1
|
Busa D, Herudkova Z, Hyl J, Vlazny J, Sokol F, Matulova K, Folta A, Hynst J, Vojtova L, Kren L, Repko M, Racil Z, Mayer J, Culen M. Robust acute myeloid leukemia engraftment in humanized scaffolds using injectable biomaterials and intravenous xenotransplantation. Mol Oncol 2025; 19:1371-1385. [PMID: 39840700 PMCID: PMC12077274 DOI: 10.1002/1878-0261.13790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 10/11/2024] [Accepted: 12/11/2024] [Indexed: 01/23/2025] Open
Abstract
Patient-derived xenografts (PDXs) can be improved by implantation of a humanized niche. Nevertheless, the overall complexity of the current protocols, as well as the use of specific biomaterials and procedures, limits the wider adoption of this approach. Here, we identify the essential minimum steps required to create the humanized scaffolds and achieve successful acute myeloid leukemia (AML) engraftment. We compared seven biomaterials, which included both published and custom-designed materials. The highest level of bone marrow niche was achieved with extracellular matrix gels and custom collagen fiber, both of which allowed for a simple non-surgical implantation. The biomaterial selection did not influence the following AML infiltration. Regarding xenotransplantation, standard intravenous administration produced the most robust engraftment, even for two out of four otherwise non-engrafting AML samples. In contrast, direct intra-scaffold xenotransplantation did not offer any advantage. In summary, we demonstrate that the combination of an injectable biomaterial for scaffold creation plus an intravenous route for AML xenotransplantation provide the most convenient and robust approach to produce AML PDX using a humanized niche.
Collapse
Affiliation(s)
- Daniel Busa
- Department of Internal Medicine, Hematology and Oncology, Faculty of MedicineMasaryk UniversityBrnoCzech Republic
| | - Zdenka Herudkova
- Department of Internal Medicine, Hematology and Oncology, Faculty of MedicineMasaryk UniversityBrnoCzech Republic
| | - Jan Hyl
- Department of Internal Medicine, Hematology and Oncology, Faculty of MedicineMasaryk UniversityBrnoCzech Republic
| | - Jakub Vlazny
- Department of PathologyUniversity Hospital BrnoCzech Republic
- Department of Pathology, Faculty of MedicineMasaryk UniversityBrnoCzech Republic
| | - Filip Sokol
- Department of PathologyUniversity Hospital BrnoCzech Republic
| | - Kvetoslava Matulova
- Department of PathologyUniversity Hospital BrnoCzech Republic
- Department of Pathology, Faculty of MedicineMasaryk UniversityBrnoCzech Republic
| | - Adam Folta
- Department of Internal Medicine, Hematology and OncologyUniversity Hospital BrnoCzech Republic
| | - Jakub Hynst
- Central European Institute of TechnologyMasaryk UniversityBrnoCzech Republic
| | - Lucy Vojtova
- Central European Institute of TechnologyBrno Institute of TechnologyCzech Republic
| | - Leos Kren
- Department of PathologyUniversity Hospital BrnoCzech Republic
- Department of Pathology, Faculty of MedicineMasaryk UniversityBrnoCzech Republic
| | - Martin Repko
- Orthopedic ClinicUniversity Hospital BrnoCzech Republic
- Department of Orthopedic Surgery, Faculty of MedicineMasaryk UniversityBrnoCzech Republic
| | - Zdenek Racil
- Department of Physiology, Faculty of MedicineMasaryk UniversityBrnoCzech Republic
| | - Jiri Mayer
- Department of Internal Medicine, Hematology and Oncology, Faculty of MedicineMasaryk UniversityBrnoCzech Republic
- Department of Internal Medicine, Hematology and OncologyUniversity Hospital BrnoCzech Republic
- Central European Institute of TechnologyMasaryk UniversityBrnoCzech Republic
| | - Martin Culen
- Department of Internal Medicine, Hematology and Oncology, Faculty of MedicineMasaryk UniversityBrnoCzech Republic
- Department of Internal Medicine, Hematology and OncologyUniversity Hospital BrnoCzech Republic
| |
Collapse
|
2
|
Faville C, E Silva B, Baron F, Ehx G. Use of Human Acute Myeloid Leukemia Cells to Study Graft-Versus-Leukemia Immunity in Xenogeneic Mouse Models of Graft-Versus-Host Disease. Methods Mol Biol 2025; 2907:359-375. [PMID: 40100607 DOI: 10.1007/978-1-0716-4430-0_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
Allogeneic hematopoietic cell transplantation (allo-HCT) is the main therapeutic approach for patients with high-risk acute myeloid leukemia (AML), but the rate of relapse remains high and is associated with poor outcomes. Discovering new approaches to maximize the graft-versus-leukemia (GVL) effects while mitigating graft-versus-host disease (GVHD) should therefore be pursued. Because of the difficulties in modeling AML in mice, patient-derived xenotransplantations (PDXs) in immunodeficient NOD-scid-IL2rgnull (NSG) mice are preferred to study the GVL effects. In PDX, AML is typically induced through the intravenous injection of cell lines or leukemic blasts obtained from patients. GVHD and GVL effects are induced by (co)-injecting human T cells or peripheral blood mononuclear cells (PBMCs). While this approach enables the induction of systemic leukemia, notably developing in the spleen and bone marrow of the animals, it can also be associated with difficulties in monitoring the disease, notably by flow cytometry. This can be circumvented by using luciferase-expressing AML cells or transplanting the leukemic cells in Matrigel to generate solid tumors that are easier to monitor. Here, we provide detailed instructions on how to prepare human PBMCs and leukemic cells, transplant them, and monitor the disease in NSG mice.
Collapse
MESH Headings
- Animals
- Leukemia, Myeloid, Acute/immunology
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Myeloid, Acute/therapy
- Humans
- Graft vs Host Disease/immunology
- Graft vs Host Disease/pathology
- Graft vs Host Disease/etiology
- Mice
- Graft vs Leukemia Effect/immunology
- Disease Models, Animal
- Mice, SCID
- Mice, Inbred NOD
- Hematopoietic Stem Cell Transplantation/adverse effects
- Hematopoietic Stem Cell Transplantation/methods
- Cell Line, Tumor
Collapse
Affiliation(s)
- Charline Faville
- GIGA Institute, Laboratory of Hematology, University of Liege, Liege, Belgium
| | - Bianca E Silva
- GIGA Institute, Laboratory of Hematology, University of Liege, Liege, Belgium
| | - Frédéric Baron
- GIGA Institute, Laboratory of Hematology, University of Liege, Liege, Belgium
| | - Grégory Ehx
- GIGA Institute, Laboratory of Hematology, University of Liege, Liege, Belgium.
- Walloon Excellence in Life Sciences and Biotechnology (WELBIO) Department, WEL Research Institute, Wavre, Belgium.
| |
Collapse
|
3
|
Monzavi SM, Muhammadnejad A, Behfar M, Khorsand AA, Muhammadnejad S, Kajbafzadeh AM. Spontaneous xenogeneic GvHD in Wilms' tumor Patient-Derived xenograft models and potential solutions. Animal Model Exp Med 2022; 5:389-396. [PMID: 35726155 PMCID: PMC9434572 DOI: 10.1002/ame2.12254] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 04/15/2022] [Indexed: 11/07/2022] Open
Abstract
Severely immunocompromised NOD.Cg-Prkdcscid Il2rgtm1Sug (NOG) mice are among the ideal animal recipients for generation of human cancer models. Transplantation of human solid tumors having abundant tumor-infiltrating lymphocytes (TILs) can induce xenogeneic graft-versus-host disease (xGvHD) following engraftment and expansion of the TILs inside the animal body. Wilms' tumor (WT) has not been recognized as a lymphocyte-predominant tumor. However, 3 consecutive generations of NOG mice bearing WT patient-derived xenografts (PDX) xenotransplanted from a single donor showed different degrees of inflammatory symptoms after transplantation before any therapeutic intervention. In the initial generation, dermatitis, auto-amputation of digits, weight loss, lymphadenopathy, hepatitis, and interstitial pneumonitis were observed. Despite antibiotic treatment, no response was noticed, and thus the animals were prematurely euthanized (day 47 posttransplantation). Laboratory and histopathologic evaluations revealed lymphoid infiltrates positively immunostained with anti-human CD3 and CD8 antibodies in the xenografts and primary tumor, whereas no microbial infection or lymphoproliferative disorder was found. Mice of the next generation that lived longer (91 days) developed sclerotic skin changes and more severe pneumonitis. Cutaneous symptoms were milder in the last generation. The xenografts of the last 2 generations also contained TILs, and lacked lymphoproliferative transformation. The systemic immunoinflammatory syndrome in the absence of microbial infection and posttransplant lymphoproliferative disorder was suggestive of xGvHD. While there are few reports of xGvHD in severely immunodeficient mice xenotransplanted from lymphodominant tumor xenografts, this report for the first time documented serial xGvHD in consecutive passages of WT PDX-bearing models and discussed potential solutions to prevent such an undesired complication.
Collapse
Affiliation(s)
- Seyed Mostafa Monzavi
- Department of Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Pediatric Urology and Regenerative Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Gene Therapy Research Center, Digestive Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahad Muhammadnejad
- Cancer Biology Research Center, Cancer Institute of Iran, Tehran University of Medical Sciences, Tehran, Iran.,PDX Platform, Biomarker Evaluation and Supervision Team for Personalized Medicine, Molecular Tumor Board, Cancer Institute of Iran, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Behfar
- Pediatric Cell and Gene Therapy Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Arsalan Khorsand
- Gene Therapy Research Center, Digestive Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran.,PDX Platform, Biomarker Evaluation and Supervision Team for Personalized Medicine, Molecular Tumor Board, Cancer Institute of Iran, Tehran University of Medical Sciences, Tehran, Iran
| | - Samad Muhammadnejad
- Gene Therapy Research Center, Digestive Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran.,PDX Platform, Biomarker Evaluation and Supervision Team for Personalized Medicine, Molecular Tumor Board, Cancer Institute of Iran, Tehran University of Medical Sciences, Tehran, Iran.,Pediatric Cell and Gene Therapy Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Abdol-Mohammad Kajbafzadeh
- Department of Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Pediatric Urology and Regenerative Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran.,PDX Platform, Biomarker Evaluation and Supervision Team for Personalized Medicine, Molecular Tumor Board, Cancer Institute of Iran, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Mopin A, Leprêtre F, Sebda S, Villenet C, Ben Khoud M, Figeac M, Quesnel B, Brinster C. Detection of residual and chemoresistant leukemic cells in an immune-competent mouse model of acute myeloid leukemia: Potential for unravelling their interactions with immunity. PLoS One 2022; 17:e0267508. [PMID: 35486629 PMCID: PMC9053800 DOI: 10.1371/journal.pone.0267508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 04/08/2022] [Indexed: 11/23/2022] Open
Abstract
Acute myeloid leukemia (AML) is characterized by blocked differentiation and extensive proliferation of hematopoietic progenitors/precursors. Relapse is often observed after chemotherapy due to the presence of residual leukemic cells, which is also called minimal residual disease (MRD). Subclonal heterogeneity at diagnosis was found to be responsible for MRD after treatment. Patient xenograft mouse models are valuable tools for studying MRD after chemotherapy; however, the contribution of the immune system in these models is usually missing. To evaluate its role in leukemic persistence, we generated an immune-competent AML mouse model of persistence after chemotherapy treatment. We used well-characterized (phenotypically and genetically) subclones of the murine C1498 cell line stably expressing the ZsGreen reporter gene and the WT1 protein, a valuable antigen. Accordingly, these subclones were also selected due to their in vitro aracytidine (Ara-c) sensitivity. A combination of 3 subclones (expressing or not expressing WT1) was found to lead to prolonged mouse survival after Ara-c treatment (as long as 150 days). The presence of residual leukemic cells in the blood and BM of surviving mice indicated their persistence. Thus, a new mouse model that may offer insights into immune contributions to leukemic persistence was developed.
Collapse
Affiliation(s)
- Alexia Mopin
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277 – CANTHER - Cancer Heterogeneity Plasticity and Resistance to Therapies, Lille, France
- Institut pour la Recherche sur le Cancer de Lille (IRCL), Lille, France
| | - Frédéric Leprêtre
- Univ. Lille, UAR2014 - US 41 - Plateformes Lilloises en Biologie & Santé- Plateau de génomique fonctionnelle, Centre de biologie Pathologie Génétique - CHU Lille, Lille, France
| | - Shéhérazade Sebda
- Univ. Lille, UAR2014 - US 41 - Plateformes Lilloises en Biologie & Santé- Plateau de génomique fonctionnelle, Centre de biologie Pathologie Génétique - CHU Lille, Lille, France
| | - Céline Villenet
- Univ. Lille, UAR2014 - US 41 - Plateformes Lilloises en Biologie & Santé- Plateau de génomique fonctionnelle, Centre de biologie Pathologie Génétique - CHU Lille, Lille, France
| | - Meriem Ben Khoud
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277 – CANTHER - Cancer Heterogeneity Plasticity and Resistance to Therapies, Lille, France
- Institut pour la Recherche sur le Cancer de Lille (IRCL), Lille, France
| | - Martin Figeac
- Univ. Lille, UAR2014 - US 41 - Plateformes Lilloises en Biologie & Santé- Plateau de génomique fonctionnelle, Centre de biologie Pathologie Génétique - CHU Lille, Lille, France
| | - Bruno Quesnel
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277 – CANTHER - Cancer Heterogeneity Plasticity and Resistance to Therapies, Lille, France
- Institut pour la Recherche sur le Cancer de Lille (IRCL), Lille, France
| | - Carine Brinster
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277 – CANTHER - Cancer Heterogeneity Plasticity and Resistance to Therapies, Lille, France
- Institut pour la Recherche sur le Cancer de Lille (IRCL), Lille, France
- * E-mail:
| |
Collapse
|
5
|
Sharon D, Cathelin S, Mirali S, Di Trani JM, Yanofsky DJ, Keon KA, Rubinstein JL, Schimmer AD, Ketela T, Chan SM. Inhibition of mitochondrial translation overcomes venetoclax resistance in AML through activation of the integrated stress response. Sci Transl Med 2020; 11:11/516/eaax2863. [PMID: 31666400 DOI: 10.1126/scitranslmed.aax2863] [Citation(s) in RCA: 137] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 06/07/2019] [Accepted: 09/27/2019] [Indexed: 12/12/2022]
Abstract
Venetoclax is a specific B cell lymphoma 2 (BCL-2) inhibitor with promising activity against acute myeloid leukemia (AML), but its clinical efficacy as a single agent or in combination with hypomethylating agents (HMAs), such as azacitidine, is hampered by intrinsic and acquired resistance. Here, we performed a genome-wide CRISPR knockout screen and found that inactivation of genes involved in mitochondrial translation restored sensitivity to venetoclax in resistant AML cells. Pharmacologic inhibition of mitochondrial protein synthesis with antibiotics that target the ribosome, including tedizolid and doxycycline, effectively overcame venetoclax resistance. Mechanistic studies showed that both tedizolid and venetoclax suppressed mitochondrial respiration, with the latter demonstrating inhibitory activity against complex I [nicotinamide adenine dinucleotide plus hydrogen (NADH) dehydrogenase] of the electron transport chain (ETC). The drugs cooperated to activate a heightened integrated stress response (ISR), which, in turn, suppressed glycolytic capacity, resulting in adenosine triphosphate (ATP) depletion and subsequent cell death. Combination treatment with tedizolid and venetoclax was superior to either agent alone in reducing leukemic burden in mice engrafted with treatment-resistant human AML. The addition of tedizolid to azacitidine and venetoclax further enhanced the killing of resistant AML cells in vitro and in vivo. Our findings demonstrate that inhibition of mitochondrial translation is an effective approach to overcoming venetoclax resistance and provide a rationale for combining tedizolid, azacitidine, and venetoclax as a triplet therapy for AML.
Collapse
Affiliation(s)
- David Sharon
- Princess Margaret Cancer Centre, Toronto, Ontario M5G 1L7, Canada
| | | | - Sara Mirali
- Princess Margaret Cancer Centre, Toronto, Ontario M5G 1L7, Canada
| | - Justin M Di Trani
- Molecular Medicine Program, The Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
| | - David J Yanofsky
- Molecular Medicine Program, The Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Kristine A Keon
- Molecular Medicine Program, The Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - John L Rubinstein
- Molecular Medicine Program, The Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Aaron D Schimmer
- Princess Margaret Cancer Centre, Toronto, Ontario M5G 1L7, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Troy Ketela
- Princess Margaret Cancer Centre, Toronto, Ontario M5G 1L7, Canada
| | - Steven M Chan
- Princess Margaret Cancer Centre, Toronto, Ontario M5G 1L7, Canada. .,Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| |
Collapse
|
6
|
Tillman H, Vogel P, Rogers T, Akers W, Rehg JE. Spectrum of Posttransplant Lymphoproliferations in NSG Mice and Their Association With EBV Infection After Engraftment of Pediatric Solid Tumors. Vet Pathol 2020; 57:445-456. [PMID: 32202225 PMCID: PMC7478125 DOI: 10.1177/0300985820913265] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Pediatric patients receiving solid organ transplants may develop lymphoproliferative diseases, including graft-versus-host disease (GvHD) and posttransplant lymphoproliferative diseases (PTLDs). We characterized lesions in 11 clinically ill NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ (NSG) mice that received pediatric-patient-derived solid tumors (PDXs) and developed immunodeficiency-associated lymphoproliferations comparable to GvHD and PTLDs over a period of 46 to 283 days after implantation. Lymphoproliferations were diffusely positive for human-specific biomarkers, including NUMA1, CD45, and CD43, but lacked immunoreactivity for murine CD45. Human immune cells were CD3-positive, with subsets having immunoreactivity for CD4 and CD8 as well as PAX5, CD79a, and IRF4, resulting from populations of human T and B cells present within the xenotransplants. Tissues and organs infiltrated included mucocutaneous zones (oral cavity and perigenital and perianal regions), haired skin, tongue, esophagus, forestomach, thyroid, salivary glands, lungs, liver, kidneys, spleen, lymph nodes, bone marrow, and brain. In 4 of 5 mice with PTLD, Epstein-Barr virus (EBV)-encoded small RNAs (EBERs) were detected by in situ hybridization in PAX5+ human B cells associated with the PDX (n = 1/4) or with engrafted human immune cells at other anatomic locations (n = 4/11). One of the 4 mice had an EBV-associated human large B-cell lymphoma. NSG mice receiving xenotransplants can develop combinations of GvHD, EBV-driven PTLD, and B-cell lymphoma similar to those occurring in human pediatric patients. Therefore, pediatric xenotransplants should undergo histopathologic and immunohistochemical assessment upon collection to ensure that the specimen is not a lymphoma and does not contain lymphoma cells because these neoplasms can morphologically mimic small round blue cell pediatric solid tumors.
Collapse
Affiliation(s)
- Heather Tillman
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Peter Vogel
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Tiffani Rogers
- Animal Resources Center, St. Jude Children's Research Hospital, Memphis, TN
| | - Walter Akers
- Center for In Vivo Imaging and Therapeutics, St Jude Children’s Research Hospital, Memphis, TN
| | - Jerold E. Rehg
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN
| |
Collapse
|
7
|
Cardin S, Bilodeau M, Roussy M, Aubert L, Milan T, Jouan L, Rouette A, Laramée L, Gendron P, Duchaine J, Decaluwe H, Spinella JF, Mourad S, Couture F, Sinnett D, Haddad É, Landry JR, Ma J, Humphries RK, Roux PP, Hébert J, Gruber TA, Wilhelm BT, Cellot S. Human models of NUP98-KDM5A megakaryocytic leukemia in mice contribute to uncovering new biomarkers and therapeutic vulnerabilities. Blood Adv 2019; 3:3307-3321. [PMID: 31698461 PMCID: PMC6855103 DOI: 10.1182/bloodadvances.2019030981] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 08/11/2019] [Indexed: 12/13/2022] Open
Abstract
Acute megakaryoblastic leukemia (AMKL) represents ∼10% of pediatric acute myeloid leukemia cases and typically affects young children (<3 years of age). It remains plagued with extremely poor treatment outcomes (<40% cure rates), mostly due to primary chemotherapy refractory disease and/or early relapse. Recurrent and mutually exclusive chimeric fusion oncogenes have been detected in 60% to 70% of cases and include nucleoporin 98 (NUP98) gene rearrangements, most commonly NUP98-KDM5A. Human models of NUP98-KDM5A-driven AMKL capable of faithfully recapitulating the disease have been lacking, and patient samples are rare, further limiting biomarkers and drug discovery. To overcome these impediments, we overexpressed NUP98-KDM5A in human cord blood hematopoietic stem and progenitor cells using a lentiviral-based approach to create physiopathologically relevant disease models. The NUP98-KDM5A fusion oncogene was a potent inducer of maturation arrest, sustaining long-term proliferative and progenitor capacities of engineered cells in optimized culture conditions. Adoptive transfer of NUP98-KDM5A-transformed cells into immunodeficient mice led to multiple subtypes of leukemia, including AMKL, that phenocopy human disease phenotypically and molecularly. The integrative molecular characterization of synthetic and patient NUP98-KDM5A AMKL samples revealed SELP, MPIG6B, and NEO1 as distinctive and novel disease biomarkers. Transcriptomic and proteomic analyses pointed to upregulation of the JAK-STAT signaling pathway in the model AMKL. Both synthetic models and patient-derived xenografts of NUP98-rearranged AMKL showed in vitro therapeutic vulnerability to ruxolitinib, a clinically approved JAK2 inhibitor. Overall, synthetic human AMKL models contribute to defining functional dependencies of rare genotypes of high-fatality pediatric leukemia, which lack effective and rationally designed treatments.
Collapse
MESH Headings
- Animals
- Biomarkers
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Computational Biology/methods
- Disease Models, Animal
- Disease Susceptibility
- Gene Expression
- Gene Expression Profiling
- High-Throughput Nucleotide Sequencing
- Humans
- Immunophenotyping
- Leukemia, Megakaryoblastic, Acute/etiology
- Leukemia, Megakaryoblastic, Acute/pathology
- Leukemia, Megakaryoblastic, Acute/therapy
- Mice
- Neoplastic Stem Cells/metabolism
- Neoplastic Stem Cells/pathology
- Nuclear Pore Complex Proteins/genetics
- Nuclear Pore Complex Proteins/metabolism
- Oncogene Proteins, Fusion/genetics
- Oncogene Proteins, Fusion/metabolism
- Retinoblastoma-Binding Protein 2/genetics
- Retinoblastoma-Binding Protein 2/metabolism
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Sophie Cardin
- Pediatric Hematology-Oncology Division, Charles-Bruneau Cancer Center, Centre Hospitalier Universitaire (CHU) Sainte-Justine Research Center, Montréal, QC, Canada
| | - Mélanie Bilodeau
- Pediatric Hematology-Oncology Division, Charles-Bruneau Cancer Center, Centre Hospitalier Universitaire (CHU) Sainte-Justine Research Center, Montréal, QC, Canada
| | - Mathieu Roussy
- Pediatric Hematology-Oncology Division, Charles-Bruneau Cancer Center, Centre Hospitalier Universitaire (CHU) Sainte-Justine Research Center, Montréal, QC, Canada
- Department of Biomedical Sciences
- Faculty of Medicine
| | - Léo Aubert
- Cell Signaling and Proteomics Research Unit, and
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada
| | - Thomas Milan
- Laboratory for High-Throughput Biology, Institute for Research in Immunology and Cancer, Montréal, QC, Canada
| | - Loubna Jouan
- Integrated Centre for Pediatric Clinical Genomics, CHU Sainte-Justine Research Center, Montréal, QC, Canada
| | - Alexandre Rouette
- Integrated Centre for Pediatric Clinical Genomics, CHU Sainte-Justine Research Center, Montréal, QC, Canada
| | - Louise Laramée
- Pediatric Hematology-Oncology Division, Charles-Bruneau Cancer Center, Centre Hospitalier Universitaire (CHU) Sainte-Justine Research Center, Montréal, QC, Canada
| | - Patrick Gendron
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada
- Bioinformatics Platform, Université de Montréal, Montréal, QC, Canada
| | - Jean Duchaine
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada
| | - Hélène Decaluwe
- Pediatric Hematology-Oncology Division, Charles-Bruneau Cancer Center, Centre Hospitalier Universitaire (CHU) Sainte-Justine Research Center, Montréal, QC, Canada
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada
| | - Jean-François Spinella
- Pediatric Hematology-Oncology Division, Charles-Bruneau Cancer Center, Centre Hospitalier Universitaire (CHU) Sainte-Justine Research Center, Montréal, QC, Canada
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada
| | - Stéphanie Mourad
- Pediatric Hematology-Oncology Division, Charles-Bruneau Cancer Center, Centre Hospitalier Universitaire (CHU) Sainte-Justine Research Center, Montréal, QC, Canada
| | - Françoise Couture
- Pediatric Hematology-Oncology Division, Charles-Bruneau Cancer Center, Centre Hospitalier Universitaire (CHU) Sainte-Justine Research Center, Montréal, QC, Canada
| | - Daniel Sinnett
- Pediatric Hematology-Oncology Division, Charles-Bruneau Cancer Center, Centre Hospitalier Universitaire (CHU) Sainte-Justine Research Center, Montréal, QC, Canada
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada
| | - Élie Haddad
- Pediatric Hematology-Oncology Division, Charles-Bruneau Cancer Center, Centre Hospitalier Universitaire (CHU) Sainte-Justine Research Center, Montréal, QC, Canada
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada
- Department of Microbiology, Infectiology and Immunology, CHU Sainte-Justine, Montréal, QC, Canada
| | - Josette-Renée Landry
- Pediatric Hematology-Oncology Division, Charles-Bruneau Cancer Center, Centre Hospitalier Universitaire (CHU) Sainte-Justine Research Center, Montréal, QC, Canada
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada
- Streamline Genomics, Montréal, QC, Canada
| | - Jing Ma
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN
| | | | - Philippe P Roux
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada
- Laboratory for High-Throughput Biology, Institute for Research in Immunology and Cancer, Montréal, QC, Canada
- Department of Pathology and Cell Biology, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Josée Hébert
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada
- Division of Hematology, and
- Québec Leukemia Cell Bank, Maisonneuve-Rosemont Hospital, Montréal, QC, Canada; and
| | - Tanja A Gruber
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN
| | - Brian T Wilhelm
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada
- Laboratory for High-Throughput Biology, Institute for Research in Immunology and Cancer, Montréal, QC, Canada
| | - Sonia Cellot
- Pediatric Hematology-Oncology Division, Charles-Bruneau Cancer Center, Centre Hospitalier Universitaire (CHU) Sainte-Justine Research Center, Montréal, QC, Canada
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada
- Québec Leukemia Cell Bank, Maisonneuve-Rosemont Hospital, Montréal, QC, Canada; and
| |
Collapse
|
8
|
Williams AP, Stewart JE, Stafman LL, Aye JM, Mroczek-Musulman E, Ren C, Yoon K, Whelan K, Beierle EA. Corruption of neuroblastoma patient derived xenografts with human T cell lymphoma. J Pediatr Surg 2019; 54:2117-2119. [PMID: 30391152 PMCID: PMC6476711 DOI: 10.1016/j.jpedsurg.2018.10.051] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 09/24/2018] [Accepted: 10/04/2018] [Indexed: 11/26/2022]
Abstract
BACKGROUND Patient derived xenografts (PDXs) provide a unique opportunity for investigators to study tumor cell activity, response to therapeutics, and resistance patterns without exposing the human patient to experimental compounds, and thereby play a crucial role in pre-clinical evaluation of new therapies. It has been reported that PDXs may undergo a transformation to lymphoma, most commonly associated with Epstein Barr virus (EBV). If the character of a xenograft becomes compromised and remains undetected, it could have a detrimental impact on the research community as a whole. Our lab has established a number of pediatric solid tumor PDXs which accurately recapitulate the human tumors following several passages. One particular neuroblastoma PDX was noted to grow quickly and with an unusual phenotype, leading us to hypothesize that this PDX had undergone a transformation. METHODS The PDX in question was investigated with histology, immunohistochemistry (IHC), EBER in situ hybridization, and PCR to determine its identity. RESULTS Histology on the tumor revealed a small, round blue cell tumor similar to the original neuroblastoma from which it was derived. IHC staining showed that the tumor was composed of lymphocytes that were CD3 positive, <5% CD4 positive, and CD20 negative. The cells were Epstein Barr virus negative. PCR demonstrated that the tumor was human and not murine in origin. CONCLUSION These findings indicate that a human T Cell lymphoma developed in place of this neuroblastoma PDX. Changes in PDX identity such as this one will significantly impact studies utilizing pediatric PDXs and the mechanism by which this occurred warrants further investigation.
Collapse
Affiliation(s)
- Adele P Williams
- University of Alabama at Birmingham, Department of Surgery, Birmingham, AL
| | - Jerry E. Stewart
- University of Alabama at Birmingham, Department of Surgery, Birmingham, AL
| | - Laura L. Stafman
- University of Alabama at Birmingham, Department of Surgery, Birmingham, AL
| | - Jamie M Aye
- University of Alabama at Birmingham, Department of Hematology Oncology, Birmingham, AL
| | | | - Changchun Ren
- University of Alabama at Birmingham, Department of Neonatology, Birmingham, AL
| | - Karina Yoon
- University of Alabama at Birmingham, Department of Pharmacology, Birmingham, AL
| | - Kimberly Whelan
- University of Alabama at Birmingham, Department of Hematology Oncology, Birmingham, AL
| | | |
Collapse
|
9
|
Pishali Bejestani E, Cartellieri M, Bergmann R, Ehninger A, Loff S, Kramer M, Spehr J, Dietrich A, Feldmann A, Albert S, Wermke M, Baumann M, Krause M, Bornhäuser M, Ehninger G, Bachmann M, von Bonin M. Characterization of a switchable chimeric antigen receptor platform in a pre-clinical solid tumor model. Oncoimmunology 2017; 6:e1342909. [PMID: 29123951 DOI: 10.1080/2162402x.2017.1342909] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 06/07/2017] [Accepted: 06/09/2017] [Indexed: 12/16/2022] Open
Abstract
The universal modular chimeric antigen receptor (UniCAR) platform redirects CAR-T cells using a separated, soluble targeting module with a short half-life. This segregation allows precise controllability and flexibility. Herein we show that the UniCAR platform can be used to efficiently target solid cancers in vitro and in vivo using a pre-clinical prostate cancer model which overexpresses prostate stem cell antigen (PSCA). Short-term administration of the targeting module to tumor bearing immunocompromised mice engrafted with human UniCAR-T cells significantly delayed tumor growth and prolonged survival of recipient mice both in a low and high tumor burden model. In addition, we analyzed phenotypic and functional changes of cancer cells and UniCAR-T cells in association with the administration of the targeting module to reveal potential immunoevasive mechanisms. Most notably, UniCAR-T cell activation induced upregulation of immune-inhibitory molecules such as programmed death ligands. In conclusion, this work illustrates that the UniCAR platform mediates potent anti-tumor activity in a relevant in vitro and in vivo solid tumor model.
Collapse
Affiliation(s)
- Elham Pishali Bejestani
- German Cancer Consortium (DKTK), Dresden, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | - Ralf Bergmann
- Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany.,OncoRay, National Center for Radiation Research in Oncology, University Hospital and Faculty of Medicine Carl Gustav Carus, Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany
| | | | - Simon Loff
- GEMoaB Monoclonals GmbH, Dresden, Germany
| | - Michael Kramer
- Medical Department I, University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany
| | | | - Antje Dietrich
- German Cancer Consortium (DKTK), Dresden, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany.,OncoRay, National Center for Radiation Research in Oncology, University Hospital and Faculty of Medicine Carl Gustav Carus, Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany
| | - Anja Feldmann
- Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany
| | - Susann Albert
- UniversityCancerCenter (UCC), University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany
| | - Martin Wermke
- Medical Department I, University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany.,UniversityCancerCenter (UCC), University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany
| | - Michael Baumann
- German Cancer Consortium (DKTK), Dresden, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany.,Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany.,Department of Radiation Oncology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany.,OncoRay, National Center for Radiation Research in Oncology, University Hospital and Faculty of Medicine Carl Gustav Carus, Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany.,National Center for Tumor Diseases (NCT), Dresden, Germany
| | - Mechthild Krause
- German Cancer Consortium (DKTK), Dresden, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany.,Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany.,Department of Radiation Oncology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany.,OncoRay, National Center for Radiation Research in Oncology, University Hospital and Faculty of Medicine Carl Gustav Carus, Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany.,National Center for Tumor Diseases (NCT), Dresden, Germany
| | - Martin Bornhäuser
- German Cancer Consortium (DKTK), Dresden, Germany.,Medical Department I, University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany.,UniversityCancerCenter (UCC), University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany.,National Center for Tumor Diseases (NCT), Dresden, Germany
| | - Gerhard Ehninger
- German Cancer Consortium (DKTK), Dresden, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany.,Cellex Patient Treatment GmbH, Dresden, Germany.,GEMoaB Monoclonals GmbH, Dresden, Germany.,Medical Department I, University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany.,UniversityCancerCenter (UCC), University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany.,National Center for Tumor Diseases (NCT), Dresden, Germany
| | - Michael Bachmann
- German Cancer Consortium (DKTK), Dresden, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany.,Cellex Patient Treatment GmbH, Dresden, Germany.,Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany.,GEMoaB Monoclonals GmbH, Dresden, Germany.,UniversityCancerCenter (UCC), University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany.,National Center for Tumor Diseases (NCT), Dresden, Germany
| | - Malte von Bonin
- German Cancer Consortium (DKTK), Dresden, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany.,Medical Department I, University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany
| |
Collapse
|
10
|
Haworth KG, Ironside C, Norgaard ZK, Obenza WM, Adair JE, Kiem HP. In Vivo Murine-Matured Human CD3 + Cells as a Preclinical Model for T Cell-Based Immunotherapies. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2017. [PMID: 28649577 PMCID: PMC5470556 DOI: 10.1016/j.omtm.2017.05.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Adoptive cellular immunotherapy is a promising and powerful method for the treatment of a broad range of malignant and infectious diseases. Although the concept of cellular immunotherapy was originally proposed in the 1990s, it has not seen successful clinical application until recent years. Despite significant progress in creating engineered receptors against both malignant and viral epitopes, no efficient preclinical animal models exist for rapidly testing and directly comparing these engineered receptors. The use of matured human T cells in mice usually leads to graft-versus-host disease (GvHD), which severely limits the effectiveness of such studies. Alternatively, adult apheresis CD34+ cells engraft in neonatal non-obese diabetic (NOD)-severe combined immunodeficiency (SCID)-common γ chain–/– (NSG) mice and lead to the development of CD3+ T cells in peripheral circulation. We demonstrate that these in vivo murine-matured autologous CD3+ T cells from humans (MATCH) can be collected from the mice, engineered with lentiviral vectors, reinfused into the mice, and detected in multiple lymphoid compartments at stable levels over 50 days after injection. Unlike autologous CD3+ cells collected from human donors, these MATCH mice did not exhibit GvHD after T cell administration. This novel mouse model offers the opportunity to screen different immunotherapy-based treatments in a preclinical setting.
Collapse
Affiliation(s)
- Kevin G Haworth
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109-1024, USA
| | - Christina Ironside
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109-1024, USA
| | - Zachary K Norgaard
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109-1024, USA
| | - Willimark M Obenza
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109-1024, USA
| | - Jennifer E Adair
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109-1024, USA.,Department of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Hans-Peter Kiem
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109-1024, USA.,Department of Medicine, University of Washington, Seattle, WA 98195, USA.,Department of Pathology, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
11
|
Bray LJ, Binner M, Körner Y, von Bonin M, Bornhäuser M, Werner C. A three-dimensional ex vivo tri-culture model mimics cell-cell interactions between acute myeloid leukemia and the vascular niche. Haematologica 2017; 102:1215-1226. [PMID: 28360147 PMCID: PMC5566030 DOI: 10.3324/haematol.2016.157883] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Accepted: 03/27/2017] [Indexed: 12/20/2022] Open
Abstract
Ex vivo studies of human disease, such as acute myeloid leukemia, are generally limited to the analysis of two-dimensional cultures which often misinterpret the effectiveness of chemotherapeutics and other treatments. Here we show that matrix metalloproteinase-sensitive hydrogels prepared from poly(ethylene glycol) and heparin functionalized with adhesion ligands and pro-angiogenic factors can be instrumental to produce robust three-dimensional culture models, allowing for the analysis of acute myeloid leukemia development and response to treatment. We evaluated the growth of four leukemia cell lines, KG1a, MOLM13, MV4-11 and OCI-AML3, as well as samples from patients with acute myeloid leukemia. Furthermore, endothelial cells and mesenchymal stromal cells were co-seeded to mimic the vascular niche for acute myeloid leukemia cells. Greater drug resistance to daunorubicin and cytarabine was demonstrated in three-dimensional cultures and in vascular co-cultures when compared with two-dimensional suspension cultures, opening the way for drug combination studies. Application of the C-X-C chemokine receptor type 4 (CXCR4) inhibitor, AMD3100, induced mobilization of the acute myeloid leukemia cells from the vascular networks. These findings indicate that the three-dimensional tri-culture model provides a specialized platform for the investigation of cell-cell interactions, addressing a key challenge of current testing models. This ex vivo system allows for personalized analysis of the responses of patients’ cells, providing new insights into the development of acute myeloid leukemia and therapies for this disease.
Collapse
Affiliation(s)
- Laura J Bray
- Max Bergmann Center of Biomaterials, Leibniz Institute of Polymer Research Dresden, Germany .,Science and Engineering Faculty, Queensland University of Technology, Brisbane, Australia
| | - Marcus Binner
- Max Bergmann Center of Biomaterials, Leibniz Institute of Polymer Research Dresden, Germany
| | - Yvonne Körner
- Max Bergmann Center of Biomaterials, Leibniz Institute of Polymer Research Dresden, Germany
| | - Malte von Bonin
- Universitätsklinikum Carl-Gustav Carus, Faculty of Medicine, Technische Universität Dresden, Saxony, Germany.,German Cancer Center (DKFZ), Heidelberg, Germany.,German Cancer Consortium (DKTK), partner site Dresden, Germany
| | - Martin Bornhäuser
- Universitätsklinikum Carl-Gustav Carus, Faculty of Medicine, Technische Universität Dresden, Saxony, Germany.,German Cancer Center (DKFZ), Heidelberg, Germany.,German Cancer Consortium (DKTK), partner site Dresden, Germany
| | - Carsten Werner
- Max Bergmann Center of Biomaterials, Leibniz Institute of Polymer Research Dresden, Germany
| |
Collapse
|
12
|
Switching CAR T cells on and off: a novel modular platform for retargeting of T cells to AML blasts. Blood Cancer J 2016; 6:e458. [PMID: 27518241 PMCID: PMC5022178 DOI: 10.1038/bcj.2016.61] [Citation(s) in RCA: 191] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 05/27/2016] [Indexed: 12/17/2022] Open
Abstract
The adoptive transfer of CD19-specific chimeric antigen receptor engineered T cells (CAR T cells) resulted in encouraging clinical trials in indolent B-cell malignancies. However, they also show the limitations of this fascinating technology: CAR T cells can lead to even life-threatening off-tumor, on-target side effects if CAR T cells crossreact with healthy tissues. Here, we describe a novel modular universal CAR platform technology termed UniCAR that reduces the risk of on-target side effects by a rapid and reversible control of CAR T-cell reactivity. The UniCAR system consists of two components: (1) a CAR for an inert manipulation of T cells and (2) specific targeting modules (TMs) for redirecting UniCAR T cells in an individualized time- and target-dependent manner. UniCAR T cells can be armed against different tumor targets simply by replacement of the respective TM for (1) targeting more than one antigen simultaneously or subsequently to enhance efficacy and (2) reducing the risk for development of antigen-loss tumor variants under treatment. Here we provide ‘proof of concept' for retargeting of UniCAR T cells to CD33- and/or CD123-positive acute myeloid leukemia blasts in vitro and in vivo.
Collapse
|
13
|
Bondarenko G, Ugolkov A, Rohan S, Kulesza P, Dubrovskyi O, Gursel D, Mathews J, O'Halloran TV, Wei JJ, Mazar AP. Patient-Derived Tumor Xenografts Are Susceptible to Formation of Human Lymphocytic Tumors. Neoplasia 2016; 17:735-741. [PMID: 26476081 PMCID: PMC4611072 DOI: 10.1016/j.neo.2015.09.004] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Revised: 09/08/2015] [Accepted: 09/15/2015] [Indexed: 01/01/2023] Open
Abstract
Patient-derived xenograft (PDX) tumor models have emerged as a new approach to evaluate the effects of cancer drugs on patients’ personalized tumor grafts enabling to select the best treatment for the cancer patient and providing a new tool for oncology drug developers. Here, we report that human tumors engrafted in immunodeficient mice are susceptible to formation of B-and T-cell PDX tumors. We xenografted human primary and metastatic tumor samples into immunodeficient mice and found that a fraction of PDX tumors generated from patients’ samples of breast, colon, pancreatic, bladder and renal cancer were histologically similar to lymphocytic neoplasms. Moreover, we found that the first passage of breast and pancreatic cancer PDX tumors after initial transplantation of the tumor pieces from the same human tumor graft could grow as a lymphocytic tumor in one mouse and as an adenocarcinoma in another mouse. Whereas subcutaneous PDX tumors resembling human adenocarcinoma histology were slow growing and non-metastatic, we found that subcutaneous PDX lymphocytic tumors were fast growing and formed large metastatic lesions in mouse lymph nodes, liver, lungs, and spleen. PDX lymphocytic tumors were comprised of B-cells which were Epstein-Barr virus positive and expressed CD45 and CD20. Because B-cells are typically present in malignant solid tumors, formation of B-cell tumor may evolve in a wide range of PDX tumor models. Although PDX tumor models show great promise in the development of personalized therapy for cancer patients, our results suggest that confidence in any given PDX tumor model requires careful screening of lymphocytic markers.
Collapse
Affiliation(s)
- Gennadiy Bondarenko
- Center for Developmental Therapeutics, Robert H. Lurie Comprehensive Cancer Center, Northwestern University, 2170 Campus Drive, Evanston, IL, USA; Chemistry of Life Processes Institute, Northwestern University, 2170 Campus Drive, Evanston, IL, USA
| | - Andrey Ugolkov
- Center for Developmental Therapeutics, Robert H. Lurie Comprehensive Cancer Center, Northwestern University, 2170 Campus Drive, Evanston, IL, USA; Chemistry of Life Processes Institute, Northwestern University, 2170 Campus Drive, Evanston, IL, USA
| | - Stephen Rohan
- Department of Pathology, Feinberg School of Medicine, Northwestern University, 303 East Chicago Avenue, Chicago, 60611, IL, USA; Pathology Core Facility, Robert H. Lurie Comprehensive Cancer Center, Northwestern University, 710 North Fairbanks Court, Chicago, IL, USA
| | - Piotr Kulesza
- Department of Pathology, Feinberg School of Medicine, Northwestern University, 303 East Chicago Avenue, Chicago, 60611, IL, USA; Pathology Core Facility, Robert H. Lurie Comprehensive Cancer Center, Northwestern University, 710 North Fairbanks Court, Chicago, IL, USA
| | - Oleksii Dubrovskyi
- Center for Developmental Therapeutics, Robert H. Lurie Comprehensive Cancer Center, Northwestern University, 2170 Campus Drive, Evanston, IL, USA; Chemistry of Life Processes Institute, Northwestern University, 2170 Campus Drive, Evanston, IL, USA
| | - Demirkan Gursel
- Pathology Core Facility, Robert H. Lurie Comprehensive Cancer Center, Northwestern University, 710 North Fairbanks Court, Chicago, IL, USA
| | - Jeremy Mathews
- Pathology Core Facility, Robert H. Lurie Comprehensive Cancer Center, Northwestern University, 710 North Fairbanks Court, Chicago, IL, USA
| | - Thomas V O'Halloran
- Chemistry of Life Processes Institute, Northwestern University, 2170 Campus Drive, Evanston, IL, USA
| | - Jian J Wei
- Department of Pathology, Feinberg School of Medicine, Northwestern University, 303 East Chicago Avenue, Chicago, 60611, IL, USA; Pathology Core Facility, Robert H. Lurie Comprehensive Cancer Center, Northwestern University, 710 North Fairbanks Court, Chicago, IL, USA
| | - Andrew P Mazar
- Center for Developmental Therapeutics, Robert H. Lurie Comprehensive Cancer Center, Northwestern University, 2170 Campus Drive, Evanston, IL, USA; Department of Pharmacology, Feinberg School of Medicine, Northwestern University, 320 East Superior Street, Chicago, 60611, IL, USA; Chemistry of Life Processes Institute, Northwestern University, 2170 Campus Drive, Evanston, IL, USA.
| |
Collapse
|
14
|
Mende N, Kuchen EE, Lesche M, Grinenko T, Kokkaliaris KD, Hanenberg H, Lindemann D, Dahl A, Platz A, Höfer T, Calegari F, Waskow C. CCND1-CDK4-mediated cell cycle progression provides a competitive advantage for human hematopoietic stem cells in vivo. ACTA ACUST UNITED AC 2015; 212:1171-83. [PMID: 26150472 PMCID: PMC4516798 DOI: 10.1084/jem.20150308] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Accepted: 06/22/2015] [Indexed: 12/26/2022]
Abstract
Maintenance of stem cell properties is associated with reduced proliferation but it is unknown whether the transition kinetics through distinct cell cycle phases influences the function of HSCs. Mende et al examine the effects of increasing two cell cycle complexes CCND1–CDK4 and CCNE1–CDK2 on the transition kinetics of human HSCs and their maintenance and functional alterations in vivo. Maintenance of stem cell properties is associated with reduced proliferation. However, in mouse hematopoietic stem cells (HSCs), loss of quiescence results in a wide range of phenotypes, ranging from functional failure to extensive self-renewal. It remains unknown whether the function of human HSCs is controlled by the kinetics of cell cycle progression. Using human HSCs and human progenitor cells (HSPCs), we report here that elevated levels of CCND1–CDK4 complexes promoted the transit from G0 to G1 and shortened the G1 cell cycle phase, resulting in protection from differentiation-inducing signals in vitro and increasing human leukocyte engraftment in vivo. Further, CCND1–CDK4 overexpression conferred a competitive advantage without impacting HSPC numbers. In contrast, accelerated cell cycle progression mediated by elevated levels of CCNE1–CDK2 led to the loss of functional HSPCs in vivo. Collectively, these data suggest that the transition kinetics through the early cell cycle phases are key regulators of human HSPC function and important for lifelong hematopoiesis.
Collapse
Affiliation(s)
- Nicole Mende
- Regeneration in Hematopoiesis and Animal Models in Hematopoiesis, Institute for Immunology, Institute of Virology, Center for Regenerative Therapies, Faculty of Medicine; Deep Sequencing Group SFB655, Biotechnology Center, TU Dresden, 01307 Dresden, Germany
| | - Erika E Kuchen
- Division of Theoretical Systems Biology, German Cancer Research Center, 69120 Heidelberg, Germany Bioquant Center, University of Heidelberg, 69120 Heidelberg, Germany
| | - Mathias Lesche
- Regeneration in Hematopoiesis and Animal Models in Hematopoiesis, Institute for Immunology, Institute of Virology, Center for Regenerative Therapies, Faculty of Medicine; Deep Sequencing Group SFB655, Biotechnology Center, TU Dresden, 01307 Dresden, Germany
| | - Tatyana Grinenko
- Regeneration in Hematopoiesis and Animal Models in Hematopoiesis, Institute for Immunology, Institute of Virology, Center for Regenerative Therapies, Faculty of Medicine; Deep Sequencing Group SFB655, Biotechnology Center, TU Dresden, 01307 Dresden, Germany
| | | | - Helmut Hanenberg
- Riley Hospital for Children, Indiana University School of Medicine, Indianapolis, IN 46202
| | - Dirk Lindemann
- Regeneration in Hematopoiesis and Animal Models in Hematopoiesis, Institute for Immunology, Institute of Virology, Center for Regenerative Therapies, Faculty of Medicine; Deep Sequencing Group SFB655, Biotechnology Center, TU Dresden, 01307 Dresden, Germany
| | - Andreas Dahl
- Regeneration in Hematopoiesis and Animal Models in Hematopoiesis, Institute for Immunology, Institute of Virology, Center for Regenerative Therapies, Faculty of Medicine; Deep Sequencing Group SFB655, Biotechnology Center, TU Dresden, 01307 Dresden, Germany
| | | | - Thomas Höfer
- Division of Theoretical Systems Biology, German Cancer Research Center, 69120 Heidelberg, Germany Bioquant Center, University of Heidelberg, 69120 Heidelberg, Germany
| | - Federico Calegari
- Regeneration in Hematopoiesis and Animal Models in Hematopoiesis, Institute for Immunology, Institute of Virology, Center for Regenerative Therapies, Faculty of Medicine; Deep Sequencing Group SFB655, Biotechnology Center, TU Dresden, 01307 Dresden, Germany
| | - Claudia Waskow
- Regeneration in Hematopoiesis and Animal Models in Hematopoiesis, Institute for Immunology, Institute of Virology, Center for Regenerative Therapies, Faculty of Medicine; Deep Sequencing Group SFB655, Biotechnology Center, TU Dresden, 01307 Dresden, Germany
| |
Collapse
|
15
|
Radaelli E, Hermans E, Omodho L, Francis A, Vander Borght S, Marine JC, van den Oord J, Amant F. Spontaneous Post-Transplant Disorders in NOD.Cg- Prkdcscid Il2rgtm1Sug/JicTac (NOG) Mice Engrafted with Patient-Derived Metastatic Melanomas. PLoS One 2015; 10:e0124974. [PMID: 25996609 PMCID: PMC4440639 DOI: 10.1371/journal.pone.0124974] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 03/20/2015] [Indexed: 12/18/2022] Open
Abstract
Patient-derived tumor xenograft (PDTX) approach is nowadays considered a reliable preclinical model to study in vivo cancer biology and therapeutic response. NOD scid and Il2rg-deficient mice represent the "gold standard" host for the generation of PDTXs. Compared to other immunocompromised murine lines, these mice offers several advantages including higher engraftment rate, longer lifespan and improved morphological and molecular preservation of patient-derived neoplasms. Here we describe a spectrum of previously uncharacterized post-transplant disorders affecting 14/116 (12%) NOD.Cg- Prkdcscid Il2rgtm1Sug/JicTac (NOG) mice subcutaneously engrafted with patient-derived metastatic melanomas. Affected mice exhibited extensive scaling/crusting dermatitis (13/14) associated with emaciation (13/14) and poor/unsuccessful tumor engraftment (14/14). In this context, the following pathological conditions have been recognized and characterized in details: (i) immunoinflammatory disorders with features of graft versus host disease (14/14); (ii) reactive lymphoid infiltrates effacing xenografted tumors (8/14); (iii) post-transplant B cell lymphomas associated with Epstein-Barr virus reactivation (2/14). We demonstrate that all these entities are driven by co-transplanted human immune cells populating patient-derived tumor samples. Since the exploding interest in the utilization of NOD scid and Il2rg-deficient mice for the establishment of PDTX platforms, it is of uppermost importance to raise the awareness of the limitations associated with this model. The disorders here described adversely impact tumor engraftment rate and animal lifespan, potentially representing a major confounding factor in the context of efficacy and personalized therapy studies. The occurrence of these conditions in the NOG model reflects the ability of this mouse line to promote efficient engraftment of human immune cells. Co-transplanted human lymphoid cells have indeed the potential to colonize the recipient mouse initiating the post-transplant conditions here reported. On the other hand, the evidence of an immune response of human origin against the xenotransplanted melanoma opens intriguing perspectives for the establishment of suitable preclinical models of anti-melanoma immunotherapy.
Collapse
Affiliation(s)
- Enrico Radaelli
- VIB11 Center for the Biology of Disease, KU Leuven Center for Human Genetics, Leuven, Belgium
- InfraMouse, KU Leuven-VIB, Leuven, Belgium
| | - Els Hermans
- Gynaecological Oncology, UZ Leuven—Department of Oncology, KU Leuven, Leuven, Belgium
- * E-mail:
| | - Lorna Omodho
- VIB11 Center for the Biology of Disease, KU Leuven Center for Human Genetics, Leuven, Belgium
| | - Annick Francis
- VIB11 Center for the Biology of Disease, KU Leuven Center for Human Genetics, Leuven, Belgium
- InfraMouse, KU Leuven-VIB, Leuven, Belgium
| | - Sara Vander Borght
- Department of Pathology, Laboratory of Morphology and Molecular Pathology, University Hospitals of Leuven, Leuven, Belgium
| | - Jean-Christophe Marine
- Laboratory for Molecular Cancer Biology, VIB11 Center for the Biology of Disease, KU Leuven Center for Human Genetics, Leuven, Belgium
| | - Joost van den Oord
- Translational Cell and Tissue Research, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Frédéric Amant
- Gynaecological Oncology, UZ Leuven—Department of Oncology, KU Leuven, Leuven, Belgium
| |
Collapse
|
16
|
Leukemic progenitor cells are susceptible to targeting by stimulated cytotoxic T cells against immunogenic leukemia-associated antigens. Int J Cancer 2015; 137:2083-92. [DOI: 10.1002/ijc.29583] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 03/30/2015] [Indexed: 12/30/2022]
|
17
|
RNAi profiling of primary human AML cells identifies ROCK1 as a therapeutic target and nominates fasudil as an antileukemic drug. Blood 2015; 125:3760-8. [PMID: 25931586 DOI: 10.1182/blood-2014-07-590646] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Accepted: 04/22/2015] [Indexed: 01/07/2023] Open
Abstract
Acute myeloid leukemia (AML) is characterized by a marked genetic heterogeneity, which complicates the development of novel therapeutics. The delineation of pathways essential within an individual patient's mutational background might overcome this limitation and facilitate personalized treatment. We report the results of a large-scale lentiviral loss-of-function RNA interference (RNAi) screen in primary leukemic cells. Stringent validation identified 6 genes (BNIPL1, ROCK1, RPS13, STK3, SNX27, WDHD1) whose knockdown impaired growth and viability of the cells. Dependence on these genes was not caused by mutation or overexpression, and although some of the candidates seemed to be rather patient specific, others were essential in cells isolated from other AML patients. In addition to the phenotype observed after ROCK1 knockdown, treatment with the approved ROCK inhibitor fasudil resulted in increased apoptosis and decreased viability of primary AML cells. In contrast to observations in some other malignancies, ROCK1 inhibition did not foster growth of immature malignant progenitors but was toxic to this cell fraction in feeder coculture and xenotransplant experiments, indicating a distinct effect of ROCK1 inhibition on leukemic progenitors. We conclude that large-scale RNAi screens in primary patient-derived cells are feasible and can complement other methods for personalized cancer therapies, such as expression and mutation profiling.
Collapse
|
18
|
Vick B, Rothenberg M, Sandhöfer N, Carlet M, Finkenzeller C, Krupka C, Grunert M, Trumpp A, Corbacioglu S, Ebinger M, André MC, Hiddemann W, Schneider S, Subklewe M, Metzeler KH, Spiekermann K, Jeremias I. An advanced preclinical mouse model for acute myeloid leukemia using patients' cells of various genetic subgroups and in vivo bioluminescence imaging. PLoS One 2015; 10:e0120925. [PMID: 25793878 PMCID: PMC4368518 DOI: 10.1371/journal.pone.0120925] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 01/27/2015] [Indexed: 12/21/2022] Open
Abstract
Acute myeloid leukemia (AML) is a clinically and molecularly heterogeneous disease with poor outcome. Adequate model systems are required for preclinical studies to improve understanding of AML biology and to develop novel, rational treatment approaches. Xenografts in immunodeficient mice allow performing functional studies on patient-derived AML cells. We have established an improved model system that integrates serial retransplantation of patient-derived xenograft (PDX) cells in mice, genetic manipulation by lentiviral transduction, and essential quality controls by immunophenotyping and targeted resequencing of driver genes. 17/29 samples showed primary engraftment, 10/17 samples could be retransplanted and some of them allowed virtually indefinite serial transplantation. 5/6 samples were successfully transduced using lentiviruses. Neither serial transplantation nor genetic engineering markedly altered sample characteristics analyzed. Transgene expression was stable in PDX AML cells. Example given, recombinant luciferase enabled bioluminescence in vivo imaging and highly sensitive and reliable disease monitoring; imaging visualized minimal disease at 1 PDX cell in 10000 mouse bone marrow cells and facilitated quantifying leukemia initiating cells. We conclude that serial expansion, genetic engineering and imaging represent valuable tools to improve the individualized xenograft mouse model of AML. Prospectively, these advancements enable repetitive, clinically relevant studies on AML biology and preclinical treatment trials on genetically defined and heterogeneous subgroups.
Collapse
Affiliation(s)
- Binje Vick
- Group Apoptosis, Department of Gene Vectors, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Maja Rothenberg
- Department of Internal Medicine III, University Hospital Grosshadern, Ludwig-Maximilians-Universität (LMU), Munich, Germany
| | - Nadine Sandhöfer
- German Cancer Consortium (DKTK), Heidelberg, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Internal Medicine III, University Hospital Grosshadern, Ludwig-Maximilians-Universität (LMU), Munich, Germany
- Clinical Cooperation Group Leukemia, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany
| | - Michela Carlet
- Group Apoptosis, Department of Gene Vectors, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany
| | - Cornelia Finkenzeller
- Group Apoptosis, Department of Gene Vectors, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany
| | - Christina Krupka
- Department of Internal Medicine III, University Hospital Grosshadern, Ludwig-Maximilians-Universität (LMU), Munich, Germany
- Clinical Cooperation Group Immunotherapy, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany
| | - Michaela Grunert
- Group Apoptosis, Department of Gene Vectors, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany
| | - Andreas Trumpp
- German Cancer Consortium (DKTK), Heidelberg, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM GmbH), Heidelberg, Germany
| | - Selim Corbacioglu
- Department of Pediatrics, University of Regensburg, Regensburg, Germany
| | - Martin Ebinger
- German Cancer Consortium (DKTK), Heidelberg, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Pediatric Hematology/Oncology, University Children’s Hospital, Eberhard Karls Universität, Tuebingen, Germany
| | - Maya C. André
- Department of Pediatric Hematology/Oncology, University Children’s Hospital, Eberhard Karls Universität, Tuebingen, Germany
- Department of Pediatric Intensive Care Medicine, University Children's Hospital (UKBB), Basel, Switzerland
| | - Wolfgang Hiddemann
- German Cancer Consortium (DKTK), Heidelberg, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Internal Medicine III, University Hospital Grosshadern, Ludwig-Maximilians-Universität (LMU), Munich, Germany
- Clinical Cooperation Group Leukemia, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany
| | - Stephanie Schneider
- Department of Internal Medicine III, University Hospital Grosshadern, Ludwig-Maximilians-Universität (LMU), Munich, Germany
| | - Marion Subklewe
- German Cancer Consortium (DKTK), Heidelberg, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Internal Medicine III, University Hospital Grosshadern, Ludwig-Maximilians-Universität (LMU), Munich, Germany
- Clinical Cooperation Group Immunotherapy, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany
| | - Klaus H. Metzeler
- Department of Internal Medicine III, University Hospital Grosshadern, Ludwig-Maximilians-Universität (LMU), Munich, Germany
- Clinical Cooperation Group Leukemia, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany
| | - Karsten Spiekermann
- German Cancer Consortium (DKTK), Heidelberg, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Internal Medicine III, University Hospital Grosshadern, Ludwig-Maximilians-Universität (LMU), Munich, Germany
- Clinical Cooperation Group Leukemia, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany
| | - Irmela Jeremias
- Group Apoptosis, Department of Gene Vectors, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Oncology, Dr von Haunersches Kinderspital, Ludwig Maximilians-Universität (LMU), Munich, Germany
- * E-mail:
| |
Collapse
|
19
|
Chan SM, Thomas D, Corces-Zimmerman MR, Xavy S, Rastogi S, Hong WJ, Zhao F, Medeiros BC, Tyvoll DA, Majeti R. Isocitrate dehydrogenase 1 and 2 mutations induce BCL-2 dependence in acute myeloid leukemia. Nat Med 2015; 21:178-84. [PMID: 25599133 DOI: 10.1038/nm.3788] [Citation(s) in RCA: 467] [Impact Index Per Article: 46.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 12/15/2014] [Indexed: 12/17/2022]
Abstract
Mutant isocitrate dehydrogenase (IDH) 1 and 2 proteins alter the epigenetic landscape in acute myeloid leukemia (AML) cells through production of the oncometabolite (R)-2-hydroxyglutarate (2-HG). Here we performed a large-scale RNA interference (RNAi) screen to identify genes that are synthetic lethal to the IDH1(R132H) mutation in AML and identified the anti-apoptotic gene BCL-2. IDH1- and IDH2-mutant primary human AML cells were more sensitive than IDH1/2 wild-type cells to ABT-199, a highly specific BCL-2 inhibitor that is currently in clinical trials for hematologic malignancies, both ex vivo and in xenotransplant models. This sensitization effect was induced by (R)-2-HG-mediated inhibition of the activity of cytochrome c oxidase (COX) in the mitochondrial electron transport chain (ETC); suppression of COX activity lowered the mitochondrial threshold to trigger apoptosis upon BCL-2 inhibition. Our findings indicate that IDH1/2 mutation status may identify patients that are likely to respond to pharmacologic BCL-2 inhibition and form the rational basis for combining agents that disrupt ETC activity with ABT-199 in future clinical studies.
Collapse
Affiliation(s)
- Steven M Chan
- 1] Department of Medicine, Stanford University School of Medicine, Stanford, California, USA. [2] Stanford Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Daniel Thomas
- Stanford Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - M Ryan Corces-Zimmerman
- Stanford Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Seethu Xavy
- Stanford Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Suchita Rastogi
- Stanford Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Wan-Jen Hong
- 1] Department of Medicine, Stanford University School of Medicine, Stanford, California, USA. [2] Stanford Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Feifei Zhao
- Stanford Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Bruno C Medeiros
- Department of Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - David A Tyvoll
- Department of Chemistry, Stanford University, Stanford, California, USA
| | - Ravindra Majeti
- 1] Department of Medicine, Stanford University School of Medicine, Stanford, California, USA. [2] Stanford Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
20
|
McGill CM, Alba-Rodriguez EJ, Li S, Benson CJ, Ondrasik RM, Fisher LN, Claxton DF, Barth BM. Extracts of Devil's club (Oplopanax horridus) exert therapeutic efficacy in experimental models of acute myeloid leukemia. Phytother Res 2014; 28:1308-14. [PMID: 25340187 DOI: 10.1002/ptr.5129] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Acute myeloid leukemia (AML) is a group of hematological malignancies defined by expanded clonal populations of immature progenitors (blasts) of myeloid phenotype in blood and bone marrow. Given a typical poor prognostic outlook, there is great need for novel agents with anti-AML activity. Devil’s club (Oplopanax horridus) is one of the most significant medicinal plants used among the indigenous people of Southeast Alaska and the coastal Pacific Northwest, with different linguistic groups utilizing various parts of the plant to treat many different conditions including cancer. Studies identifying medically relevant components in Devil’s club are limited. For this research study, samples were extracted in 70% ethanol before in vitro analysis, to assess effects on AML cell line viability as well as to study regulation of tyrosine phosphorylation and cysteine oxidation. The root extract displayed better in vitro anti-AML efficacy in addition to a noted anti-tyrosine kinase activity independent of an antioxidant effect. In vivo therapeutic studies using an immunocompetent murine model of AML further demonstrated that Devil’s club root extract improved the murine survival while decreasing immunosuppressive regulatory T cells and improving CD8+ T-cell functionality. This study defines for the first time an anti-AML efficacy for extracts of Devil’s club.
Collapse
|
21
|
Abstract
Leukemic transformation of human cells is a complex process. Here we show that forced expression of MN1 in primitive human cord blood cells maintained on stromal cells in vitro induces a transient, but not serially transplantable, myeloproliferation in engrafted mice. However, cotransduction of an activated HOX gene (NUP98HOXD13) with MN1 induces a serially transplantable acute myeloid leukemia (AML). Further characterization of the leukemic cells generated from the dually transduced cells showed the activation of stem cell gene expression signatures also found in primary human AML. These findings show a new forward genetic model of human leukemogenesis and further highlight the relevance of homeobox transcription factors in the transformation process.
Collapse
|
22
|
Cosgun KN, Rahmig S, Mende N, Reinke S, Hauber I, Schäfer C, Petzold A, Weisbach H, Heidkamp G, Purbojo A, Cesnjevar R, Platz A, Bornhäuser M, Schmitz M, Dudziak D, Hauber J, Kirberg J, Waskow C. Kit regulates HSC engraftment across the human-mouse species barrier. Cell Stem Cell 2014; 15:227-38. [PMID: 25017720 DOI: 10.1016/j.stem.2014.06.001] [Citation(s) in RCA: 136] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Revised: 03/04/2014] [Accepted: 06/02/2014] [Indexed: 11/28/2022]
Abstract
In-depth analysis of the cellular and molecular mechanisms regulating human HSC function will require a surrogate host that supports robust maintenance of transplanted human HSCs in vivo, but the currently available options are problematic. Previously we showed that mutations in the Kit receptor enhance engraftment of transplanted HSCs in the mouse. To generate an improved model for human HSC transplantation and analysis, we developed immune-deficient mouse strains containing Kit mutations. We found that mutation of the Kit receptor enables robust, uniform, sustained, and serially transplantable engraftment of human HSCs in adult mice without a requirement for irradiation conditioning. Using this model, we also showed that differential KIT expression identifies two functionally distinct subpopulations of human HSCs. Thus, we have found that the capacity of this Kit mutation to open up stem cell niches across species barriers has significant potential and broad applicability in human HSC research.
Collapse
Affiliation(s)
- Kadriye Nehir Cosgun
- Regeneration in Hematopoiesis and Animal Models in Hematopoiesis, Institute for Immunology, Faculty of Medicine, TU Dresden, Fetscherstrasse 74, 01307 Dresden, Germany
| | - Susann Rahmig
- Regeneration in Hematopoiesis and Animal Models in Hematopoiesis, Institute for Immunology, Faculty of Medicine, TU Dresden, Fetscherstrasse 74, 01307 Dresden, Germany
| | - Nicole Mende
- Regeneration in Hematopoiesis and Animal Models in Hematopoiesis, Institute for Immunology, Faculty of Medicine, TU Dresden, Fetscherstrasse 74, 01307 Dresden, Germany
| | - Sören Reinke
- Regeneration in Hematopoiesis and Animal Models in Hematopoiesis, Institute for Immunology, Faculty of Medicine, TU Dresden, Fetscherstrasse 74, 01307 Dresden, Germany
| | - Ilona Hauber
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Martinistrasse 52, 20251 Hamburg, Germany
| | - Carola Schäfer
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Martinistrasse 52, 20251 Hamburg, Germany
| | - Anke Petzold
- Institute for Immunology, Faculty of Medicine, TU Dresden, Fetscherstrasse 74, 01307 Dresden, Germany
| | - Henry Weisbach
- Regeneration in Hematopoiesis and Animal Models in Hematopoiesis, Institute for Immunology, Faculty of Medicine, TU Dresden, Fetscherstrasse 74, 01307 Dresden, Germany
| | - Gordon Heidkamp
- Laboratory of Dendritic Cell Biology, Department of Dermatology, Research Module II, University Hospital of Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Hartmannstrasse 14, 91052 Erlangen, Germany
| | - Ariawan Purbojo
- Department of Paediatric Cardiac Surgery, University Hospital of Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Loschgestrasse 15, 91054 Erlangen, Germany
| | - Robert Cesnjevar
- Department of Paediatric Cardiac Surgery, University Hospital of Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Loschgestrasse 15, 91054 Erlangen, Germany
| | - Alexander Platz
- DKMS Lifeline Cord Blood Bank, Blasewitzer Strasse 43, 01307 Dresden, Germany
| | - Martin Bornhäuser
- Department of Hematology/Oncology, University Hospital, TU Dresden, Fetscherstr 74, 01307 Dresden, Germany
| | - Marc Schmitz
- Institute for Immunology, Faculty of Medicine, TU Dresden, Fetscherstrasse 74, 01307 Dresden, Germany
| | - Diana Dudziak
- Laboratory of Dendritic Cell Biology, Department of Dermatology, Research Module II, University Hospital of Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Hartmannstrasse 14, 91052 Erlangen, Germany
| | - Joachim Hauber
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Martinistrasse 52, 20251 Hamburg, Germany
| | - Jörg Kirberg
- Paul Ehrlich Institut, Federal Institute for Vaccines and Biomedicines, Paul-Ehrlich-Strasse 51-59, 63225 Langen, Germany
| | - Claudia Waskow
- Regeneration in Hematopoiesis and Animal Models in Hematopoiesis, Institute for Immunology, Faculty of Medicine, TU Dresden, Fetscherstrasse 74, 01307 Dresden, Germany.
| |
Collapse
|
23
|
OKT3 prevents xenogeneic GVHD and allows reliable xenograft initiation from unfractionated human hematopoietic tissues. Blood 2014; 123:e134-44. [PMID: 24778156 DOI: 10.1182/blood-2014-02-556340] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Immunodeficient mice are now readily engrafted with human hematopoietic cells. However, these mice are susceptible to graft-versus-host disease (GVHD) induced by the engraftment and rapid expansion of coinjected human T cells. Therefore, highly purified sample populations must be used, adding significant time, expense, and effort. Here, we have explored in vivo and in vitro methods utilizing anti-T-cell antibodies to circumvent this problem. Intraperitoneal injection of the antibody within 48 hours prevented GVHD. Alternatively, short-term in vitro incubation of cells with antibody immediately before transplant was equally effective. Although in vitro antithymocyte globulin treatment resulted in a dramatic loss of SCID-repopulating cells (SRCs), treatment with OKT3 or UCHT1 abrogated GVHD risk and preserved engraftment potential. Leukemia samples that presented with substantial human T-cell contamination were effectively rescued from GVHD. In addition, OKT3 treatment of unfractionated cord blood resulted in robust engraftment of primary and secondary mice that was indistinguishable from grafts obtained using purified CD34(+) cells. Limiting dilution analysis of unfractionated blood demonstrated a SRC frequency of 1 in 300 to 500 CD34(+) cells, similar to that of purified hematopoietic stem and progenitor cells. This protocol streamlines xenograft studies while significantly reducing the cost and time of the procedure.
Collapse
|
24
|
Cartellieri M, Koristka S, Arndt C, Feldmann A, Stamova S, von Bonin M, Töpfer K, Krüger T, Geib M, Michalk I, Temme A, Bornhäuser M, Lindemann D, Ehninger G, Bachmann MP. A novel ex vivo isolation and expansion procedure for chimeric antigen receptor engrafted human T cells. PLoS One 2014; 9:e93745. [PMID: 24699869 PMCID: PMC3974878 DOI: 10.1371/journal.pone.0093745] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Accepted: 03/07/2014] [Indexed: 01/23/2023] Open
Abstract
Genetically engineered T lymphocytes are a promising option for cancer therapy. Prior to adoptive transfer they have to be expanded in vitro to reach therapeutically sufficient numbers. So far, no universal method exists for selective in vitro expansion of engineered T lymphocytes. In order to overcome this problem and for proof of concept we incorporated a novel unique peptide sequence of ten amino acids as epitope (E-Tag) into the binding domains of two novel chimeric antigen receptors (ECARs) directed against either prostate stem cell antigen (PSCA) for the treatment of prostate cancer (PCa) or CD33 for the treatment of acute myeloide leukemia (AML). The epitope tag then was utilized for expanding ECAR engrafted T cells by triggering the modified T cells via a monoclonal antibody directed against the E-Tag (Emab). Moreover, the E-Tag served as an efficient selection epitope for immunomagnetic isolation of modified T cells to high purity. ECAR engrafted T cells were fully functional and mediated profound anti-tumor effects in the respective models of PCa or AML both in vitro and in vivo. The method can be integrated straightforward into clinical protocols to improve therapeutic efficiency of tumor treatment with CAR modified T lymphocytes.
Collapse
Affiliation(s)
- Marc Cartellieri
- Institute of Immunology, Medical Faculty ‘Carl Gustav Carus’, TU Dresden, Dresden, Germany
- Helmholtz Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Department of Radioimmunology, Dresden, Germany
| | - Stefanie Koristka
- Institute of Immunology, Medical Faculty ‘Carl Gustav Carus’, TU Dresden, Dresden, Germany
| | - Claudia Arndt
- Institute of Immunology, Medical Faculty ‘Carl Gustav Carus’, TU Dresden, Dresden, Germany
| | - Anja Feldmann
- Institute of Immunology, Medical Faculty ‘Carl Gustav Carus’, TU Dresden, Dresden, Germany
- Helmholtz Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Department of Radioimmunology, Dresden, Germany
| | - Slava Stamova
- Institute of Immunology, Medical Faculty ‘Carl Gustav Carus’, TU Dresden, Dresden, Germany
| | - Malte von Bonin
- Medical Clinic and Polyclinic I, University Hospital ‘Carl Gustav Carus’, TU Dresden, Dresden, Germany
| | - Katrin Töpfer
- Department of Neurosurgery, Section Experimental Neurosurgery and Tumor Immunology, Medical Faculty ‘Carl Gustav Carus’, TU Dresden, Dresden, Germany
| | - Thomas Krüger
- Institute of Immunology, Medical Faculty ‘Carl Gustav Carus’, TU Dresden, Dresden, Germany
| | - Mathias Geib
- Institute of Immunology, Medical Faculty ‘Carl Gustav Carus’, TU Dresden, Dresden, Germany
| | - Irene Michalk
- Institute of Immunology, Medical Faculty ‘Carl Gustav Carus’, TU Dresden, Dresden, Germany
| | - Achim Temme
- Department of Neurosurgery, Section Experimental Neurosurgery and Tumor Immunology, Medical Faculty ‘Carl Gustav Carus’, TU Dresden, Dresden, Germany
| | - Martin Bornhäuser
- Medical Clinic and Polyclinic I, University Hospital ‘Carl Gustav Carus’, TU Dresden, Dresden, Germany
- Center for Regenerative Therapies Dresden, TU Dresden, Dresden, Germany
| | - Dirk Lindemann
- Institute of Virology, Medical Faculty ‘Carl Gustav Carus’, TU Dresden, Dresden, Germany
- Center for Regenerative Therapies Dresden, TU Dresden, Dresden, Germany
| | - Gerhard Ehninger
- Medical Clinic and Polyclinic I, University Hospital ‘Carl Gustav Carus’, TU Dresden, Dresden, Germany
| | - Michael P. Bachmann
- Institute of Immunology, Medical Faculty ‘Carl Gustav Carus’, TU Dresden, Dresden, Germany
- Helmholtz Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Department of Radioimmunology, Dresden, Germany
- Center for Regenerative Therapies Dresden, TU Dresden, Dresden, Germany
- * E-mail:
| |
Collapse
|