1
|
Goh KGK, Desai D, Thapa R, Prince D, Acharya D, Sullivan MJ, Ulett GC. An opportunistic pathogen under stress: how Group B Streptococcus responds to cytotoxic reactive species and conditions of metal ion imbalance to survive. FEMS Microbiol Rev 2024; 48:fuae009. [PMID: 38678005 PMCID: PMC11098048 DOI: 10.1093/femsre/fuae009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 03/26/2024] [Accepted: 04/16/2024] [Indexed: 04/29/2024] Open
Abstract
Group B Streptococcus (GBS; also known as Streptococcus agalactiae) is an opportunistic bacterial pathogen that causes sepsis, meningitis, pneumonia, and skin and soft tissue infections in neonates and healthy or immunocompromised adults. GBS is well-adapted to survive in humans due to a plethora of virulence mechanisms that afford responses to support bacterial survival in dynamic host environments. These mechanisms and responses include counteraction of cell death from exposure to excess metal ions that can cause mismetallation and cytotoxicity, and strategies to combat molecules such as reactive oxygen and nitrogen species that are generated as part of innate host defence. Cytotoxicity from reactive molecules can stem from damage to proteins, DNA, and membrane lipids, potentially leading to bacterial cell death inside phagocytic cells or within extracellular spaces within the host. Deciphering the ways in which GBS responds to the stress of cytotoxic reactive molecules within the host will benefit the development of novel therapeutic and preventative strategies to manage the burden of GBS disease. This review summarizes knowledge of GBS carriage in humans and the mechanisms used by the bacteria to circumvent killing by these important elements of host immune defence: oxidative stress, nitrosative stress, and stress from metal ion intoxication/mismetallation.
Collapse
Affiliation(s)
- Kelvin G K Goh
- School of Pharmacy and Medical Sciences, and Menzies Health Institute Queensland, Griffith University, Parklands Drive, Southport, Gold Coast Campus, QLD 4222, Australia
| | - Devika Desai
- School of Pharmacy and Medical Sciences, and Menzies Health Institute Queensland, Griffith University, Parklands Drive, Southport, Gold Coast Campus, QLD 4222, Australia
| | - Ruby Thapa
- School of Pharmacy and Medical Sciences, and Menzies Health Institute Queensland, Griffith University, Parklands Drive, Southport, Gold Coast Campus, QLD 4222, Australia
| | - Darren Prince
- School of Pharmacy and Medical Sciences, and Menzies Health Institute Queensland, Griffith University, Parklands Drive, Southport, Gold Coast Campus, QLD 4222, Australia
| | - Dhruba Acharya
- School of Pharmacy and Medical Sciences, and Menzies Health Institute Queensland, Griffith University, Parklands Drive, Southport, Gold Coast Campus, QLD 4222, Australia
| | - Matthew J Sullivan
- School of Pharmacy and Medical Sciences, and Menzies Health Institute Queensland, Griffith University, Parklands Drive, Southport, Gold Coast Campus, QLD 4222, Australia
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, United Kingdom
| | - Glen C Ulett
- School of Pharmacy and Medical Sciences, and Menzies Health Institute Queensland, Griffith University, Parklands Drive, Southport, Gold Coast Campus, QLD 4222, Australia
| |
Collapse
|
2
|
Wahlenmayer ER, Hammers DE. Streptococcal peptides and their roles in host-microbe interactions. Front Cell Infect Microbiol 2023; 13:1282622. [PMID: 37915845 PMCID: PMC10617681 DOI: 10.3389/fcimb.2023.1282622] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 10/02/2023] [Indexed: 11/03/2023] Open
Abstract
The genus Streptococcus encompasses many bacterial species that are associated with hosts, ranging from asymptomatic colonizers and commensals to pathogens with a significant global health burden. Streptococci produce numerous factors that enable them to occupy their host-associated niches, many of which alter their host environment to the benefit of the bacteria. The ability to manipulate host immune systems to either evade detection and clearance or induce a hyperinflammatory state influences whether bacteria are able to survive and persist in a given environment, while also influencing the propensity of the bacteria to cause disease. Several bacterial factors that contribute to this inter-species interaction have been identified. Recently, small peptides have become increasingly appreciated as factors that contribute to Streptococcal relationships with their hosts. Peptides are utilized by streptococci to modulate their host environment in several ways, including by directly interacting with host factors to disrupt immune system function and signaling to other bacteria to control the expression of genes that contribute to immune modulation. In this review, we discuss the many contributions of Streptococcal peptides in terms of their ability to contribute to pathogenesis and disruption of host immunity. This discussion will highlight the importance of continuing to elucidate the functions of these Streptococcal peptides and pursuing the identification of new peptides that contribute to modulation of host environments. Developing a greater understanding of how bacteria interact with their hosts has the potential to enable the development of techniques to inhibit these peptides as therapeutic approaches against Streptococcal infections.
Collapse
Affiliation(s)
| | - Daniel E. Hammers
- Biology Department, Houghton University, Houghton, NY, United States
| |
Collapse
|
3
|
Janžič L, Repas J, Pavlin M, Zemljić-Jokhadar Š, Ihan A, Kopitar AN. Macrophage polarization during Streptococcus agalactiae infection is isolate specific. Front Microbiol 2023; 14:1186087. [PMID: 37213504 PMCID: PMC10192866 DOI: 10.3389/fmicb.2023.1186087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 04/17/2023] [Indexed: 05/23/2023] Open
Abstract
Introduction Streptococcus agalactiae (Group B Streptococcus, GBS), a Gram-positive commensal in healthy adults, remains a major cause of neonatal infections, usually manifesting as sepsis, meningitis, or pneumonia. Intrapartum antibiotic prophylaxis has greatly reduced the incidence of early-onset disease. However, given the lack of effective measures to prevent the risk of late-onset disease and invasive infections in immunocompromised individuals, more studies investigating the GBS-associated pathogenesis and the interplay between bacteria and host immune system are needed. Methods Here, we examined the impact of 12 previously genotyped GBS isolates belonging to different serotypes and sequence types on the immune response of THP-1 macrophages. Results Flow cytometry analysis showed isolate-specific differences in phagocytic uptake, ranging from 10% for isolates of serotype Ib, which possess the virulence factor protein β, to over 70% for isolates of serotype III. Different isolates also induced differential expression of co-stimulatory molecules and scavenger receptors with colonizing isolates inducing higher expression levels of CD80 and CD86 compared to invasive isolates. In addition, real-time measurements of metabolism revealed that macrophages enhanced both glycolysis and mitochondrial respiration after GBS infection, with isolates of serotype III being the most potent activators of glycolysis and glycolytic ATP production. Macrophages also showed differential resistance to GBS-mediated cell cytotoxicity as measured by LDH release and real-time microscopy. The differences were evident both between serotypes and between isolates obtained from different specimens (colonizing or invasive isolates) demonstrating the higher cytotoxicity of vaginal compared with blood isolates. Conclusions Thus, the data suggest that GBS isolates differ in their potential to become invasive or remain colonizing. In addition, colonizing isolates appear to be more cytotoxic, whereas invasive isolates appear to exploit macrophages to their advantage, avoiding the immune recognition and antibiotics.
Collapse
Affiliation(s)
- Larisa Janžič
- Department of Cell Immunology, Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Jernej Repas
- Institute of Biophysics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Mojca Pavlin
- Institute of Biophysics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
- Group for Nano and Biotechnological Applications, Faculty of Electrical Engineering, University of Ljubljana, Ljubljana, Slovenia
| | - Špela Zemljić-Jokhadar
- Institute of Biophysics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Alojz Ihan
- Department of Cell Immunology, Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Andreja Nataša Kopitar
- Department of Cell Immunology, Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
- *Correspondence: Andreja Nataša Kopitar,
| |
Collapse
|
4
|
Keith MF, Gopalakrishna KP, Bhavana VH, Hillebrand GH, Elder JL, Megli CJ, Sadovsky Y, Hooven TA. Nitric Oxide Production and Effects in Group B Streptococcus Chorioamnionitis. Pathogens 2022; 11:1115. [PMID: 36297171 PMCID: PMC9608865 DOI: 10.3390/pathogens11101115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/21/2022] [Accepted: 09/23/2022] [Indexed: 11/16/2022] Open
Abstract
Intrauterine infection, or chorioamnionitis, due to group B Streptococcus (GBS) is a common cause of miscarriage and preterm birth. To cause chorioamnionitis, GBS must bypass maternal-fetal innate immune defenses including nitric oxide (NO), a microbicidal gas produced by nitric oxide synthases (NOS). This study examined placental NO production and its role in host-pathogen interactions in GBS chorioamnionitis. In a murine model of ascending GBS chorioamnionitis, placental NOS isoform expression quantified by RT-qPCR revealed a four-fold expression increase in inducible NOS, no significant change in expression of endothelial NOS, and decreased expression of neuronal NOS. These NOS expression results were recapitulated ex vivo in freshly collected human placental samples that were co-incubated with GBS. Immunohistochemistry of wild type C57BL/6 murine placentas with GBS chorioamnionitis demonstrated diffuse inducible NOS expression with high-expression foci in the junctional zone and areas of abscess. Pregnancy outcomes between wild type and inducible NOS-deficient mice did not differ significantly although wild type dams had a trend toward more frequent preterm delivery. We also identified possible molecular mechanisms that GBS uses to survive in a NO-rich environment. In vitro exposure of GBS to NO resulted in dose-dependent growth inhibition that varied by serovar. RNA-seq on two GBS strains with distinct NO resistance phenotypes revealed that both GBS strains shared several detoxification pathways that were differentially expressed during NO exposure. These results demonstrate that the placental immune response to GBS chorioamnionitis includes induced NO production and indicate that GBS activates conserved stress pathways in response to NO exposure.
Collapse
Affiliation(s)
- Mary Frances Keith
- Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | | | | | - Gideon Hayden Hillebrand
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA
| | - Jordan Lynn Elder
- Manual Hematology and Coagulation Department, The Cleveland Clinic, Cleveland, OH 44195, USA
| | - Christina Joann Megli
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
- UPMC Magee-Womens Research Institute, Pittsburgh, PA 15213, USA
| | - Yoel Sadovsky
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
- UPMC Magee-Womens Research Institute, Pittsburgh, PA 15213, USA
| | - Thomas Alexander Hooven
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA
- UPMC Magee-Womens Research Institute, Pittsburgh, PA 15213, USA
- UPMC Children’s Hospital of Pittsburgh Richard King Mellon Institute for Pediatric Research, Pittsburgh, PA 15224, USA
- UPMC Children’s Hospital of Pittsburgh, 4401 Penn Ave. Rangos Research Building #8128, Pittsburgh, PA 15224, USA
| |
Collapse
|
5
|
Srithanasuwan A, Pangprasit N, Suriyasathaporn W. Comparison of Virulence Patterns Between Streptococcus uberis Causing Transient and Persistent Intramammary Infection. Front Vet Sci 2022; 9:806674. [PMID: 35510214 PMCID: PMC9058107 DOI: 10.3389/fvets.2022.806674] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 02/14/2022] [Indexed: 11/19/2022] Open
Abstract
The objectives of this study were determined by two experiments including Experiment 1 (EXP1) using Streptococcus uberis obtained from a weekly longitudinal study to compare virulence patterns between transient and persistent intramammary infection (IMI), and Experiment 2 (EXP2) using a stored-known-appearance PFGE strain of a contagious S. uberis to determine a change of virulence patterns after long-term transmission. For EXP1, quarter milk samples from 31 milking cows were aseptically and longitudinally collected once a week for 10 weeks. A total of 14 S. uberis isolates from quarters with 1 and >4 weeks of duration of IMI were categorized as transient and persistent IMI, respectively. For EXP2, 11 isolates of a stored-known-appearance PFGE strain of S. uberis from our previous study (1) were randomly selected, including 5 from transient IMI (1 month) and 6 from persistent IMI (>1 month). The virulence profiles of all isolates were investigated, including sua, hasAB, hasC, gapC, pauA, and CAMP factor or cfu, using PCR. The Kaplan–Meier estimates were used to calculate the duration of IMI in EXP1. Approximately 50% of field S. uberis IMI was spontaneously cured within 1 week, while 25% was not cured within 10 weeks. From EXP1, 4 virulence patterns were found in 14 isolates. The majority of patterns for transient S. uberis did not include hasAB (63.6%), the gene relating to capsule formation. Regardless of transient or persistent IMI, a high similarity of the virulence pattern within a PFGE strain was found in EXP2. Few changes of virulence pattern within a PFGE strain were found or were related to its subsequently changing to transient IMI.
Collapse
Affiliation(s)
- Anyaphat Srithanasuwan
- Department of Food Animal Clinic, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Noppason Pangprasit
- Akkhraratchakumari Veterinary College, Walailak University, Nakhon Si Thammarat, Thailand
| | - Witaya Suriyasathaporn
- Department of Food Animal Clinic, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
- Research Center of Producing and Development of Products and Innovations for Animal Health and Production, Chiang Mai University, Chiang Mai, Thailand
- *Correspondence: Witaya Suriyasathaporn
| |
Collapse
|
6
|
Bauer R, Hoenes K, Meurle T, Hessling M, Spellerberg B. The effects of violet and blue light irradiation on ESKAPE pathogens and human cells in presence of cell culture media. Sci Rep 2021; 11:24473. [PMID: 34963696 PMCID: PMC8714816 DOI: 10.1038/s41598-021-04202-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 12/16/2021] [Indexed: 12/18/2022] Open
Abstract
Bacteria belonging to the group of ESKAPE pathogens are responsible for the majority of nosocomial infections. Due to the increase of antibiotic resistance, alternative treatment strategies are of high clinical relevance. In this context visible light as disinfection technique represents an interesting option as microbial pathogens can be inactivated without adjuvants. However cytotoxic effects of visible light on host cells have also been reported. We compared the cytotoxicity of violet and blue light irradiation on monocytic THP-1 and alveolar epithelium A549 cells with the inactivation effect on ESKAPE pathogens. THP-1 cells displayed a higher susceptibility to irradiation than A549 cells with first cytotoxic effects occurring at 300 J cm−2 (405 nm) and 400 J cm−2 (450 nm) in comparison to 300 J cm−2 and 1000 J cm−2, respectively. We could define conditions in which a significant reduction of colony forming units for all ESKAPE pathogens, except Enterococcus faecium, was achieved at 405 nm while avoiding cytotoxicity. Irradiation at 450 nm demonstrated a more variable effect which was species and medium dependent. In summary a significant reduction of viable bacteria could be achieved at subtoxic irradiation doses, supporting a potential use of visible light as an antimicrobial agent in clinical settings.
Collapse
Affiliation(s)
- Richard Bauer
- Institute of Medical Microbiology and Hygiene, University Hospital Ulm, 89081, Ulm, Germany
| | - Katharina Hoenes
- Institute of Medical Engineering and Mechatronics, Ulm University of Applied Sciences, 89081, Ulm, Germany
| | - Tobias Meurle
- Institute of Medical Engineering and Mechatronics, Ulm University of Applied Sciences, 89081, Ulm, Germany
| | - Martin Hessling
- Institute of Medical Engineering and Mechatronics, Ulm University of Applied Sciences, 89081, Ulm, Germany
| | - Barbara Spellerberg
- Institute of Medical Microbiology and Hygiene, University Hospital Ulm, 89081, Ulm, Germany.
| |
Collapse
|
7
|
Anti- Staphylococcus aureus Single-Chain Fragment Variables Play a Protective Anti-Inflammatory Role In Vitro and In Vivo. Vaccines (Basel) 2021; 9:vaccines9111300. [PMID: 34835231 PMCID: PMC8618225 DOI: 10.3390/vaccines9111300] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/01/2021] [Accepted: 11/05/2021] [Indexed: 02/07/2023] Open
Abstract
Staphylococcus aureus is a causative agent of bovine mastitis, capable of causing significant economic losses to the dairy industry worldwide. This study focuses on obtaining single-chain fragment variables (scFvs) against the virulence factors of S. aureus and evaluates the protective effect of scFvs on bovine mammary epithelial (MAC-T) cells and mice mammary gland tissues infected by S. aureus. After five rounds of bio-panning, four scFvs targeting four virulence factors of S. aureus were obtained. The complementarity-determining regions (CDRs) of these scFvs exhibited significant diversities, especially CDR3 of the VH domain. In vitro, each of scFvs was capable of inhibiting S. aureus growth and reducing the damage of MAC-T cells infected by S. aureus. Preincubation of MAC-T cells with scFvs could significantly attenuate the effect of apoptosis and necrosis compared with the negative control group. In vivo, the qPCR and ELISA results demonstrated that scFvs reduced the transcription and expression of Tumor Necrosis Factor alpha (TNF-α), interleukin-1β (IL-1β), IL-6, IL-8, and IL-18. Histopathology and myeloperoxidase (MPO) results showed that scFvs ameliorated the histopathological damages and reduced the inflammatory cells infiltration. The overall results demonstrated the positive anti-inflammatory effect of scFvs, revealing the potential role of scFvs in the prevention and treatment of S. aureus infections.
Collapse
|
8
|
Potential for Phages in the Treatment of Bacterial Sexually Transmitted Infections. Antibiotics (Basel) 2021; 10:antibiotics10091030. [PMID: 34572612 PMCID: PMC8466579 DOI: 10.3390/antibiotics10091030] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 08/19/2021] [Accepted: 08/20/2021] [Indexed: 12/30/2022] Open
Abstract
Bacterial sexually transmitted infections (BSTIs) are becoming increasingly significant with the approach of a post-antibiotic era. While treatment options dwindle, the transmission of many notable BSTIs, including Neisseria gonorrhoeae, Chlamydia trachomatis, and Treponema pallidum, continues to increase. Bacteriophage therapy has been utilized in Poland, Russia and Georgia in the treatment of bacterial illnesses, but not in the treatment of bacterial sexually transmitted infections. With the ever-increasing likelihood of antibiotic resistance prevailing and the continuous transmission of BSTIs, alternative treatments must be explored. This paper discusses the potentiality and practicality of phage therapy to treat BSTIs, including Neisseria gonorrhoeae, Chlamydia trachomatis, Treponema pallidum, Streptococcus agalactiae, Haemophilus ducreyi, Calymmatobacterium granulomatis, Mycoplasma genitalium, Ureaplasma parvum, Ureaplasma urealyticum, Shigella flexneri and Shigella sonnei. The challenges associated with the potential for phage in treatments vary for each bacterial sexually transmitted infection. Phage availability, bacterial structure and bacterial growth may impact the potential success of future phage treatments. Additional research is needed before BSTIs can be successfully clinically treated with phage therapy or phage-derived enzymes.
Collapse
|
9
|
Desai D, Goh KGK, Sullivan MJ, Chattopadhyay D, Ulett GC. Hemolytic activity and biofilm-formation among clinical isolates of group B streptococcus causing acute urinary tract infection and asymptomatic bacteriuria. Int J Med Microbiol 2021; 311:151520. [PMID: 34273854 DOI: 10.1016/j.ijmm.2021.151520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 05/20/2021] [Accepted: 07/01/2021] [Indexed: 10/20/2022] Open
Abstract
Streptococcus agalactiae, also known as group B Streptococcus, is an aetiological agent of urinary tract infection (UTI) in adults, including cystitis, pyelonephritis and asymptomatic bacteriuria (ABU). Whereas ABU-causing S. agalactiae (ABSA) have been shown to grow and achieve higher culture denstity in human urine compared to uropathogenic S. agalactiae (UPSA) other phenotypic distinctions between S. agalactiae isolated from different forms of UTI are not known. Here, we define the hemolytic activities and biofilm-formation of a collection of clinical isolates of UPSA, ABSA and recurrent S. agalactiae bacteriuria (rSAB) strains to explore these phenotypes in the context of clinical history of isolates. A total of 61 UPSA, 184 ABSA, and 47 rSAB isolates were analyzed for relative hemolytic activity by spot assay on blood agar, which was validated using a erythrocyte lysis suspension assay. Biofilm formation was determined by microtiter plate assay with Lysogeny and Todd-Hewitt broths supplemented with 1% glucose to induce biofilm formation. We also used multiplex PCR to analyze isolates for the presence of genes encoding adhesive pili, which contribute to biofilm formation. Comparing the hemolytic activities of 292 isolates showed, surprisingly, that ABSA strains were significantly more likely to be highly hemolytic compared to other strains. In contrast, there were no differences between the relative abilities of strains from the different clinical history groups to form biofilms. Taken together, these findings demonstrate a propensity of S. agalactiae causing ABU to be highly hemolytic but no link between clinical history of UTI strains and ability to form biofilm.
Collapse
Affiliation(s)
- Devika Desai
- School of Pharmacy and Medical Sciences, Australia
| | - Kelvin G K Goh
- School of Pharmacy and Medical Sciences, Australia; Menzies Health Institute Queensland, Griffith University, Parklands, 4222, Australia
| | - Matthew J Sullivan
- School of Pharmacy and Medical Sciences, Australia; Menzies Health Institute Queensland, Griffith University, Parklands, 4222, Australia
| | - Debasish Chattopadhyay
- Department of Medicine, University of Alabama at Birmingham, Birmingham, 35294, AL, United States
| | - Glen C Ulett
- School of Pharmacy and Medical Sciences, Australia; Menzies Health Institute Queensland, Griffith University, Parklands, 4222, Australia; Department of Medicine, University of Alabama at Birmingham, Birmingham, 35294, AL, United States.
| |
Collapse
|
10
|
Legario FS, Choresca CH, Turnbull JF, Crumlish M. Isolation and molecular characterization of streptococcal species recovered from clinical infections in farmed Nile tilapia (Oreochromis niloticus) in the Philippines. JOURNAL OF FISH DISEASES 2020; 43:1431-1442. [PMID: 32929781 DOI: 10.1111/jfd.13247] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/25/2020] [Accepted: 07/27/2020] [Indexed: 06/11/2023]
Abstract
Streptococcosis cause severe losses for global tilapia farming, especially in developing countries. The aim of this study was to identify and characterize streptococci recovered from Nile tilapia farmed in the Philippines. Moribund and apparently healthy fish were sampled from grow-out cages, ponds and hatcheries. Clinical signs observed included exophthalmia, eye opacity, ascites, lethargy, erratic swimming and haemorrhages. Results showed that both Streptococcus iniae and Streptococcus agalactiae were associated with disease in these sites. Consistent with global reports, including those from South-East Asia, S. agalactiae was more widespread than S. iniae. Molecular serotyping of the S. agalactiae isolates identified the serotype Ia and serotype Ib. Histopathological findings were meningitis, meningoencephalitis and septicaemia. Identical virulence profiles were found for all strains of S. iniae, while S. agalactiae strains were separated into virulence profile I and profile II. All strains were susceptible to the tested antibiotics and resistant to oxolinic acid. Only S. agalactiae serotype Ib showed resistance to sulphamethoxazole-trimethoprim. This is the first study from the Philippines to characterize the streptococci involved in disease outbreaks in tilapia aquaculture. Outputs from this study will promote the development of efficacious disease control strategies in tilapia farming for the Philippines and South-East Asia.
Collapse
Affiliation(s)
- Francis S Legario
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling, UK
- Natural Sciences Department, Iloilo Science and Technology University, Iloilo City, Philippines
| | - Casiano H Choresca
- National Fisheries Research and Development Institute-Fisheries Biotechnology Centre, Science City of Munoz, Philippines
| | - Jimmy F Turnbull
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling, UK
| | - Margaret Crumlish
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling, UK
| |
Collapse
|
11
|
Two-Component Signal Transduction Systems in the Human Pathogen Streptococcus agalactiae. Infect Immun 2020; 88:IAI.00931-19. [PMID: 31988177 DOI: 10.1128/iai.00931-19] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Streptococcus agalactiae (group B Streptococcus [GBS]) is an important cause of invasive infection in newborns, maternal women, and older individuals with underlying chronic illnesses. GBS has many mechanisms to adapt and survive in its host, and these mechanisms are often controlled via two-component signal transduction systems. In GBS, more than 20 distinct two-component systems (TCSs) have been classified to date, consisting of canonical TCSs as well as orphan and atypical sensors and regulators. These signal transducing systems are necessary for metabolic regulation, resistance to antibiotics and antimicrobials, pathogenesis, and adhesion to the mucosal surfaces to colonize the host. This minireview discusses the structures of these TCSs in GBS as well as how selected systems regulate essential cellular processes such as survival and colonization. GBS contains almost double the number of TCSs compared to the closely related Streptococcus pyogenes and Streptococcus pneumoniae, and while research on GBS TCSs has been increasing in recent years, no comprehensive reviews of these TCSs exist, making this review especially relevant.
Collapse
|
12
|
Palang I, Withyachumnarnkul B, Senapin S, Sirimanapong W, Vanichviriyakit R. Brain histopathology in red tilapia Oreochromis sp. experimentally infected with Streptococcus agalactiae serotype III. Microsc Res Tech 2020; 83:877-888. [PMID: 32243694 DOI: 10.1002/jemt.23481] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 03/07/2020] [Accepted: 03/12/2020] [Indexed: 01/04/2023]
Abstract
One of the clinical manifestations of streptococcosis is swimming errors of the infected fish, which is likely caused by lesions in the brain. As most studies described brain histopathology in streptococcosis as meningitis, with a limited description of lesions in the whole brain, the aim of this study was therefore to explore histopathology of the whole brain of red tilapia experimentally infected with Streptococcus agalactiae serotype III. Transcripts relating to motoneuron functions and inflammatory responses were also investigated. In the S. agalactiae-infected fish, the parenchyma of the whole brain and its associated meninx primitiva were found to be markedly infiltrated by mononuclear cells and Gram-positive cocci. Hemorrhage, neuronal necrosis, and localized spongiform histopathology were observed, especially within the midbrain and the cerebellum. The lesion was observed in the medial longitudinal fasciculus and its nucleus. Expressions of the transcripts CD166, GAP43, SMN, and SV2B of the infected fish did not change, while those of IL-1β and TNF-α were significantly upregulated. It is likely that S. agalactiae cause extensive damage to the fish brain, especially in areas that control swimming activities, through both direct invasion of the bacteria and acute inflammatory responses of the brain resident macrophages, or microglia.
Collapse
Affiliation(s)
- Iyapa Palang
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok, Thailand.,Center of Excellence for Shrimp Molecular Biology and Biotechnology (Centex Shrimp), Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Boonsirm Withyachumnarnkul
- Faculty of Science and Industrial Technology, Prince of Songkla University, Hat Yai, Songkhla, Thailand.,AquaAcademy Farm, Tha Chana, Surat Thani, Thailand
| | - Saengchan Senapin
- Center of Excellence for Shrimp Molecular Biology and Biotechnology (Centex Shrimp), Faculty of Science, Mahidol University, Bangkok, Thailand.,National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Khlong Luang, Pathumthani, Thailand
| | - Wanna Sirimanapong
- Veterinary Aquatic Animal Research Health Care Unit, Department of Clinical Sciences and Public Health, Faculty of Veterinary Science, Mahidol University, Bangkok, Thailand
| | - Rapeepun Vanichviriyakit
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok, Thailand.,Center of Excellence for Shrimp Molecular Biology and Biotechnology (Centex Shrimp), Faculty of Science, Mahidol University, Bangkok, Thailand
| |
Collapse
|
13
|
Ruppen C, Decosterd L, Sendi P. Is gentamicin necessary in the antimicrobial treatment for group B streptococcal infections in the elderly? An in vitro study with human blood products. Infect Dis (Lond) 2016; 49:185-192. [PMID: 27766925 DOI: 10.1080/23744235.2016.1244612] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
BACKGROUND According to expert opinions, gentamicin should be administered as an adjunct to penicillin against severe group B streptococcal (GBS) infections. Whether the adjunct is important is of particular interest for elderly patients. Not only is the risk of aminoglycoside nephrotoxicity higher in elderly persons, but their immune defence to bacterial infections may also be impaired. METHOD Time-kill assays with human blood products, such as serum, neutrophilic granulocytes (opsonophagocytic assays) and whole blood from healthy, elderly volunteers were performed to evaluate the effect of gentamicin in combination with penicillin. RESULTS In time-kill assays with human serum and in opsonophagocytic assays, we saw a trend for faster killing with the penicillin-gentamicin combination therapy. This effect was seen 4 and 6 h after antibiotic exposure but not at time points evaluated at ≥8 h. In whole blood killing assays, no difference in killing rates was observed with adjunctive gentamicin therapy. CONCLUSION The criteria for synergism were not fulfilled when the effect of penicillin-gentamicin combinations was compared with that of penicillin monotherapy. Rapid killing of GBS within the first few hours was observed in time-kill assays with human blood products. Considering that elderly people are prone to gentamicin nephrotoxicity and that in severe GBS infection a high penicillin dose is administered every 4-6 h, the prolonged use of adjunctive aminoglycosides in these infections requires caution.
Collapse
Affiliation(s)
- Corinne Ruppen
- a Institute for Infectious Diseases, University of Bern , Bern , Switzerland.,b Graduate School for Cellular and Biomedical Sciences, University of Bern , Bern , Switzerland
| | - Laurent Decosterd
- c Division and Laboratory of Clinical Pharmacology, Service of Biomedicine, Department of Laboratories , Lausanne University Hospital (Centre Hospitalier Universitaire Vaudois, CHUV) , Lausanne , Switzerland
| | - Parham Sendi
- a Institute for Infectious Diseases, University of Bern , Bern , Switzerland.,d Department of Infectious Diseases , Bern University Hospital and University of Bern , Bern , Switzerland
| |
Collapse
|
14
|
Chu C, Huang PY, Chen HM, Wang YH, Tsai IA, Lu CC, Chen CC. Genetic and pathogenic difference between Streptococcus agalactiae serotype Ia fish and human isolates. BMC Microbiol 2016; 16:175. [PMID: 27484120 PMCID: PMC4971743 DOI: 10.1186/s12866-016-0794-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 07/29/2016] [Indexed: 11/19/2022] Open
Abstract
Background Streptococcus agalactiae (GBS) is a common pathogen to infect newborn, woman, the elderly, and immuno-compromised human and fish. 37 fish isolates and 554 human isolates of the GBS in 2007–2012 were investigated in serotypes, antibiotic susceptibility, genetic difference and pathogenicity to tilapia. Results PCR serotyping determined serotype Ia for all fish GBS isolates and only in 3.2 % (3–4.2 %) human isolates. For fish isolates, all consisted a plasmid less than 6 kb and belonged to ST7 type, which includes mainly pulsotypes I and Ia, with a difference in a deletion at the largest DNA fragment. These fish isolates were susceptible to all antimicrobials tested in 2007 and increased in non-susceptibility to penicillin, and resistance to clindamycin and ceftriaxone in 2011. Differing in pulsotype and lacking plasmid from fish isolates, human serotype Ia isolates were separated into eight pulsotypes II–IX. Main clone ST23 included pulsotypes II and IIa (50 %) and ST483 consisted of pulsotype III. Human serotype Ia isolates were all susceptible to ceftriaxone and penicillin and few were resistant to erythromycin, azithromycin, clindamycin, levofloxacin and moxifloxacine with the resistant rate of 20 % or less. Using tilapia to analyze the pathogenesis, fish isolates could cause more severe symptoms, including hemorrhage of the pectoral fin, hemorrhage of the gill, and viscous black and common scites, and mortality (>95 % for pulsotype I) than the human isolates (<30 %); however, the fish pulostype Ia isolate 912 with deletion caused less symptoms and the lowest mortality (<50 %) than pulsotype I isolates. Conclusion Genetic, pathogenic, and antimicrobial differences demonstrate diverse origin of human and fish serotype Ia isolates. The pulsotype Ia of fish serotype Ia isolates may be used as vaccine strains to prevent the GBS infection in fish. Electronic supplementary material The online version of this article (doi:10.1186/s12866-016-0794-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Chishih Chu
- Department of Microbiology, Immunology, and Biopharmaceutics, National Chiayi University, Chiayi, 60004, Taiwan, ROC
| | - Pei-Yu Huang
- Department of Aquatic Biosciences, National Chiayi University, Chiayi, 60004, Taiwan, ROC
| | - Hung-Ming Chen
- Department of Pediatrics, Chang Gung Memorial Hospital, Chiayi, Taiwan, ROC
| | - Ying-Hsiang Wang
- Department of Pediatrics, Chang Gung Memorial Hospital, Chiayi, Taiwan, ROC
| | - I-An Tsai
- Department of Aquatic Biosciences, National Chiayi University, Chiayi, 60004, Taiwan, ROC
| | - Chih-Cheng Lu
- Department of Microbiology, Immunology, and Biopharmaceutics, National Chiayi University, Chiayi, 60004, Taiwan, ROC
| | - Che-Chun Chen
- Department of Aquatic Biosciences, National Chiayi University, Chiayi, 60004, Taiwan, ROC.
| |
Collapse
|
15
|
Mu R, Cutting AS, Del Rosario Y, Villarino N, Stewart L, Weston TA, Patras KA, Doran KS. Identification of CiaR Regulated Genes That Promote Group B Streptococcal Virulence and Interaction with Brain Endothelial Cells. PLoS One 2016; 11:e0153891. [PMID: 27100296 PMCID: PMC4839699 DOI: 10.1371/journal.pone.0153891] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 04/05/2016] [Indexed: 11/18/2022] Open
Abstract
Group B Streptococcus (GBS) is a major causative agent of neonatal meningitis due to its ability to efficiently cross the blood-brain barrier (BBB) and enter the central nervous system (CNS). It has been demonstrated that GBS can invade human brain microvascular endothelial cells (hBMEC), a primary component of the BBB; however, the mechanism of intracellular survival and trafficking is unclear. We previously identified a two component regulatory system, CiaR/H, which promotes GBS intracellular survival in hBMEC. Here we show that a GBS strain deficient in the response regulator, CiaR, localized more frequently with Rab5, Rab7 and LAMP1 positive vesicles. Further, lysosomes isolated from hBMEC contained fewer viable bacteria following initial infection with the ΔciaR mutant compared to the WT strain. To characterize the contribution of CiaR-regulated genes, we constructed isogenic mutant strains lacking the two most down-regulated genes in the CiaR-deficient mutant, SAN_2180 and SAN_0039. These genes contributed to bacterial uptake and intracellular survival. Furthermore, competition experiments in mice showed that WT GBS had a significant survival advantage over the Δ2180 and Δ0039 mutants in the bloodstream and brain.
Collapse
Affiliation(s)
- Rong Mu
- Department of Biology and Center for Microbial Sciences, San Diego State University, San Diego, California, 92182, United States of America
| | - Andrew S. Cutting
- Department of Biology and Center for Microbial Sciences, San Diego State University, San Diego, California, 92182, United States of America
| | - Yvette Del Rosario
- Department of Biology and Center for Microbial Sciences, San Diego State University, San Diego, California, 92182, United States of America
| | - Nicholas Villarino
- Department of Biology and Center for Microbial Sciences, San Diego State University, San Diego, California, 92182, United States of America
| | - Lara Stewart
- Department of Biology and Center for Microbial Sciences, San Diego State University, San Diego, California, 92182, United States of America
| | - Thomas A. Weston
- Department of Biology and Center for Microbial Sciences, San Diego State University, San Diego, California, 92182, United States of America
| | - Kathryn A. Patras
- Department of Biology and Center for Microbial Sciences, San Diego State University, San Diego, California, 92182, United States of America
| | - Kelly S. Doran
- Department of Biology and Center for Microbial Sciences, San Diego State University, San Diego, California, 92182, United States of America
- Department of Pediatrics, University of California San Diego School of Medicine, La Jolla, California, 92093, United States of America
- * E-mail:
| |
Collapse
|
16
|
Shabayek S, Bauer R, Mauerer S, Mizaikoff B, Spellerberg B. A streptococcal NRAMP homologue is crucial for the survival of Streptococcus agalactiae under low pH conditions. Mol Microbiol 2016; 100:589-606. [PMID: 27150893 DOI: 10.1111/mmi.13335] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/24/2016] [Indexed: 12/25/2022]
Abstract
Streptococcus agalactiae or Group B Streptococcus (GBS) is a commensal bacterium of the human gastrointestinal and urogenital tracts as well as a leading cause of neonatal sepsis, pneumonia and meningitis. Maternal vaginal carriage is the main source for GBS transmission and thus the most important risk factor for neonatal disease. Several studies in eukaryotes identified a group of proteins natural resistance-associated macrophage protein (NRAMP) that function as divalent cation transporters for Fe(2+) and Mn(2+) and confer on macrophages the ability to control replication of bacterial pathogens. Genome sequencing predicted potential NRAMP homologues in several prokaryotes. Here we describe for the first time, a pH-regulated NRAMP Mn(2+) /Fe(2+) transporter in GBS, designated MntH, which confers resistance to reactive oxygen species (ROS) and is crucial for bacterial growth and survival under low pH conditions. Our investigation implicates MntH as an important colonization determinant for GBS in the maternal vagina as it helps bacteria to adapt to the harsh acidic environment, facilitates bacterial adherence, contributes to the coexistence with the vaginal microbiota and plays a role in GBS intracellular survival inside macrophages.
Collapse
Affiliation(s)
- Sarah Shabayek
- Institute of Medical Microbiology and Hygiene, University of Ulm, Ulm, Germany.,Microbiology and Immunology Department, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| | - Richard Bauer
- Institute of Medical Microbiology and Hygiene, University of Ulm, Ulm, Germany
| | - Stefanie Mauerer
- Institute of Medical Microbiology and Hygiene, University of Ulm, Ulm, Germany
| | - Boris Mizaikoff
- Institute of Analytical and Bioanalytical Chemistry, University of Ulm, Ulm, Germany
| | - Barbara Spellerberg
- Institute of Medical Microbiology and Hygiene, University of Ulm, Ulm, Germany
| |
Collapse
|
17
|
Figueiredo HCP, Soares SC, Pereira FL, Dorella FA, Carvalho AF, Teixeira JP, Azevedo VAC, Leal CAG. Comparative genome analysis of Weissella ceti, an emerging pathogen of farm-raised rainbow trout. BMC Genomics 2015; 16:1095. [PMID: 26694728 PMCID: PMC4687380 DOI: 10.1186/s12864-015-2324-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 12/15/2015] [Indexed: 11/10/2022] Open
Abstract
Background The genus Weissella belongs to the lactic acid bacteria and includes 18 currently identified species, predominantly isolated from fermented food but rarely from cases of bacteremia in animals. Recently, a new species, designated Weissella ceti, has been correlated with hemorrhagic illness in farm-raised rainbow trout in China, Brazil, and the USA, with high transmission and mortality rates during outbreaks. Although W. ceti is an important emerging veterinary pathogen, little is known about its genomic features or virulence mechanisms. To better understand these and to characterize the species, we have previously sequenced the genomes of W. ceti strains WS08, WS74, and WS105, isolated from different rainbow trout farms in Brazil and displaying different pulsed-field gel electrophoresis patterns. Here, we present a comparative analysis of the three previously sequenced genomes of W. ceti strains from Brazil along with W. ceti NC36 from the USA and those of other Weissella species. Results Phylogenomic and orthology-based analyses both showed a high-similarity in the genetic structure of these W. ceti strains. This structure is corroborated by the highly syntenic order of their genes and the neutral evolution inferred from Tajima’s D. A whole-genome multilocus sequence typing analysis distinguished strains WS08 and NC36 from strains WS74 and WS105. We predicted 10 putative genomic islands (GEI), among which PAIs 3a and 3b are phage sequences that occur only in WS105 and WS74, respectively, whereas PAI 1 is species specific. Conclusions We identified several genes putatively involved in the basic processes of bacterial physiology and pathogenesis, including survival in aquatic environment, adherence in the host, spread inside the host, resistance to immune-system-mediated stresses, and antibiotic resistance. These data provide new insights in the molecular epidemiology and host adaptation for this emerging pathogen in aquaculture. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-2324-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Henrique C P Figueiredo
- AQUACEN, National Reference Laboratory for Aquatic Animal Diseases, Ministry of Fisheries and Aquaculture, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil. .,Veterinary School, Department of Preventive Veterinary Medicine, Federal University of Minas Gerais, Av. Antônio Carlos 6627, Pampulha, Belo Horizonte, 30161-970, MG, Brazil.
| | - Siomar C Soares
- AQUACEN, National Reference Laboratory for Aquatic Animal Diseases, Ministry of Fisheries and Aquaculture, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil.
| | - Felipe L Pereira
- AQUACEN, National Reference Laboratory for Aquatic Animal Diseases, Ministry of Fisheries and Aquaculture, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil.
| | - Fernanda A Dorella
- AQUACEN, National Reference Laboratory for Aquatic Animal Diseases, Ministry of Fisheries and Aquaculture, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil.
| | - Alex F Carvalho
- AQUACEN, National Reference Laboratory for Aquatic Animal Diseases, Ministry of Fisheries and Aquaculture, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil.
| | - Júnia P Teixeira
- AQUACEN, National Reference Laboratory for Aquatic Animal Diseases, Ministry of Fisheries and Aquaculture, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil.
| | - Vasco A C Azevedo
- Laboratory of Cellular and Molecular Genetics, Institute for Biological Science, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil.
| | - Carlos A G Leal
- AQUACEN, National Reference Laboratory for Aquatic Animal Diseases, Ministry of Fisheries and Aquaculture, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil.
| |
Collapse
|
18
|
Han L, He H, Li F, Cui X, Xie D, Liu Y, Zheng X, Bai H, Wang S, Bo X. Inferring Infection Patterns Based on a Connectivity Map of Host Transcriptional Responses. Sci Rep 2015; 5:15820. [PMID: 26508266 PMCID: PMC4623713 DOI: 10.1038/srep15820] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 10/01/2015] [Indexed: 12/25/2022] Open
Abstract
Host responses to infections represent an important pathogenicity determiner, and delineation of host responses can elucidate pathogenesis processes and inform the development of anti-infection therapies. Low cost, high throughput, easy quantitation, and rich descriptions have made gene expression profiling generated by DNA microarrays an optimal approach for describing host transcriptional responses (HTRs). However, efforts to characterize the landscape of HTRs to diverse pathogens are far from offering a comprehensive view. Here, we developed an HTR Connectivity Map based on systematic assessment of pairwise similarities of HTRs to 50 clinically important human pathogens using 1353 gene-expression profiles generated from >60 human cells/tissues. These 50 pathogens were further partitioned into eight robust “HTR communities” (i.e., groups with more consensus internal HTR similarities). These communities showed enrichment in specific infection attributes and differential gene expression patterns. Using query signatures of HTRs to external pathogens, we demonstrated four distinct modes of HTR associations among different pathogens types/class, and validated the reliability of the HTR community divisions for differentiating and categorizing pathogens from a host-oriented perspective. These findings provide a first-generation HTR Connectivity Map of 50 diverse pathogens, and demonstrate the potential for using annotated HTR community to detect functional associations among infectious pathogens.
Collapse
Affiliation(s)
- Lu Han
- Department of Biotechnology, Beijing Institute of Radiation Medicine, Beijing, 100850, China.,Department of Traditional Chinese Medicine and Neuroimmunopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Haochen He
- Department of Biotechnology, Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Fei Li
- Department of Biotechnology, Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Xiuliang Cui
- Department of Biotechnology, Beijing Institute of Radiation Medicine, Beijing, 100850, China.,International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute, Second Military Medical University, Shanghai, 200433, China
| | - Dafei Xie
- Department of Biotechnology, Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Yang Liu
- Department of Biotechnology, Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Xiaofei Zheng
- Department of Biochemistry and Molecular Biology, Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Hui Bai
- Department of Biotechnology, Beijing Institute of Radiation Medicine, Beijing, 100850, China.,Department of Pharmacy, No.451 hospital of People's Liberation Army, Xi'an, 710065, China
| | - Shengqi Wang
- Department of Biotechnology, Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Xiaochen Bo
- Department of Biotechnology, Beijing Institute of Radiation Medicine, Beijing, 100850, China
| |
Collapse
|
19
|
Cutting AS, Del Rosario Y, Mu R, Rodriguez A, Till A, Subramani S, Gottlieb RA, Doran KS. The role of autophagy during group B Streptococcus infection of blood-brain barrier endothelium. J Biol Chem 2014; 289:35711-23. [PMID: 25371213 DOI: 10.1074/jbc.m114.588657] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Bacterial meningitis occurs when bloodborne pathogens invade and penetrate the blood-brain barrier (BBB), provoking inflammation and disease. Group B Streptococcus (GBS), the leading cause of neonatal meningitis, can enter human brain microvascular endothelial cells (hBMECs), but the host response to intracellular GBS has not been characterized. Here we sought to determine whether antibacterial autophagy, which involves selective recognition of intracellular organisms and their targeting to autophagosomes for degradation, is activated in BBB endothelium during bacterial infection. GBS infection resulted in increased punctate distribution of GFP-microtubule-associated protein 1 light chain 3 (LC3) and increased levels of endogenous LC3-II and p62 turnover, two hallmark indicators of active autophagic flux. Infection with GBS mutants revealed that bacterial invasion and the GBS pore-forming β-hemolysin/cytolysin (β-h/c) trigger autophagic activation. Cell-free bacterial extracts containing β-h/c activity induced LC3-II conversion, identifying this toxin as a principal provocative factor for autophagy activation. These results were confirmed in vivo using a mouse model of GBS meningitis as infection with WT GBS induced autophagy in brain tissue more frequently than a β-h/c-deficient mutant. Elimination of autophagy using Atg5-deficient fibroblasts or siRNA-mediated impairment of autophagy in hBMECs led to increased recovery of intracellular GBS. However, electron microscopy revealed that GBS was rarely found within double membrane autophagic structures even though we observed GBS-LC3 co-localization. These results suggest that although autophagy may act as a BBB cellular defense mechanism in response to invading and toxin-producing bacteria, GBS may actively thwart the autophagic pathway.
Collapse
Affiliation(s)
| | | | - Rong Mu
- From the Department of Biology and
| | | | - Andreas Till
- Division of Biological Sciences and San Diego Center for Systems Biology, University of California, San Diego, La Jolla, California 92093-0322, Stem Cell Pathologies Group, Life and Brain Center, University of Bonn, D-53127 Bonn, Germany, and
| | - Suresh Subramani
- Division of Biological Sciences and San Diego Center for Systems Biology, University of California, San Diego, La Jolla, California 92093-0322
| | - Roberta A Gottlieb
- Donald P. Shiley BioScience Center, San Diego State University, San Diego, California 92182
| | - Kelly S Doran
- From the Department of Biology and Department of Pediatrics, University of California San Diego School of Medicine, La Jolla, California 92093
| |
Collapse
|
20
|
Rosa-Fraile M, Dramsi S, Spellerberg B. Group B streptococcal haemolysin and pigment, a tale of twins. FEMS Microbiol Rev 2014; 38:932-46. [PMID: 24617549 PMCID: PMC4315905 DOI: 10.1111/1574-6976.12071] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Revised: 02/18/2014] [Accepted: 03/03/2014] [Indexed: 12/11/2022] Open
Abstract
Group B streptococcus [(GBS or Streptococcus agalactiae)] is a leading cause of neonatal meningitis and septicaemia. Most clinical isolates express simultaneously a β-haemolysin/cytolysin and a red polyenic pigment, two phenotypic traits important for GBS identification in medical microbiology. The genetic determinants encoding the GBS haemolysin and pigment have been elucidated and the molecular structure of the pigment has been determined. The cyl operon involved in haemolysin and pigment production is regulated by the major two-component system CovS/R, which coordinates the expression of multiple virulence factors of GBS. Genetic analyses indicated strongly that the haemolysin activity was due to a cytolytic toxin encoded by cylE. However, the biochemical nature of the GBS haemolysin has remained elusive for almost a century because of its instability during purification procedures. Recently, it has been suggested that the haemolytic and cytolytic activity of GBS is due to the ornithine rhamnopolyenic pigment and not to the CylE protein. Here we review and summarize our current knowledge of the genetics, regulation and biochemistry of these twin GBS phenotypic traits, including their functions as GBS virulence factors.
Collapse
Affiliation(s)
| | - Shaynoor Dramsi
- Unité de Biologie des Bactéries Pathogènes à Gram positif, Institut PasteurParis, France
- CNRS ERL 3526Paris, France
| | - Barbara Spellerberg
- Institute of Medical Microbiology and Hygiene, University Hospital UlmUlm, Germany
| |
Collapse
|
21
|
Two novel functions of hyaluronidase from Streptococcus agalactiae are enhanced intracellular survival and inhibition of proinflammatory cytokine expression. Infect Immun 2014; 82:2615-25. [PMID: 24711564 DOI: 10.1128/iai.00022-14] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Streptococcus agalactiae is the causative agent of septicemia and meningitis in fish. Previous studies have shown that hyaluronidase (Hyl) is an important virulence factor in many Gram-positive bacteria. To investigate the role of S. agalactiae Hyl during interaction with macrophages, we inactivated the gene encoding extracellular hyaluronidase, hylB, in a clinical Hyl(+) isolate. The isogenic hylb mutant (Δhylb) displayed reduced survival in macrophages compared to the wild type and stimulated a significantly higher release of proinflammatory cytokines, such as interleukin-1β (IL-1β), IL-6, and tumor necrosis factor alpha (TNF-α), than the wild type in macrophages as well as in mice. Furthermore, only Hyl(+) strains could grow utilizing hyaluronic acid (HA) as the sole carbon source, suggesting that Hyl permits the organism to utilize host HA as an energy source. Fifty percent lethal dose (LD50) determinations in zebrafish demonstrated that the hylb mutant was highly attenuated relative to the wild-type strain. Experimental infection of BALB/c mice revealed that bacterial loads in the blood, spleen, and brain at 16 h postinfection were significantly reduced in the ΔhylB mutant compared to those in wild-type-infected mice. In conclusion, hyaluronidase has a strong influence on the intracellular survival of S. agalactiae and proinflammatory cytokine expression, suggesting that it plays a key role in S. agalactiae pathogenicity.
Collapse
|
22
|
Guo CM, Chen RR, Kalhoro DH, Wang ZF, Liu GJ, Lu CP, Liu YJ. Identification of genes preferentially expressed by highly virulent piscine Streptococcus agalactiae upon interaction with macrophages. PLoS One 2014; 9:e87980. [PMID: 24498419 PMCID: PMC3912197 DOI: 10.1371/journal.pone.0087980] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Accepted: 12/31/2013] [Indexed: 11/19/2022] Open
Abstract
Streptococcus agalactiae, long recognized as a mammalian pathogen, is an emerging concern with regard to fish. In this study, we used a mouse model and in vitro cell infection to evaluate the pathogenetic characteristics of S. agalactiae GD201008-001, isolated from tilapia in China. This bacterium was found to be highly virulent and capable of inducing brain damage by migrating into the brain by crossing the blood–brain barrier (BBB). The phagocytosis assays indicated that this bacterium could be internalized by murine macrophages and survive intracellularly for more than 24 h, inducing injury to macrophages. Further, selective capture of transcribed sequences (SCOTS) was used to investigate microbial gene expression associated with intracellular survival. This positive cDNA selection technique identified 60 distinct genes that could be characterized into 6 functional categories. More than 50% of the differentially expressed genes were involved in metabolic adaptation. Some genes have previously been described as associated with virulence in other bacteria, and four showed no significant similarities to any other previously described genes. This study constitutes the first step in further gene expression analyses that will lead to a better understanding of the molecular mechanisms used by S. agalactiae to survive in macrophages and to cross the BBB.
Collapse
Affiliation(s)
- Chang-Ming Guo
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Rong-Rong Chen
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | | | - Zhao-Fei Wang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Guang-Jin Liu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Cheng-Ping Lu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Yong-Jie Liu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- * E-mail:
| |
Collapse
|