECTIVE ERG rearrangements are frequent and early events in prostate cancer. The functional role of rearranged ERG, however, is still incompletely understood. ERG rearrangements are maintained during prostate cancer progression suggesting that they may confer a selective advantage. The molecular basis of this notion is the subject of this study. METHODS A variety of immunological methods were used to characterize the effects of rearranged ERG on p53. Consequences of an overexpression of N-terminally deleted ERG on p53 function were interrogated by measuring apoptosis and cellular senescence in the presence or absence of exogenous DNA damage. Effects of N-terminally deleted ERG on the transactivation function of p53 were analyzed by qRT-PCR. RESULTS We show that overexpression of ERG leads to an increased basal level of DNA damage and a stabilization of p53 that involves a sequestration of its E3 ubiquitin ligase, MDM2, into nucleoli. A higher p53 expression was also observed in vivo in an ERG-overexpressing prostatic intraepithelial neoplasia mouse model. The correlation between ERG and p53 expression was corroborated in 163 patients with prostate cancer. ERG overexpression was found to inhibit both apoptosis and cellular senescence induced by exogenous DNA damage. Mechanistically, this protective effect of ERG involved an abrogation of the DNA damage-induced expression of p53 target genes. CONCLUSIONS By protecting tumor cells from the antiproliferative consequences of genotoxic stress, ERG may allow the survival and proliferation of genomically unstable tumor cells. Targeting ERG may therefore represent a promising strategy to suppress such adverse features during prostate cancer progression.
Collapse
Affiliation(s)
- Adam Kaczorowski
- Molecular Urooncology, Department of Urology, University Hospital Heidelberg, Im Neuenheimer Feld 517, D-69120 Heidelberg, Germany
| | - Yanis Tolstov
- Molecular Urooncology, Department of Urology, University Hospital Heidelberg, Im Neuenheimer Feld 517, D-69120 Heidelberg, Germany
| | - Michael Falkenstein
- Molecular Urooncology, Department of Urology, University Hospital Heidelberg, Im Neuenheimer Feld 517, D-69120 Heidelberg, Germany
| | - Valeri Vasioukhin
- Division of Human Biology, Fred Hutchinson Cancer Research Center, 1100 Fairview, Avenue N C3-168, Seattle, 98109, Washington
| | - Elena-Sophie Prigge
- Department of Applied Tumor Biology, Institute of Pathology, University Hospital, Heidelberg, and Clinical Cooperation Unit Applied Tumor Biology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 224, D-69120 Heidelberg, Germany
| | - Christine Geisler
- Department of Urology, University Hospital Heidelberg, and National Center for Tumor Diseases (NCT) Heidelberg, Im Neuenheimer Feld 110, D-69120 Heidelberg, Germany
| | - Maximilian Kippenberger
- Molecular Urooncology, Department of Urology, University Hospital Heidelberg, Im Neuenheimer Feld 517, D-69120 Heidelberg, Germany
| | - Cathleen Nientiedt
- Molecular Urooncology, Department of Urology, University Hospital Heidelberg, Im Neuenheimer Feld 517, D-69120 Heidelberg, Germany; Department of Medical Oncology, University Hospital Heidelberg, National Center for Tumor Diseases (NCT), Im Neuenheimer Feld 460, D-69120 Heidelberg, Germany
| | - Leonie Ratz
- Cancer Genome Research, National Center for Tumor Diseases (NCT) Heidelberg, German Cancer Research Center (DKFZ), and German Cancer Consortium (DKTK), Im Neuenheimer Feld 460, D-69120 Heidelberg, Germany
| | - Vladimir Kuryshev
- Cancer Genome Research, National Center for Tumor Diseases (NCT) Heidelberg, German Cancer Research Center (DKFZ), and German Cancer Consortium (DKTK), Im Neuenheimer Feld 460, D-69120 Heidelberg, Germany
| | - Esther Herpel
- Institute of Pathology, University Hospital Heidelberg, Im Neuenheimer Feld 224, D-69120, Heidelberg, Germany; Tissue Bank of the National Center for Tumor Diseases (NCT), Im Neuenheimer Feld 224, D-69120 Heidelberg, Germany
| | - Glen Kristiansen
- Institute of Pathology, University Hospital Bonn, Sigmund-Freud-Strasse 25, D-53127 Bonn, Germany
| | - Holger Sültmann
- Cancer Genome Research, National Center for Tumor Diseases (NCT) Heidelberg, German Cancer Research Center (DKFZ), and German Cancer Consortium (DKTK), Im Neuenheimer Feld 460, D-69120 Heidelberg, Germany
| | - Albrecht Stenzinger
- Institute of Pathology, University Hospital Heidelberg, Im Neuenheimer Feld 224, D-69120, Heidelberg, Germany
| | - Magnus von Knebel Doeberitz
- Department of Applied Tumor Biology, Institute of Pathology, University Hospital, Heidelberg, and Clinical Cooperation Unit Applied Tumor Biology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 224, D-69120 Heidelberg, Germany
| | - Markus Hohenfellner
- Department of Urology, University Hospital Heidelberg, and National Center for Tumor Diseases (NCT) Heidelberg, Im Neuenheimer Feld 110, D-69120 Heidelberg, Germany
| | - Anette Duensing
- Department of Urology, University Hospital Heidelberg, and National Center for Tumor Diseases (NCT) Heidelberg, Im Neuenheimer Feld 110, D-69120 Heidelberg, Germany; Precision Oncology of Urological Malignancies, Department of Urology, University Hospital Heidelberg, Im Neuenheimer Feld 517, D-69120 Heidelberg, Germany; Cancer Therapeutics Program, UPMC Hillman Cancer Center, 5117 Centre Avenue, Pittsburgh, 15213, Pennsylvania; Department of Pathology, University of Pittsburgh School of Medicine, 200 Lothrop Street, Pittsburgh, 15213, Pennsylvania
| | - Stefan Duensing
- Molecular Urooncology, Department of Urology, University Hospital Heidelberg, Im Neuenheimer Feld 517, D-69120 Heidelberg, Germany; Department of Urology, University Hospital Heidelberg, and National Center for Tumor Diseases (NCT) Heidelberg, Im Neuenheimer Feld 110, D-69120 Heidelberg, Germany.
| |
Collapse
|
8
|
Keino D, Mori T, Morimoto M, Kondo K, Mori T, Kinoshita A. Salvage therapy with azacitidine for pediatric acute myeloid leukemia with t(16;21)(p11;q22)/ FUS-ERG and early relapse after allogeneic blood stem cell transplantation: A case report. Clin Case Rep 2019; 7:2149-2152. [PMID: 31788268 PMCID: PMC6878075 DOI: 10.1002/ccr3.2461] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 08/05/2019] [Accepted: 08/22/2019] [Indexed: 12/18/2022] Open
Abstract
Acute myeloid leukemia (AML) with FUS-ERG has a poor prognosis regardless of allo-hematopoietic stem cell transplantation (HSCT). Maintenance therapy such as azacitidine after allo-HSCT for AML with FUS-ERG may be clinically meaningful.
Collapse
Affiliation(s)
- Dai Keino
- Department of PediatricsSt. Marianna University School of MedicineKanagawaJapan
| | - Takashi Mori
- Department of PediatricsSt. Marianna University School of MedicineKanagawaJapan
| | - Mizuho Morimoto
- Department of PediatricsSt. Marianna University School of MedicineKanagawaJapan
| | - Kensuke Kondo
- Department of PediatricsSt. Marianna University School of MedicineKanagawaJapan
| | - Tetsuya Mori
- Department of PediatricsSt. Marianna University School of MedicineKanagawaJapan
| | - Akitoshi Kinoshita
- Department of PediatricsSt. Marianna University School of MedicineKanagawaJapan
| |
Collapse
|
9
|
Gan B, Chen S, Liu H, Min J, Liu K. Structure and function of eTudor domain containing TDRD proteins. Crit Rev Biochem Mol Biol 2019; 54:119-132. [DOI: 10.1080/10409238.2019.1603199] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Bing Gan
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, PR China
| | - Sizhuo Chen
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, PR China
| | - Huan Liu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, PR China
| | - Jinrong Min
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, PR China
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Ke Liu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, PR China
| |
Collapse
|
10
|
Analysis of competing endogenous RNA network to identify the key RNAs associated with prostate adenocarcinoma. Pathol Res Pract 2018; 214:1811-1817. [PMID: 30195637 DOI: 10.1016/j.prp.2018.08.029] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 08/15/2018] [Accepted: 08/26/2018] [Indexed: 01/06/2023]
Abstract
OBJECTIVES Prostate adenocarcinoma (PRAD) is the most common cancer in men. The aim of this study was to reveal the critical long non-coding RNA (lncRNAs), microRNA (miRNAs) and mRNAs involved in the pathogenesis of PRAD. METHODS The level 3 mRNA and miRNA sequencing data of PRAD were downloaded from The Cancer Genome Atlas database. Using the edgeR package of R, the differentially expressed mRNAs (DEGs), lncRNAs (DE-lncRNAs) and miRNAs (DE-miRNAs) between PRAD and normal tissues were screened. The Cox proportional hazards regression method in the survival package was used to select the lncRNAs significantly related to clinical characteristics. After the miRNA-lncRNA and miRNA-mRNA pairs were predicted, a regulatory network was constructed by the Cytoscape software. For the DEGs involved in the network, enrichment analysis was conducted by the Fisher algorithm. RESULTS Compared to the normal samples, 25 DE-lncRNAs, 1421 DEGs and 68 DE-miRNAs were identified in the PRAD samples. The down-regulated MESTIT1 had a significantly negative correlation with overall survival. A total of 44 DE-miRNA-DE-lncRNA pairs were predicted, including the PCA3-miR-96 and UCA1-miR-96. Meanwhile, 33 DEGs targeted by miRNAs (for example, miR-96-CYP19A1) were found to correlate with cancers. CONCLUSION Functional enrichment analysis showed that the reproductive development process (which involved TDRD1) was enriched for the DEGs implicated in the lncRNA-miRNA-mRNA regulatory network. The lncRNAs MESTIT1, PCA3, and UCA1; mRNAs CYP19A1 and TDRD1; as well as miR-96 might affect the pathogenesis of PRAD.
Collapse
|
11
|
Domain retention in transcription factor fusion genes and its biological and clinical implications: a pan-cancer study. Oncotarget 2017; 8:110103-110117. [PMID: 29299133 PMCID: PMC5746368 DOI: 10.18632/oncotarget.22653] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 10/25/2017] [Indexed: 12/31/2022] Open
Abstract
Genomic rearrangements involving transcription factors (TFs) can form fusion proteins resulting in either enhanced, weakened, or even loss of TF activity. Functional domain (FD) retention is a critical factor in the activity of transcription factor fusion genes (TFFGs). A systematic investigation of FD retention in TFFGs and their outcome (e.g. expression changes) in a pan-cancer study has not yet been completed. Here, we examined the FD retention status in 386 TFFGs across 13 major cancer types and identified 83 TFFGs involving 67 TFs that retained FDs. To measure the potential biological relevance of TFs in TFFGs, we introduced a Major Active Isofusion Index (MAII) and built a prioritized TFFG network using MAII scores and the observed frequency of fusion positive samples. Interestingly, the four TFFGs (PML-RARA, RUNX1-RUNX1T1, TMPRSS2-ERG, and SFPQ-TFE3) with the highest MAII scores showed 50 differentially expressed target genes (DETGs) in fusion-positive versus fusion-negative cancer samples. DETG analysis revealed that they were involved in tumorigenesis-related processes in each cancer type. PLAU, which encodes plasminogen activator urokinase and serves as a biomarker for tumor invasion, was found to be consistently activated in the samples with the highest MAII scores. Among the 50 DETGs, 21 were drug targetable genes. Fourteen of these 21 DETGs were expressed in acute myeloid leukemia (AML) samples. Accordingly, we constructed an AML-specific TFFG network, which included 38 DETGs in RUNX1-RUNX1T1 or PML-RARA positive samples. In summary, this study revealed several TFFGs and their potential target genes, and provided insights into the clinical implications of TFFGs.
Collapse
|
12
|
Xiao L, Lanz RB, Frolov A, Castro PD, Zhang Z, Dong B, Xue W, Jung SY, Lydon JP, Edwards DP, Mancini MA, Feng Q, Ittmann MM, He B. The Germ Cell Gene TDRD1 as an ERG Target Gene and a Novel Prostate Cancer Biomarker. Prostate 2016; 76:1271-84. [PMID: 27272765 DOI: 10.1002/pros.23213] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 05/18/2016] [Indexed: 01/02/2023]
Abstract
BACKGROUND TMPRSS2-ERG fusion occurs in about half of prostate cancers and results in over-expression of the oncogenic ERG protein in the prostate. The mechanism by which ERG contributes to prostate cancer initiation and progression remains largely unknown. Because ERG is a transcriptional activator, we reasoned that the target genes regulated by ERG could contribute to prostate cancer development. METHODS In a search for ERG target genes, we took advantage of published datasets from the MSKCC Prostate Oncogene Project, in which a comprehensive analysis was applied to define transcriptomes in 150 prostate tumors. We retrieved the mRNA expression dataset, split them based on ERG expression, and identified genes whose expression levels are associated with ERG mRNA levels. RESULTS mRNA expression levels of 21 genes were found to be significantly increased, while for one gene it was decreased in ERG-positive prostate tumors. Among them, the expression of TDRD1 was the most significantly increased in ERG-positive tumors. Among 131 primary prostate tumors which were primarily from European American patients, TDRD1 is over-expressed in 68% of samples, while ERG is overexpressed in 48% of samples, suggesting an additional ERG-independent mechanism of TDRD1 overexpression. In African American prostate tumors, TDRD1 mRNA is expressed in 44%, while ERG is expressed in 24% of samples. In normal tissues, TDRD1 mRNA is exclusively expressed in germ cells and its protein is also known as cancer/testis antigen 41.1 (CT41.1). We generated a mouse monoclonal antibody that recognizes human TDRD1 protein with high specificity and sensitivity. By Western blot analysis and immunohistochemistry (IHC) staining, we demonstrate that TDRD1 protein is expressed in the majority of human prostate tumors, but not in normal prostate tissue. Finally, TDRD1 is not induced in the prostate of ERG overexpression transgenic mice, suggesting that such model does not fully recapitulate the TMPRSS2/ERG fusion-dependent human prostate cancer development. CONCLUSIONS Our results suggest TDRD1 as a novel prostate cancer biomarker. As an ERG target gene, TDRD1 might play an important role in human prostate cancer development, and as a cancer/testis antigen, TDRD1 might have long-term potential to be a therapeutic target for prostate cancer immunotherapy. Prostate 76:1271-1284, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Lijuan Xiao
- Departments of Medicine-Hematology and Oncology, Baylor College of Medicine, Houston, Texas
| | - Rainer B Lanz
- Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| | - Anna Frolov
- Pathology and Immunology, Baylor College of Medicine, Houston, Texas
| | - Patricia D Castro
- Pathology and Immunology, Baylor College of Medicine, Houston, Texas
| | - Zheng Zhang
- Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| | - Baijun Dong
- Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Wei Xue
- Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Sung Yun Jung
- Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| | - John P Lydon
- Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| | - Dean P Edwards
- Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
- Pathology and Immunology, Baylor College of Medicine, Houston, Texas
| | - Michael A Mancini
- Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| | - Qin Feng
- Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| | - Michael M Ittmann
- Pathology and Immunology, Baylor College of Medicine, Houston, Texas
| | - Bin He
- Departments of Medicine-Hematology and Oncology, Baylor College of Medicine, Houston, Texas
- Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
13
|
Stratification of aggressive prostate cancer from indolent disease—Prospective controlled trial utilizing expression of 11 genes in apparently benign tissue. Urol Oncol 2016; 34:255.e15-22. [DOI: 10.1016/j.urolonc.2015.12.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 12/21/2015] [Accepted: 12/22/2015] [Indexed: 11/22/2022]
|
14
|
Alinezhad S, Väänänen RM, Mattsson J, Li Y, Tallgrén T, Tong Ochoa N, Bjartell A, Åkerfelt M, Taimen P, Boström PJ, Pettersson K, Nees M. Validation of Novel Biomarkers for Prostate Cancer Progression by the Combination of Bioinformatics, Clinical and Functional Studies. PLoS One 2016; 11:e0155901. [PMID: 27196083 PMCID: PMC4873225 DOI: 10.1371/journal.pone.0155901] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 05/05/2016] [Indexed: 01/09/2023] Open
Abstract
The identification and validation of biomarkers for clinical applications remains an important issue for improving diagnostics and therapy in many diseases, including prostate cancer. Gene expression profiles are routinely applied to identify diagnostic and predictive biomarkers or novel targets for cancer. However, only few predictive markers identified in silico have also been validated for clinical, functional or mechanistic relevance in disease progression. In this study, we have used a broad, bioinformatics-based approach to identify such biomarkers across a spectrum of progression stages, including normal and tumor-adjacent, premalignant, primary and late stage lesions. Bioinformatics data mining combined with clinical validation of biomarkers by sensitive, quantitative reverse-transcription PCR (qRT-PCR), followed by functional evaluation of candidate genes in disease-relevant processes, such as cancer cell proliferation, motility and invasion. From 300 initial candidates, eight genes were selected for validation by several layers of data mining and filtering. For clinical validation, differential mRNA expression of selected genes was measured by qRT-PCR in 197 clinical prostate tissue samples including normal prostate, compared against histologically benign and cancerous tissues. Based on the qRT-PCR results, significantly different mRNA expression was confirmed in normal prostate versus malignant PCa samples (for all eight genes), but also in cancer-adjacent tissues, even in the absence of detectable cancer cells, thus pointing to the possibility of pronounced field effects in prostate lesions. For the validation of the functional properties of these genes, and to demonstrate their putative relevance for disease-relevant processes, siRNA knock-down studies were performed in both 2D and 3D organotypic cell culture models. Silencing of three genes (DLX1, PLA2G7 and RHOU) in the prostate cancer cell lines PC3 and VCaP by siRNA resulted in marked growth arrest and cytotoxicity, particularly in 3D organotypic cell culture conditions. In addition, silencing of PLA2G7, RHOU, ACSM1, LAMB1 and CACNA1D also resulted in reduced tumor cell invasion in PC3 organoid cultures. For PLA2G7 and RHOU, the effects of siRNA silencing on proliferation and cell-motility could also be confirmed in 2D monolayer cultures. In conclusion, DLX1 and RHOU showed the strongest potential as useful clinical biomarkers for PCa diagnosis, further validated by their functional roles in PCa progression. These candidates may be useful for more reliable identification of relapses or therapy failures prior to the recurrence local or distant metastases.
Collapse
Affiliation(s)
- Saeid Alinezhad
- Department of Biotechnology, University of Turku, Turku, Finland
- * E-mail:
| | | | - Jesse Mattsson
- Department of Biotechnology, University of Turku, Turku, Finland
| | - Yifeng Li
- Department of Biotechnology, University of Turku, Turku, Finland
| | - Terhi Tallgrén
- Department of Biotechnology, University of Turku, Turku, Finland
| | | | - Anders Bjartell
- Department of Clinical Sciences, Div. of Urological Cancers, Lund University, Skåne University Hospital, Malmö, Sweden
| | - Malin Åkerfelt
- Turku Centre for Biotechnology and Department of Cell Biology and Anatomy, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Pekka Taimen
- Department of Pathology, University of Turku and Turku University Hospital, Turku, Finland
| | - Peter J. Boström
- Department of Urology, Turku University Hospital, Turku, Finland
| | - Kim Pettersson
- Department of Biotechnology, University of Turku, Turku, Finland
| | - Matthias Nees
- Turku Centre for Biotechnology and Department of Cell Biology and Anatomy, Institute of Biomedicine, University of Turku, Turku, Finland
| |
Collapse
|
15
|
Ning B, Li W, Zhao W, Wang R. Targeting epigenetic regulations in cancer. Acta Biochim Biophys Sin (Shanghai) 2016; 48:97-109. [PMID: 26508480 PMCID: PMC4689160 DOI: 10.1093/abbs/gmv116] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 09/01/2015] [Indexed: 12/22/2022] Open
Abstract
Epigenetic regulation of gene expression is a dynamic and reversible process with DNA methylation, histone modifications, and chromatin remodeling. Recently, groundbreaking studies have demonstrated the importance of DNA and chromatin regulatory proteins from different aspects, including stem cell, development, and tumor genesis. Abnormal epigenetic regulation is frequently associated with diseases and drugs targeting DNA methylation and histone acetylation have been approved for cancer therapy. Although the network of epigenetic regulation is more complex than people expect, new potential druggable chromatin-associated proteins are being discovered and tested for clinical application. Here we review the key proteins that mediate epigenetic regulations through DNA methylation, the acetylation and methylation of histones, and the reader proteins that bind to modified histones. We also discuss cancer associations and recent progress of pharmacological development of these proteins.
Collapse
Affiliation(s)
- Bo Ning
- Center for Inflammation and Epigenetics, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Wenyuan Li
- Center for Inflammation and Epigenetics, Houston Methodist Research Institute, Houston, TX 77030, USA Xiangya Hospital, Xiangya School of Medicine, Central South University, Changsha 410008, China
| | - Wei Zhao
- Center for Inflammation and Epigenetics, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Rongfu Wang
- Center for Inflammation and Epigenetics, Houston Methodist Research Institute, Houston, TX 77030, USA Department of Microbiology and Immunology, Weill Cornell Medical College, Cornell University, New York, NY 10065, USA
| |
Collapse
|
16
|
Leyten GH, Hessels D, Smit FP, Jannink SA, de Jong H, Melchers WJ, Cornel EB, de Reijke TM, Vergunst H, Kil P, Knipscheer BC, Hulsbergen-van de Kaa CA, Mulders PF, van Oort IM, Schalken JA. Identification of a Candidate Gene Panel for the Early Diagnosis of Prostate Cancer. Clin Cancer Res 2015; 21:3061-70. [DOI: 10.1158/1078-0432.ccr-14-3334] [Citation(s) in RCA: 161] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 03/08/2015] [Indexed: 11/16/2022]
|
17
|
Litovkin K, Joniau S, Lerut E, Laenen A, Gevaert O, Spahn M, Kneitz B, Isebaert S, Haustermans K, Beullens M, Van Eynde A, Bollen M. Methylation of PITX2, HOXD3, RASSF1 and TDRD1 predicts biochemical recurrence in high-risk prostate cancer. J Cancer Res Clin Oncol 2014; 140:1849-61. [PMID: 24938434 DOI: 10.1007/s00432-014-1738-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 06/05/2014] [Indexed: 10/25/2022]
Abstract
PURPOSE To explore differential methylation of HAAO, HOXD3, LGALS3, PITX2, RASSF1 and TDRD1 as a molecular tool to predict biochemical recurrence (BCR) in patients with high-risk prostate cancer (PCa). METHODS A multiplexed nested methylation-specific PCR was applied to quantify promoter methylation of the selected markers in five cell lines, 42 benign prostatic hyperplasia (BPH) and 71 high-risk PCa tumor samples. Uni- and multivariate Cox regression models were used to assess the importance of the methylation level in predicting BCR. RESULTS A PCa-specific methylation marker HAAO in combination with HOXD3 and a hypomethylation marker TDRD1 distinguished PCa samples (>90 % of tumor cells each) from BPH with a sensitivity of 0.99 and a specificity of 0.95. High methylation of PITX2, HOXD3 and RASSF1, as well as low methylation of TDRD1, appeared to be significantly associated with a higher risk for BCR (HR 3.96, 3.44, 2.80 and 2.85, correspondingly) after correcting for established risk factors. When DNA methylation was treated as a continuous variable, a two-gene model PITX2 × 0.020677 + HOXD3 × 0.0043132 proved to be the best predictor of BCR (HR 4.85) compared with the individual markers. This finding was confirmed in an independent set of 52 high-risk PCa tumor samples (HR 11.89). CONCLUSIONS Differential promoter methylation of HOXD3, PITX2, RASSF1 and TDRD1 emerges as an independent predictor of BCR in high-risk PCa patients. A two-gene continuous DNA methylation model "PITX2 × 0.020677 + HOXD3 × 0.0043132" is a better predictor of BCR compared with individual markers.
Collapse
Affiliation(s)
- Kirill Litovkin
- Laboratory of Biosignaling and Therapeutics, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium,
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
High-risk prostate cancer: A disease of genomic instability. Urol Oncol 2014; 32:1101-7. [DOI: 10.1016/j.urolonc.2014.02.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 02/04/2014] [Accepted: 02/05/2014] [Indexed: 01/01/2023]
|
19
|
Gayatri S, Bedford MT. Readers of histone methylarginine marks. BIOCHIMICA ET BIOPHYSICA ACTA 2014; 1839:702-10. [PMID: 24583552 PMCID: PMC4099268 DOI: 10.1016/j.bbagrm.2014.02.015] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2013] [Revised: 01/31/2014] [Accepted: 02/14/2014] [Indexed: 11/15/2022]
Abstract
Arginine methylation is a common posttranslational modification (PTM) that alters roughly 0.5% of all arginine residues in the cells. There are three types of arginine methylation: monomethylarginine (MMA), asymmetric dimethylarginine (ADMA), and symmetric dimethylarginine (SDMA). These three PTMs are enriched on RNA-binding proteins and on histones, and also impact signal transduction cascades. To date, over thirty arginine methylation sites have been cataloged on the different core histones. These modifications alter protein structure, impact interactions with DNA, and also generate docking sites for effector molecules. The primary "readers" of methylarginine marks are Tudor domain-containing proteins. The complete family of thirty-six Tudor domain-containing proteins has yet to be fully characterized, but at least ten bind methyllysine motifs and eight bind methylarginine motifs. In this review, we will highlight the biological roles of the Tudor domains that interact with arginine methylated motifs, and also address other types of interactions that are regulated by these particular PTMs. This article is part of a Special Issue entitled: Molecular mechanisms of histone modification function.
Collapse
Affiliation(s)
- Sitaram Gayatri
- Department of Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA
| | - Mark T Bedford
- Department of Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA.
| |
Collapse
|
20
|
Dhanak D, Jackson P. Development and classes of epigenetic drugs for cancer. Biochem Biophys Res Commun 2014; 455:58-69. [PMID: 25016182 DOI: 10.1016/j.bbrc.2014.07.006] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Revised: 06/23/2014] [Accepted: 07/01/2014] [Indexed: 12/16/2022]
Abstract
Emerging evidence supports an important, etiologic role for epigenetic modifications in cancer. Various post translational modifications of histone proteins together with DNA methylation constitute an 'epigenetic code' regulating the transcriptional status of the cell and aberrant writing and/or interpretation of the code can contribute to a dysregulated, hyperproliferative state. In some cases, epigenetic deregulation has also been reported to result in tumor initiation. The discovery of somatic mutations in some chromatin binding proteins associated with subtypes of lymphomas and the ability to regulate expression of proto oncogenes such as Myc has spurred the development of specific small molecule modulators of histone binding proteins. Several of these compounds have entered clinical development for the treatment of heme malignancies. This review summarizes progress in the discovery and advancement of epigenetic therapeutics for cancer and provides a perspective for future development.
Collapse
Affiliation(s)
- Dashyant Dhanak
- Discovery Sciences, Janssen Pharmaceuticals, 1400 McKean Road, Spring House, PA 19477, USA.
| | - Paul Jackson
- Discovery Sciences, Janssen Pharmaceuticals, 1400 McKean Road, Spring House, PA 19477, USA
| |
Collapse
|
21
|
Grupp K, Ospina-Klinck D, Tsourlakis MC, Koop C, Wilczak W, Adam M, Simon R, Sauter G, Izbicki JR, Graefen M, Huland H, Steurer S, Schlomm T, Minner S, Quaas A. NY-ESO-1 expression is tightly linked to TMPRSS2-ERG fusion in prostate cancer. Prostate 2014; 74:1012-22. [PMID: 24789172 DOI: 10.1002/pros.22816] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 04/02/2014] [Indexed: 11/07/2022]
Abstract
BACKGROUND NY-ESO-1 has been suggested as therapeutic cancer vaccine in prostate cancer. This study was undertaken to explore the relationship of NY-ESO-1 with tumor phenotype, biochemical recurrence, and molecular subgroups in hormone-naive prostate cancers. METHODS NY-ESO-1 immunohistochemistry was analyzed on a tissue microarray containing 11,152 prostate cancer samples. Results were compared to clinically follow-up data, ERG status, and deletions on PTEN, 3p13, 5q21, and 6q15. RESULTS NY-ESO-1 expression was absent in benign prostate glands. In prostate cancer, NY-ESO-1 positivity was found 8.8% of our 8,761 interpretable tumors including 5.8% with weak, 2.5% with moderate, and 0.5% with strong expression. There was a threefold higher rate of NY-ESO-1 expression in ERG fusion positive tumors than in ERG negative cancers (P < 0.0001). There was a significant association with early PSA recurrence, which was largely limited to ERG positive cancers. Within the ERG positive subgroup, high NY-ESO-1 expression was associated with early biochemical recurrence (P = 0.0002) and high Gleason grade (P < 0.0001). In ERG negative cancers, NY-ESO-1 expression was also linked to PTEN (P = 0.0012) and 6q15 deletions (P = 0.0005). CONCLUSIONS Our observations indicate a tight link of NY-ESO-1 expression to ERG activation and (to a lesser extent) PTEN- and 6q15-deletions in prostate cancer. The impact of these interactions on the likelihood of response to immunotherapy is unclear. The prognostic impact of NY-ESO-1 expression is little and not independent of histologic variables.
Collapse
Affiliation(s)
- Katharina Grupp
- General, Visceral and Thoracic Surgery Department and Clinic, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Farooqi AA, Hou MF, Chen CC, Wang CL, Chang HW. Androgen receptor and gene network: Micromechanics reassemble the signaling machinery of TMPRSS2-ERG positive prostate cancer cells. Cancer Cell Int 2014; 14:34. [PMID: 24739220 PMCID: PMC4002202 DOI: 10.1186/1475-2867-14-34] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2013] [Accepted: 04/08/2014] [Indexed: 12/12/2022] Open
Abstract
Prostate cancer is a gland tumor in the male reproductive system. It is a multifaceted and genomically complex disease. Transmembrane protease, serine 2 and v-ets erythroblastosis virus E26 homolog (TMPRSS2-ERG) gene fusions are the common molecular signature of prostate cancer. Although tremendous advances have been made in unraveling various facets of TMPRSS2-ERG-positive prostate cancer, many research findings must be sequentially collected and re-interpreted. It is important to understand the activation or repression of target genes and proteins in response to various stimuli and the assembly in signal transduction in TMPRSS2-ERG fusion-positive prostate cancer cells. Accordingly, we divide this multi-component review ofprostate cancer cells into several segments: 1) The role of TMPRSS2-ERG fusion in genomic instability and methylated regulation in prostate cancer and normal cells; 2) Signal transduction cascades in TMPRSS2-ERG fusion-positive prostate cancer; 3) Overexpressed genes in TMPRSS2-ERG fusion-positive prostate cancer cells; 4) miRNA mediated regulation of the androgen receptor (AR) and its associated protein network; 5) Quantitative control of ERG in prostate cancer cells; 6) TMPRSS2-ERG encoded protein targeting; In conclusion, we provide a detailed understanding of TMPRSS2-ERG fusion related information in prostate cancer development to provide a rationale for exploring TMPRSS2-ERG fusion-mediated molecular network machinery.
Collapse
Affiliation(s)
- Ammad Ahmad Farooqi
- Laboratory for Translational Oncology and Personalized Medicine, Rashid Latif Medical College, 35 Km Ferozepur Road, Lahore, Pakistan
| | - Ming-Feng Hou
- Cancer Center, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan ; Institute of Clinical Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan ; Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung, Taiwan
| | - Chien-Chi Chen
- Bioresource Collection and Research Center, Food Industry Research and Development Institute, Hsinchu, Taiwan
| | - Chun-Lin Wang
- Bioresource Collection and Research Center, Food Industry Research and Development Institute, Hsinchu, Taiwan
| | - Hsueh-Wei Chang
- Cancer Center, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan ; Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung, Taiwan ; Translational Research Center, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan ; Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
23
|
Pan J, Chen Y, Mo C, Wang D, Chen J, Mao X, Guo S, Zhuang J, Qiu S. Association of DSC3 mRNA down-regulation in prostate cancer with promoter hypermethylation and poor prognosis. PLoS One 2014; 9:e92815. [PMID: 24664224 PMCID: PMC3963953 DOI: 10.1371/journal.pone.0092815] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Accepted: 02/26/2014] [Indexed: 01/21/2023] Open
Abstract
Background Desmocollin 3 (DSC3), a member of the cadherin gene superfamily, is associated with pathogenesis of some cancers, but its role in prostate cancer (PCa) remains largely unknown. Methods DSC3 gene expression level in available PCa microarray dataset was examined using the Oncomine database. DSC3 transcript expression in prostate cell line panel and an independent tissue cohort (n = 52) was estimated by quantitative PCR (Q-PCR). Epigenetic status of DSC3 gene promoter in PCa was investigated by uploading three dataset (ENCODE Infinium 450K array data and two methylation sequencing) in UCSC genome browser. While pyrosequencing analysis measured promoter DNA methylation, Q-PCR estimates were obtained for DSC3 transcript re-expression after 5-Aza-deoxycytidine (5-Aza) treatment. Clinical relevance of DSC3 expression was studied by Kaplan-Meier survival analysis. Finally, functional studies monitoring cell proliferation, migration and invasion were performed in prostate cell lines after siRNA mediated DSC3 knockdown or following 5-Aza induced re-expression. EMT markers Vimentin and E-cadherin expression was measured by Western Blot. Results Microarray data analyses revealed a significant decrease in DSC3 transcript expression in PCa, compared to benign samples. Q-PCR analysis of an independent cohort revealed DSC3 transcript down-regulation, both in PCa cell lines and tumor tissues but not in their benign counterpart. Examination of available NGS and Infinium data identified a role for epigenetic regulation DSC3 mRNA reduction in PCa. Pyrosequencing confirmed the increased DSC3 promoter methylation in cancer cell lines and restoration of transcript expression upon 5-Aza treatment further corroborated this epigenetic silencing mechanism. Importantly Kaplan-Meier analysis of an outcome cohort showed an association between loss of DSC3 expression and significantly increased risk of biochemical recurrence. Functional studies indicate a role for epithelial–mesenchymal transition in DSC3 regulated cell migration/invasion. Conclusion Taken together, our data suggests that DNA methylation contributes to down-regulation of DSC3 in prostate cancer, and loss of DSC3 predicts poor clinical outcome.
Collapse
MESH Headings
- Cell Line, Tumor
- DNA Methylation
- DNA, Neoplasm/genetics
- DNA, Neoplasm/metabolism
- Desmocollins/biosynthesis
- Desmocollins/genetics
- Down-Regulation/genetics
- Epigenesis, Genetic/genetics
- Gene Expression Regulation, Neoplastic
- Humans
- Male
- Promoter Regions, Genetic
- Prostatic Neoplasms/metabolism
- Prostatic Neoplasms/mortality
- RNA, Messenger/biosynthesis
- RNA, Messenger/genetics
- RNA, Neoplasm/biosynthesis
- RNA, Neoplasm/genetics
Collapse
Affiliation(s)
- Jincheng Pan
- Department of Urology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yu Chen
- Department of Urology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Chengqiang Mo
- Department of Urology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Daohu Wang
- Department of Urology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Junxing Chen
- Department of Urology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Xiaopeng Mao
- Department of Urology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Shengjie Guo
- Department of Urology, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Jintao Zhuang
- Department of Urology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Shaopeng Qiu
- Department of Urology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
- * E-mail:
| |
Collapse
|
24
|
Wagner T, Robaa D, Sippl W, Jung M. Mind the Methyl: Methyllysine Binding Proteins in Epigenetic Regulation. ChemMedChem 2014; 9:466-83. [DOI: 10.1002/cmdc.201300422] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Indexed: 11/07/2022]
|