1
|
Lal D, Dev D, Kumari S, Pandey S, Aparna, Sharma N, Nandni S, Jha RK, Singh A. Fusarium wilt pandemic: current understanding and molecular perspectives. Funct Integr Genomics 2024; 24:41. [PMID: 38386088 DOI: 10.1007/s10142-024-01319-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/06/2024] [Accepted: 02/13/2024] [Indexed: 02/23/2024]
Abstract
Plant diseases pose a severe threat to the food security of the global human population. One such disease is Fusarium wilt, which affects many plant species and causes up to 100% yield losses. Fusarium pathogen has high variability in its genetic constitution; therefore, it has evolved into different physiological races to infect different plant species spread across the different geographical regions of the world. The pathogen mainly affects plant roots, leading to colonizing and blocking vascular bundle cells, specifically xylem vessels. This blocking results in chlorosis, vascular discoloration, leaf wilting, shortening of plant, and, in severe cases, premature plant death. Due to the soil-borne nature of the wilt pathogen, neither agronomic nor plant protection measures effectively reduce the incidence of the disease. Therefore, the most cost-effective management strategy for Fusarium wilt is developing varieties resistant to a particular race of the fungus wilt prevalent in a given region. This strategy requires understanding the pathogen, its disease cycle, and epidemiology with climate-changing scenarios. Hence, in the review, we will discuss the pathogenic aspect and genetics of the Fusarium wilt, including molecular interventions for developing climate-smart wilt tolerant/resistant varieties of crops. Overall, this review will add to our knowledge for advancing the breeding of resistance against the wilt pandemic.
Collapse
Affiliation(s)
- Dalpat Lal
- College of Agriculture, Jodhpur, Agriculture University, Jodhpur, 342304, Rajasthan, India
| | - Devanshu Dev
- Department of Plant Pathology, Bihar Agricultural University, Sabour, 813210, Bhagalpur, Bihar, India
| | - Sarita Kumari
- Department of Agricultural Biotechnology & Molecular Biology, CBS&H, RPCAU-Pusa, Samastipur, India
| | - Saurabh Pandey
- Department of Agriculture, Guru Nanak Dev University, Amritsar, 143005, Punjab, India
| | - Aparna
- Department of Agriculture, Jagan Nath University, Chaksu, Jaipur, India
| | - Nilesh Sharma
- Department of Agriculture, Jagan Nath University, Chaksu, Jaipur, India
| | - Sudha Nandni
- Department of Plant Pathology, PGCA, RPCAU, Pusa, 848125, Samastipur, Bihar, India
| | - Ratnesh Kumar Jha
- Centre for Advanced Studies On Climate Change, RPCAU, Pusa, 848125, Samastipur, Bihar, India
| | - Ashutosh Singh
- Centre for Advanced Studies On Climate Change, RPCAU, Pusa, 848125, Samastipur, Bihar, India.
| |
Collapse
|
2
|
Bhargavi G, Arya M, Jambhulkar PP, Singh A, Rout AK, Behera BK, Chaturvedi SK, Singh AK. Evaluation of biocontrol efficacy of rhizosphere dwelling bacteria for management of Fusarium wilt and Botrytis gray mold of chickpea. BMC Genom Data 2024; 25:7. [PMID: 38225553 PMCID: PMC10790480 DOI: 10.1186/s12863-023-01178-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 12/04/2023] [Indexed: 01/17/2024] Open
Abstract
BACKGROUND Chickpea (Cicer arietinum L.) production is affected by many biotic factors, among them Fusarium wilt caused by Fusarium oxysporum f. sp. ciceri and Botrytis gray mold caused by Botrytis cinerea led to severe losses. As fungicide application is not advisable, biological management is the best alternative for plant protection. The rhizosphere-dwelling antagonistic bacteria are one of the important successful alternative strategy to manage these diseases of chickpea. Rhizosphere dwelling bacteria serve as biocontrol agents by different mechanisms like producing antibiotics, different enzymes, siderophores against pathogens and thereby reducing the growth of pathogens. RESULTS The present study aimed to isolate rhizospheric bacteria from the soils of different chickpea fields to evaluate biocontrol efficacy of the isolated bacteria to manage Fusarium wilt and Botrytis gray mold in chickpea. A total of 67 bacteria were isolated from chickpea rhizosphere from Bundelkhand region of India. Study revealed the isolated bacteria could reduce the Fusarium oxysporum f. sp. ciceris and Botrytis cinerea infection in chickpea between 17.29 and 75.29%. After screening of all the bacteria for their biocontrol efficacy, 13 most promising bacterial isolates were considered for further study out of which, three bacterial isolates (15d, 9c and 14a) have shown the maximum in vitro antagonistic effects against Fusarium oxysporum f. sp. ciceri and Botrytis cinerea comparable to in vivo effects. However, Isolate (15d) showed highest 87.5% and 82.69% reduction in disease against Fusarium wilt and Botrytis gray mold respectively, under pot condition. Three most potential isolates were characterized at molecular level using 16S rRNA gene and found to be Priestia megaterium (9c and 14a) and Serratia marcescens (15d). CONCLUSION This study identified two native biocontrol agents Priestia megaterium and Serratia marcescens from the rhizospheric soils of Bundelkhand region of India for control of Fusarium wilt, Botrytis gray mold. In future, efforts should be made to further validate the biocontrol agents in conjugation with nanomaterials for enhancing the synergistic effects in managing the fungal diseases in chickpea. This study will definitely enhance our understanding of these bioagents, and to increase their performance by developing effective formulations, application methods, and integrated strategies.
Collapse
Affiliation(s)
- Gurreddi Bhargavi
- Rani Lakshmi Bai Central Agricultural University, Jhansi, 284003, Uttar Pradesh, India
| | - Meenakshi Arya
- Rani Lakshmi Bai Central Agricultural University, Jhansi, 284003, Uttar Pradesh, India.
| | | | - Anshuman Singh
- Rani Lakshmi Bai Central Agricultural University, Jhansi, 284003, Uttar Pradesh, India
| | - Ajaya Kumar Rout
- Rani Lakshmi Bai Central Agricultural University, Jhansi, 284003, Uttar Pradesh, India
| | - Bijay Kumar Behera
- Rani Lakshmi Bai Central Agricultural University, Jhansi, 284003, Uttar Pradesh, India
| | | | - Ashok Kumar Singh
- Rani Lakshmi Bai Central Agricultural University, Jhansi, 284003, Uttar Pradesh, India
| |
Collapse
|
3
|
Yadav RK, Tripathi MK, Tiwari S, Tripathi N, Asati R, Patel V, Sikarwar RS, Payasi DK. Breeding and Genomic Approaches towards Development of Fusarium Wilt Resistance in Chickpea. Life (Basel) 2023; 13:988. [PMID: 37109518 PMCID: PMC10144025 DOI: 10.3390/life13040988] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 03/27/2023] [Accepted: 03/29/2023] [Indexed: 04/29/2023] Open
Abstract
Chickpea is an important leguminous crop with potential to provide dietary proteins to both humans and animals. It also ameliorates soil nitrogen through biological nitrogen fixation. The crop is affected by an array of biotic and abiotic factors. Among different biotic stresses, a major fungal disease called Fusarium wilt, caused by Fusarium oxysporum f. sp. ciceris (FOC), is responsible for low productivity in chickpea. To date, eight pathogenic races of FOC (race 0, 1A, and 1B/C, 2-6) have been reported worldwide. The development of resistant cultivars using different conventional breeding methods is very time consuming and depends upon the environment. Modern technologies can improve conventional methods to solve these major constraints. Understanding the molecular response of chickpea to Fusarium wilt can help to provide effective management strategies. The identification of molecular markers closely linked to genes/QTLs has provided great potential for chickpea improvement programs. Moreover, omics approaches, including transcriptomics, metabolomics, and proteomics give scientists a vast viewpoint of functional genomics. In this review, we will discuss the integration of all available strategies and provide comprehensive knowledge about chickpea plant defense against Fusarium wilt.
Collapse
Affiliation(s)
- Rakesh Kumar Yadav
- Department of Genetics & Plant Breeding, College of Agriculture, Rajmata Vijayaraje Scindia Krishi Vishwa Vidyalaya, Gwalior 474002, India
| | - Manoj Kumar Tripathi
- Department of Genetics & Plant Breeding, College of Agriculture, Rajmata Vijayaraje Scindia Krishi Vishwa Vidyalaya, Gwalior 474002, India
- Department of Plant Molecular Biology & Biotechnology, College of Agriculture, Rajmata Vijayaraje Scindia Krishi Vishwa Vidyalaya, Gwalior 474002, India
| | - Sushma Tiwari
- Department of Genetics & Plant Breeding, College of Agriculture, Rajmata Vijayaraje Scindia Krishi Vishwa Vidyalaya, Gwalior 474002, India
- Department of Plant Molecular Biology & Biotechnology, College of Agriculture, Rajmata Vijayaraje Scindia Krishi Vishwa Vidyalaya, Gwalior 474002, India
| | - Niraj Tripathi
- Directorate of Research Services, Jawaharlal Nehru Krishi Vishwa Vidyalaya, Jabalpur 482004, India
| | - Ruchi Asati
- Department of Genetics & Plant Breeding, College of Agriculture, Rajmata Vijayaraje Scindia Krishi Vishwa Vidyalaya, Gwalior 474002, India
| | - Vinod Patel
- Department of Genetics & Plant Breeding, College of Agriculture, Rajmata Vijayaraje Scindia Krishi Vishwa Vidyalaya, Gwalior 474002, India
| | - R. S. Sikarwar
- Department of Genetics & Plant Breeding, College of Agriculture, Rajmata Vijayaraje Scindia Krishi Vishwa Vidyalaya, Gwalior 474002, India
| | | |
Collapse
|
4
|
Shriti S, Paul S, Das S. Overexpression of CaMYB78 transcription factor enhances resistance response in chickpea against Fusarium oxysporum and negatively regulates anthocyanin biosynthetic pathway. PROTOPLASMA 2023; 260:589-605. [PMID: 35947211 DOI: 10.1007/s00709-022-01797-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 07/15/2022] [Indexed: 06/15/2023]
Abstract
Chickpea, an important grain legume, suffers from considerable loss of yield due to Fusarium wilt disease. Inaccessibility of resistant gene pool among cultivars and lack of report of resistance, genes from alien sources have been the major constraints for resistance development in this valuable crop. However, along with some other transcription factors, MYB78 was significantly upregulated during chickpea-Fusarium interplay in resistant chickpea genotype. Being a highly recalcitrant species, the transformation of this important crop remained non-reproducible until recently. Following a tissue culture independent plumular meristem transformation protocol, introgression of CaMYB78 TF finally became feasible in chickpea. The overexpressed plants developed resistance against the pathogen but the anthocyanin production in transformed flowers was perturbed. In silico analyses of the anthocyanin biosynthetic key gene promoters reported the occurrence of multiple MYB-binding cis elements. Detailed molecular analyses establish the differential regulatory roles of CaMYB78, resistance response against Foc1 on one hand and suppression of pigmentation during flower development on the other, which is an innovative finding of its kind.
Collapse
Affiliation(s)
- Surbhi Shriti
- Division of Plant Biology, Bose Institute, Centenary Campus, P-1/12, CIT Scheme-VIIM, Kankurgachi, Kolkata, 700054, West Bengal, India
| | - Sathi Paul
- Division of Plant Biology, Bose Institute, Centenary Campus, P-1/12, CIT Scheme-VIIM, Kankurgachi, Kolkata, 700054, West Bengal, India
| | - Sampa Das
- Division of Plant Biology, Bose Institute, Centenary Campus, P-1/12, CIT Scheme-VIIM, Kankurgachi, Kolkata, 700054, West Bengal, India.
| |
Collapse
|
5
|
Achari SR, Mann RC, Sharma M, Edwards J. Diagnosis of Fusarium oxysporum f. sp. ciceris causing Fusarium wilt of chickpea using loop-mediated isothermal amplification (LAMP) and conventional end-point PCR. Sci Rep 2023; 13:2640. [PMID: 36788315 PMCID: PMC9929042 DOI: 10.1038/s41598-023-29730-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 02/09/2023] [Indexed: 02/16/2023] Open
Abstract
Fusarium oxysporum (Fo) is ubiquitous in soil and forms a species complex of pathogenic and putatively non-pathogenic strains. Pathogenic strains cause disease in over 150 plant species. Fusarium oxysporum f. sp. ciceris (Foc) is a major fungal pathogen causing Fusarium wilt in chickpeas (Cicer arietinum). In some countries such as Australia, Foc is a high-priority pest of biosecurity concern. Specific, sensitive, robust and rapid diagnostic assays are essential for effective disease management on the farm and serve as an effective biosecurity control measure. We developed and validated a novel and highly specific PCR and a LAMP assay for detecting the Indian Foc race 1 based on a putative effector gene uniquely present in its genome. These assays were assessed against 39 Fo formae speciales and found to be specific, only amplifying the target species, in a portable real-time fluorometer (Genie III) and qPCR machine in under 13 min with an anneal derivative temperature ranging from 87.7 to 88.3 °C. The LAMP assay is sensitive to low levels of target DNA (> 0.009 ng/µl). The expected PCR product size is 143 bp. The LAMP assay developed in this study was simple, fast, sensitive and specific and could be explored for other Foc races due to the uniqueness of this marker to the Foc genome.
Collapse
Affiliation(s)
- Saidi R. Achari
- grid.452283.a0000 0004 0407 2669AgriBio, Agriculture Victoria Research, DJPR, Bundoora, VIC Australia
| | - Ross C. Mann
- grid.452283.a0000 0004 0407 2669AgriBio, Agriculture Victoria Research, DJPR, Bundoora, VIC Australia
| | - Mamta Sharma
- grid.419337.b0000 0000 9323 1772International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Hyderabad, India
| | - Jacqueline Edwards
- grid.452283.a0000 0004 0407 2669AgriBio, Agriculture Victoria Research, DJPR, Bundoora, VIC Australia ,grid.1018.80000 0001 2342 0938School of Applied Systems Biology, La Trobe University, Bundoora, VIC Australia
| |
Collapse
|
6
|
Castillo VCD, Benito EP, Díaz-Mínguez JM. In Planta Gene Expression Analysis and Colonization of Fusarium oxysporum. Methods Mol Biol 2022; 2391:139-152. [PMID: 34686983 DOI: 10.1007/978-1-0716-1795-3_12] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In planta gene expression analysis and GFP-based confocal microscopy are two powerful techniques that may be coupled to assess the extent and dynamics of plant colonization by a fungal pathogen. Here we describe methods to prepare common bean plants for inoculation with a highly virulent strain of Fusarium oxysporum f. sp. phaseoli, quantify the extent of colonization by RT-qPCR, and visualize the colonized tissues by confocal microscopy.
Collapse
Affiliation(s)
- Virginia Casado-Del Castillo
- Instituto Hispano-Luso de Investigaciones Agrarias (CIALE), Dpto. de Microbiología y Genética, Universidad de Salamanca, Salamanca, Spain
| | - Ernesto Pérez Benito
- Instituto Hispano-Luso de Investigaciones Agrarias (CIALE), Dpto. de Microbiología y Genética, Universidad de Salamanca, Salamanca, Spain
| | - José María Díaz-Mínguez
- Instituto Hispano-Luso de Investigaciones Agrarias (CIALE), Dpto. de Microbiología y Genética, Universidad de Salamanca, Salamanca, Spain.
| |
Collapse
|
7
|
Nag P, Paul S, Shriti S, Das S. Defence response in plants and animals against a common fungal pathogen, Fusarium oxysporum. CURRENT RESEARCH IN MICROBIAL SCIENCES 2022; 3:100135. [PMID: 35909626 PMCID: PMC9325751 DOI: 10.1016/j.crmicr.2022.100135] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 03/24/2022] [Accepted: 04/18/2022] [Indexed: 11/10/2022] Open
Abstract
Fusarium oxysporum species complex (FOSC) is considered one of the most devastating plant pathogen. FOSC is an emerging pathogen of immunocompromised individuals. Mycotoxins produced by FOSC predisposes the host to other pathogens. Comparative immune reactions in plant and invertebrate show that several antimicrobial peptides (AMPs) and secondary metabolites maybe used as control against Fusarium infection.
Plant pathogens emerging as threat to human and animal health has been a matter of concern within the scientific community. Fusarium oxysporum, predominantly a phytopathogen, can infect both plants and animals. As a plant pathogen, F. oxysporum is one of the most economically damaging pathogen. In humans, F. oxysporum can infect immunocompromised individuals and is increasingly being considered as a problematic pathogen. Mycotoxins produced by F. oxysporum supress the innate immune pathways in both plants and animals. Hence, F. oxysporum is the perfect example for studying similarities and differences between defence strategies adopted by plants and animals. In this review we will discuss the innate immune response of plant and animal hosts for protecting against F. oxysporum infection. Such studies will be helpful for identifying genes, protein and metabolites with antifungal properties suitable for protecting humans.
Collapse
|
8
|
El-Sersawy MM, Hassan SED, El-Ghamry AA, El-Gwad AMA, Fouda A. Implication of plant growth-promoting rhizobacteria of Bacillus spp. as biocontrol agents against wilt disease caused by Fusarium oxysporum Schlecht. in Vicia faba L. Biomol Concepts 2021; 12:197-214. [PMID: 35041304 DOI: 10.1515/bmc-2021-0020] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 12/20/2021] [Indexed: 12/26/2022] Open
Abstract
Out of seven Fusarium spp. isolated from infected faba bean roots, two Fusarium oxysporum were selected and showed faba bean-wilt disease severity with percentages of 68% and 47% under greenhouse conditions. The F. oxysporum showed the highest wilt disease was selected to complete the current study. Three rhizobacterial strains were isolated and identified as Bacillus velezensis Vb1, B. paramycoides Vb3, and B. paramycoides Vb6. These strains showed the highest in-vitro antagonistic activity by the dual-culture method against selected F. oxysporum with inhibition percentages of 59±0.2, 46±0.3, and 52±0.3% for Vb1, Vb3, and Vb6, respectively. These rhizobacterial strains exhibit varied activity for nitrogen-fixing and phosphate-solubilizing. Moreover, these strains showed positive results for ammonia, HCN, and siderophores production. The phytohormones production (indole-3-acetic acid, ABA, benzyl, kinten, ziaten, and GA3) and secretion of various lytic enzymes were recorded by these strains with varying degrees. Under greenhouse conditions, the rhizobacterial strains Vb1, Vb3, Vb6, and their consortium can protect faba bean from wilt caused by F. oxysporum with percentages of 70, 60, 65, and 82%, respectively. Under field conditions, the inoculation with the rhizobacterial consortium (Vb1+Vb3+Vb6) significantly increases the growth performance of the F. oxysporum-infected faba bean plant and recorded the highest wilt protection (83.3%).
Collapse
Affiliation(s)
| | - Saad El-Din Hassan
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Cairo 11884, Egypt
| | - Abbas A El-Ghamry
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Cairo 11884, Egypt
| | - Amr Mahmoud Abd El-Gwad
- Soil Fertility and Microbiology Department, Desert Research Center, El-Mataria, Cairo, Egypt
| | - Amr Fouda
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Cairo 11884, Egypt
| |
Collapse
|
9
|
Sampaio AM, Alves ML, Pereira P, Valiollahi E, Santos C, Šatović Z, Rubiales D, Araújo SDS, van Eeuwijk F, Vaz Patto MC. Grass pea natural variation reveals oligogenic resistance to Fusarium oxysporum f. sp. pisi. THE PLANT GENOME 2021; 14:e20154. [PMID: 34617677 DOI: 10.1002/tpg2.20154] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 08/03/2021] [Indexed: 05/28/2023]
Abstract
Grass pea (Lathyrus sativus L.) is an annual legume species, phylogenetically close to pea (Pisum sativum L.), that may be infected by Fusarium oxysporum f. sp. pisi (Fop), the causal agent of fusarium wilt in peas with vast worldwide yield losses. A range of responses varying from high resistance to susceptibility to this pathogen has been reported in grass pea germplasm. Nevertheless, the genetic basis of that diversity of responses is still unknown, hampering its breeding exploitation. To identify genomic regions controlling grass pea resistance to fusarium wilt, a genome-wide association study approach was applied on a grass pea worldwide collection of accessions inoculated with Fop race 2. Disease responses were scored in this collection that was also subjected to high-throughput based single nucleotide polymorphisms (SNP) screening through genotyping-by-sequencing. A total of 5,651 high-quality SNPs were considered for association mapping analysis, performed using mixed linear models accounting for population structure. Because of the absence of a fully assembled grass pea reference genome, SNP markers' genomic positions were retrieved from the pea's reference genome v1a. In total, 17 genomic regions were associated with three fusarium wilt response traits in grass pea, anticipating an oligogenic control. Seven of these regions were located on pea chromosomes 1, 6, and 7. The candidate genes underlying these regions were putatively involved in secondary and amino acid metabolism, RNA (regulation of transcription), transport, and development. This study revealed important fusarium wilt resistance favorable grass pea SNP alleles, allowing the development of molecular tools for precision disease resistance breeding.
Collapse
Affiliation(s)
- Ana Margarida Sampaio
- Instituto de Tecnologia Química e Biológica António Xavier, Univ. Nova de Lisboa, Avenida da República, Estação Agronómica Nacional, 2780-157, Oeiras, Portugal
| | - Mara Lisa Alves
- Instituto de Tecnologia Química e Biológica António Xavier, Univ. Nova de Lisboa, Avenida da República, Estação Agronómica Nacional, 2780-157, Oeiras, Portugal
| | - Priscila Pereira
- Instituto de Tecnologia Química e Biológica António Xavier, Univ. Nova de Lisboa, Avenida da República, Estação Agronómica Nacional, 2780-157, Oeiras, Portugal
| | - Ehsan Valiollahi
- Instituto de Tecnologia Química e Biológica António Xavier, Univ. Nova de Lisboa, Avenida da República, Estação Agronómica Nacional, 2780-157, Oeiras, Portugal
- Current address: Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad Univ. of Medical Sciences, Mashhad, Iran
| | - Carmen Santos
- Instituto de Tecnologia Química e Biológica António Xavier, Univ. Nova de Lisboa, Avenida da República, Estação Agronómica Nacional, 2780-157, Oeiras, Portugal
| | - Zlatko Šatović
- Faculty of Agriculture, Univ. of Zagreb, Svetošimunska 25, 10000, Zagreb, Croatia
- Center of Excellence for Biodiversity and Molecular Plant Breeding, Svetošimunska 25, 10000, Zagreb, Croatia
| | - Diego Rubiales
- Institute for Sustainable Agriculture, CSIC, Avda. Menéndez Pidal s/n, 14004, Córdoba, Spain
| | - Susana de Sousa Araújo
- Instituto de Tecnologia Química e Biológica António Xavier, Univ. Nova de Lisboa, Avenida da República, Estação Agronómica Nacional, 2780-157, Oeiras, Portugal
- Association BLC3, Technology and Innovation Campus, Centre Bio R&D Unit, Rua Comendador Emílio Augusto Pires, 14, Edifício SIDE UP, 5340-257, Macedo de Cavaleiros, Portugal
| | - Fred van Eeuwijk
- Wageningen Univ. & Research, Biometrics, Applied Statistics, Droevendaalsesteeg 1 6708PB, Wageningen, The Netherlands
| | - Maria Carlota Vaz Patto
- Instituto de Tecnologia Química e Biológica António Xavier, Univ. Nova de Lisboa, Avenida da República, Estação Agronómica Nacional, 2780-157, Oeiras, Portugal
| |
Collapse
|
10
|
Akram W, Ahmad A, Yasin NA, Anjum T, Ali B, Fatima S, Ahmed S, Simirgiotis MJ, Li G. Mechanical strengthening and metabolic re-modulations are involved in protection against Fusarium wilt of tomato by B. subtilis IAGS174. JOURNAL OF PLANT INTERACTIONS 2021; 16:411-421. [DOI: 10.1080/17429145.2021.1966107] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 08/02/2021] [Indexed: 06/16/2023]
Affiliation(s)
- Waheed Akram
- Guangdong Key Laboratory for New Technology Research of Vegetables, Guangdong Academy of Agricultural Sciences, Guangzhou, People’s Republic of China
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, People’s Republic of China
| | - Aqeel Ahmad
- Guangdong Key Laboratory for New Technology Research of Vegetables, Guangdong Academy of Agricultural Sciences, Guangzhou, People’s Republic of China
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, People’s Republic of China
| | | | - Tehmina Anjum
- Department of Plant Pathology, Faculty of Agricultural Sciences, University of the Punjab, Lahore, Pakistan
| | - Basharat Ali
- Institute of Microbiology and Molecular Genetics, University of the Punjab, Lahore, Pakistan
| | - Sabin Fatima
- Directorate General of Pest Warning and Quality Control of Pesticides Punjab, Pakistan
| | - Shakeel Ahmed
- Instituto de Farmacia, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
- Foodomics Laboratory, Institute of Food Science Research (CIAL, CSIC-UAM), Madrid, Spain
| | - Mario Juan Simirgiotis
- Instituto de Farmacia, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| | - Guihua Li
- Guangdong Key Laboratory for New Technology Research of Vegetables, Guangdong Academy of Agricultural Sciences, Guangzhou, People’s Republic of China
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, People’s Republic of China
| |
Collapse
|
11
|
Li J, Fokkens L, van Dam P, Rep M. Related mobile pathogenicity chromosomes in Fusarium oxysporum determine host range on cucurbits. MOLECULAR PLANT PATHOLOGY 2020; 21:761-776. [PMID: 32246740 PMCID: PMC7214479 DOI: 10.1111/mpp.12927] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 01/24/2020] [Accepted: 02/05/2020] [Indexed: 05/23/2023]
Abstract
Fusarium oxysporum f. sp. radicis-cucumerinum (Forc) causes severe root rot and wilt in several cucurbit species, including cucumber, melon, and watermelon. Previously, a pathogenicity chromosome, chrRC , was identified in Forc. Strains that were previously nonpathogenic could infect multiple cucurbit species after obtaining this chromosome via horizontal chromosome transfer (HCT). In contrast, F. oxysporum f. sp. melonis (Fom) can only cause disease on melon plants, even though Fom contains contigs that are largely syntenic with chrRC . The aim of this study was to identify the genetic basis underlying the difference in host range between Fom and Forc. First, colonization of different cucurbit species between Forc and Fom strains showed that although Fom did not reach the upper part of cucumber or watermelon plants, it did enter the root xylem. Second, to select candidate genomic regions associated with differences in host range, high-quality genome assemblies of Fom001, Fom005, and Forc016 were compared. One of the Fom contigs that is largely syntenic and highly similar in sequence to chrRC contains the effector gene SIX6. After HCT of the SIX6-containing chromosome from Fom strains to a nonpathogenic strain, the recipient (HCT) strains caused disease on melon plants, but not on cucumber or watermelon plants. These results provide strong evidence that the differences in host range between Fom and Forc are caused by differences between transferred chromosomes of Fom and chrRC , thus narrowing down the search for genes allowing or preventing infection of cucumber and watermelon to genes located on these chromosomes.
Collapse
Affiliation(s)
- Jiming Li
- Molecular Plant PathologyUniversity of AmsterdamAmsterdamNetherlands
| | - Like Fokkens
- Molecular Plant PathologyUniversity of AmsterdamAmsterdamNetherlands
| | | | - Martijn Rep
- Molecular Plant PathologyUniversity of AmsterdamAmsterdamNetherlands
| |
Collapse
|
12
|
Mathur M, Nair A, Kadoo N. Plant-pathogen interactions: MicroRNA-mediated trans-kingdom gene regulation in fungi and their host plants. Genomics 2020; 112:3021-3035. [PMID: 32454170 DOI: 10.1016/j.ygeno.2020.05.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 04/07/2020] [Accepted: 05/20/2020] [Indexed: 12/25/2022]
Abstract
MicroRNAs (miRNAs) have been prevalently studied in plants, animals, and viruses. However, recent studies show evidences of miRNA-like RNAs (milRNAs) in fungi as well. It is known that after successful infection, pathogens hijack the host machinery and use it for their own growth and multiplication. Alternatively, resistant plants can overcome the pathogen attack by a variety of mechanisms. Based on this prior knowledge, we computationally predicted milRNAs from 13 fungi, and identified their targets in transcriptomes of the respective fungi as well as their host plants. The expressions of the milRNAs and targets were confirmed using qRT-PCR. We found that plant miRNAs targeted fungal virulence genes, while fungal milRNAs targeted plant resistance genes; corroborating miRNA-mediated trans-kingdom gene regulation and the roles of miRNAs in plant-pathogen interactions. Transgenic plants with miRNAs targeting fungal virulence genes, or anti-sense of fungal milRNAs, would be expected to be highly resistant to the fungal pathogens.
Collapse
Affiliation(s)
- Monika Mathur
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune 411008, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Aswathy Nair
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune 411008, India
| | - Narendra Kadoo
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune 411008, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
13
|
de Lamo FJ, Takken FLW. Biocontrol by Fusarium oxysporum Using Endophyte-Mediated Resistance. FRONTIERS IN PLANT SCIENCE 2020; 11:37. [PMID: 32117376 PMCID: PMC7015898 DOI: 10.3389/fpls.2020.00037] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 01/13/2020] [Indexed: 05/06/2023]
Abstract
Interactions between plants and the root-colonizing fungus Fusarium oxysporum (Fo) can be neutral, beneficial, or detrimental for the host. Fo is infamous for its ability to cause wilt, root-, and foot-rot in many plant species, including many agronomically important crops. However, Fo also has another face; as a root endophyte, it can reduce disease caused by vascular pathogens such as Verticillium dahliae and pathogenic Fo strains. Fo also confers protection to root pathogens like Pythium ultimum, but typically not to pathogens attacking above-ground tissues such as Botrytis cinerea or Phytophthora capsici. Endophytes confer biocontrol either directly by interacting with pathogens via mycoparasitism, antibiosis, or by competition for nutrients or root niches, or indirectly by inducing resistance mechanisms in the host. Fo endophytes such as Fo47 and CS-20 differ from Fo pathogens in their effector gene content, host colonization mechanism, location in the plant, and induced host-responses. Whereas endophytic strains trigger localized cell death in the root cortex, and transiently induce immune signaling and papilla formation, these responses are largely suppressed by pathogenic Fo strains. The ability of pathogenic strains to compromise immune signaling and cell death is likely attributable to their host-specific effector repertoire. The lower number of effector genes in endophytes as compared to pathogens provides a means to distinguish them from each other. Co-inoculation of a biocontrol-conferring Fo and a pathogenic Fo strain on tomato reduces disease, and although the pathogen still colonizes the xylem vessels this has surprisingly little effect on the xylem sap proteome composition. In this tripartite interaction the accumulation of just two PR proteins, NP24 (a PR-5) and a β-glucanase, was affected. The Fo-induced resistance response in tomato appears to be distinct from induced systemic resistance (ISR) or systemic acquired resistance (SAR), as the phytohormones jasmonate, ethylene, and salicylic acid are not required. In this review, we summarize our molecular understanding of Fo-induced resistance in a model and identify caveats in our knowledge.
Collapse
Affiliation(s)
| | - Frank L. W. Takken
- Molecular Plant Pathology, Faculty of Science, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
14
|
Perincherry L, Lalak-Kańczugowska J, Stępień Ł. Fusarium-Produced Mycotoxins in Plant-Pathogen Interactions. Toxins (Basel) 2019; 11:toxins11110664. [PMID: 31739566 PMCID: PMC6891594 DOI: 10.3390/toxins11110664] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 11/08/2019] [Accepted: 11/12/2019] [Indexed: 12/19/2022] Open
Abstract
Pathogens belonging to the Fusarium genus are causal agents of the most significant crop diseases worldwide. Virtually all Fusarium species synthesize toxic secondary metabolites, known as mycotoxins; however, the roles of mycotoxins are not yet fully understood. To understand how a fungal partner alters its lifestyle to assimilate with the plant host remains a challenge. The review presented the mechanisms of mycotoxin biosynthesis in the Fusarium genus under various environmental conditions, such as pH, temperature, moisture content, and nitrogen source. It also concentrated on plant metabolic pathways and cytogenetic changes that are influenced as a consequence of mycotoxin confrontations. Moreover, we looked through special secondary metabolite production and mycotoxins specific for some significant fungal pathogens-plant host models. Plant strategies of avoiding the Fusarium mycotoxins were also discussed. Finally, we outlined the studies on the potential of plant secondary metabolites in defense reaction to Fusarium infection.
Collapse
|
15
|
Kumar J, Choudhary AK, Gupta DS, Kumar S. Towards Exploitation of Adaptive Traits for Climate-Resilient Smart Pulses. Int J Mol Sci 2019; 20:E2971. [PMID: 31216660 PMCID: PMC6627977 DOI: 10.3390/ijms20122971] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 05/18/2019] [Accepted: 05/28/2019] [Indexed: 12/20/2022] Open
Abstract
Pulses are the main source of protein and minerals in the vegetarian diet. These are primarily cultivated on marginal lands with few inputs in several resource-poor countries of the world, including several in South Asia. Their cultivation in resource-scarce conditions exposes them to various abiotic and biotic stresses, leading to significant yield losses. Furthermore, climate change due to global warming has increased their vulnerability to emerging new insect pests and abiotic stresses that can become even more serious in the coming years. The changing climate scenario has made it more challenging to breed and develop climate-resilient smart pulses. Although pulses are climate smart, as they simultaneously adapt to and mitigate the effects of climate change, their narrow genetic diversity has always been a major constraint to their improvement for adaptability. However, existing genetic diversity still provides opportunities to exploit novel attributes for developing climate-resilient cultivars. The mining and exploitation of adaptive traits imparting tolerance/resistance to climate-smart pulses can be accelerated further by using cutting-edge approaches of biotechnology such as transgenics, genome editing, and epigenetics. This review discusses various classical and molecular approaches and strategies to exploit adaptive traits for breeding climate-smart pulses.
Collapse
Affiliation(s)
- Jitendra Kumar
- Indian Institute of Pulses Research, Kalyanpur, Kanpur 208 024, Uttar Pradesh, India.
| | | | - Debjyoti Sen Gupta
- Indian Institute of Pulses Research, Kalyanpur, Kanpur 208 024, Uttar Pradesh, India.
| | - Shiv Kumar
- Biodiversity and Integrated Gene Management Program, International Centre for Agricultural Research in the Dry Areas (ICARDA), P.O. Box 6299, Rabat-Institute, Rabat, Morocco.
| |
Collapse
|
16
|
Torres-Trenas A, Prieto P, Cañizares MC, García-Pedrajas MD, Pérez-Artés E. Mycovirus Fusarium oxysporum f. sp. dianthi Virus 1 Decreases the Colonizing Efficiency of Its Fungal Host. Front Cell Infect Microbiol 2019; 9:51. [PMID: 30915279 PMCID: PMC6422920 DOI: 10.3389/fcimb.2019.00051] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 02/18/2019] [Indexed: 11/13/2022] Open
Abstract
Mycoviruses that induce hypovirulence in phytopathogenic fungi are interesting because their potential use as biological control agents of the plant diseases caused by their fungal hosts. The recently identified chrysovirus Fusarium oxysporum f. sp. dianthi virus 1 (FodV1) has been associated to the induction of hypovirulence in Fusarium oxysporum f. sp. dianthi, the forma specialis of F. oxysporum that causes vascular wilt in carnation (Dianthus caryophyllus). In this work, we have used confocal laser scanner microscopy and two isogenic GFP-labeled strains of F. oxysporum f. sp. dianthi infected (V+) and not infected (V-) with the Fusarium oxysporum f. sp. dianthi virus 1, respectively, to analyze the effect of mycovirus FodV1 on the plant colonization pattern of its fungal host. Results demonstrate that FodV1-viral infection affects the speed and spatial distribution of fungal colonization into the plant. Initial stages of external root colonization were similar for both strains, but the virus-free strain colonized the internal plant tissues faster than the virus-infected strain. In addition, other differences related to the specific zone colonized and the density of colonization were observed between both F. oxysporum f. sp. dianthi strains. The hyphae of both V- and V+ strains progressed up through the xylem vessels but differences in the number of vessels colonized and of hyphae inside them were found. Moreover, as colonization progressed, V- and V+ hyphae propagated horizontally reaching the central medulla but, while the virus-free strain V- densely colonized the interior of the medulla cells, the virus-infected strain V+ appeared mainly in the intercellular spaces and with a lower density of colonization. Finally, the incidence of FodV1-viral infections in a collection of 221 isolates sampled between 2008 and 2012 in the geographic area where the originally infected isolate was obtained has been also analyzed. The very low (<2%) incidence of viral infections is discussed here. To the best of our knowledge, this work provides the first microscopic evidence about the effect of a hypovirulence-inducing mycovirus on the pattern of plant colonization by its fungal host.
Collapse
Affiliation(s)
- Almudena Torres-Trenas
- Departamento de Protección de Cultivos, Instituto de Agricultura Sostenible, Consejo Superior de Investigaciones Cientificas, Córdoba, Spain.,Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", Universidad de Málaga, Consejo Superior de Investigaciones Científicas, Málaga, Spain
| | - Pilar Prieto
- Departamento de Mejora Genética, Instituto de Agricultura Sostenible, Consejo Superior de Investigaciones Científicas, Córdoba, Spain
| | - M Carmen Cañizares
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", Universidad de Málaga, Consejo Superior de Investigaciones Científicas, Málaga, Spain
| | - María Dolores García-Pedrajas
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", Universidad de Málaga, Consejo Superior de Investigaciones Científicas, Málaga, Spain
| | - Encarnación Pérez-Artés
- Departamento de Protección de Cultivos, Instituto de Agricultura Sostenible, Consejo Superior de Investigaciones Cientificas, Córdoba, Spain
| |
Collapse
|
17
|
Bharathi E, Santha Lakshmi Prasad M, Yadav P, Bee H. Defense responses to Fusarium oxysporum f. sp. ricini infection in castor (Ricinus communis L.) cultivars. ACTA ACUST UNITED AC 2019. [DOI: 10.1007/s42360-018-00105-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
18
|
Ashraf N, Basu S, Narula K, Ghosh S, Tayal R, Gangisetty N, Biswas S, Aggarwal PR, Chakraborty N, Chakraborty S. Integrative network analyses of wilt transcriptome in chickpea reveal genotype dependent regulatory hubs in immunity and susceptibility. Sci Rep 2018; 8:6528. [PMID: 29695764 PMCID: PMC5916944 DOI: 10.1038/s41598-018-19919-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 01/05/2018] [Indexed: 12/12/2022] Open
Abstract
Host specific resistance and non-host resistance are two plant immune responses to counter pathogen invasion. Gene network organizing principles leading to quantitative differences in resistant and susceptible host during host specific resistance are poorly understood. Vascular wilt caused by root pathogen Fusarium species is complex and governed by host specific resistance in crop plants, including chickpea. Here, we temporally profiled two contrasting chickpea genotypes in disease and immune state to better understand gene expression switches in host specific resistance. Integrative gene-regulatory network elucidated tangible insight into interaction coordinators leading to pathway determination governing distinct (disease or immune) phenotypes. Global network analysis identified five major hubs with 389 co-regulated genes. Functional enrichment revealed immunome containing three subnetworks involving CTI, PTI and ETI and wilt diseasome encompassing four subnetworks highlighting pathogen perception, penetration, colonization and disease establishment. These subnetworks likely represent key components that coordinate various biological processes favouring defence or disease. Furthermore, we identified core 76 disease/immunity related genes through subcellular analysis. Our regularized network with robust statistical assessment captured known and unexpected gene interaction, candidate novel regulators as future biomarkers and first time showed system-wide quantitative architecture corresponding to genotypic characteristics in wilt landscape.
Collapse
Affiliation(s)
- Nasheeman Ashraf
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Swaraj Basu
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Kanika Narula
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Sudip Ghosh
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Rajul Tayal
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Nagaraju Gangisetty
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Sushmita Biswas
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Pooja R Aggarwal
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Niranjan Chakraborty
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Subhra Chakraborty
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| |
Collapse
|
19
|
Bani M, Pérez-De-Luque A, Rubiales D, Rispail N. Physical and Chemical Barriers in Root Tissues Contribute to Quantitative Resistance to Fusarium oxysporum f. sp. pisi in Pea. FRONTIERS IN PLANT SCIENCE 2018; 9:199. [PMID: 29515610 PMCID: PMC5826057 DOI: 10.3389/fpls.2018.00199] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 02/02/2018] [Indexed: 05/07/2023]
Abstract
Fusarium wilt caused by Fusarium oxysporum f. sp. pisi (Fop) is one of the most destructive diseases of pea worldwide. Control of this disease is difficult and it is mainly based on the use of resistant cultivars. While monogenic resistance has been successfully used in the field, it is at risk of breakdown by the constant evolution of the pathogen. New sources of quantitative resistance have been recently identified from a wild relative Pisum spp. collection. Here, we characterize histologically the resistance mechanisms occurring in these sources of quantitative resistance. Detailed comparison, of the reaction at cellular level, of eight pea accessions with differential responses to Fop race 2, showed that resistant accessions established several barriers at the epidermis, exodermis, cortex, endodermis and vascular stele efficiently impeding fungal progression. The main components of these different barriers were carbohydrates and phenolic compounds including lignin. We found that these barriers were mainly based on three defense mechanisms including cell wall strengthening, formation of papilla-like structures at penetration sites and accumulation of different substances within and between cells. These defense reactions varied in intensity and localization between resistant accessions. Our results also clarify some steps of the infection process of F. oxysporum in plant and support the important role of cell wall-degrading enzymes in F. oxysporum pathogenicity.
Collapse
Affiliation(s)
- Moustafa Bani
- Institute for Sustainable Agriculture, Consejo Superior de Investigaciones Científicas, Córdoba, Spain
- Ecole Nationale Supérieure de Biotechnologie, Constantine, Algeria
| | | | - Diego Rubiales
- Institute for Sustainable Agriculture, Consejo Superior de Investigaciones Científicas, Córdoba, Spain
| | - Nicolas Rispail
- Institute for Sustainable Agriculture, Consejo Superior de Investigaciones Científicas, Córdoba, Spain
| |
Collapse
|
20
|
Abstract
The Fusarium oxysporum species complex (FOSC) comprises a multitude of strains that cause vascular wilt diseases of economically important crops throughout the world. Although sexual reproduction is unknown in the FOSC, horizontal gene transfer may contribute to the observed diversity in pathogenic strains. Development of disease in a susceptible crop requires F. oxysporum to advance through a series of transitions, beginning with spore germination and culminating with establishment of a systemic infection. In principle, each transition presents an opportunity to influence the risk of disease. This includes modifications of the microbial community in soil, which can affect the ability of pathogen propagules to survive, germinate, and infect plant roots. In addition, many host attributes, including the composition of root exudates, the structure of the root cortex, and the capacity to recognize and respond quickly to invasive growth of a pathogen, can impede development of F. oxysporum.
Collapse
Affiliation(s)
- Thomas R Gordon
- Department of Plant Pathology, University of California, Davis, California 95616;
| |
Collapse
|
21
|
Brader G, Compant S, Vescio K, Mitter B, Trognitz F, Ma LJ, Sessitsch A. Ecology and Genomic Insights into Plant-Pathogenic and Plant-Nonpathogenic Endophytes. ANNUAL REVIEW OF PHYTOPATHOLOGY 2017; 55:61-83. [PMID: 28489497 DOI: 10.1146/annurev-phyto-080516-035641] [Citation(s) in RCA: 213] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Plants are colonized on their surfaces and in the rhizosphere and phyllosphere by a multitude of different microorganisms and are inhabited internally by endophytes. Most endophytes act as commensals without any known effect on their plant host, but multiple bacteria and fungi establish a mutualistic relationship with plants, and some act as pathogens. The outcome of these plant-microbe interactions depends on biotic and abiotic environmental factors and on the genotype of the host and the interacting microorganism. In addition, endophytic microbiota and the manifold interactions between members, including pathogens, have a profound influence on the function of the system plant and the development of pathobiomes. In this review, we elaborate on the differences and similarities between nonpathogenic and pathogenic endophytes in terms of host plant response, colonization strategy, and genome content. We furthermore discuss environmental effects and biotic interactions within plant microbiota that influence pathogenesis and the pathobiome.
Collapse
Affiliation(s)
- Günter Brader
- Center for Health and Bioresources, Bioresources Unit, Austrian Institute of Technology (AIT), 3430 Tulln, Austria
| | - Stéphane Compant
- Center for Health and Bioresources, Bioresources Unit, Austrian Institute of Technology (AIT), 3430 Tulln, Austria
| | - Kathryn Vescio
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, Massachusetts 01003;
| | - Birgit Mitter
- Center for Health and Bioresources, Bioresources Unit, Austrian Institute of Technology (AIT), 3430 Tulln, Austria
| | - Friederike Trognitz
- Center for Health and Bioresources, Bioresources Unit, Austrian Institute of Technology (AIT), 3430 Tulln, Austria
| | - Li-Jun Ma
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, Massachusetts 01003;
| | - Angela Sessitsch
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, Massachusetts 01003;
| |
Collapse
|
22
|
Kumar Y, Zhang L, Panigrahi P, Dholakia BB, Dewangan V, Chavan SG, Kunjir SM, Wu X, Li N, Rajmohanan PR, Kadoo NY, Giri AP, Tang H, Gupta VS. Fusarium oxysporum mediates systems metabolic reprogramming of chickpea roots as revealed by a combination of proteomics and metabolomics. PLANT BIOTECHNOLOGY JOURNAL 2016; 14:1589-603. [PMID: 26801007 PMCID: PMC5066658 DOI: 10.1111/pbi.12522] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Revised: 11/25/2015] [Accepted: 11/25/2015] [Indexed: 05/05/2023]
Abstract
Molecular changes elicited by plants in response to fungal attack and how this affects plant-pathogen interaction, including susceptibility or resistance, remain elusive. We studied the dynamics in root metabolism during compatible and incompatible interactions between chickpea and Fusarium oxysporum f. sp. ciceri (Foc), using quantitative label-free proteomics and NMR-based metabolomics. Results demonstrated differential expression of proteins and metabolites upon Foc inoculations in the resistant plants compared with the susceptible ones. Additionally, expression analysis of candidate genes supported the proteomic and metabolic variations in the chickpea roots upon Foc inoculation. In particular, we found that the resistant plants revealed significant increase in the carbon and nitrogen metabolism; generation of reactive oxygen species (ROS), lignification and phytoalexins. The levels of some of the pathogenesis-related proteins were significantly higher upon Foc inoculation in the resistant plant. Interestingly, results also exhibited the crucial role of altered Yang cycle, which contributed in different methylation reactions and unfolded protein response in the chickpea roots against Foc. Overall, the observed modulations in the metabolic flux as outcome of several orchestrated molecular events are determinant of plant's role in chickpea-Foc interactions.
Collapse
Affiliation(s)
- Yashwant Kumar
- Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Pune, India
| | - Limin Zhang
- Key Laboratory of Magnetic Resonance in Biological Systems, National Centre for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, China
| | - Priyabrata Panigrahi
- Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Pune, India
| | - Bhushan B Dholakia
- Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Pune, India
| | - Veena Dewangan
- Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Pune, India
| | - Sachin G Chavan
- Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Pune, India
| | - Shrikant M Kunjir
- Central NMR Facility, CSIR-National Chemical Laboratory, Pune, India
| | - Xiangyu Wu
- Key Laboratory of Magnetic Resonance in Biological Systems, National Centre for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, China
| | - Ning Li
- Key Laboratory of Magnetic Resonance in Biological Systems, National Centre for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, China
| | | | - Narendra Y Kadoo
- Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Pune, India
| | - Ashok P Giri
- Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Pune, India
| | - Huiru Tang
- Key Laboratory of Magnetic Resonance in Biological Systems, National Centre for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, China
- State Key Laboratory of Genetic Engineering, Metabolomics and Systems Biology Laboratory, School of Life Sciences, Fudan University, Shanghai, China
| | - Vidya S Gupta
- Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Pune, India
| |
Collapse
|
23
|
Upasani ML, Gurjar GS, Kadoo NY, Gupta VS. Dynamics of Colonization and Expression of Pathogenicity Related Genes in Fusarium oxysporum f.sp. ciceri during Chickpea Vascular Wilt Disease Progression. PLoS One 2016; 11:e0156490. [PMID: 27227745 PMCID: PMC4882060 DOI: 10.1371/journal.pone.0156490] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 05/16/2016] [Indexed: 01/01/2023] Open
Abstract
Fusarium wilt caused by Fusarium oxysporum f.sp. ciceri (Foc) is a constant threat to chickpea productivity in several parts of the world. Understanding the molecular basis of chickpea-Foc interaction is necessary to improve chickpea resistance to Foc and thereby the productivity of chickpea. We transformed Foc race 2 using green fluorescent protein (GFP) gene and used it to characterize pathogen progression and colonization in wilt-susceptible (JG62) and wilt-resistant (Digvijay) chickpea cultivars using confocal microscopy. We also employed quantitative PCR (qPCR) to estimate the pathogen load and progression across various tissues of both the chickpea cultivars during the course of the disease. Additionally, the expression of several candidate pathogen virulence genes was analyzed using quantitative reverse transcriptase PCR (qRT-PCR), which showed their characteristic expression in wilt-susceptible and resistant chickpea cultivars. Our results suggest that the pathogen colonizes the susceptible cultivar defeating its defense; however, albeit its entry in the resistant plant, further proliferation is severely restricted providing an evidence of efficient defense mechanism in the resistant chickpea cultivar.
Collapse
Affiliation(s)
- Medha L. Upasani
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pashan, Pune 411008, India
| | - Gayatri S. Gurjar
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pashan, Pune 411008, India
| | - Narendra Y. Kadoo
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pashan, Pune 411008, India
- * E-mail: (VSG); (NYK)
| | - Vidya S. Gupta
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pashan, Pune 411008, India
- * E-mail: (VSG); (NYK)
| |
Collapse
|
24
|
Kumar Y, Dholakia BB, Panigrahi P, Kadoo NY, Giri AP, Gupta VS. Metabolic profiling of chickpea-Fusarium interaction identifies differential modulation of disease resistance pathways. PHYTOCHEMISTRY 2015; 116:120-129. [PMID: 25935544 DOI: 10.1016/j.phytochem.2015.04.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 03/27/2015] [Accepted: 04/03/2015] [Indexed: 06/04/2023]
Abstract
Chickpea is the third most widely grown legume in the world and mainly used as a vegetarian source of human dietary protein. Fusarium wilt, caused by Fusarium oxysporum f. sp. ciceri (Foc), is one of the major threats to global chickpea production. Host resistance is the best way to protect crops from diseases; however, in spite of using various approaches, the mechanism of Foc resistance in chickpea remains largely obscure. In the present study, non-targeted metabolic profiling at several time points of resistant and susceptible chickpea cultivars using high-resolution liquid chromatography-mass spectrometry was applied to better understand the mechanistic basis of wilt resistance or susceptibility. Multivariate analysis of the data (OPLS-DA) revealed discriminating metabolites in chickpea root tissue after Foc inoculation such as flavonoids, isoflavonoids, alkaloids, amino acids and sugars. Foc inoculated resistant plants had more flavonoids and isoflavonoids along with their malonyl conjugates. Many antifungal metabolites that were induced after Foc infection viz., aurantion-obstine β-glucosides and querecitin were elevated in resistant cultivar. Overall, diverse genetic and biochemical mechanisms were operational in the resistant cultivar for Foc defense as compared to the susceptible plant. The resistant chickpea plants employed the above-mentioned metabolic pathways as potential defense strategy against Foc.
Collapse
Affiliation(s)
- Yashwant Kumar
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India
| | - Bhushan B Dholakia
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India
| | - Priyabrata Panigrahi
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India
| | - Narendra Y Kadoo
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India
| | - Ashok P Giri
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India
| | - Vidya S Gupta
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India.
| |
Collapse
|
25
|
Niño-Sánchez J, Tello V, Casado-Del Castillo V, Thon MR, Benito EP, Díaz-Mínguez JM. Gene expression patterns and dynamics of the colonization of common bean (Phaseolus vulgaris L.) by highly virulent and weakly virulent strains of Fusarium oxysporum. Front Microbiol 2015; 6:234. [PMID: 25883592 PMCID: PMC4383042 DOI: 10.3389/fmicb.2015.00234] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 03/10/2015] [Indexed: 11/13/2022] Open
Abstract
The dynamics of root and hypocotyl colonization, and the gene expression patterns of several fungal virulence factors and plant defense factors have been analyzed and compared in the interaction of two Fusarium oxysporum f. sp. phaseoli strains displaying clear differences in virulence, with a susceptible common bean cultivar. The growth of the two strains on the root surface and the colonization of the root was quantitatively similar although the highly virulent (HV) strain was more efficient reaching the central root cylinder. The main differences between both strains were found in the temporal and spatial dynamics of crown root and hypocotyl colonization. The increase of fungal biomass in the crown root was considerably larger for the HV strain, which, after an initial stage of global colonization of both the vascular cylinder and the parenchymal cells, restricted its growth to the newly differentiated xylem vessels. The weakly virulent (WV) strain was a much slower and less efficient colonizer of the xylem vessels, showing also growth in the intercellular spaces of the parenchyma. Most of the virulence genes analyzed showed similar expression patterns in both strains, except SIX1, SIX6 and the gene encoding the transcription factor FTF1, which were highly upregulated in root crown and hypocotyl. The response induced in the infected plant showed interesting differences for both strains. The WV strain induced an early and strong transcription of the PR1 gene, involved in SAR response, while the HV strain preferentially induced the early expression of the ethylene responsive factor ERF2.
Collapse
Affiliation(s)
- Jonathan Niño-Sánchez
- Departamento de Microbiología y Genética, Instituto Hispano-Luso de Investigaciones Agrarias, Universidad de Salamanca Salamanca, Spain
| | - Vega Tello
- Departamento de Microbiología y Genética, Instituto Hispano-Luso de Investigaciones Agrarias, Universidad de Salamanca Salamanca, Spain
| | - Virginia Casado-Del Castillo
- Departamento de Microbiología y Genética, Instituto Hispano-Luso de Investigaciones Agrarias, Universidad de Salamanca Salamanca, Spain
| | - Michael R Thon
- Departamento de Microbiología y Genética, Instituto Hispano-Luso de Investigaciones Agrarias, Universidad de Salamanca Salamanca, Spain
| | - Ernesto P Benito
- Departamento de Microbiología y Genética, Instituto Hispano-Luso de Investigaciones Agrarias, Universidad de Salamanca Salamanca, Spain
| | - José María Díaz-Mínguez
- Departamento de Microbiología y Genética, Instituto Hispano-Luso de Investigaciones Agrarias, Universidad de Salamanca Salamanca, Spain
| |
Collapse
|
26
|
Gupta S, Bhar A, Chatterjee M, Das S. Fusarium oxysporum f.sp. ciceri race 1 induced redox state alterations are coupled to downstream defense signaling in root tissues of chickpea (Cicer arietinum L.). PLoS One 2013; 8:e73163. [PMID: 24058463 PMCID: PMC3772884 DOI: 10.1371/journal.pone.0073163] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Accepted: 07/17/2013] [Indexed: 12/22/2022] Open
Abstract
Reactive oxygen species are known to play pivotal roles in pathogen perception, recognition and downstream defense signaling. But, how these redox alarms coordinate in planta into a defensive network is still intangible. Present study illustrates the role of Fusarium oxysporum f.sp ciceri Race1 (Foc1) induced redox responsive transcripts in regulating downstream defense signaling in chickpea. Confocal microscopic studies highlighted pathogen invasion and colonization accompanied by tissue damage and deposition of callose degraded products at the xylem vessels of infected roots of chickpea plants. Such depositions led to the clogging of xylem vessels in compatible hosts while the resistant plants were devoid of such obstructions. Lipid peroxidation assays also indicated fungal induced membrane injury. Cell shrinkage and gradual nuclear adpression appeared as interesting features marking fungal ingress. Quantitative real time polymerase chain reaction exhibited differential expression patterns of redox regulators, cellular transporters and transcription factors during Foc1 progression. Network analysis showed redox regulators, cellular transporters and transcription factors to coordinate into a well orchestrated defensive network with sugars acting as internal signal modulators. Respiratory burst oxidase homologue, cationic peroxidase, vacuolar sorting receptor, polyol transporter, sucrose synthase, and zinc finger domain containing transcription factor appeared as key molecular candidates controlling important hubs of the defense network. Functional characterization of these hub controllers may prove to be promising in understanding chickpea-Foc1 interaction and developing the case study as a model for looking into the complexities of wilt diseases of other important crop legumes.
Collapse
Affiliation(s)
- Sumanti Gupta
- Division of Plant Biology, Bose Institute, Kolkata, West Bengal, India
| | - Anirban Bhar
- Division of Plant Biology, Bose Institute, Kolkata, West Bengal, India
| | - Moniya Chatterjee
- Division of Plant Biology, Bose Institute, Kolkata, West Bengal, India
| | - Sampa Das
- Division of Plant Biology, Bose Institute, Kolkata, West Bengal, India
| |
Collapse
|