1
|
Zelaya H, Grunz K, Nguyen TS, Habibi A, Witzler C, Reyda S, Gonzalez-Menendez I, Quintanilla-Martinez L, Bosmann M, Weiler H, Ruf W. Nucleic acid sensing promotes inflammatory monocyte migration through biased coagulation factor VIIa signaling. Blood 2024; 143:845-857. [PMID: 38096370 PMCID: PMC10940062 DOI: 10.1182/blood.2023021149] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 11/30/2023] [Indexed: 03/08/2024] Open
Abstract
ABSTRACT Protease activated receptors (PARs) are cleaved by coagulation proteases and thereby connect hemostasis with innate immune responses. Signaling of the tissue factor (TF) complex with factor VIIa (FVIIa) via PAR2 stimulates extracellular signal-regulated kinase (ERK) activation and cancer cell migration, but functions of cell autonomous TF-FVIIa signaling in immune cells are unknown. Here, we show that myeloid cell expression of FVII but not of FX is crucial for inflammatory cell recruitment to the alveolar space after challenge with the double-stranded viral RNA mimic polyinosinic:polycytidylic acid [Poly(I:C)]. In line with these data, genetically modified mice completely resistant to PAR2 cleavage but not FXa-resistant PAR2-mutant mice are protected from lung inflammation. Poly(I:C)-stimulated migration of monocytes/macrophages is dependent on ERK activation and mitochondrial antiviral signaling (MAVS) but independent of toll-like receptor 3 (TLR3). Monocyte/macrophage-synthesized FVIIa cleaving PAR2 is required for integrin αMβ2-dependent migration on fibrinogen but not for integrin β1-dependent migration on fibronectin. To further dissect the downstream signaling pathway, we generated PAR2S365/T368A-mutant mice deficient in β-arrestin recruitment and ERK scaffolding. This mutation reduces cytosolic, but not nuclear ERK phosphorylation by Poly(I:C) stimulation, and prevents macrophage migration on fibrinogen but not fibronectin after stimulation with Poly(I:C) or CpG-B, a single-stranded DNA TLR9 agonist. In addition, PAR2S365/T368A-mutant mice display markedly reduced immune cell recruitment to the alveolar space after Poly(I:C) challenge. These results identify TF-FVIIa-PAR2-β-arrestin-biased signaling as a driver for lung infiltration in response to viral nucleic acids and suggest potential therapeutic interventions specifically targeting TF-VIIa signaling in thrombo-inflammation.
Collapse
Affiliation(s)
- Hortensia Zelaya
- Center for Thrombosis and Hemostasis, Johannes Gutenberg University Medical Center, Mainz, Germany
- National Scientific and Technical Research Council (CONICET), Tucuman, Argentina
| | - Kristin Grunz
- Center for Thrombosis and Hemostasis, Johannes Gutenberg University Medical Center, Mainz, Germany
| | - T. Son Nguyen
- Center for Thrombosis and Hemostasis, Johannes Gutenberg University Medical Center, Mainz, Germany
| | - Anxhela Habibi
- Center for Thrombosis and Hemostasis, Johannes Gutenberg University Medical Center, Mainz, Germany
- Cardiovascular Research Institute Maastricht, Maastricht, The Netherlands
| | - Claudius Witzler
- Center for Thrombosis and Hemostasis, Johannes Gutenberg University Medical Center, Mainz, Germany
| | - Sabine Reyda
- Center for Thrombosis and Hemostasis, Johannes Gutenberg University Medical Center, Mainz, Germany
| | - Irene Gonzalez-Menendez
- Institute of Pathology and Neuropathology, Comprehensive Cancer Center, Eberhard Karls University, Tübingen, Germany
| | - Leticia Quintanilla-Martinez
- Institute of Pathology and Neuropathology, Comprehensive Cancer Center, Eberhard Karls University, Tübingen, Germany
| | - Markus Bosmann
- Center for Thrombosis and Hemostasis, Johannes Gutenberg University Medical Center, Mainz, Germany
- Pulmonary Center, Department of Medicine and Department of Pathology & Laboratory Medicine, Boston University, Boston, MA
| | | | - Wolfram Ruf
- Center for Thrombosis and Hemostasis, Johannes Gutenberg University Medical Center, Mainz, Germany
- Department of Immunology and Microbiology, Scripps Research, La Jolla, CA
| |
Collapse
|
2
|
Yan G, Dai M, Poulet S, Wang N, Boudreault J, Daliah G, Ali S, Lebrun JJ. Combined in vitro/in vivo genome-wide CRISPR screens in triple negative breast cancer identify cancer stemness regulators in paclitaxel resistance. Oncogenesis 2023; 12:51. [PMID: 37932309 PMCID: PMC10628277 DOI: 10.1038/s41389-023-00497-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 10/23/2023] [Accepted: 10/26/2023] [Indexed: 11/08/2023] Open
Abstract
Triple negative breast cancer (TNBC) is defined as lacking the expressions of estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2). TNBC patients exhibit relatively poor clinical outcomes due to lack of molecular markers for targeted therapies. As such chemotherapy often remains the only systemic treatment option for these patients. While chemotherapy can initially help shrink TNBC tumor size, patients eventually develop resistance to drug, leading to tumor recurrence. We report a combined in vitro/in vivo genome-wide CRISPR synthetic lethality screening approach in a relevant TNBC cell line model to identify several targets responsible for the chemotherapy drug, paclitaxel resistance. Computational analysis integrating in vitro and in vivo data identified a set of genes, for which specific loss-of-function deletion enhanced paclitaxel resistance in TNBC. We found that several of these genes (ATP8B3, FOXR2, FRG2, HIST1H4A) act as cancer stemness negative regulators. Finally, using in vivo orthotopic transplantation TNBC models we showed that FRG2 gene deletion reduced paclitaxel efficacy and promoted tumor metastasis, while increasing FRG2 expression by means of CRISPR activation efficiently sensitized TNBC tumors to paclitaxel treatment and inhibited their metastatic abilities. In summary, the combined in vitro/in vivo genome-wide CRISPR screening approach proved effective as a tool to identify novel regulators of paclitaxel resistance/sensitivity and highlight the FRG2 gene as a potential therapeutical target overcoming paclitaxel resistance in TNBC.
Collapse
Affiliation(s)
- Gang Yan
- Department of Medicine, Cancer Research Program, McGill University Health Center, Montreal, QC, H4A 3J1, Canada
| | - Meiou Dai
- Department of Medicine, Cancer Research Program, McGill University Health Center, Montreal, QC, H4A 3J1, Canada
| | - Sophie Poulet
- Department of Medicine, Cancer Research Program, McGill University Health Center, Montreal, QC, H4A 3J1, Canada
| | - Ni Wang
- Department of Medicine, Cancer Research Program, McGill University Health Center, Montreal, QC, H4A 3J1, Canada
| | - Julien Boudreault
- Department of Medicine, Cancer Research Program, McGill University Health Center, Montreal, QC, H4A 3J1, Canada
| | - Girija Daliah
- Department of Medicine, Cancer Research Program, McGill University Health Center, Montreal, QC, H4A 3J1, Canada
| | - Suhad Ali
- Department of Medicine, Cancer Research Program, McGill University Health Center, Montreal, QC, H4A 3J1, Canada
| | - Jean-Jacques Lebrun
- Department of Medicine, Cancer Research Program, McGill University Health Center, Montreal, QC, H4A 3J1, Canada.
| |
Collapse
|
3
|
Oh H, Kwon O, Kong MJ, Park KM, Baek JH. Macrophages promote Fibrinogenesis during kidney injury. Front Med (Lausanne) 2023; 10:1206362. [PMID: 37425313 PMCID: PMC10325639 DOI: 10.3389/fmed.2023.1206362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 05/31/2023] [Indexed: 07/11/2023] Open
Abstract
Macrophages (Mø) are widely considered fundamental in the development of kidney fibrosis since Mø accumulation commonly aggravates kidney fibrosis, while Mø depletion mitigates it. Although many studies have aimed to elucidate Mø-dependent mechanisms linked to kidney fibrosis and have suggested various mechanisms, the proposed roles have been mostly passive, indirect, and non-unique to Mø. Therefore, the molecular mechanism of how Mø directly promote kidney fibrosis is not fully understood. Recent evidence suggests that Mø produce coagulation factors under diverse pathologic conditions. Notably, coagulation factors mediate fibrinogenesis and contribute to fibrosis. Thus, we hypothesized that kidney Mø express coagulation factors that contribute to the provisional matrix formation during acute kidney injury (AKI). To test our hypothesis, we probed for Mø-derived coagulation factors after kidney injury and uncovered that both infiltrating and kidney-resident Mø produce non-redundant coagulation factors in AKI and chronic kidney disease (CKD). We also identified F13a1, which catalyzes the final step of the coagulation cascade, as the most strongly upregulated coagulation factor in murine and human kidney Mø during AKI and CKD. Our in vitro experiments revealed that the upregulation of coagulation factors in Mø occurs in a Ca2 + -dependent manner. Taken together, our study demonstrates that kidney Mø populations express key coagulation factors following local injury, suggesting a novel effector mechanism of Mø contributing to kidney fibrosis.
Collapse
Affiliation(s)
- Hanna Oh
- Laboratory of Inflammation Research, Handong Global University, Pohang, Gyeongbuk, South Korea
- School of Life Science, Handong Global University, Pohang, Gyeongbuk, South Korea
| | - Ohbin Kwon
- Laboratory of Inflammation Research, Handong Global University, Pohang, Gyeongbuk, South Korea
- School of Life Science, Handong Global University, Pohang, Gyeongbuk, South Korea
| | - Min Jung Kong
- Department of Anatomy, BK21Plus, Cardiovascular Research Institute, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Kwon Moo Park
- Department of Anatomy, BK21Plus, Cardiovascular Research Institute, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Jea-Hyun Baek
- Laboratory of Inflammation Research, Handong Global University, Pohang, Gyeongbuk, South Korea
- School of Life Science, Handong Global University, Pohang, Gyeongbuk, South Korea
| |
Collapse
|
4
|
Kroone C, Tieken C, Kocatürk B, Paauwe M, Blok EJ, Ünlü B, van den Berg YW, Stanganello E, Kapteijn MY, Swier N, Zhang X, Duits DEM, Lin Y, Oostenbrink LVE, van den Akker RFP, Mosnier LO, Hawinkels LJ, van Vlijmen BJM, Ruf W, Kuppen PJ, Cannegieter SC, Buijs JT, Versteeg HH. Tumor-expressed factor VII is associated with survival and regulates tumor progression in breast cancer. Blood Adv 2023; 7:2388-2400. [PMID: 36920782 PMCID: PMC10238845 DOI: 10.1182/bloodadvances.2022008455] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 02/14/2023] [Accepted: 02/28/2023] [Indexed: 03/16/2023] Open
Abstract
Cancer enhances the risk of venous thromboembolism, but a hypercoagulant microenvironment also promotes cancer progression. Although anticoagulants have been suggested as a potential anticancer treatment, clinical studies on the effect of such modalities on cancer progression have not yet been successful for unknown reasons. In normal physiology, complex formation between the subendothelial-expressed tissue factor (TF) and the blood-borne liver-derived factor VII (FVII) results in induction of the extrinsic coagulation cascade and intracellular signaling via protease-activated receptors (PARs). In cancer, TF is overexpressed and linked to poor prognosis. Here, we report that increased levels of FVII are also observed in breast cancer specimens and are associated with tumor progression and metastasis to the liver. In breast cancer cell lines, tumor-expressed FVII drives changes reminiscent of epithelial-to-mesenchymal transition (EMT), tumor cell invasion, and expression of the prometastatic genes, SNAI2 and SOX9. In vivo, tumor-expressed FVII enhanced tumor growth and liver metastasis. Surprisingly, liver-derived FVII appeared to inhibit metastasis. Finally, tumor-expressed FVII-induced prometastatic gene expression independent of TF but required a functional endothelial protein C receptor, whereas recombinant activated FVII acting via the canonical TF:PAR2 pathway inhibited prometastatic gene expression. Here, we propose that tumor-expressed FVII and liver-derived FVII have opposing effects on EMT and metastasis.
Collapse
Affiliation(s)
- Chantal Kroone
- Department of Internal Medicine, Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Chris Tieken
- Department of Internal Medicine, Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Begüm Kocatürk
- Department of Internal Medicine, Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Madelon Paauwe
- Department of Internal Medicine, Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Erik J. Blok
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | - Betül Ünlü
- Department of Internal Medicine, Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Yascha W. van den Berg
- Department of Internal Medicine, Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Eliana Stanganello
- Department of Internal Medicine, Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Maaike Y. Kapteijn
- Department of Internal Medicine, Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Nathalie Swier
- Department of Internal Medicine, Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Xi Zhang
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | - Danique E. M. Duits
- Department of Internal Medicine, Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Yazhi Lin
- Department of Internal Medicine, Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Lisa V. E. Oostenbrink
- Department of Internal Medicine, Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Rob F. P. van den Akker
- Department of Internal Medicine, Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Lukas J. Hawinkels
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Bart J. M. van Vlijmen
- Department of Internal Medicine, Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Wolfram Ruf
- Department of Immunology and Microbiology, Scripps Research, La Jolla, CA
- Center for Thrombosis and Hemostasis, Johannes Gutenberg University Medical Center, Mainz, Germany
| | - Peter J. Kuppen
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | - Suzanne C. Cannegieter
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Jeroen T. Buijs
- Department of Internal Medicine, Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Henri H. Versteeg
- Department of Internal Medicine, Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
5
|
Torabian P, Yousefi H, Fallah A, Moradi Z, Naderi T, Delavar MR, Ertas YN, Zarrabi A, Aref AR. Cancer stem cell-mediated drug resistance: A comprehensive gene expression profile analysis in breast cancer. Pathol Res Pract 2023; 246:154482. [PMID: 37196466 DOI: 10.1016/j.prp.2023.154482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 04/20/2023] [Accepted: 04/23/2023] [Indexed: 05/19/2023]
Abstract
Breast cancer is the most frequently diagnosed malignancy in women and a major public health concern. In the current report, differential expression of the breast cancer resistance promoting genes with a focus on breast cancer stem cell related elements as well as the correlation of their mRNAs with various clinicopathologic characteristics, including molecular subtypes, tumor grade/stage, and methylation status, have been investigated using METABRIC and TCGA datasets. To achieve this goal, we downloaded gene expression data of breast cancer patients from TCGA and METABRIC. Then, statistical analyses were used to assess the correlation between the expression levels of stem cell related drug resistant genes and methylation status, tumor grades, various molecular subtypes, and some cancer hallmark gene sets such as immune evasion, metastasis, and angiogenesis. According to the results of this study, a number of stem cell related drug resistant genes are deregulated in breast cancer patients. Furthermore, we observe negative correlations between methylation of resistance genes and mRNA expression. There is a significant difference in the expression of resistance-promoting genes between different molecular subtypes. As mRNA expression and DNA methylation are clearly related, DNA methylation might be a mechanism that regulates these genes in breast cancer cells. As indicated by the differential expression of resistance-promoting genes among various breast cancer molecular subtypes, these genes may function differently in different subtypes of breast cancer. In conclusion, significant deregulation of resistance-promoting factors indicates that these genes may play a significant role in the development of breast cancer.
Collapse
Affiliation(s)
- Pedram Torabian
- Arnie Charbonneau Cancer Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4Z6, Canada; Department of Medical Sciences, University of Calgary, Calgary, AB T2N 4Z6, Canada
| | - Hassan Yousefi
- Department of Biochemistry and Molecular Biology, LSUHSC School of Medicine, New Orleans, LA 70112, USA
| | - Aysan Fallah
- Department of hematology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Moradi
- Department of hematology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Tohid Naderi
- Department of Laboratory Hematology and Blood Bank, School of Allied Medicine, Shahid Beheshti University of medical sciences, Tehran, Iran
| | - Mahsa Rostamian Delavar
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Yavuz Nuri Ertas
- ERNAM-Nanotechnology Research and Application Center, Erciyes University, Kayseri, Turkey; Department of Biomedical Engineering, Erciyes University, Kayseri, Turkey
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, 34396 Istanbul, Turkey
| | - Amir Reza Aref
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
6
|
Ünlü B, Kocatürk B, Rondon AMR, Lewis CS, Swier N, van den Akker RFP, Krijgsman D, Noordhoek I, Blok EJ, Bogdanov VY, Ruf W, Kuppen PJK, Versteeg HH. Integrin regulation by tissue factor promotes cancer stemness and metastatic dissemination in breast cancer. Oncogene 2022; 41:5176-5185. [PMID: 36271029 DOI: 10.1038/s41388-022-02511-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 10/06/2022] [Accepted: 10/11/2022] [Indexed: 11/09/2022]
Abstract
Tissue Factor (TF) is the initiator of blood coagulation but also functions as a signal transduction receptor. TF expression in breast cancer is associated with higher tumor grade, metastasis and poor survival. The role of TF signaling on the early phases of metastasis has never been addressed. Here, we show an association between TF expression and metastasis as well as cancer stemness in 574 breast cancer patients. In preclinical models, blockade of TF signaling inhibited metastasis tenfold independent of primary tumor growth. TF blockade caused a reduction in epithelial-to-mesenchymal-transition, cancer stemness and expression of the pro-metastatic markers Slug and SOX9 in several breast cancer cell lines and in ex vivo cultured tumor cells. Mechanistically, TF forms a complex with β1-integrin leading to inactivation of β1-integrin. Inhibition of TF signaling induces a shift in TF-binding from α3β1-integrin to α6β4 and dictates FAK recruitment, leading to reduced epithelial-to-mesenchymal-transition and tumor cell differentiation. In conclusion, TF signaling inhibition leads to reduced pro-metastatic transcriptional programs, and a subsequent integrin β1 and β4-dependent reduction in metastasic dissemination.
Collapse
Affiliation(s)
- Betül Ünlü
- Einthoven Laboratory for Experimental Vascular Medicine, Department of Internal Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Begüm Kocatürk
- Einthoven Laboratory for Experimental Vascular Medicine, Department of Internal Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Araci M R Rondon
- Einthoven Laboratory for Experimental Vascular Medicine, Department of Internal Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Clayton S Lewis
- Division of Hematology/Oncology, Department of Internal Medicine, College of Medicine University of Cincinnati, Cincinnati, OH, USA
| | - Nathalie Swier
- Einthoven Laboratory for Experimental Vascular Medicine, Department of Internal Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Rob F P van den Akker
- Einthoven Laboratory for Experimental Vascular Medicine, Department of Internal Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Danielle Krijgsman
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | - Iris Noordhoek
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | - Erik J Blok
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | - Vladimir Y Bogdanov
- Division of Hematology/Oncology, Department of Internal Medicine, College of Medicine University of Cincinnati, Cincinnati, OH, USA
| | - Wolfram Ruf
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA.,Center for Thrombosis and Hemostasis, Johannes Gutenberg University Medical Center, Mainz, Germany
| | - Peter J K Kuppen
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | - Henri H Versteeg
- Einthoven Laboratory for Experimental Vascular Medicine, Department of Internal Medicine, Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|
7
|
Welsh J, Bak MJ, Narvaez CJ. New insights into vitamin K biology with relevance to cancer. Trends Mol Med 2022; 28:864-881. [PMID: 36028390 PMCID: PMC9509427 DOI: 10.1016/j.molmed.2022.07.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 06/23/2022] [Accepted: 07/22/2022] [Indexed: 10/24/2022]
Abstract
Phylloquinone (vitamin K1) and menaquinones (vitamin K2 family) are essential for post-translational γ-carboxylation of a small number of proteins, including clotting factors. These modified proteins have now been implicated in diverse physiological and pathological processes including cancer. Vitamin K intake has been inversely associated with cancer incidence and mortality in observational studies. Newly discovered functions of vitamin K in cancer cells include activation of the steroid and xenobiotic receptor (SXR) and regulation of oxidative stress, apoptosis, and autophagy. We provide an update of vitamin K biology, non-canonical mechanisms of vitamin K actions, the potential functions of vitamin K-dependent proteins in cancer, and observational trials on vitamin K intake and cancer.
Collapse
Affiliation(s)
- JoEllen Welsh
- Cancer Research Center and Department of Environmental Health Sciences, University at Albany, Rensselaer, NY 12144, USA.
| | - Min Ji Bak
- Cancer Research Center and Department of Environmental Health Sciences, University at Albany, Rensselaer, NY 12144, USA
| | - Carmen J Narvaez
- Cancer Research Center and Department of Environmental Health Sciences, University at Albany, Rensselaer, NY 12144, USA
| |
Collapse
|
8
|
Bochenek ML, Gogiraju R, Großmann S, Krug J, Orth J, Reyda S, Georgiadis GS, Spronk H, Konstantinides S, Münzel T, Griffin JH, Wild PS, Espinola-Klein C, Ruf W, Schäfer K. EPCR-PAR1 biased signaling regulates perfusion recovery and neovascularization in peripheral ischemia. JCI Insight 2022; 7:157701. [PMID: 35700057 PMCID: PMC9431695 DOI: 10.1172/jci.insight.157701] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 06/08/2022] [Indexed: 11/17/2022] Open
Abstract
Blood clot formation initiates ischemic events, but coagulation roles during postischemic tissue repair are poorly understood. The endothelial protein C receptor (EPCR) regulates coagulation, as well as immune and vascular signaling, by protease activated receptors (PARs). Here, we show that endothelial EPCR-PAR1 signaling supports reperfusion and neovascularization in hindlimb ischemia in mice. Whereas deletion of PAR2 or PAR4 did not impair angiogenesis, EPCR and PAR1 deficiency or PAR1 resistance to cleavage by activated protein C caused markedly reduced postischemic reperfusion in vivo and angiogenesis in vitro. These findings were corroborated by biased PAR1 agonism in isolated primary endothelial cells. Loss of EPCR-PAR1 signaling upregulated hemoglobin expression and reduced endothelial nitric oxide (NO) bioavailability. Defective angiogenic sprouting was rescued by the NO donor DETA-NO, whereas NO scavenging increased hemoglobin and mesenchymal marker expression in human and mouse endothelial cells. Vascular specimens from patients with ischemic peripheral artery disease exhibited increased hemoglobin expression, and soluble EPCR and NO levels were reduced in plasma. Our data implicate endothelial EPCR-PAR1 signaling in the hypoxic response of endothelial cells and identify suppression of hemoglobin expression as an unexpected link between coagulation signaling, preservation of endothelial cell NO bioavailability, support of neovascularization, and prevention of fibrosis.
Collapse
Affiliation(s)
- Magdalena L Bochenek
- Center for Thrombosis and Hemostasis, University Medical Center Mainz, Mainz, Germany
| | | | - Stefanie Großmann
- Department of Cardiology, University Medical Center Mainz, Mainz, Germany
| | - Janina Krug
- Department of Cardiology, University Medical Center Mainz, Mainz, Germany
| | - Jennifer Orth
- Department of Cardiology, University Medical Center Mainz, Mainz, Germany
| | - Sabine Reyda
- Center for Thrombosis and Hemostasis, University Medical Center Mainz, Mainz, Germany
| | - George S Georgiadis
- Department of Vascular Surgery, University Hospital of Alexandroupolis, Alexandroupolis, Greece
| | - Henri Spronk
- CARIM School for Cardiovascular Disease, Maastricht University, Maastricht, Netherlands
| | | | - Thomas Münzel
- Center for Thrombosis and Hemostasis, University Medical Center Mainz, Mainz, Germany
| | - John H Griffin
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, United States of America
| | - Philipp S Wild
- Center for Thrombosis and Hemostasis, University Medical Center Mainz, Mainz, Germany
| | | | - Wolfram Ruf
- Center for Thrombosis and Hemostasis, University Medical Center Mainz, Mainz, Germany
| | - Katrin Schäfer
- Center for Thrombosis and Hemostasis, University Medical Center Mainz, Mainz, Germany
| |
Collapse
|
9
|
Ibragimova M, Tsyganov M, Litviakov N. Tumour Stem Cells in Breast Cancer. Int J Mol Sci 2022; 23:ijms23095058. [PMID: 35563449 PMCID: PMC9099719 DOI: 10.3390/ijms23095058] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/27/2022] [Accepted: 04/30/2022] [Indexed: 12/12/2022] Open
Abstract
Tumour stem cells (CSCs) are a self-renewing population that plays important roles in tumour initiation, recurrence, and metastasis. Although the medical literature is extensive, problems with CSC identification and cancer therapy remain. This review provides the main mechanisms of CSC action in breast cancer (BC): CSC markers and signalling pathways, heterogeneity, plasticity, and ecological behaviour. The dynamic heterogeneity of CSCs and the dynamic transitions of CSC− non-CSCs and their significance for metastasis are considered.
Collapse
Affiliation(s)
- Marina Ibragimova
- Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 5, Kooperativny Street, 634050 Tomsk, Russia; (M.T.); (N.L.)
- Laboratory of Genetic Technologies, Siberian State Medical University, 2, Moscow Tract, 634050 Tomsk, Russia
- Biological Institute, National Research Tomsk State University, 36, Lenin, 634050 Tomsk, Russia
- Correspondence:
| | - Matvey Tsyganov
- Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 5, Kooperativny Street, 634050 Tomsk, Russia; (M.T.); (N.L.)
| | - Nikolai Litviakov
- Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 5, Kooperativny Street, 634050 Tomsk, Russia; (M.T.); (N.L.)
- Laboratory of Genetic Technologies, Siberian State Medical University, 2, Moscow Tract, 634050 Tomsk, Russia
- Biological Institute, National Research Tomsk State University, 36, Lenin, 634050 Tomsk, Russia
| |
Collapse
|
10
|
ten Cate H, Guzik TJ, Eikelboom J, Spronk HMH. Pleiotropic actions of factor Xa inhibition in cardiovascular prevention: mechanistic insights and implications for anti-thrombotic treatment. Cardiovasc Res 2021; 117:2030-2044. [PMID: 32931586 PMCID: PMC8318102 DOI: 10.1093/cvr/cvaa263] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/10/2020] [Accepted: 09/03/2020] [Indexed: 12/12/2022] Open
Abstract
Atherosclerosis is a chronic inflammatory disease in which atherothrombotic complications lead to cardiovascular morbidity and mortality. At advanced stages, myocardial infarction, ischaemic stroke, and peripheral artery disease, including major adverse limb events, are caused either by acute occlusive atherothrombosis or by thromboembolism. Endothelial dysfunction, vascular smooth muscle cell activation, and vascular inflammation are essential in the development of acute cardiovascular events. Effects of the coagulation system on vascular biology extend beyond thrombosis. Under physiological conditions, coagulation proteases in blood are pivotal in maintaining haemostasis and vascular integrity. Under pathological conditions, including atherosclerosis, the same coagulation proteases (including factor Xa, factor VIIa, and thrombin) become drivers of atherothrombosis, working in concert with platelets and vessel wall components. While initially atherothrombosis was attributed primarily to platelets, recent advances indicate the critical role of fibrin clot and plasma coagulation factors. Mechanisms of atherothrombosis and hypercoagulability vary depending on plaque erosion or plaque rupture. In addition to contributing to thrombus formation, factor Xa and thrombin can affect endothelial dysfunction, oxidative stress, vascular smooth muscle cell function as well as immune cell activation and vascular inflammation. By these mechanisms, they promote atherosclerosis and contribute to plaque instability. In this review, we first discuss the postulated vasoprotective mechanisms of protease-activated receptor signalling induced by coagulation enzymes under physiological conditions. Next, we discuss preclinical studies linking coagulation with endothelial cell dysfunction, thromboinflammation, and atherogenesis. Understanding these mechanisms is pivotal for the introduction of novel strategies in cardiovascular prevention and therapy. We therefore translate these findings to clinical studies of direct oral anticoagulant drugs and discuss the potential relevance of dual pathway inhibition for atherothrombosis prevention and vascular protection.
Collapse
Affiliation(s)
- Hugo ten Cate
- Department of Internal Medicine, Thrombosis Expertise Center, Cardiovascular Research Institute Maastricht, Maastricht University, Universiteitssingel 50, PO Box 616, 6200 MD, Maastricht, The Netherlands
- Department of Biochemistry, Thrombosis Expertise Center, Cardiovascular Research Institute Maastricht, Maastricht University, Universiteitssingel 50, PO Box 616, 6200 MD, Maastricht, The Netherlands
| | - Tomasz J Guzik
- Institute of Cardiovascular & Medical Sciences, British Heart Foundation Glasgow Cardiovascular Research Centre, Glasgow, UK
- Department of Medicine, Jagiellonian University, Collegium Medicum, Krakow, Poland
| | - John Eikelboom
- Population Health Research Institute, Hamilton General Hospital and McMaster University, Hamilton, L8L 2x2, ON, Canada
| | - Henri M H Spronk
- Department of Internal Medicine, Thrombosis Expertise Center, Cardiovascular Research Institute Maastricht, Maastricht University, Universiteitssingel 50, PO Box 616, 6200 MD, Maastricht, The Netherlands
- Department of Biochemistry, Thrombosis Expertise Center, Cardiovascular Research Institute Maastricht, Maastricht University, Universiteitssingel 50, PO Box 616, 6200 MD, Maastricht, The Netherlands
| |
Collapse
|
11
|
Ruf W, Graf C. Coagulation signaling and cancer immunotherapy. Thromb Res 2021; 191 Suppl 1:S106-S111. [PMID: 32736766 DOI: 10.1016/s0049-3848(20)30406-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 11/06/2019] [Accepted: 11/18/2019] [Indexed: 12/13/2022]
Abstract
The last decades have delineated many interactions of the hemostatic system with cancer cells that are pivotal for cancer-associated thrombosis, angiogenesis and metastasis. Expanding evidence shows that platelets, the tissue factor pathway, and proteolytic signaling involving protease-activated receptors (PARs) are also central players in innate and adaptive immunity. Recent studies in immune-competent mice have uncovered new immune-evasive roles of coagulation signaling networks in the development and growth of different preclinical tumor models. Tumor-type specific PAR1 signaling facilitates the escape from immune surveillance by cytotoxic T cells. In addition, tumor-associated macrophages produce factor X (FX) and cell autonomous FXa-PAR2 signaling emerges as a central mechanism for tumor-promoting macrophage polarization in the tumor microenvironment. Pharmacological targeting of this signaling pathway with tissue penetrating oral FXa inhibitor reprograms macrophage phenotypes, enhances tumor antigen presentation, and expands tumor-killing cytotoxic lymphocytes. Importantly, by specifically targeting innate immune cells, the oral FXa inhibitor rivaroxaban synergizes with checkpoint inhibitor therapy in enhancing antigen-specific antitumor immunity. In similar experiments, anticoagulation with heparin is inefficient to block extravascular coagulation signaling. Thus, antithrombotic therapy with oral FXa inhibitors may contribute to reversing tumor immune-evasive mechanisms and enhance the clinical outcome of targeted immuno-therapy regimens.
Collapse
Affiliation(s)
- Wolfram Ruf
- Center for Thrombosis and Hemostasis, Johannes Gutenberg University Medical Center, Mainz, Germany; Department of Immunology and Microbiology, Scripps Research, La Jolla, CA, USA.
| | - Claudine Graf
- Center for Thrombosis and Hemostasis, Johannes Gutenberg University Medical Center, Mainz, Germany
| |
Collapse
|
12
|
Tawil N, Spinelli C, Bassawon R, Rak J. Genetic and epigenetic regulation of cancer coagulome - lessons from heterogeneity of cancer cell populations. Thromb Res 2021; 191 Suppl 1:S99-S105. [PMID: 32736787 DOI: 10.1016/s0049-3848(20)30405-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 01/05/2020] [Accepted: 01/12/2020] [Indexed: 12/15/2022]
Abstract
Cancer-associated thrombosis (CAT) is a morbid, potentially life threatening and biologically impactful paraneoplastic state. At least in part, CAT is likely driven by cancer-specific mechanisms the nature of which is still poorly understood, hampering diagnostic, prophylactic and therapeutic efforts. It is increasingly appreciated that cancer-specific drivers of CAT include a constellation of oncogenic mutations and their superimposed epigenetic states that shape the transcriptome, phenotype and secretome of cancer cell populations, including the repertoire of genes impacting the vascular and coagulation systems. High-grade brain tumours, such as glioblastoma multiforme (GBM) represent a paradigm of locally initiated haemostatic abnormalities that propagate systemically, likely through circulating mediators, such as extracellular vesicles and soluble factors. Reciprocally, CAT impacts the biology of cancer cells and may drive tumour evolution. The constituent, oncogene-transformed cancer cell populations form complex ecosystems, the intricate architecture of which has been recently revealed by single cell sequencing technologies. Amidst this phenotypic heterogeneity, several alternative pathways of CAT may exist both between and within individual tumours and their subtypes, including GBM. Indeed, different contributions of cells expressing key coagulant mediators, such as tissue factor, or podoplanin, have been identified in GBM subtypes driven by oncogenic mutations in EGFR, IDH1 and other transforming genes. Thus, a better understanding of cellular sources of CAT, including dominant cancer cell phenotypes and their dynamic shifts, may help design more personalised approaches to thrombosis in cancer patients to improve outcomes.
Collapse
Affiliation(s)
- Nadim Tawil
- McGill University, Montreal Children's Hospital, RI MUHC, McGill University, Montreal, Quebec, Canada
| | - Cristiana Spinelli
- McGill University, Montreal Children's Hospital, RI MUHC, McGill University, Montreal, Quebec, Canada
| | - Rayhaan Bassawon
- McGill University, Montreal Children's Hospital, RI MUHC, McGill University, Montreal, Quebec, Canada
| | - Janusz Rak
- McGill University, Montreal Children's Hospital, RI MUHC, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
13
|
Abstract
Oral anticoagulant therapy has changed by clinical evidence that coagulation factor Xa (FXa) can be safely and effectively targeted for thromboprophylaxis. Because thrombotic and thrombo-inflammatory diseases are frequently caused by excessive activation of the tissue factor (TF) pathway, activation of FX by the TF-FVIIa complex is of central importance for understanding the roles of FXa in thrombosis and hemostasis and functions beyond blood coagulation. Recent data showed that the nascent product FXa associated with TF-FVIIa not only supports hemostatic cofactor VIII activation, but also broadly influences immune reactions in inflammation, cancer, and autoimmunity. These signaling functions of FXa are mediated through protease activated receptor (PAR) cleavage and PAR2 activation occurs in extravascular environments specifically by macrophage synthesized FX. Cell autonomous FXa-PAR2 signaling is a mechanism for tumor-promoting macrophage polarization in the tumor microenvironment and tissue penetrance of oral FXa inhibitors favors the reprogramming of tumor-associated macrophages for non-coagulant therapeutic benefit. It is necessary to decipher the distinct functions of coagulation factors synthesized by the liver for circulation in blood versus those synthesized by extrahepatic immune cells for activity in tissue milieus. This research will lead to a better understanding of the broader roles of FXa as a central regulator of immune and hematopoietic systems.
Collapse
Affiliation(s)
- Wolfram Ruf
- Center for Thrombosis and Hemostasis (CTH), Johannes Gutenberg University Medical Center, Langenbeckstr. 1, 55131, Mainz, Germany. .,Department of Immunology and Microbiology, Scripps Research, La Jolla, CA, USA.
| |
Collapse
|
14
|
Müller-Calleja N, Hollerbach A, Royce J, Ritter S, Pedrosa D, Madhusudhan T, Teifel S, Meineck M, Häuser F, Canisius A, Nguyen TS, Braun J, Bruns K, Etzold A, Zechner U, Strand S, Radsak M, Strand D, Gu JM, Weinmann-Menke J, Esmon CT, Teyton L, Lackner KJ, Ruf W. Lipid presentation by the protein C receptor links coagulation with autoimmunity. Science 2021; 371:371/6534/eabc0956. [PMID: 33707237 DOI: 10.1126/science.abc0956] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 09/15/2020] [Accepted: 01/15/2021] [Indexed: 12/17/2022]
Abstract
Antiphospholipid antibodies (aPLs) cause severe autoimmune disease characterized by vascular pathologies and pregnancy complications. Here, we identify endosomal lysobisphosphatidic acid (LBPA) presented by the CD1d-like endothelial protein C receptor (EPCR) as a pathogenic cell surface antigen recognized by aPLs for induction of thrombosis and endosomal inflammatory signaling. The engagement of aPLs with EPCR-LBPA expressed on innate immune cells sustains interferon- and toll-like receptor 7-dependent B1a cell expansion and autoantibody production. Specific pharmacological interruption of EPCR-LBPA signaling attenuates major aPL-elicited pathologies and the development of autoimmunity in a mouse model of systemic lupus erythematosus. Thus, aPLs recognize a single cell surface lipid-protein receptor complex to perpetuate a self-amplifying autoimmune signaling loop dependent on the cooperation with the innate immune complement and coagulation pathways.
Collapse
Affiliation(s)
- Nadine Müller-Calleja
- Center for Thrombosis and Hemostasis, Johannes Gutenberg University Medical Center, 55131 Mainz, Germany.,Institute of Clinical Chemistry and Laboratory Medicine, Johannes Gutenberg University Medical Center, 55131 Mainz, Germany.,Department of Immunology and Microbiology, Scripps Research, La Jolla, CA 92037, USA
| | - Anne Hollerbach
- Center for Thrombosis and Hemostasis, Johannes Gutenberg University Medical Center, 55131 Mainz, Germany.,Institute of Clinical Chemistry and Laboratory Medicine, Johannes Gutenberg University Medical Center, 55131 Mainz, Germany
| | - Jennifer Royce
- Department of Immunology and Microbiology, Scripps Research, La Jolla, CA 92037, USA
| | - Svenja Ritter
- Institute of Clinical Chemistry and Laboratory Medicine, Johannes Gutenberg University Medical Center, 55131 Mainz, Germany
| | - Denise Pedrosa
- Center for Thrombosis and Hemostasis, Johannes Gutenberg University Medical Center, 55131 Mainz, Germany
| | - Thati Madhusudhan
- Center for Thrombosis and Hemostasis, Johannes Gutenberg University Medical Center, 55131 Mainz, Germany
| | - Sina Teifel
- Institute of Clinical Chemistry and Laboratory Medicine, Johannes Gutenberg University Medical Center, 55131 Mainz, Germany
| | - Myriam Meineck
- Department of Medicine I, Johannes Gutenberg University Medical Center, 55131 Mainz, Germany
| | - Friederike Häuser
- Institute of Clinical Chemistry and Laboratory Medicine, Johannes Gutenberg University Medical Center, 55131 Mainz, Germany
| | - Antje Canisius
- Institute of Clinical Chemistry and Laboratory Medicine, Johannes Gutenberg University Medical Center, 55131 Mainz, Germany
| | - T Son Nguyen
- Center for Thrombosis and Hemostasis, Johannes Gutenberg University Medical Center, 55131 Mainz, Germany
| | - Johannes Braun
- Center for Thrombosis and Hemostasis, Johannes Gutenberg University Medical Center, 55131 Mainz, Germany
| | - Kai Bruns
- Institute of Clinical Chemistry and Laboratory Medicine, Johannes Gutenberg University Medical Center, 55131 Mainz, Germany
| | - Anna Etzold
- Institute of Human Genetics, Johannes Gutenberg University Medical Center, 55131 Mainz, Germany.,Senckenberg Zentrum für Humangenetik, 60314 Frankfurt, Germany
| | - Ulrich Zechner
- Institute of Human Genetics, Johannes Gutenberg University Medical Center, 55131 Mainz, Germany.,Senckenberg Zentrum für Humangenetik, 60314 Frankfurt, Germany
| | - Susanne Strand
- Department of Medicine I, Johannes Gutenberg University Medical Center, 55131 Mainz, Germany
| | - Markus Radsak
- Department of Medicine III, Johannes Gutenberg University Medical Center, 55131 Mainz, Germany
| | - Dennis Strand
- Department of Medicine I, Johannes Gutenberg University Medical Center, 55131 Mainz, Germany
| | - Jian-Ming Gu
- Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Julia Weinmann-Menke
- Department of Medicine I, Johannes Gutenberg University Medical Center, 55131 Mainz, Germany
| | - Charles T Esmon
- Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Luc Teyton
- Department of Immunology and Microbiology, Scripps Research, La Jolla, CA 92037, USA
| | - Karl J Lackner
- Institute of Clinical Chemistry and Laboratory Medicine, Johannes Gutenberg University Medical Center, 55131 Mainz, Germany.
| | - Wolfram Ruf
- Center for Thrombosis and Hemostasis, Johannes Gutenberg University Medical Center, 55131 Mainz, Germany. .,Department of Immunology and Microbiology, Scripps Research, La Jolla, CA 92037, USA
| |
Collapse
|
15
|
Zheng Q, Zhang M, Zhou F, Zhang L, Meng X. The Breast Cancer Stem Cells Traits and Drug Resistance. Front Pharmacol 2021; 11:599965. [PMID: 33584277 PMCID: PMC7876385 DOI: 10.3389/fphar.2020.599965] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 11/17/2020] [Indexed: 12/13/2022] Open
Abstract
Drug resistance is a major challenge in breast cancer (BC) treatment at present. Accumulating studies indicate that breast cancer stem cells (BCSCs) are responsible for the BC drugs resistance, causing relapse and metastasis in BC patients. Thus, BCSCs elimination could reverse drug resistance and improve drug efficacy to benefit BC patients. Consequently, mastering the knowledge on the proliferation, resistance mechanisms, and separation of BCSCs in BC therapy is extremely helpful for BCSCs-targeted therapeutic strategies. Herein, we summarize the principal BCSCs surface markers and signaling pathways, and list the BCSCs-related drug resistance mechanisms in chemotherapy (CT), endocrine therapy (ET), and targeted therapy (TT), and display therapeutic strategies for targeting BCSCs to reverse drug resistance in BC. Even more importantly, more attention should be paid to studies on BCSC-targeted strategies to overcome the drug resistant dilemma of clinical therapies in the future.
Collapse
Affiliation(s)
- Qinghui Zheng
- Department of Breast Surgery, Zhejiang Provincial People's Hospital, Hangzhou, China
| | - Mengdi Zhang
- MOE Laboratory of Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Fangfang Zhou
- Institutes of Biology and Medical Science, Soochow University, Suzhou, China
| | - Long Zhang
- MOE Laboratory of Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Xuli Meng
- Department of Breast Surgery, Zhejiang Provincial People's Hospital, Hangzhou, China
| |
Collapse
|
16
|
Unruh D, Horbinski C. Beyond thrombosis: the impact of tissue factor signaling in cancer. J Hematol Oncol 2020; 13:93. [PMID: 32665005 PMCID: PMC7362520 DOI: 10.1186/s13045-020-00932-z] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 07/02/2020] [Indexed: 12/15/2022] Open
Abstract
Tissue factor (TF) is the primary initiator of the coagulation cascade, though its effects extend well beyond hemostasis. When TF binds to Factor VII, the resulting TF:FVIIa complex can proteolytically cleave transmembrane G protein-coupled protease-activated receptors (PARs). In addition to activating PARs, TF:FVIIa complex can also activate receptor tyrosine kinases (RTKs) and integrins. These signaling pathways are utilized by tumors to increase cell proliferation, angiogenesis, metastasis, and cancer stem-like cell maintenance. Herein, we review in detail the regulation of TF expression, mechanisms of TF signaling, their pathological consequences, and how it is being targeted in experimental cancer therapeutics.
Collapse
Affiliation(s)
- Dusten Unruh
- Department of Neurological Surgery, Northwestern University, 303 East Superior St, Chicago, IL, 60611, USA.
| | - Craig Horbinski
- Department of Neurological Surgery, Northwestern University, 303 East Superior St, Chicago, IL, 60611, USA.,Department of Pathology, Northwestern University, Chicago, IL, 60611, USA
| |
Collapse
|
17
|
Cantrell R, Palumbo JS. The thrombin–inflammation axis in cancer progression. Thromb Res 2020; 191 Suppl 1:S117-S122. [DOI: 10.1016/s0049-3848(20)30408-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 11/18/2019] [Accepted: 11/21/2019] [Indexed: 02/07/2023]
|
18
|
Graf C, Wilgenbus P, Pagel S, Pott J, Marini F, Reyda S, Kitano M, Macher-Göppinger S, Weiler H, Ruf W. Myeloid cell-synthesized coagulation factor X dampens antitumor immunity. Sci Immunol 2020; 4:4/39/eaaw8405. [PMID: 31541031 DOI: 10.1126/sciimmunol.aaw8405] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 07/02/2019] [Accepted: 08/06/2019] [Indexed: 12/20/2022]
Abstract
Immune evasion in the tumor microenvironment (TME) is a crucial barrier for effective cancer therapy, and plasticity of innate immune cells may contribute to failures of targeted immunotherapies. Here, we show that rivaroxaban, a direct inhibitor of activated coagulation factor X (FX), promotes antitumor immunity by enhancing infiltration of dendritic cells and cytotoxic T cells at the tumor site. Profiling FX expression in the TME identifies monocytes and macrophages as crucial sources of extravascular FX. By generating mice with immune cells lacking the ability to produce FX, we show that myeloid cell-derived FX plays a pivotal role in promoting tumor immune evasion. In mouse models of cancer, we report that the efficacy of rivaroxaban is comparable with anti-programmed cell death ligand 1 (PD-L1) therapy and that rivaroxaban synergizes with anti-PD-L1 in improving antitumor immunity. Mechanistically, we demonstrate that FXa promotes immune evasion by signaling through protease-activated receptor 2 and that rivaroxaban specifically targets this cell-autonomous signaling pathway to reprogram tumor-associated macrophages. Collectively, our results have uncovered the importance of FX produced in the TME as a regulator of immune cell activation and suggest translational potential of direct oral anticoagulants to remove persisting roadblocks for immunotherapy and provide extravascular benefits in other diseases.
Collapse
Affiliation(s)
- Claudine Graf
- Center for Thrombosis and Hemostasis, Johannes Gutenberg University Medical Center, Mainz, Germany.,Department of Immunology and Microbiology, Scripps Research, La Jolla, CA, USA.,Department of Internal Medicine III, Johannes Gutenberg University Medical Center, Mainz, Germany
| | - Petra Wilgenbus
- Center for Thrombosis and Hemostasis, Johannes Gutenberg University Medical Center, Mainz, Germany
| | - Sven Pagel
- Center for Thrombosis and Hemostasis, Johannes Gutenberg University Medical Center, Mainz, Germany
| | - Jennifer Pott
- Center for Thrombosis and Hemostasis, Johannes Gutenberg University Medical Center, Mainz, Germany
| | - Federico Marini
- Center for Thrombosis and Hemostasis, Johannes Gutenberg University Medical Center, Mainz, Germany.,Institute of Medical Biostatistics, Epidemiology and Informatics (IMBEI), Johannes Gutenberg University Medical Center, Mainz, Germany
| | - Sabine Reyda
- Center for Thrombosis and Hemostasis, Johannes Gutenberg University Medical Center, Mainz, Germany
| | - Maki Kitano
- Department of Immunology and Microbiology, Scripps Research, La Jolla, CA, USA
| | | | - Hartmut Weiler
- Blood Research Institute, Blood Center of Wisconsin, Milwaukee, WI, USA
| | - Wolfram Ruf
- Center for Thrombosis and Hemostasis, Johannes Gutenberg University Medical Center, Mainz, Germany. .,Department of Immunology and Microbiology, Scripps Research, La Jolla, CA, USA
| |
Collapse
|
19
|
Yang Fu N, Visvader JE. Halting triple negative breast cancer by targeting PROCR. Cell Res 2020; 29:875-876. [PMID: 31619763 DOI: 10.1038/s41422-019-0245-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
- Nai Yang Fu
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore, 169857, Singapore
| | - Jane E Visvader
- Cancer Biology and Stem Cells Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia. .,Department of Medical Biology, The University of Melbourne, Parkville, VIC, 3010, Australia.
| |
Collapse
|
20
|
Wang H, Wang P, Liang X, Li W, Yang M, Ma J, Yue W, Fan S. Down-regulation of endothelial protein C receptor promotes preeclampsia by affecting actin polymerization. J Cell Mol Med 2020; 24:3370-3383. [PMID: 32003123 PMCID: PMC7131931 DOI: 10.1111/jcmm.15011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 12/06/2019] [Accepted: 12/29/2019] [Indexed: 12/21/2022] Open
Abstract
Preeclampsia is a severe pregnancy-related disease that is found in 3%-5% of pregnancies worldwide and is primarily related to the decreased proliferation and invasion of trophoblast cells and abnormal uterine spiral artery remodelling. However, studies on the pathogenesis of placental trophoblasts are insufficient, and the aetiology of PE remains unclear. Here, we report that endothelial protein C receptor (EPCR), a transmembrane glycoprotein, was down-regulated in placentas from preeclamptic patients. Moreover, lack of EPCR significantly reduced the trophoblast cell proliferation, invasion and tube formation capabilities. Microscale thermophoresis analysis showed that EPCR directly bound to protease-activated receptor 1 (PAR-1), a G protein-coupled receptor. This change resulted in a substantial reduction in active Rac1 and caused excessive actin rearrangement. Our findings reveal a previously unidentified role of EPCR in the regulation of trophoblast proliferation, invasion and tube formation through promotion of actin polymerization, which is required for normal placental development.
Collapse
Affiliation(s)
- Hao Wang
- Department of Obstetrics and Gynecology, Peking University Shenzhen Hospital, Shenzhen, China.,Shenzhen Key Laboratory on Technology for Early Diagnosis of Major Gynecological Diseases, Shenzhen, China
| | - Pan Wang
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | - Xiaoling Liang
- Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wenjing Li
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | - Mo Yang
- Medical Center for Human Reproduction, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Jihong Ma
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | - Wei Yue
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | - Shangrong Fan
- Department of Obstetrics and Gynecology, Peking University Shenzhen Hospital, Shenzhen, China.,Shenzhen Key Laboratory on Technology for Early Diagnosis of Major Gynecological Diseases, Shenzhen, China
| |
Collapse
|
21
|
Protein C receptor is a therapeutic stem cell target in a distinct group of breast cancers. Cell Res 2019; 29:832-845. [PMID: 31481760 DOI: 10.1038/s41422-019-0225-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Accepted: 08/15/2019] [Indexed: 12/24/2022] Open
Abstract
Breast cancer is a heterogeneous disease. In particular, triple-negative breast cancer (TNBC) comprises various molecular subgroups with unclear identities and currently has few targeted treatment options. Our previous study identified protein C receptor (Procr) as a surface marker on mammary stem cells (MaSCs) located in the basal layer of the normal mammary gland. Given the possible connection of TNBC with basal layer stem cells, we conducted comparative analyses of Procr in breast cancers of mouse and human origin. In mouse mammary tumors, we showed that Procr+ cells are enriched for cancer stem cells (CSCs) in Wnt1 basal-like tumors, but not in Brca1 basal-like tumors or PyVT luminal tumors. In human cancers, PROCR was robustly expressed in half of TNBC cases. Experiments with patient-derived xenografts (PDXs) revealed that PROCR marks CSCs in this discrete subgroup (referred to as PROCR+ TNBC). Interfering with the function of PROCR using an inhibitory nanobody reduced the CSC numbers, arrested tumor growth and prevented rapid tumor recurrence. Our data suggest a key role of MaSC in breast tumorigenesis. Moreover, our work indicates that PROCR can be used as a biomarker to stratify TNBC into clinically relevant subgroups and may provide a novel targeted treatment strategy for this clinically important tumor subtype.
Collapse
|
22
|
Abstract
Cancer stem cells (CSCs) are crucial for tumor recurrence and distant metastasis. Immunologically targeting CSCs represents a promising strategy to improve efficacy of multimodal cancer therapy. Modulating the innate immune response involving Toll-like receptors, macrophages, natural killer cells, and γδT cells has therapeutic effects on CSCs. Antigens expressed by CSCs provide specific targets for immunotherapy. CSC-primed dendritic cell-based vaccines have induced significant antitumor immunity as an adjuvant therapy in experimental models of established tumors. Targeting the tumor microenvironment CSC niche with cytokines or checkpoint blockade provides additional strategies to eliminate CSCs.
Collapse
Affiliation(s)
- Jing Zhang
- Division of Surgical Oncology, University of Michigan Rogel Cancer Center, Room 3410, 1150 East Medical Center Drive, Ann Arbor, MI 48109, USA; Department of the 2nd Thoracic Medical Oncology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 116 Zhuodaoquan South Road, Hongshan District, Wuhan, Hubei Province 430070, China
| | - Qiao Li
- Division of Surgical Oncology, University of Michigan Rogel Cancer Center, 3520B MSRB-1, 1150 West Medical Center Drive, Ann Arbor, MI 48109, USA
| | - Alfred E Chang
- Division of Surgical Oncology, University of Michigan Rogel Cancer Center, Room 3304, 1500 East Medical Center Drive, Ann Arbor, MI 48109, USA.
| |
Collapse
|
23
|
Yurova KA, Khaziakhmatova OG, Melashchenko ES, Malashchenko VV, Shunkin EO, Shupletsova VV, Ivanov PA, Khlusov IA, Litvinova LS. Cellular and Molecular Basis of Osteoblastic and Vascular Niches in the Processes of Hematopoiesis and Bone Remodeling (A Short Review of Modern Views). Curr Pharm Des 2019; 25:663-669. [PMID: 30931856 DOI: 10.2174/1381612825666190329153626] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 03/25/2019] [Indexed: 01/01/2023]
Abstract
In evolutionary processes, human bone marrow has formed as an organ depot of various types of cells that arise from hematopoietic stem cells (HSCs) and mesenchymal stem cells (MSCs). Vital HSC activity is controlled through molecular interactions with the niche microenvironment. The review describes current views on the formation of key molecular and cellular components of the HSC niche, which ensure maintenance of home ostasis in stem cell niches, obtained from studies of their role in regulating the proliferation and differentiation of HSCs, including the physiological, reparative and pathological remodeling of bone tissue. Due to rapid developments in biotechnology, tissue bioengineering, and regenerative medicine, information can be useful for developing biomimetic and bioinspired materials and implants that provide an effective bone/bone marrow recovery process after injuries and, to a greater extent, diseases of various etiologies.
Collapse
Affiliation(s)
- Kristina A Yurova
- Basic Laboratory of Immunology and Cell Biotechnology, Immanuel Kant Baltic Federal University, Kaliningrad, Russian Federation
| | - Olga G Khaziakhmatova
- Basic Laboratory of Immunology and Cell Biotechnology, Immanuel Kant Baltic Federal University, Kaliningrad, Russian Federation
| | - Elena S Melashchenko
- Center for Medical Biotechnology, Immanuel Kant Baltic Federal University, Kaliningrad, Russian Federation
| | - Vladimir V Malashchenko
- Center for Medical Biotechnology, Immanuel Kant Baltic Federal University, Kaliningrad, Russian Federation
| | - Egor O Shunkin
- Center for Medical Biotechnology, Immanuel Kant Baltic Federal University, Kaliningrad, Russian Federation
| | - Valeria V Shupletsova
- Basic Laboratory of Immunology and Cell Biotechnology, Immanuel Kant Baltic Federal University, Kaliningrad, Russian Federation.,Center for Medical Biotechnology, Immanuel Kant Baltic Federal University, Kaliningrad, Russian Federation
| | - Pavel A Ivanov
- Basic Laboratory of Immunology and Cell Biotechnology, Immanuel Kant Baltic Federal University, Kaliningrad, Russian Federation
| | - Igor A Khlusov
- Morphology and General Pathology Department, Siberian State Medical University, Tomsk, Russian Federation.,Research School of Chemistry & Applied Biomedical Sciences, Tomsk Polytechnic University, Tomsk, Tomskaya oblast, Russian Federation
| | - Larisa S Litvinova
- Basic Laboratory of Immunology and Cell Biotechnology, Immanuel Kant Baltic Federal University, Kaliningrad, Russian Federation
| |
Collapse
|
24
|
Endothelial Protein C Receptor (EPCR), Protease Activated Receptor-1 (PAR-1) and Their Interplay in Cancer Growth and Metastatic Dissemination. Cancers (Basel) 2019; 11:cancers11010051. [PMID: 30626007 PMCID: PMC6356956 DOI: 10.3390/cancers11010051] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 12/28/2018] [Accepted: 12/28/2018] [Indexed: 12/20/2022] Open
Abstract
Endothelial protein C receptor (EPCR) and protease activated receptor 1 (PAR-1) by themselves play important role in cancer growth and dissemination. Moreover, interactions between the two receptors are essential for tumor progression. EPCR is a cell surface transmembrane glycoprotein localized predominantly on endothelial cells (ECs). It is a vital component of the activated protein C (APC)—mediated anticoagulant and cytoprotective signaling cascade. PAR-1, which belongs to a family of G protein–coupled cell surface receptors, is also widely distributed on endothelial and blood cells, where it plays a critical role in hemostasis. Both EPCR and PAR-1, generally considered coagulation-related receptors, are implicated in carcinogenesis and dissemination of diverse tumor types, and their expression correlates with clinical outcome of cancer patients. Existing data explain some mechanisms by which EPCR/PAR-1 affects cancer growth and metastasis; however, the exact molecular basis of cancer invasion associated with the signaling is still obscure. Here, we discuss the role of EPCR and PAR-1 reciprocal interactions in cancer progression as well as potential therapeutic options targeted specifically to interact with EPCR/PAR-1-induced signaling in cancer patients.
Collapse
|
25
|
Bai X, Ni J, Beretov J, Graham P, Li Y. Cancer stem cell in breast cancer therapeutic resistance. Cancer Treat Rev 2018; 69:152-163. [PMID: 30029203 DOI: 10.1016/j.ctrv.2018.07.004] [Citation(s) in RCA: 219] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 07/11/2018] [Accepted: 07/12/2018] [Indexed: 12/15/2022]
Abstract
Development of therapeutic resistance and metastasis is a major challenge with current breast cancer (BC) therapy. Mounting evidence suggests that a subpopulation of cancer stem cells (CSCs) contribute to the cancer therapeutic resistance and metastasis, leading to the recurrence and death in patients. Breast cancer stem cells (BCSCs) are not only a consequence of mutations that overactivate the self-renewal ability of normal stem cells or committed progenitors but also a result of the de-differentiation of cancer cells induced by somatic mutations or microenvironmental components under treatment. Eradication of BCSCs may bring hope and relief to patients whose lives are threatened by recurrent BCs. Therefore, a better understanding of the generation, regulatory mechanisms, and identification of CSCs in BC therapeutic resistance and metastasis will be imperative for developing BCSC-targeted strategies. Here we summarize the latest studies about cell surface markers and signalling pathways that sustain the stemness of BCSC and discuss the associations of mechanisms behind these traits with phenotype and behavior changes in BCSCs. More importantly, their implications for future study are also evaluated and potential BCSC-targeted strategies are proposed to break through the limitation of current therapies.
Collapse
Affiliation(s)
- Xupeng Bai
- Cancer Care Centre, St. George Hospital, Kogarah, NSW 2217, Australia; St George and Sutherland Clinical School, Faculty of Medicine, UNSW Sydney, Kensington, NSW 2052, Australia
| | - Jie Ni
- Cancer Care Centre, St. George Hospital, Kogarah, NSW 2217, Australia; St George and Sutherland Clinical School, Faculty of Medicine, UNSW Sydney, Kensington, NSW 2052, Australia
| | - Julia Beretov
- Cancer Care Centre, St. George Hospital, Kogarah, NSW 2217, Australia; St George and Sutherland Clinical School, Faculty of Medicine, UNSW Sydney, Kensington, NSW 2052, Australia; Anatomical Pathology, NSW Health Pathology, St. George Hospital, Kogarah, NSW 2217, Australia
| | - Peter Graham
- Cancer Care Centre, St. George Hospital, Kogarah, NSW 2217, Australia; St George and Sutherland Clinical School, Faculty of Medicine, UNSW Sydney, Kensington, NSW 2052, Australia
| | - Yong Li
- Cancer Care Centre, St. George Hospital, Kogarah, NSW 2217, Australia; St George and Sutherland Clinical School, Faculty of Medicine, UNSW Sydney, Kensington, NSW 2052, Australia; School of Basic Medical Sciences, Zhengzhou University, Henan 450001, China.
| |
Collapse
|
26
|
Extravascular coagulation in hematopoietic stem and progenitor cell regulation. Blood 2018; 132:123-131. [PMID: 29866813 DOI: 10.1182/blood-2017-12-768986] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 02/05/2018] [Indexed: 12/17/2022] Open
Abstract
The hemostatic system plays pivotal roles in injury repair, innate immunity, and adaptation to inflammatory challenges. We review the evidence that these vascular-protective mechanisms have nontraditional roles in hematopoietic stem cell (HSC) maintenance in their physiological bone marrow (BM) niches at steady-state and under stress. Expression of coagulation factors and the extrinsic coagulation initiator tissue factor by osteoblasts, tissue-resident macrophages, and megakaryocytes suggests that endosteal and vascular HSC niches are functionally regulated by extravascular coagulation. The anticoagulant endothelial protein C receptor (EPCR; Procr) is highly expressed by primitive BM HSCs and endothelial cells. EPCR is associated with its major ligand, activated protein C (aPC), in proximity to thrombomodulin-positive blood vessels, enforcing HSC integrin α4 adhesion and chemotherapy resistance in the context of CXCL12-CXCR4 niche retention signals. Protease-activated receptor 1-biased signaling by EPCR-aPC also maintains HSC retention, whereas thrombin signaling activates HSC motility and BM egress. Furthermore, HSC mobilization under stress is enhanced by the fibrinolytic and complement cascades that target HSCs and their BM niches. In addition, coagulation, fibrinolysis, and HSC-derived progeny, including megakaryocytes, synergize to reestablish functional perivascular HSC niches during BM stress. Therapeutic restoration of the anticoagulant pathway has preclinical efficacy in reversing BM failure following radiation injury, but questions remain about how antithrombotic therapy influences extravascular coagulation in HSC maintenance and hematopoiesis.
Collapse
|
27
|
Catieau B, Devos V, Chtourou S, Borgel D, Plantier JL. Endothelial cell surface limits coagulation without modulating the antithrombin potency. Thromb Res 2018; 167:88-95. [PMID: 29800795 DOI: 10.1016/j.thromres.2018.05.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 04/25/2018] [Accepted: 05/16/2018] [Indexed: 11/26/2022]
Abstract
Antithrombin (AT) binds in vitro and in vivo to endothelial cells through various receptors, including heparan sulphate glycosaminoglycan (HSPG) that could modulate the AT activity. A thrombin generation assay (TGA) was set up at the surface of HUVEC and HMVEC evaluating their participation in the coagulation-anticoagulation processes. TGA induced by 0.5 pM Tissue Factor was performed in normal or AT-deficient plasma spiked with various amounts of recombinant or plasma-derived AT (0, 0.1, 0.5 and 1.0 U/ml). To evaluate the role of HSPG or cellular anticoagulant receptors, cells were treated or not with heparin, a mix of heparanase I, II and III, a neutralizing anti-Endothelial Protein C Receptor (EPCR) or with an anti-Tissue Factor Pathway Inhibitor (TFPI) antibody. The presence of the cells diminished the TG in normal plasma and maintained anticoagulation in AT-deficient plasma. Spiking the AT-deficient plasma with different doses of AT demonstrated that the cells did not amplify the anticoagulant activity of AT. The recombinant AT binds the cells with a higher avidity than the plasma-derived one but this did not affect its anticoagulant potency. Moreover both bindings are independent of the HSPG. The antithrombotic activity kept in absence of AT was not inhibited by blocking antibodies directed against EPCR or TFPI. Our data did not reveal a major co-factor activity for AT from endothelial cells that could have been mediated by HSPG. In contrast, it reveals the presence of alternative anti-coagulant system(s) in two venous cell types that maintain an antithrombotic activity.
Collapse
Affiliation(s)
- Béatrice Catieau
- LFB Biotechnologies, Direction de l'Innovation Thérapeutique, 84, rue du Dr Yersin, 59120 Loos, France
| | - Véronique Devos
- LFB Biotechnologies, Direction de l'Innovation Thérapeutique, 84, rue du Dr Yersin, 59120 Loos, France
| | - Sami Chtourou
- LFB Biotechnologies, Direction de l'Innovation Thérapeutique, 84, rue du Dr Yersin, 59120 Loos, France
| | - Delphine Borgel
- INSERM U1176, Université Paris-Sud, CHU de Bicêtre, 80, rue du Général Leclerc, 94276 Le Kremlin Bicêtre Cedex, France
| | - Jean-Luc Plantier
- LFB Biotechnologies, Direction de l'Innovation Thérapeutique, 84, rue du Dr Yersin, 59120 Loos, France.
| |
Collapse
|
28
|
Rothmeier AS, Liu E, Chakrabarty S, Disse J, Mueller BM, Østergaard H, Ruf W. Identification of the integrin-binding site on coagulation factor VIIa required for proangiogenic PAR2 signaling. Blood 2018; 131:674-685. [PMID: 29246902 PMCID: PMC5805488 DOI: 10.1182/blood-2017-02-768218] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 12/12/2017] [Indexed: 12/14/2022] Open
Abstract
The tissue factor (TF) pathway serves both hemostasis and cell signaling, but how cells control these divergent functions of TF remains incompletely understood. TF is the receptor and scaffold of coagulation proteases cleaving protease-activated receptor 2 (PAR2) that plays pivotal roles in angiogenesis and tumor development. Here we demonstrate that coagulation factor VIIa (FVIIa) elicits TF cytoplasmic domain-dependent proangiogenic cell signaling independent of the alternative PAR2 activator matriptase. We identify a Lys-Gly-Glu (KGE) integrin-binding motif in the FVIIa protease domain that is required for association of the TF-FVIIa complex with the active conformer of integrin β1. A point mutation in this motif markedly reduces TF-FVIIa association with integrins, attenuates integrin translocation into early endosomes, and reduces delayed mitogen-activated protein kinase phosphorylation required for the induction of proangiogenic cytokines. Pharmacologic or genetic blockade of the small GTPase ADP-ribosylation factor 6 (arf6) that regulates integrin trafficking increases availability of TF-FVIIa with procoagulant activity on the cell surface, while inhibiting TF-FVIIa signaling that leads to proangiogenic cytokine expression and tumor cell migration. These experiments delineate the structural basis for the crosstalk of the TF-FVIIa complex with integrin trafficking and suggest a crucial role for endosomal PAR2 signaling in pathways of tissue repair and tumor biology.
Collapse
Affiliation(s)
- Andrea S Rothmeier
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA
| | - Enbo Liu
- San Diego Biomedical Research Institute, San Diego, CA
| | - Sagarika Chakrabarty
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA
| | - Jennifer Disse
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA
| | | | | | - Wolfram Ruf
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA
- Center for Thrombosis and Hemostasis, Johannes Gutenberg University Medical Center, Mainz, Germany
| |
Collapse
|
29
|
Spronk HMH, Padro T, Siland JE, Prochaska JH, Winters J, van der Wal AC, Posthuma JJ, Lowe G, d'Alessandro E, Wenzel P, Coenen DM, Reitsma PH, Ruf W, van Gorp RH, Koenen RR, Vajen T, Alshaikh NA, Wolberg AS, Macrae FL, Asquith N, Heemskerk J, Heinzmann A, Moorlag M, Mackman N, van der Meijden P, Meijers JCM, Heestermans M, Renné T, Dólleman S, Chayouâ W, Ariëns RAS, Baaten CC, Nagy M, Kuliopulos A, Posma JJ, Harrison P, Vries MJ, Crijns HJGM, Dudink EAMP, Buller HR, Henskens YMC, Själander A, Zwaveling S, Erküner O, Eikelboom JW, Gulpen A, Peeters FECM, Douxfils J, Olie RH, Baglin T, Leader A, Schotten U, Scaf B, van Beusekom HMM, Mosnier LO, van der Vorm L, Declerck P, Visser M, Dippel DWJ, Strijbis VJ, Pertiwi K, Ten Cate-Hoek AJ, Ten Cate H. Atherothrombosis and Thromboembolism: Position Paper from the Second Maastricht Consensus Conference on Thrombosis. Thromb Haemost 2018; 118:229-250. [PMID: 29378352 DOI: 10.1160/th17-07-0492] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Atherothrombosis is a leading cause of cardiovascular mortality and long-term morbidity. Platelets and coagulation proteases, interacting with circulating cells and in different vascular beds, modify several complex pathologies including atherosclerosis. In the second Maastricht Consensus Conference on Thrombosis, this theme was addressed by diverse scientists from bench to bedside. All presentations were discussed with audience members and the results of these discussions were incorporated in the final document that presents a state-of-the-art reflection of expert opinions and consensus recommendations regarding the following five topics: 1. Risk factors, biomarkers and plaque instability: In atherothrombosis research, more focus on the contribution of specific risk factors like ectopic fat needs to be considered; definitions of atherothrombosis are important distinguishing different phases of disease, including plaque (in)stability; proteomic and metabolomics data are to be added to genetic information. 2. Circulating cells including platelets and atherothrombosis: Mechanisms of leukocyte and macrophage plasticity, migration, and transformation in murine atherosclerosis need to be considered; disease mechanism-based biomarkers need to be identified; experimental systems are needed that incorporate whole-blood flow to understand how red blood cells influence thrombus formation and stability; knowledge on platelet heterogeneity and priming conditions needs to be translated toward the in vivo situation. 3. Coagulation proteases, fibrin(ogen) and thrombus formation: The role of factor (F) XI in thrombosis including the lower margins of this factor related to safe and effective antithrombotic therapy needs to be established; FXI is a key regulator in linking platelets, thrombin generation, and inflammatory mechanisms in a renin-angiotensin dependent manner; however, the impact on thrombin-dependent PAR signaling needs further study; the fundamental mechanisms in FXIII biology and biochemistry and its impact on thrombus biophysical characteristics need to be explored; the interactions of red cells and fibrin formation and its consequences for thrombus formation and lysis need to be addressed. Platelet-fibrin interactions are pivotal determinants of clot formation and stability with potential therapeutic consequences. 4. Preventive and acute treatment of atherothrombosis and arterial embolism; novel ways and tailoring? The role of protease-activated receptor (PAR)-4 vis à vis PAR-1 as target for antithrombotic therapy merits study; ongoing trials on platelet function test-based antiplatelet therapy adjustment support development of practically feasible tests; risk scores for patients with atrial fibrillation need refinement, taking new biomarkers including coagulation into account; risk scores that consider organ system differences in bleeding may have added value; all forms of oral anticoagulant treatment require better organization, including education and emergency access; laboratory testing still needs rapidly available sensitive tests with short turnaround time. 5. Pleiotropy of coagulation proteases, thrombus resolution and ischaemia-reperfusion: Biobanks specifically for thrombus storage and analysis are needed; further studies on novel modified activated protein C-based agents are required including its cytoprotective properties; new avenues for optimizing treatment of patients with ischaemic stroke are needed, also including novel agents that modify fibrinolytic activity (aimed at plasminogen activator inhibitor-1 and thrombin activatable fibrinolysis inhibitor.
Collapse
Affiliation(s)
- H M H Spronk
- Laboratory for Clinical Thrombosis and Haemostasis, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center, Maastricht, The Netherlands
| | - T Padro
- Cardiovascular Research Center (ICCC), Hospital Sant Pau, Barcelona, Spain
| | - J E Siland
- Department of Cardiology, University Medical Center Groningen, Groningen, The Netherlands
| | - J H Prochaska
- Center for Cardiology/Center for Thrombosis and Hemostasis/DZHK, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - J Winters
- Department of Physiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - A C van der Wal
- Department of Pathology, Academic Medical Center (AMC), Amsterdam, The Netherlands
| | - J J Posthuma
- Laboratory for Clinical Thrombosis and Haemostasis, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center, Maastricht, The Netherlands
| | - G Lowe
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, Scotland
| | - E d'Alessandro
- Department of Physiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands.,Department of Pathology, Academic Medical Center (AMC), Amsterdam, The Netherlands
| | - P Wenzel
- Department of Cardiology, Universitätsmedizin Mainz, Mainz, Germany
| | - D M Coenen
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - P H Reitsma
- Einthoven Laboratory, Leiden University Medical Center, Leiden, The Netherlands
| | - W Ruf
- Center for Cardiology/Center for Thrombosis and Hemostasis/DZHK, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - R H van Gorp
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - R R Koenen
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - T Vajen
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - N A Alshaikh
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - A S Wolberg
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, North Carolina, United States
| | - F L Macrae
- Thrombosis and Tissue Repair Group, Division of Cardiovascular and Diabetes Research, Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, UK
| | - N Asquith
- Thrombosis and Tissue Repair Group, Division of Cardiovascular and Diabetes Research, Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, UK
| | - J Heemskerk
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - A Heinzmann
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - M Moorlag
- Synapse, Maastricht, The Netherlands
| | - N Mackman
- Department of Medicine, UNC McAllister Heart Institute, University of North Carolina, Chapel Hill, North Carolina, United States
| | - P van der Meijden
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - J C M Meijers
- Department of Plasma Proteins, Sanquin, Amsterdam, The Netherlands
| | - M Heestermans
- Einthoven Laboratory, Leiden University Medical Center, Leiden, The Netherlands
| | - T Renné
- Department of Molecular Medicine and Surgery, Karolinska Institutet and University Hospital, Stockholm, Sweden.,Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - S Dólleman
- Department of Nephrology, Leiden University Medical Centre, Leiden, The Netherlands
| | - W Chayouâ
- Synapse, Maastricht, The Netherlands
| | - R A S Ariëns
- Thrombosis and Tissue Repair Group, Division of Cardiovascular and Diabetes Research, Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, UK
| | - C C Baaten
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - M Nagy
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - A Kuliopulos
- Tufts University School of Graduate Biomedical Sciences, Biochemistry/Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts
| | - J J Posma
- Laboratory for Clinical Thrombosis and Haemostasis, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center, Maastricht, The Netherlands
| | - P Harrison
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| | - M J Vries
- Laboratory for Clinical Thrombosis and Haemostasis, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center, Maastricht, The Netherlands
| | - H J G M Crijns
- Department of Cardiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center, Maastricht, The Netherlands
| | - E A M P Dudink
- Department of Cardiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center, Maastricht, The Netherlands
| | - H R Buller
- Department of Vascular Medicine, Academic Medical Center (AMC), Amsterdam, The Netherlands
| | - Y M C Henskens
- Laboratory for Clinical Thrombosis and Haemostasis, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center, Maastricht, The Netherlands
| | - A Själander
- Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| | - S Zwaveling
- Laboratory for Clinical Thrombosis and Haemostasis, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center, Maastricht, The Netherlands.,Synapse, Maastricht, The Netherlands
| | - O Erküner
- Department of Cardiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center, Maastricht, The Netherlands
| | - J W Eikelboom
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - A Gulpen
- Laboratory for Clinical Thrombosis and Haemostasis, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center, Maastricht, The Netherlands
| | - F E C M Peeters
- Department of Cardiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center, Maastricht, The Netherlands
| | - J Douxfils
- Department of Pharmacy, Thrombosis and Hemostasis Center, Faculty of Medicine, Namur University, Namur, Belgium
| | - R H Olie
- Laboratory for Clinical Thrombosis and Haemostasis, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center, Maastricht, The Netherlands
| | - T Baglin
- Department of Haematology, Addenbrookes Hospital Cambridge, Cambridge, United Kingdom
| | - A Leader
- Laboratory for Clinical Thrombosis and Haemostasis, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center, Maastricht, The Netherlands.,Davidoff Cancer Center, Rabin Medical Center, Institute of Hematology, Sackler Faculty of Medicine, Tel Aviv University, Petah Tikva, Tel Aviv, Israel
| | - U Schotten
- Center for Cardiology/Center for Thrombosis and Hemostasis/DZHK, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - B Scaf
- Laboratory for Clinical Thrombosis and Haemostasis, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center, Maastricht, The Netherlands.,Department of Physiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - H M M van Beusekom
- Department of Experimental Cardiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - L O Mosnier
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, United States
| | | | - P Declerck
- Department of Pharmaceutical and Pharmacological Sciences, University of Leuven, Leuven, Belgium
| | | | - D W J Dippel
- Department of Neurology, Erasmus MC, Rotterdam, The Netherlands
| | | | - K Pertiwi
- Department of Cardiovascular Pathology, University of Amsterdam, Academic Medical Center, Amsterdam, The Netherlands
| | - A J Ten Cate-Hoek
- Laboratory for Clinical Thrombosis and Haemostasis, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center, Maastricht, The Netherlands
| | - H Ten Cate
- Laboratory for Clinical Thrombosis and Haemostasis, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center, Maastricht, The Netherlands
| |
Collapse
|
30
|
Graf C, Ruf W. Tissue factor as a mediator of coagulation and signaling in cancer and chronic inflammation. Thromb Res 2018; 164 Suppl 1:S143-S147. [PMID: 29703473 DOI: 10.1016/j.thromres.2018.01.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Revised: 01/11/2018] [Accepted: 01/12/2018] [Indexed: 12/23/2022]
Abstract
Thrombosis is frequently diagnosed as a first symptom in tumor patients and the clinical management of hypercoagulability in cancer patients remains challenging due to concomitant changes in risk factors for severe bleeding. It therefore remains a priority to better understand interactions of the hemostatic system with cancer biology. Specifically, further research is needed to elucidate the details and effects of new anticoagulants on extravascular coagulation and the interplay between cancer progression and chronic inflammation. In addition, it will be important to identify subgroups of cancer patients benefiting from specific modulations of the coagulation system without increasing the bleeding risk. Here, we review recent findings on tissue factor (TF) regulation, its procoagulant activity and TF signaling in the various cell types of the tumor microenvironment.
Collapse
Affiliation(s)
- Claudine Graf
- Center for Thrombosis and Hemostasis, Johannes Gutenberg University Medical Center, Mainz, Germany.
| | - Wolfram Ruf
- Center for Thrombosis and Hemostasis, Johannes Gutenberg University Medical Center, Mainz, Germany; Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
| |
Collapse
|
31
|
Wang D, Liu C, Wang J, Jia Y, Hu X, Jiang H, Shao ZM, Zeng YA. Protein C receptor stimulates multiple signaling pathways in breast cancer cells. J Biol Chem 2017; 293:1413-1424. [PMID: 29217770 DOI: 10.1074/jbc.m117.814046] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 11/30/2017] [Indexed: 11/06/2022] Open
Abstract
The protein C receptor (PROCR) has emerged as a stem cell marker in several normal tissues and has also been implicated in tumor progression. However, the functional role of PROCR and the signaling mechanisms downstream of PROCR remain poorly understood. Here, we dissected the PROCR signaling pathways in breast cancer cells. Combining protein array, knockdown, and overexpression methods, we found that PROCR concomitantly activates multiple pathways. We also noted that PROCR-dependent ERK and PI3k-Akt-mTOR signaling pathways proceed through Src kinase and transactivation of insulin-like growth factor 1 receptor (IGF-1R). These pathway activities led to the accumulation of c-Myc and cyclin D1. On the other hand, PROCR-dependent RhoA-ROCK-p38 signaling relied on coagulation factor II thrombin receptor (F2R). We confirmed these findings in primary cells isolated from triple-negative breast cancer-derived xenografts (PDX) that have high expression of PROCR. To the best our knowledge, this is the first comprehensive study of PROCR signaling in breast cancer cells, and its findings also shed light on the molecular mechanisms of PROCR in stem cells in normal tissue.
Collapse
Affiliation(s)
- Daisong Wang
- From the State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Chunye Liu
- From the State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jingqiang Wang
- From the State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yingying Jia
- From the State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xin Hu
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China, and
| | - Hai Jiang
- Key Laboratory of Systems Biology, Innovation Center for Cell Signaling Network, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Zhi-Ming Shao
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China, and
| | - Yi Arial Zeng
- From the State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China,
| |
Collapse
|
32
|
TR47, a PAR1-based peptide, inhibits melanoma cell migration in vitro and metastasis in vivo. Biochem Biophys Res Commun 2017; 495:1300-1304. [PMID: 29196264 DOI: 10.1016/j.bbrc.2017.11.174] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 11/21/2017] [Accepted: 11/27/2017] [Indexed: 01/30/2023]
Abstract
Activated Protein C (APC) is a serine-protease that displays antithrombotic and anti-inflammatory properties. In addition, cleavage of protease-activated receptor 1 (PAR1) by APC exerts endothelial cytoprotective actions. The effects of APC on endothelial cells may be reproduced by TR47, a PAR1-based peptide that mimics the novel N-terminus of PAR1 generated upon cleavage at Arg-46 by APC. In this study we demonstrate that wild-type APC and its signaling-proficient mutant, APC-2Cys (which has dramatically reduced anticoagulant activity), display similar inhibitory effects towards the transendothelial migration of A375 human melanoma cells. Consistent with this observation, APC and APC-2Cys significantly reduced the in vivo metastatic potential of the B16F10 murine melanoma cells. TR47 recapitulated the in vitro and in vivo protective profiles of APC and APC-2Cys. Treatment of EA.hy926 endothelial cells with TR47 (20 μM) significantly decreased the A375 cell migration. In addition, treatment of C57/BL6 mice with a single TR47 dose (125 μg/animal) strongly reduced the metastatic burden of B16F10 cells. Together, our results suggest that protection of the endothelial barrier by APC/TR47-mediated signaling pathways might be a valuable therapeutic approach to prevent metastasis.
Collapse
|
33
|
Lal N, Willcox CR, Beggs A, Taniere P, Shikotra A, Bradding P, Adams R, Fisher D, Middleton G, Tselepis C, Willcox BE. Endothelial protein C receptor is overexpressed in colorectal cancer as a result of amplification and hypomethylation of chromosome 20q. JOURNAL OF PATHOLOGY CLINICAL RESEARCH 2017; 3:155-170. [PMID: 28770100 PMCID: PMC5527318 DOI: 10.1002/cjp2.70] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 04/12/2017] [Indexed: 01/22/2023]
Abstract
Endothelial Protein C Receptor (EPCR) is a Major Histocompatibility Complex homologue, with established roles downregulating coagulation and in endothelial protection. Expressed predominantly on endothelium, EPCR affects inflammatory, apoptotic and cell proliferation pathways by binding to activated protein C (APC). However, EPCR can also be expressed on cancer cells, although the underlying reasons are unclear. Moreover, although EPCR has been linked with chemosensitivity in lung cancer, its clinical significance in many tumours is unknown. Here, we explored its significance in colorectal cancer (CRC). Bioinformatic methods revealed EPCR overexpression in many epithelial cancers, which was confirmed on CRC epithelial tumour cells by immunohistochemistry. EPCR upregulation resulted from gene amplification and DNA hypomethylation, and occurred in concert with a cohort of neighbouring genes on chromosome 20q, a region previously implicated in chemoresistance. As in endothelial cells, EPCR reproducibly mediated ERK pathway activation in a model CRC cell line following APC treatment. However, EPCR knockdown studies failed to highlight compelling EPCR‐intrinsic impact on CRC cell phenotype, with limited effects on chemosensitivity and no effect on invasion observed, while EPCR appeared to decrease CRC cell migration. Consistent with these observations, differential EPCR expression did not influence response to chemotherapy in a human CRC cohort. Our results provide a compelling explanation for how EPCR is upregulated in diverse epithelial malignancies. They indicate that the clinical significance of EPCR varies across different tumour types. Furthermore, they raise the possibility that the prognostic significance of EPCR in certain tumours relates significantly to co‐upregulation of neighbouring genes on chromosome 20q. Therefore, efforts to exploit EPCR as a prognostic marker should be focussed on specific tumours, and in such scenarios EPCR‐co‐dysregulated genes may represent potential axes for therapeutic intervention.
Collapse
Affiliation(s)
- Neeraj Lal
- Cancer Immunology and Immunotherapy Centre, Institute of Immunology and ImmunotherapyUniversity of BirminghamEdgbaston, BirminghamUK
| | - Carrie R Willcox
- Cancer Immunology and Immunotherapy Centre, Institute of Immunology and ImmunotherapyUniversity of BirminghamEdgbaston, BirminghamUK
| | - Andrew Beggs
- Institute of Cancer and Genomic SciencesUniversity of BirminghamEdgbaston, BirminghamUK
| | - Philippe Taniere
- Department of HistopathologyQueen Elizabeth Hospital Birmingham, Mindelsohn WayEdgbaston, BirminghamUK
| | - Aarti Shikotra
- Department of Infection, Immunity and Inflammation, Institute for Lung HealthUniversity of LeicesterLeicesterUK
| | - Peter Bradding
- Department of Infection, Immunity and Inflammation, Institute for Lung HealthUniversity of LeicesterLeicesterUK
| | - Richard Adams
- Institute of Cancer & GeneticsCardiff University School of Medicine, Velindre HospitalCardiffUK
| | - David Fisher
- MRC Clinical Trials UnitUniversity College LondonLondonUK
| | - Gary Middleton
- Cancer Immunology and Immunotherapy Centre, Institute of Immunology and ImmunotherapyUniversity of BirminghamEdgbaston, BirminghamUK
| | - Chris Tselepis
- Institute of Cancer and Genomic SciencesUniversity of BirminghamEdgbaston, BirminghamUK
| | - Benjamin E Willcox
- Cancer Immunology and Immunotherapy Centre, Institute of Immunology and ImmunotherapyUniversity of BirminghamEdgbaston, BirminghamUK
| |
Collapse
|
34
|
Yan Q, Xiaorong Z, Zhang Z, Bing W, Feng Y, Hong B. Prevalence of protein C receptor (PROCR) is associated with inferior clinical outcome in Breast invasive ductal carcinoma. Pathol Res Pract 2017; 213:1173-1179. [PMID: 28756987 DOI: 10.1016/j.prp.2017.06.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 05/23/2017] [Accepted: 06/24/2017] [Indexed: 02/05/2023]
Abstract
Recently, PROCR is reported to play an important role in cell growth, apoptosis, proliferation and tumor relapse. Some researchers thought that PROCR+ cells had cancer stem cell ability, which might contribute to progressive behavior in breast cancer. Our study was to assess the expression of PROCR in invasive ductal carcinoma tissues with their prognostic implications. We enrolled formalin fixed paraffin-embedded tumor tissues of 271 patients diagnosed as invasive ductal breast cancer with clinical stage II or III into our study. Immunohistochemistry staining was performed on all the tissue microarray slides, and result were interpreted by two pathologists with blinded method. We analyzed PROCR expression levels with the clinical characteristics as well as their prognostic values. PROCR expression detected in the cell was interpreted. Chi-square test showed us its positive expression had a close association with distant metastases (p=0.035). Univariate survival analysis indicated that prevalence of PROCR expression in the invasive ductal breast cancer was significantly related with decreased disease-free survival (pDFS=0.010) and overall survival (pOS=0.008). In multivariate survival by Cox proportional hazard model, positive expression group for PROCR was found to have shorter DFS [pDFS=0.028, hazard ratio (95% CI): 1.183(1.069-3.140)]. Our findings suggested that breast cancer patients with expression of PROCR is more prone to suffer from distant metastasis and bad clinical outcomes.
Collapse
Affiliation(s)
- Qiu Yan
- Laboratory of Pathology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China; Department of Pathology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Zhong Xiaorong
- Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China; Laboratory of Molecular Diagnosis of Cancer, State Key Laboratory of Biotherapy, National Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Zhang Zhang
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Wei Bing
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Ye Feng
- Laboratory of Pathology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China; Key Laboratory of Transplant Engineering and Immunology, Ministry of Health, West China Hospital, Sichuan University, Chengdu, PR China
| | - Bu Hong
- Laboratory of Pathology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China; Key Laboratory of Transplant Engineering and Immunology, Ministry of Health, West China Hospital, Sichuan University, Chengdu, PR China; Department of Pathology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China.
| |
Collapse
|
35
|
Shaker H, Harrison H, Clarke R, Landberg G, Bundred NJ, Versteeg HH, Kirwan CC. Tissue Factor promotes breast cancer stem cell activity in vitro. Oncotarget 2017; 8:25915-25927. [PMID: 28033108 PMCID: PMC5432226 DOI: 10.18632/oncotarget.13928] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 08/25/2016] [Indexed: 01/01/2023] Open
Abstract
Cancer stem cells (CSCs) are a subpopulation of cells that can self-renew and initiate tumours. The clotting-initiating protein Tissue Factor (TF) promotes metastasis and may be overexpressed in cancer cells with increased CSC activity. We sought to determine whether TF promotes breast CSC activity in vitro using human breast cancer cell lines. TF expression was compared in anoikis-resistant (CSC-enriched) and unselected cells. In cells sorted into of TF-expressing and TF-negative (FACS), and in cells transfected to knockdown TF (siRNA) and overexpress TF (cDNA), CSC activity was compared by (i) mammosphere forming efficiency (MFE) (ii) holoclone colony formation (Hc) and (iii) ALDH1 activity. TF expression was increased in anoikis-resistant and high ALDH1-activity T47D cells compared to unselected cells. FACS sorted TF-expressing T47Ds and TF-overexpressing MCF7s had increased CSC activity compared to TF-low cells. TF siRNA cells (MDAMB231,T47D) had reduced CSC activity compared to control cells. FVIIa increased MFE and ALDH1 in a dose-dependent manner (MDAMB231, T47D). The effects of FVIIa on MFE were abrogated by TF siRNA (T47D). Breast CSCs (in vitro) demonstrate increased activity when selected for high TF expression, when induced to overexpress TF, and when stimulated (with FVIIa). Targeting the TF pathway in vivo may abrogate CSC activity.
Collapse
Affiliation(s)
- Hudhaifah Shaker
- The University of Manchester, Manchester Academic Health Science Centre, Department of Academic Surgery, University Hospital of South Manchester, Manchester, UK
| | - Hannah Harrison
- Faculty of Life Sciences, University of Manchester, Manchester, UK
| | - Robert Clarke
- Breast Biology Group, Manchester Cancer Research Centre, University of Manchester, Manchester, UK
| | - Goran Landberg
- Sahlgrenska Cancer Center, University of Gothenburg, Sweden
| | - Nigel J. Bundred
- The University of Manchester, Manchester Academic Health Science Centre, Department of Academic Surgery, University Hospital of South Manchester, Manchester, UK
| | - Henri H. Versteeg
- Department of Thrombosis and Hemostasis, Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, Netherlands
| | - Cliona C. Kirwan
- The University of Manchester, Manchester Academic Health Science Centre, Department of Academic Surgery, University Hospital of South Manchester, Manchester, UK
| |
Collapse
|
36
|
Koizume S, Miyagi Y. Potential Coagulation Factor-Driven Pro-Inflammatory Responses in Ovarian Cancer Tissues Associated with Insufficient O₂ and Plasma Supply. Int J Mol Sci 2017; 18:ijms18040809. [PMID: 28417928 PMCID: PMC5412393 DOI: 10.3390/ijms18040809] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 04/05/2017] [Accepted: 04/06/2017] [Indexed: 02/07/2023] Open
Abstract
Tissue factor (TF) is a cell surface receptor for coagulation factor VII (fVII). The TF-activated fVII (fVIIa) complex is an essential initiator of the extrinsic blood coagulation process. Interactions between cancer cells and immune cells via coagulation factors and adhesion molecules can promote progression of cancer, including epithelial ovarian cancer (EOC). This process is not necessarily advantageous, as tumor tissues generally undergo hypoxia due to aberrant vasculature, followed by reduced access to plasma components such as coagulation factors. However, hypoxia can activate TF expression. Expression of fVII, intercellular adhesion molecule-1 (ICAM-1), and multiple pro-inflammatory cytokines can be synergistically induced in EOC cells in response to hypoxia along with serum deprivation. Thus, pro-inflammatory responses associated with the TF-fVIIa-ICAM-1 interaction are expected within hypoxic tissues. Tumor tissue consists of multiple components such as stromal cells, interstitial fluid, albumin, and other micro-factors such as proton and metal ions. These factors, together with metabolism reprogramming in response to hypoxia and followed by functional modification of TF, may contribute to coagulation factor-driven inflammatory responses in EOC tissues. The aim of this review was to describe potential coagulation factor-driven inflammatory responses in hypoxic EOC tissues. Arguments were extended to clinical issues targeting this characteristic tumor environment.
Collapse
Affiliation(s)
- Shiro Koizume
- Molecular Pathology and Genetics Division, Kanagawa Cancer Center Research Institute, 2-3-2 Nakao, Asahi-ku, Yokohama 241-8515, Japan.
| | - Yohei Miyagi
- Molecular Pathology and Genetics Division, Kanagawa Cancer Center Research Institute, 2-3-2 Nakao, Asahi-ku, Yokohama 241-8515, Japan.
| |
Collapse
|
37
|
Perurena N, Zandueta C, Martínez-Canarias S, Moreno H, Vicent S, Almeida AS, Guruceaga E, Gomis RR, Santisteban M, Egeblad M, Hermida J, Lecanda F. EPCR promotes breast cancer progression by altering SPOCK1/testican 1-mediated 3D growth. J Hematol Oncol 2017; 10:23. [PMID: 28103946 PMCID: PMC5248526 DOI: 10.1186/s13045-017-0399-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 01/13/2017] [Indexed: 01/29/2023] Open
Abstract
Background Activated protein C/endothelial protein C receptor (APC/EPCR) axis is physiologically involved in anticoagulant and cytoprotective activities in endothelial cells. Emerging evidence indicates that EPCR also plays a role in breast stemness and human tumorigenesis. Yet, its contribution to breast cancer progression and metastasis has not been elucidated. Methods Transcriptomic status of EPCR was examined in a cohort of 286 breast cancer patients. Cell growth kinetics was evaluated in control and EPCR and SPARC/osteonectin, Cwcv, and kazal-like domains proteoglycan (SPOCK1/testican 1) silenced breast cancer cells in 2D, 3D, and in co-culture conditions. Orthotopic tumor growth and lung and osseous metastases were evaluated in several human and murine xenograft breast cancer models. Tumor-stroma interactions were further studied in vivo by immunohistochemistry and flow cytometry. An EPCR-induced gene signature was identified by microarray analysis. Results Analysis of a cohort of breast cancer patients revealed an association of high EPCR levels with adverse clinical outcome. Interestingly, EPCR knockdown did not affect cell growth kinetics in 2D but significantly reduced cell growth in 3D cultures. Using several human and murine xenograft breast cancer models, we showed that EPCR silencing reduced primary tumor growth and secondary outgrowths at metastatic sites, including the skeleton and the lungs. Interestingly, these effects were independent of APC ligand stimulation in vitro and in vivo. Transcriptomic analysis of EPCR-silenced tumors unveiled an effect mediated by matricellular secreted proteoglycan SPOCK1/testican 1. Interestingly, SPOCK1 silencing suppressed in vitro 3D growth. Moreover, SPOCK1 ablation severely decreased orthotopic tumor growth and reduced bone metastatic osteolytic tumors. High SPOCK1 levels were also associated with poor clinical outcome in a subset breast cancer patients. Our results suggest that EPCR through SPOCK1 confers a cell growth advantage in 3D promoting breast tumorigenesis and metastasis. Conclusions EPCR represents a clinically relevant factor associated with poor outcome and a novel vulnerability to develop combination therapies for breast cancer patients. Electronic supplementary material The online version of this article (doi:10.1186/s13045-017-0399-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Naiara Perurena
- Adhesion and Metastasis Laboratory, Program Solid Tumors and Biomarkers, Center for Applied Medical Research (CIMA), University of Navarra, 31008, Pamplona, Spain
| | - Carolina Zandueta
- Adhesion and Metastasis Laboratory, Program Solid Tumors and Biomarkers, Center for Applied Medical Research (CIMA), University of Navarra, 31008, Pamplona, Spain
| | - Susana Martínez-Canarias
- Adhesion and Metastasis Laboratory, Program Solid Tumors and Biomarkers, Center for Applied Medical Research (CIMA), University of Navarra, 31008, Pamplona, Spain
| | - Haritz Moreno
- Adhesion and Metastasis Laboratory, Program Solid Tumors and Biomarkers, Center for Applied Medical Research (CIMA), University of Navarra, 31008, Pamplona, Spain
| | - Silvestre Vicent
- Adhesion and Metastasis Laboratory, Program Solid Tumors and Biomarkers, Center for Applied Medical Research (CIMA), University of Navarra, 31008, Pamplona, Spain.,IdiSNA, Navarra Institute for Health Research, Pamplona, Spain.,Department of Histology and Pathology, University of Navarra, Pamplona, Spain
| | - Ana S Almeida
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | | | - Roger R Gomis
- Oncology Program, Institute for Research in Biomedicine, Barcelona, Spain
| | - Marta Santisteban
- Department of Oncology, Clínica Universidad de Navarra, Pamplona, Spain
| | - Mikala Egeblad
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - José Hermida
- Cardiovascular Sciences Program, Center for Applied Medical Research, University of Navarra, Pamplona, Spain
| | - Fernando Lecanda
- Adhesion and Metastasis Laboratory, Program Solid Tumors and Biomarkers, Center for Applied Medical Research (CIMA), University of Navarra, 31008, Pamplona, Spain. .,IdiSNA, Navarra Institute for Health Research, Pamplona, Spain. .,Department of Histology and Pathology, University of Navarra, Pamplona, Spain.
| |
Collapse
|
38
|
D'Asti E, Rak J. Biological basis of personalized anticoagulation in cancer: oncogene and oncomir networks as putative regulators of coagulopathy. Thromb Res 2017; 140 Suppl 1:S37-43. [PMID: 27067976 DOI: 10.1016/s0049-3848(16)30096-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Activation of stromal response pathways in cancer is increasingly viewed as both a local and systemic extension of molecular alterations driving malignant transformation. Rather than reflecting passive and unspecific responses to anatomical abnormalities, the coagulation system is a target of oncogenic deregulation, impacting the role of clotting and fibrinolytic proteins, and integrating hemostasis, inflammation, angiogenesis and cellular growth effects in cancer. These processes signify, but do not depend on, the clinically manifest coagulopathy and thrombosis. In this regard, the role of driver mutations affecting oncoprotein coding genes such as RAS, EGFR or MET and tumour suppressors (PTEN, TP53) are well described as regulators of tissue factor (TF), protease activated receptors (PAR-1/2) and ectopic coagulation factors (FVII). Indeed, in both adult and pediatric brain tumours the expression patterns of coagulation and angiogenesis regulators (coagulome and angiome, respectively) reflect the molecular subtypes of the underlying diseases (glioblastoma or medulloblastoma) as defined by their oncogenic classifiers and clinical course. This emerging understanding is still poorly established in relation to the transforming effects of non-coding genes, including those responsible for the expression of microRNA (miR). Indeed, several miRs have been recently found to regulate TF and other effectors. We recently documented that in the context of the aggressive embryonal tumour with multilayered rosettes (ETMR) the oncogenic driver miR (miR-520g) suppresses the expression of TF and correlates with hypocoagulant tumour characteristics. Unlike in adult cancers, the growth of pediatric embryonal brain tumour cells as spheres (to maintain stem cell properties) results in upregulation of miR-520g and downregulation of TF expression and activity. We postulate that oncogenic protein and miR coding genes form alternative pathways of coagulation system regulation in different tumour settings, a property necessitating more personalised and biologically-based approaches to anticoagulation.
Collapse
Affiliation(s)
- Esterina D'Asti
- McGill University, Montreal Children's Hospital, RI MUHC, McGill University, Montreal, Quebec, Canada
| | - Janusz Rak
- McGill University, Montreal Children's Hospital, RI MUHC, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
39
|
Keshava S, Rao LVM, Pendurthi UR. Intrapleural Adenoviral-mediated Endothelial Cell Protein C Receptor Gene Transfer Suppresses the Progression of Malignant Pleural Mesothelioma in a Mouse Model. Sci Rep 2016; 6:36829. [PMID: 27833109 PMCID: PMC5104979 DOI: 10.1038/srep36829] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 10/21/2016] [Indexed: 12/29/2022] Open
Abstract
Malignant pleural mesothelioma (MPM) is an aggressive thoracic cancer with a high mortality rate as it responds poorly to standard therapeutic interventions. Our recent studies showed that expression of endothelial cell protein C receptor (EPCR) in MPM cells suppresses tumorigenicity. The present study was aimed to investigate the mechanism by which EPCR suppresses MPM tumor growth and evaluate whether EPCR gene therapy could suppress the progression of MPM in a mouse model of MPM. Measurement of cytokines from the pleural lavage showed that mice implanted with MPM cells expressing EPCR had elevated levels of IFNγ and TNFα compared to mice implanted with MPM cells lacking EPCR. In vitro studies demonstrated that EPCR expression renders MPM cells highly susceptible to IFNγ + TNFα-induced apoptosis. Intrapleural injection of Ad.EPCR into mice with an established MPM originating from MPM cells lacking EPCR reduced the progression of tumor growth. Ad.EPCR treatment elicited recruitment of macrophages and NK cells into the tumor microenvironment and increased IFNγ and TNFα levels in the pleural space. Ad.EPCR treatment resulted in a marked increase in tumor cell apoptosis. In summary, our data show that EPCR expression in MPM cells promotes tumor cell apoptosis, and intrapleural EPCR gene therapy suppresses MPM progression.
Collapse
Affiliation(s)
- Shiva Keshava
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Texas, USA
| | - L Vijaya Mohan Rao
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Texas, USA
| | - Usha R Pendurthi
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Texas, USA
| |
Collapse
|
40
|
Vascular Procr + stem cells: Finding new branches while looking for the roots. Cell Res 2016; 26:1071-1072. [PMID: 27481542 DOI: 10.1038/cr.2016.91] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Generation and growth of the blood vasculature network is a highly synchronized process, requiring coordinated efforts of endothelial cells and pericytes to maintain blood vessel integrity and regeneration. In a recent paper published in Cell Research, Yu et al. identified and characterized bipotent Procr-expressing vascular endothelial stem cells, which give rise to both endothelial cells and pericytes.
Collapse
|
41
|
Abstract
Cancer-associated thrombosis remains a significant complication in the clinical management of cancer and interactions of the hemostatic system with cancer biology continue to be elucidated. Here, we review recent progress in our understanding of tissue factor (TF) regulation and procoagulant activation, TF signaling in cancer and immune cells, and the expanding roles of the coagulation system in stem cell niches and the tumor microenvironment. The extravascular functions of coagulant and anti-coagulant pathways have significant implications not only for tumor progression, but also for the selection of appropriate target specific anticoagulants in the therapy of cancer patients.
Collapse
Affiliation(s)
- Wolfram Ruf
- Center for Thrombosis and Hemostasis, University Medical Center, Mainz, Germany; Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA, USA.
| | - Andrea S Rothmeier
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA, USA
| | - Claudine Graf
- Center for Thrombosis and Hemostasis, University Medical Center, Mainz, Germany; 3(rd) Medical Department, University Medical Center, Mainz, Germany
| |
Collapse
|
42
|
Gur-Cohen S, Kollet O, Graf C, Esmon CT, Ruf W, Lapidot T. Regulation of long-term repopulating hematopoietic stem cells by EPCR/PAR1 signaling. Ann N Y Acad Sci 2016; 1370:65-81. [PMID: 26928241 DOI: 10.1111/nyas.13013] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 01/05/2016] [Accepted: 01/11/2016] [Indexed: 01/18/2023]
Abstract
The common developmental origin of endothelial and hematopoietic cells is manifested by coexpression of several cell surface receptors. Adult murine bone marrow (BM) long-term repopulating hematopoietic stem cells (LT-HSCs), endowed with the highest repopulation and self-renewal potential, express endothelial protein C receptor (EPCR), which is used as a marker to isolate them. EPCR/protease-activated receptor-1 (PAR1) signaling in endothelial cells has anticoagulant and anti-inflammatory roles, while thrombin/PAR1 signaling induces coagulation and inflammation. Recent studies define two new PAR1-mediated signaling cascades that regulate EPCR(+) LT-HSC BM retention and egress. EPCR/PAR1 signaling facilitates LT-HSC BM repopulation, retention, survival, and chemotherapy resistance by restricting nitric oxide (NO) production, maintaining NO(low) LT-HSC BM retention with increased VLA4 expression, affinity, and adhesion. Conversely, acute stress and clinical mobilization upregulate thrombin generation and activate different PAR1 signaling that overcomes BM EPCR(+) LT-HSC retention, inducing their recruitment to the bloodstream. Thrombin/PAR1 signaling induces NO generation, TACE-mediated EPCR shedding, and upregulation of CXCR4 and PAR1, leading to CXCL12-mediated stem and progenitor cell mobilization. This review discusses new roles for factors traditionally viewed as coagulation related, which independently act in the BM to regulate PAR1 signaling in bone- and blood-forming progenitor cells, navigating their fate by controlling NO production.
Collapse
Affiliation(s)
- Shiri Gur-Cohen
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Orit Kollet
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Claudine Graf
- Center for Thrombosis and Hemostasis and Johannes Gutenberg University Medical Center, Mainz, Germany.,Third Medical Department, Johannes Gutenberg University Medical Center, Mainz, Germany
| | - Charles T Esmon
- Coagulation Biology Laboratory, Oklahoma Medical Research Foundation and Departments of Pathology and Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Wolfram Ruf
- Center for Thrombosis and Hemostasis and Johannes Gutenberg University Medical Center, Mainz, Germany.,Department of Immunology and Microbial Science, the Scripps Research Institute, La Jolla, California
| | - Tsvee Lapidot
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
43
|
Tissue Factor Regulation by miR-520g in Primitive Neuronal Brain Tumor Cells: A Possible Link between Oncomirs and the Vascular Tumor Microenvironment. THE AMERICAN JOURNAL OF PATHOLOGY 2015; 186:446-59. [PMID: 26687818 DOI: 10.1016/j.ajpath.2015.10.020] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 10/18/2015] [Accepted: 10/21/2015] [Indexed: 12/19/2022]
Abstract
Pediatric embryonal brain tumors with multilayered rosettes demonstrate a unique oncogenic amplification of the chromosome 19 miRNA cluster, C19MC. Because oncogenic lesions often cause deregulation of vascular effectors, including procoagulant tissue factor (TF), this study explores whether there is a link between C19MC oncogenic miRNAs (oncomirs) and the coagulant properties of cancer cells, a question previously not studied. In a pediatric embryonal brain tumor tissue microarray, we observed an association between C19MC amplification and reduced fibrin content and TF expression, indicative of reduced procoagulant activity. In medulloblastoma cell lines (DAOY and UW228) engineered to express miR-520g, a biologically active constituent of the C19MC cluster, we observed reduced TF expression, procoagulant and TF signaling activities (responses to factor VIIa stimulation), and diminished TF emission as cargo of extracellular vesicles. Antimir and luciferase reporter assays revealed a specific and direct effect of miR-520g on the TF 3' untranslated region. Although the endogenous MIR520G locus is methylated in differentiated cells, exposure of DAOY cells to 5-aza-2'-deoxycytidine or their growth as stem cell-like spheres up-regulated endogenous miR-520g with a coincident reduction in TF expression. We propose that the properties of tumors harboring oncomirs may include unique alterations of the vascular microenvironment, including deregulation of TF, with a possible impact on the biology, therapy, and hemostatic adverse effects of both disease progression and treatment.
Collapse
|
44
|
PAR1 signaling regulates the retention and recruitment of EPCR-expressing bone marrow hematopoietic stem cells. Nat Med 2015; 21:1307-17. [PMID: 26457757 DOI: 10.1038/nm.3960] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 08/31/2015] [Indexed: 12/14/2022]
Abstract
Retention of long-term repopulating hematopoietic stem cells (LT-HSCs) in the bone marrow is essential for hematopoiesis and for protection from myelotoxic injury. We report that signaling cascades that are traditionally viewed as coagulation related also control retention of endothelial protein C receptor-positive (EPCR(+)) LT-HSCs in the bone marrow and their recruitment to the blood via two pathways mediated by protease activated receptor 1 (PAR1). Thrombin-PAR1 signaling induces nitric oxide (NO) production, leading to EPCR shedding mediated by tumor necrosis factor-α-converting enzyme (TACE), enhanced CXCL12-CXCR4-induced motility and rapid stem and progenitor cell mobilization. Conversely, bone marrow blood vessels provide a microenvironment enriched with activated protein C (aPC) that retains EPCR(+) LT-HSCs by limiting NO generation, reducing Cdc42 activity and enhancing integrin VLA4 affinity and adhesion. Inhibition of NO production by aPC-EPCR-PAR1 signaling reduces progenitor cell egress from the bone marrow, increases retention of bone marrow NO(low) EPCR(+) LT-HSCs and protects mice from chemotherapy-induced hematological failure and death. Our study reveals new roles for PAR1 and EPCR in controlling NO production to balance maintenance and recruitment of bone marrow EPCR(+) LT-HSCs, with potential clinical relevance for stem cell transplantation.
Collapse
|
45
|
ALTHAWADI HAMDA, ALFARSI HALEMA, BESBES SAMAHER, MIRSHAHI SHAHSOLTAN, DUCROS ELODIE, RAFII ARASH, POCARD MARC, THERWATH AMU, SORIA JEANNETTE, MIRSHAHI MASSOUD. Activated protein C upregulates ovarian cancer cell migration and promotes unclottability of the cancer cell microenvironment. Oncol Rep 2015; 34:603-609. [PMID: 26082331 PMCID: PMC4487670 DOI: 10.3892/or.2015.4061] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Accepted: 05/11/2015] [Indexed: 01/23/2023] Open
Abstract
The objective of this study was to evaluate the role of activated protein C (aPC), known to be a physiological anticoagulant, in ovarian cancer cell activation as well as in loss of clotting of cancer ascitic fluid. The effect of aPC on an ovarian cancer cell line (OVCAR-3) was tested in regards to i) cell migration and adhesion with the use of adhesion and wound healing assays as well as a droplet test; ii) protein phosphorylation, evaluated by cyto-ELISA; iii) cell cycle modification assessed by flow cytometric DNA quantification; and iv) anticoagulant activity evaluated by the prolongation of partial thromboplastin time (aPTT) of normal plasma in the presence or absence of aPC-treated ovarian cancer cells. In addition, the soluble endothelial protein C receptor (sEPCR) was quantified by ELISA in ascitic fluid of patients with ovarian cancer. Our results showed that in the OVCAR-3 aPC-induced cells i) an increase in cell migration was noted, which was inhibited when anti-endothelial protein C receptor (EPCR) was added to the culture medium and which may act via MEK-ERK and Rho-GTPase pathways; ii) an increase in threonine, and to a lesser extent tyrosine phosphorylation; iii) cell cycle activation (G1 to S/G2); and iv) a 2-3-fold prolongation of aPTT of normal plasma. In the peritoneal fluid, the sEPCR concentration was 71 ± 23 ng/ml. In conclusion, free aPC binds to membrane EPCR in ovarian cancer cells and induces cell migration via MEK-ERK and Rho-GTPase pathways. This binding could also explain the loss of clotting of peritoneal fluids.
Collapse
Affiliation(s)
- HAMDA ALTHAWADI
- UMR, Paris Diderot, Paris 7 University, Lariboisiere Hospital, INSERM U965, Paris, France
- Qatar Foundation, Weill Cornell Medical College in Qatar, Doha, Qatar
| | - HALEMA ALFARSI
- UMR, Paris Diderot, Paris 7 University, Lariboisiere Hospital, INSERM U965, Paris, France
- Qatar Foundation, Weill Cornell Medical College in Qatar, Doha, Qatar
| | - SAMAHER BESBES
- UMR, Paris Diderot, Paris 7 University, Lariboisiere Hospital, INSERM U965, Paris, France
| | - SHAHSOLTAN MIRSHAHI
- UMR, Paris Diderot, Paris 7 University, Lariboisiere Hospital, INSERM U965, Paris, France
| | - ELODIE DUCROS
- UMR, Paris Diderot, Paris 7 University, Lariboisiere Hospital, INSERM U965, Paris, France
| | - ARASH RAFII
- Qatar Foundation, Weill Cornell Medical College in Qatar, Doha, Qatar
| | - MARC POCARD
- UMR, Paris Diderot, Paris 7 University, Lariboisiere Hospital, INSERM U965, Paris, France
| | - AMU THERWATH
- UMR, Paris Diderot, Paris 7 University, Lariboisiere Hospital, INSERM U965, Paris, France
| | - JEANNETTE SORIA
- UMR, Paris Diderot, Paris 7 University, Lariboisiere Hospital, INSERM U965, Paris, France
| | - MASSOUD MIRSHAHI
- UMR, Paris Diderot, Paris 7 University, Lariboisiere Hospital, INSERM U965, Paris, France
| |
Collapse
|
46
|
Endothelial cell protein C receptor promotes MGC803 gastric cancer cells proliferation and migration by activating ERK1/2. Med Oncol 2015; 32:162. [PMID: 25895599 DOI: 10.1007/s12032-015-0614-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 04/02/2015] [Indexed: 01/15/2023]
Abstract
The endothelial cell protein C receptor (EPCR) has been reported to be involved in the development of several human cancers. However, the role of EPCR in gastric cancer progression has not been clarified. In this study, we show for the first time that EPCR is related to gastric cancer. Our results indicate that EPCR is highly expressed in clinical gastric cancer tissue. Knockdown of EPCR by small interference RNA suppressed the proliferation and migration of MGC803 gastric cancer cells dominantly. Blocking antibodies to protease-activated receptor-1(PAR1) also suppressed the proliferation and migration of MGC803 cells. Knockdown EPCR and blocking PAR1 inhibit activation of extracellular signaling-regulated kinases 1 and 2 (ERK1/2). Taken together, these results indicate that EPCR contributes to the proliferation and migration of MGC803 gastric cancer cells by activating ERK1/2, and this effect of EPCR may be dependent on PAR1. Therefore, EPCR may be act as a novel therapeutic target for inhibiting cell growth in gastric cancer.
Collapse
|
47
|
Abstract
The hemostatic system plays pleiotropic roles in cancer progression by shaping the tumor microenvironment and metastatic niches through thrombin-dependent fibrin deposition and platelet activation. Expanding experimental evidence implicates coagulation protease receptors expressed by tumor cells as additional players that directly influence tumor biology. Pro-angiogenic G protein-coupled signaling of TF through protease activated receptor 2 and regulation of tumor cell and vascular integrins through ligation by alternative spliced TF are established pathways driving tumor progression. Our recent work shows that the endothelial protein C receptor (EPCR), a stem cell marker in hematopoietic, neuronal and epithelial cells, is also crucial for breast cancer growth in the orthotopic microenvironment of the mammary gland. In aggressive triple-negative breast cancer cells, EPCR expression is a characteristic of cancer stem cell-like populations that have tumor initiating properties in vivo. Blocking antibodies to EPCR attenuate in vivo tumor growth and proliferation specifically of EPCR(+) cells on defined integrin matrices in vitro. We also showed that tumor-associated macrophages are a source for upstream coagulation proteases that can activate TF- and EPCR-dependent cellular responses, suggesting that tumor cells utilize the tumor microenvironment for tumor promoting coagulation protease signaling.
Collapse
|
48
|
Koizume S, Miyagi Y. Breast cancer phenotypes regulated by tissue factor-factor VII pathway: Possible therapeutic targets. World J Clin Oncol 2014; 5:908-920. [PMID: 25493229 PMCID: PMC4259953 DOI: 10.5306/wjco.v5.i5.908] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Revised: 03/31/2014] [Accepted: 07/29/2014] [Indexed: 02/06/2023] Open
Abstract
Breast cancer is a leading cause of cancer death in women, worldwide. Fortunately, breast cancer is relatively chemosensitive, with recent advances leading to the development of effective therapeutic strategies, significantly increasing disease cure rate. However, disease recurrence and treatment of cases lacking therapeutic molecular targets, such as epidermal growth factor receptor 2 and hormone receptors, referred to as triple-negative breast cancers, still pose major hurdles in the treatment of breast cancer. Thus, novel therapeutic approaches to treat aggressive breast cancers are essential. Blood coagulation factor VII (fVII) is produced in the liver and secreted into the blood stream. Tissue factor (TF), the cellular receptor for fVII, is an integral membrane protein that plays key roles in the extrinsic coagulation cascade. TF is overexpressed in breast cancer tissues. The TF-fVII complex may be formed in the absence of injury, because fVII potentially exists in the tissue fluid within cancer tissues. The active form of this complex (TF-fVIIa) may stimulate the expression of numerous malignant phenotypes in breast cancer cells. Thus, the TF-fVII pathway is a potentially attractive target for breast cancer treatment. To date, a number of studies investigating the mechanisms by which TF-fVII signaling contributes to breast cancer progression, have been conducted. In this review, we summarize the mechanisms controlling TF and fVII synthesis and regulation in breast cancer cells. Our current understanding of the TF-fVII pathway as a mediator of breast cancer progression will be also described. Finally, we will discuss how this knowledge can be applied to the design of future therapeutic strategies.
Collapse
|
49
|
Tinholt M, Viken MK, Dahm AE, Vollan HKM, Sahlberg KK, Garred O, Børresen-Dale AL, Jacobsen AF, Kristensen V, Bukholm I, Kåresen R, Schlichting E, Skretting G, Lie BA, Sandset PM, Iversen N. Increased coagulation activity and genetic polymorphisms in the F5, F10 and EPCR genes are associated with breast cancer: a case-control study. BMC Cancer 2014; 14:845. [PMID: 25407022 PMCID: PMC4251949 DOI: 10.1186/1471-2407-14-845] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 11/04/2014] [Indexed: 12/28/2022] Open
Abstract
Background The procoagulant state in cancer increases the thrombotic risk, but also supports tumor progression. To investigate the molecular mechanisms controlling cancer and hemostasis, we conducted a case-control study of genotypic and phenotypic variables of the tissue factor (TF) pathway of coagulation in breast cancer. Methods 366 breast cancer patients and 307 controls were genotyped for SNPs (n = 41) in the F2, F3 (TF), F5, F7, F10, TFPI and EPCR genes, and assayed for plasma coagulation markers (thrombin generation, activated protein C (APC) resistance, D-dimer, antithrombin, protein C, protein S, and TF pathway inhibitor (TFPI)). Associations with breast cancer were evaluated using logistic regression to obtain odds ratios (ORs) and 95% confidence intervals (CIs), or the chi-square test. Results Four SNPs in F5 (rs12120605, rs6427202, rs9332542 and rs6427199), one in F10 (rs3093261), and one in EPCR (rs2069948) were associated with breast cancer. EPCR rs2069948 was associated with estrogen receptor (ER) and progesterone receptor (PR) positivity, while the SNPs in F5 appeared to follow hormone receptor negative and triple negative patients. The prothrombotic polymorphisms factor V Leiden (rs6025) and prothrombin G20210A (rs1799963) were not associated with breast cancer. High APC resistance was associated with breast cancer in both factor V Leiden non-carriers (OR 6.5, 95% CI 4.1-10.4) and carriers (OR 38.3, 95% CI 6.2-236.6). The thrombin parameters short lag times (OR 5.8, 95% CI 3.7-9.2), short times to peak thrombin (OR 7.1, 95% CI 4.4-11.3), and high thrombin peak (OR 6.1, 95% CI 3.9-9.5) predicted presence of breast cancer, and high D-dimer also associated with breast cancer (OR 2.0, 95% CI 1.3-3.3). Among the coagulation inhibitors, low levels of antithrombin associated with breast cancer (OR 5.7, 95% CI 3.6-9.0). The increased coagulability was not explained by the breast cancer associated SNPs, and was unaffected by ER, PR and triple negative status. Conclusions A procoagulant phenotype was found in the breast cancer patients. Novel associations with SNPs in F5, F10 and EPCR to breast cancer susceptibility were demonstrated, and the SNPs in F5 were confined to hormone receptor negative and triple negative patients. The study supports the importance of developing new therapeutic strategies targeting coagulation processes in cancer. Electronic supplementary material The online version of this article (doi:10.1186/1471-2407-14-845) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Nina Iversen
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway.
| |
Collapse
|
50
|
Identification of multipotent mammary stem cells by protein C receptor expression. Nature 2014; 517:81-4. [PMID: 25327250 DOI: 10.1038/nature13851] [Citation(s) in RCA: 273] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Accepted: 09/09/2014] [Indexed: 01/16/2023]
Abstract
The mammary gland is composed of multiple types of epithelial cells, which are generated by mammary stem cells (MaSCs) residing at the top of the hierarchy. However, the existence of these multipotent MaSCs remains controversial and the nature of such cells is unknown. Here we demonstrate that protein C receptor (Procr), a novel Wnt target in the mammary gland, marks a unique population of multipotent mouse MaSCs. Procr-positive cells localize to the basal layer, exhibit epithelial-to-mesenchymal transition characteristics, and express low levels of basal keratins. Procr-expressing cells have a high regenerative capacity in transplantation assays and differentiate into all lineages of the mammary epithelium by lineage tracing. These results define a novel multipotent mammary stem cell population that could be important in the initiation of breast cancer.
Collapse
|