1
|
Zhang H, Wang X, Qu M, Yu H, Yin J, Liu X, Liu Y, Zhang B, Zhang Y, Wei Z, Yang F, Wang J, Shi C, Fan G, Sun J, Long L, Hutchins DA, Bowler C, Lin S, Wang D, Lin Q. Genome of Halimeda opuntia reveals differentiation of subgenomes and molecular bases of multinucleation and calcification in algae. Proc Natl Acad Sci U S A 2024; 121:e2403222121. [PMID: 39302967 PMCID: PMC11441479 DOI: 10.1073/pnas.2403222121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 08/16/2024] [Indexed: 09/22/2024] Open
Abstract
Algae mostly occur either as unicellular (microalgae) or multicellular (macroalgae) species, both being uninucleate. There are important exceptions, however, as some unicellular algae are multinucleate and macroscopic, some of which inhabit tropical seas and contribute to biocalcification and coral reef robustness. The evolutionary mechanisms and ecological significance of multinucleation and associated traits (e.g., rapid wound healing) are poorly understood. Here, we report the genome of Halimeda opuntia, a giant multinucleate unicellular chlorophyte characterized by interutricular calcification. We achieve a high-quality genome assembly that shows segregation into four subgenomes, with evidence for polyploidization concomitant with historical sea level and climate changes. We further find myosin VIII missing in H. opuntia and three other unicellular multinucleate chlorophytes, suggesting a potential mechanism that may underpin multinucleation. Genome analysis provides clues about how the unicellular alga could survive fragmentation and regenerate, as well as potential signatures for extracellular calcification and the coupling of calcification with photosynthesis. In addition, proteomic alkalinity shifts were found to potentially confer plasticity of H. opuntia to ocean acidification (OA). Our study provides crucial genetic information necessary for understanding multinucleation, cell regeneration, plasticity to OA, and different modes of calcification in algae and other organisms, which has important implications in reef conservation and bioengineering.
Collapse
Affiliation(s)
- Hao Zhang
- Chinese Academy of Sciences Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou510301, China
- Marine Biodiversity and Ecological Evolution Research Center, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou510301, China
- State Key Laboratory of Marine Environmental Science/College of the Environment and Ecology, Xiamen University, Xiamen361102, China
| | - Xin Wang
- Chinese Academy of Sciences Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou510301, China
- Marine Biodiversity and Ecological Evolution Research Center, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou510301, China
| | - Meng Qu
- Chinese Academy of Sciences Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou510301, China
- Marine Biodiversity and Ecological Evolution Research Center, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou510301, China
| | - Haiyan Yu
- Chinese Academy of Sciences Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou510301, China
- State Key Laboratory of Marine Environmental Science/College of the Environment and Ecology, Xiamen University, Xiamen361102, China
| | - Jianping Yin
- Chinese Academy of Sciences Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou510301, China
| | | | - Yuhong Liu
- Chinese Academy of Sciences Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou510301, China
| | - Bo Zhang
- Chinese Academy of Sciences Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou510301, China
| | - Yanhong Zhang
- Chinese Academy of Sciences Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou510301, China
| | - Zhangliang Wei
- Chinese Academy of Sciences Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou510301, China
| | - Fangfang Yang
- Chinese Academy of Sciences Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou510301, China
| | - Jingtian Wang
- State Key Laboratory of Marine Environmental Science/College of the Environment and Ecology, Xiamen University, Xiamen361102, China
| | | | | | - Jun Sun
- College of Marine Science and Technology, China University of Geosciences, Wuhan430074, China
| | - Lijuan Long
- Chinese Academy of Sciences Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou510301, China
| | - David A. Hutchins
- Department of Biological Sciences, Marine and Environmental Biology, University of Southern California, Los Angeles, CA90007
| | - Chris Bowler
- Institut de Biologie de l’Ecole Normale Supérieure, Ecole Normale Supérieure, CNRS, INSERM, Paris Sciences et Lettres Research University, Paris75005, France
| | - Senjie Lin
- State Key Laboratory of Marine Environmental Science/College of the Environment and Ecology, Xiamen University, Xiamen361102, China
- Department of Marine Sciences, University of Connecticut, Groton, CT06340
| | - Dazhi Wang
- State Key Laboratory of Marine Environmental Science/College of the Environment and Ecology, Xiamen University, Xiamen361102, China
| | - Qiang Lin
- Chinese Academy of Sciences Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou510301, China
- Marine Biodiversity and Ecological Evolution Research Center, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou510301, China
- University of Chinese Academy of Sciences, Beijing100049, China
| |
Collapse
|
2
|
Lampe RH, Coale TH, Forsch KO, Jabre LJ, Kekuewa S, Bertrand EM, Horák A, Oborník M, Rabines AJ, Rowland E, Zheng H, Andersson AJ, Barbeau KA, Allen AE. Short-term acidification promotes diverse iron acquisition and conservation mechanisms in upwelling-associated phytoplankton. Nat Commun 2023; 14:7215. [PMID: 37940668 PMCID: PMC10632500 DOI: 10.1038/s41467-023-42949-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 10/26/2023] [Indexed: 11/10/2023] Open
Abstract
Coastal upwelling regions are among the most productive marine ecosystems but may be threatened by amplified ocean acidification. Increased acidification is hypothesized to reduce iron bioavailability for phytoplankton thereby expanding iron limitation and impacting primary production. Here we show from community to molecular levels that phytoplankton in an upwelling region respond to short-term acidification exposure with iron uptake pathways and strategies that reduce cellular iron demand. A combined physiological and multi-omics approach was applied to trace metal clean incubations that introduced 1200 ppm CO2 for up to four days. Although variable, molecular-level responses indicate a prioritization of iron uptake pathways that are less hindered by acidification and reductions in iron utilization. Growth, nutrient uptake, and community compositions remained largely unaffected suggesting that these mechanisms may confer short-term resistance to acidification; however, we speculate that cellular iron demand is only temporarily satisfied, and longer-term acidification exposure without increased iron inputs may result in increased iron stress.
Collapse
Affiliation(s)
- Robert H Lampe
- Integrative Oceanography Division, Scripps Institution of Oceanography, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
- Microbial and Environmental Genomics, J. Craig Venter Institute, 4120 Capricorn Lane, La Jolla, CA, 92037, USA
| | - Tyler H Coale
- Integrative Oceanography Division, Scripps Institution of Oceanography, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
- Microbial and Environmental Genomics, J. Craig Venter Institute, 4120 Capricorn Lane, La Jolla, CA, 92037, USA
| | - Kiefer O Forsch
- Geosciences Research Division, Scripps Institution of Oceanography, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Loay J Jabre
- Department of Biology and Institute for Comparative Genomics, Dalhousie University, 1355 Oxford St, Halifax, NS, B3H 4R2, Canada
| | - Samuel Kekuewa
- Geosciences Research Division, Scripps Institution of Oceanography, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Erin M Bertrand
- Department of Biology and Institute for Comparative Genomics, Dalhousie University, 1355 Oxford St, Halifax, NS, B3H 4R2, Canada
| | - Aleš Horák
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, 370 05, České Budějovice, CZ, Czechia
- Faculty of Science, University of South Bohemia, 370 05, České Budějovice, CZ, Czechia
| | - Miroslav Oborník
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, 370 05, České Budějovice, CZ, Czechia
- Faculty of Science, University of South Bohemia, 370 05, České Budějovice, CZ, Czechia
| | - Ariel J Rabines
- Integrative Oceanography Division, Scripps Institution of Oceanography, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
- Microbial and Environmental Genomics, J. Craig Venter Institute, 4120 Capricorn Lane, La Jolla, CA, 92037, USA
| | - Elden Rowland
- Department of Biology and Institute for Comparative Genomics, Dalhousie University, 1355 Oxford St, Halifax, NS, B3H 4R2, Canada
| | - Hong Zheng
- Microbial and Environmental Genomics, J. Craig Venter Institute, 4120 Capricorn Lane, La Jolla, CA, 92037, USA
| | - Andreas J Andersson
- Geosciences Research Division, Scripps Institution of Oceanography, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Katherine A Barbeau
- Geosciences Research Division, Scripps Institution of Oceanography, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Andrew E Allen
- Integrative Oceanography Division, Scripps Institution of Oceanography, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA.
- Microbial and Environmental Genomics, J. Craig Venter Institute, 4120 Capricorn Lane, La Jolla, CA, 92037, USA.
| |
Collapse
|
3
|
Sheward RM, Liefer JD, Irwin AJ, Finkel ZV. Elemental stoichiometry of the key calcifying marine phytoplankton Emiliania huxleyi under ocean climate change: A meta-analysis. GLOBAL CHANGE BIOLOGY 2023; 29:4259-4278. [PMID: 37279257 DOI: 10.1111/gcb.16807] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 05/16/2023] [Accepted: 05/17/2023] [Indexed: 06/08/2023]
Abstract
The elemental composition of marine microorganisms (their C:N:P ratio, or stoichiometry) is central to understanding the biotic and biogeochemical processes underlying key marine ecosystem functions. Phytoplankton C:N:P is species specific and flexible to changing environmental conditions. However, bulk or fixed phytoplankton stoichiometry is usually assumed in biogeochemical and ecological models because more realistic, environmentally responsive C:N:P ratios have yet to be defined for key functional groups. Here, a comprehensive meta-analysis of experimental laboratory data reveals the variable C:N:P stoichiometry of Emiliania huxleyi, a globally significant calcifying phytoplankton species. Mean C:N:P of E. huxleyi is 124C:16N:1P under control conditions (i.e. growth not limited by one or more environmental stressors) and shows a range of responses to changes in nutrient and light availability, temperature and pCO2 . Macronutrient limitation caused strong shifts in stoichiometry, increasing N:P and C:P under P deficiency (by 305% and 493% respectively) and doubling C:N under N deficiency. Responses to light, temperature and pCO2 were mixed but typically shifted cellular elemental content and C:N:P stoichiometry by ca. 30% or less. Besides these independent effects, the interactive effects of multiple environmental changes on E. huxleyi stoichiometry under future ocean conditions could be additive, synergistic or antagonistic. To synthesise our meta-analysis results, we explored how the cellular elemental content and C:N:P stoichiometry of E. huxleyi may respond to two hypothetical future ocean scenarios (increased temperature, irradiance and pCO2 combined with either N deficiency or P deficiency) if an additive effect is assumed. Both future scenarios indicate decreased calcification (which is predominantly sensitive to elevated pCO2 ), increased C:N, and up to fourfold shifts in C:P and N:P. Our results strongly suggest that climate change will significantly alter the role of E. huxleyi (and potentially other calcifying phytoplankton species) in marine biogeochemical processes.
Collapse
Affiliation(s)
- Rosie M Sheward
- Institute of Geosciences, Goethe-University Frankfurt, Frankfurt am Main, Germany
- Department of Geography and Environment, Mount Allison University, Sackville, New Brunswick, Canada
| | - Justin D Liefer
- Department of Biology/Geography and Environment, Mount Allison University, Sackville, New Brunswick, Canada
| | - Andrew J Irwin
- Department of Mathematics and Statistics, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Zoe V Finkel
- Department of Oceanography, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
4
|
Thangaraj S, Liu H, Guo Y, Ding C, Kim IN, Sun J. Transitional traits determine the acclimation characteristics of the coccolithophore Chrysotila dentata to ocean warming and acidification. Environ Microbiol 2023. [PMID: 36721374 DOI: 10.1111/1462-2920.16343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 01/23/2023] [Indexed: 02/02/2023]
Abstract
Ocean warming and acidification interactively affect the coccolithophore physiology and drives major biogeochemical changes. While numerous studies investigated coccolithophore under short-term conditions, knowledge on how different transitional periods over long-exposure could influence the element, macromolecular and metabolic changes for its acclimation are largely unknown. We cultured the coccolithophore Chrysotila dentata, (culture generations of 1st, 10th, and 20th) under present (low-temperature low-carbon-dioxide [LTLC]) and projected (high-temperature high-carbon-dioxide [HTHC]) ocean conditions. We examined elemental and macromolecular component changes and sequenced a transcriptome. We found that with long-exposure, most physiological responses in HTHC cells decreased when compared with those in LTLC, however, HTHC cell physiology showed constant elevation between each generation. Specifically, compared to 1st generation, the 20th generation HTHC cells showed increases in quota carbon (Qc:29%), nitrogen (QN :101%), and subsequent changes in C:N-ratio (68%). We observed higher lipid accumulation than carbohydrates within HTHC cells under long-exposure, suggesting that lipids were used as an alternative energy source for cellular acclimation. Protein biosynthesis pathways increased their efficiency during long-term HTHC condition, indicating that cells produced more proteins than required to initiate acclimation. Our findings suggest that the coccolithophore resilience increased between the 1st-10th generation to initiate the acclimation process under ocean warming and acidifying conditions.
Collapse
Affiliation(s)
- Satheeswaran Thangaraj
- Institute for Advanced Marine Research, China University of Geosciences, Guangzhou, China.,State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China.,Department of Marine Science, Incheon National University, Incheon, South Korea.,Department of Physiology, Saveetha Dental College and Hospital, Saveetha Institute of Medical & Technical Sciences, Saveetha University, Chennai, India
| | - Haijiao Liu
- Research Centre for Indian Ocean Ecosystem, Tianjin University of Science and Technology, Tianjin, China
| | - Yiyan Guo
- Research Centre for Indian Ocean Ecosystem, Tianjin University of Science and Technology, Tianjin, China
| | - Changling Ding
- Research Centre for Indian Ocean Ecosystem, Tianjin University of Science and Technology, Tianjin, China
| | - Il-Nam Kim
- Department of Marine Science, Incheon National University, Incheon, South Korea
| | - Jun Sun
- Institute for Advanced Marine Research, China University of Geosciences, Guangzhou, China.,State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China.,Research Centre for Indian Ocean Ecosystem, Tianjin University of Science and Technology, Tianjin, China
| |
Collapse
|
5
|
Kapsenberg L, Bitter MC, Miglioli A, Aparicio-Estalella C, Pelejero C, Gattuso JP, Dumollard R. Molecular basis of ocean acidification sensitivity and adaptation in Mytilus galloprovincialis. iScience 2022; 25:104677. [PMID: 35847553 PMCID: PMC9283884 DOI: 10.1016/j.isci.2022.104677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 01/18/2022] [Accepted: 06/23/2022] [Indexed: 12/04/2022] Open
Abstract
Predicting the potential for species adaption to climate change is challenged by the need to identify the physiological mechanisms that underpin species vulnerability. Here, we investigated the sensitivity to ocean acidification in marine mussels during early development, and specifically the trochophore stage. Using RNA and DNA sequencing and in situ RNA hybridization, we identified developmental processes associated with abnormal development and rapid adaptation to low pH. Trochophores exposed to low pH seawater exhibited 43 differentially expressed genes. Gene annotation and in situ hybridization of differentially expressed genes point to pH sensitivity of (1) shell field development and (2) cellular stress response. Five genes within these two processes exhibited shifts in allele frequencies indicative of a potential for rapid adaptation. This case study contributes direct evidence that protecting species’ existing genetic diversity is a critical management action to facilitate species resilience to climate change. Marine mussel larval development and genetic adaptation in low pH seawater RNA and DNA responses reveal impacts on shell field development and cell stress Five genes exhibited both physiological sensitivity and long-term adaptive potential Conserving standing genetic variation could bolster resilience to global change
Collapse
Affiliation(s)
- Lydia Kapsenberg
- Department of Marine Biology and Oceanography, Institute of Marine Sciences (CSIC), Barcelona, Spain.,Sorbonne Université, CNRS, Laboratoire d'Océanographie de Villefranche (LOV), Institut de la Mer à Villefranche (IMEV), 181 chemin du Lazaret, 06230 Villefranche-sur-mer, France
| | - Mark C Bitter
- Department of Biology, Stanford University, Stanford, CA, USA.,Department of Ecology and Evolution, University of Chicago, Chicago, IL, USA
| | - Angelica Miglioli
- Sorbonne Université/CNRS, Institut de la Mer, UMR7009 Laboratoire de Biologie du Développement, Chemin du Lazaret, 06230 Villefranche-sur-Mer, France.,Università degli studi di Genova, Dipartimento di Scienze della Terra, dell'Ambiente e della Vita (DISTAV), Corso Europa 26, 16132 Genova, Italy
| | - Clàudia Aparicio-Estalella
- Department of Marine Biology and Oceanography, Institute of Marine Sciences (CSIC), Barcelona, Spain.,Lighthouse Field Station, School of Biological Sciences, University of Aberdeen, Aberdeen, UK
| | - Carles Pelejero
- Department of Marine Biology and Oceanography, Institute of Marine Sciences (CSIC), Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Jean-Pierre Gattuso
- Sorbonne Université, CNRS, Laboratoire d'Océanographie de Villefranche (LOV), Institut de la Mer à Villefranche (IMEV), 181 chemin du Lazaret, 06230 Villefranche-sur-mer, France.,Institute for Sustainable Development and International Relations, Sciences Po, 27 rue Saint Guillaume, 75007 Paris, France
| | - Rémi Dumollard
- Sorbonne Université/CNRS, Institut de la Mer, UMR7009 Laboratoire de Biologie du Développement, Chemin du Lazaret, 06230 Villefranche-sur-Mer, France
| |
Collapse
|
6
|
Xie E, Xu K, Li Z, Li W, Yi X, Li H, Han Y, Zhang H, Zhang Y. Disentangling the Effects of Ocean Carbonation and Acidification on Elemental Contents and Macromolecules of the Coccolithophore Emiliania huxleyi. Front Microbiol 2021; 12:737454. [PMID: 34745039 PMCID: PMC8564145 DOI: 10.3389/fmicb.2021.737454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 09/29/2021] [Indexed: 11/21/2022] Open
Abstract
Elemental contents change with shifts in macromolecular composition of marine phytoplankton. Recent studies focus on the responses of elemental contents of coccolithophores, a major calcifying phytoplankton group, to changing carbonate chemistry, caused by the dissolution of anthropogenically derived CO2 into the surface ocean. However, the effects of changing carbonate chemistry on biomacromolecules, such as protein and carbohydrate of coccolithophores, are less documented. Here, we disentangled the effects of elevated dissolved inorganic carbon (DIC) concentration (900 to 4,930μmolkg−1) and reduced pH value (8.04 to 7.70) on physiological rates, elemental contents, and macromolecules of the coccolithophore Emiliania huxleyi. Compared to present DIC concentration and pH value, combinations of high DIC concentration and low pH value (ocean acidification) significantly increased pigments content, particulate organic carbon (POC), and carbohydrate content and had less impact on growth rate, maximal relative electron transport rate (rETRmax), particulate organic nitrogen (PON), and protein content. In high pH treatments, elevated DIC concentration significantly increased growth rate, pigments content, rETRmax, POC, particulate inorganic carbon (PIC), protein, and carbohydrate contents. In low pH treatments, the extents of the increase in growth rate, pigments and carbohydrate content were reduced. Compared to high pH value, under low DIC concentration, low pH value significantly increased POC and PON contents and showed less impact on protein and carbohydrate contents; however, under high DIC concentration, low pH value significantly reduced POC, PON, protein, and carbohydrate contents. These results showed that reduced pH counteracted the positive effects of elevated DIC concentration on growth rate, rETRmax, POC, PON, carbohydrate, and protein contents. Elevated DIC concentration and reduced pH acted synergistically to increase the contribution of carbohydrate–carbon to POC, and antagonistically to affect the contribution of protein–nitrogen to PON, which further shifted the carbon/nitrogen ratio of E. huxleyi.
Collapse
Affiliation(s)
- Emei Xie
- College of Environmental Science and Engineering, Fujian Key Laboratory of Pollution Control and Resource Recycling, Fujian Normal University, Fuzhou, China
| | - Kui Xu
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, Hubei Engineering Research Center of Special Wild Vegetables Breeding and Comprehensive Utilization Technology, College of Life Sciences, Hubei Normal University, Huangshi, China
| | - Zhengke Li
- School of Food and Biological Engineering, Shanxi University of Science and Technology, Xi'an, China
| | - Wei Li
- College of Life and Environmental Sciences, Huangshan University, Huangshan, China
| | - Xiangqi Yi
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Hongzhou Li
- College of Environmental Science and Engineering, Fujian Key Laboratory of Pollution Control and Resource Recycling, Fujian Normal University, Fuzhou, China
| | - Yonghe Han
- College of Environmental Science and Engineering, Fujian Key Laboratory of Pollution Control and Resource Recycling, Fujian Normal University, Fuzhou, China
| | - Hong Zhang
- College of Environmental Science and Engineering, Fujian Key Laboratory of Pollution Control and Resource Recycling, Fujian Normal University, Fuzhou, China
| | - Yong Zhang
- College of Environmental Science and Engineering, Fujian Key Laboratory of Pollution Control and Resource Recycling, Fujian Normal University, Fuzhou, China
| |
Collapse
|
7
|
Discovery of Post-Translational Modifications in Emiliania huxleyi. Molecules 2021; 26:molecules26072027. [PMID: 33918234 PMCID: PMC8038017 DOI: 10.3390/molecules26072027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 03/31/2021] [Accepted: 04/01/2021] [Indexed: 11/17/2022] Open
Abstract
Emiliania huxleyi is a cosmopolitan coccolithophore that plays an essential role in global carbon and sulfur cycling, and contributes to marine cloud formation and climate regulation. Previously, the proteomic profile of Emiliania huxleyi was investigated using a three-dimensional separation strategy combined with liquid chromatography-tandem mass spectrometry (LC-MS/MS). The current study reuses the MS/MS spectra obtained, for the global discovery of post-translational modifications (PTMs) in this species without specific enrichment methods. Twenty-five different PTM types were examined using Trans-Proteomic Pipeline (Comet and PeptideProphet). Overall, 13,483 PTMs were identified in 7421 proteins. Methylation was the most frequent PTM with more than 2800 modified sites, and lysine was the most frequently modified amino acid with more than 4000 PTMs. The number of proteins identified increased by 22.5% to 18,780 after performing the PTM search. Compared to intact peptides, the intensities of some modified peptides were superior or equivalent. The intensities of some proteins increased dramatically after the PTM search. Gene ontology analysis revealed that protein persulfidation was related to photosynthesis in Emiliania huxleyi. Additionally, various membrane proteins were found to be phosphorylated. Thus, our global PTM discovery platform provides an overview of PTMs in the species and prompts further studies to uncover their biological functions. The combination of a three-dimensional separation method with global PTM search is a promising approach for the identification and discovery of PTMs in other species.
Collapse
|
8
|
Gebühr C, Sheward RM, Herrle JO, Bollmann J. Strain-specific morphological response of the dominant calcifying phytoplankton species Emiliania huxleyi to salinity change. PLoS One 2021; 16:e0246745. [PMID: 33571269 PMCID: PMC7877742 DOI: 10.1371/journal.pone.0246745] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 01/25/2021] [Indexed: 11/26/2022] Open
Abstract
The future physiology of marine phytoplankton will be impacted by a range of changes in global ocean conditions, including salinity regimes that vary spatially and on a range of short- to geological timescales. Coccolithophores have global ecological and biogeochemical significance as the most important calcifying marine phytoplankton group. Previous research has shown that the morphology of their exoskeletal calcified plates (coccoliths) responds to changing salinity in the most abundant coccolithophore species, Emiliania huxleyi. However, the extent to which these responses may be strain-specific is not well established. Here we investigated the growth response of six strains of E. huxleyi under low (ca. 25) and high (ca. 45) salinity batch culture conditions and found substantial variability in the magnitude and direction of response to salinity change across strains. Growth rates declined under low and high salinity conditions in four of the six strains but increased under both low and high salinity in strain RCC1232 and were higher under low salinity and lower under high salinity in strain PLYB11. When detailed changes in coccolith and coccosphere size were quantified in two of these strains that were isolated from contrasting salinity regimes (coastal Norwegian low salinity of ca. 30 and Mediterranean high salinity of ca. 37), the Norwegian strain showed an average 26% larger mean coccolith size at high salinities compared to low salinities. In contrast, coccolith size in the Mediterranean strain showed a smaller size trend (11% increase) but severely impeded coccolith formation in the low salinity treatment. Coccosphere size similarly increased with salinity in the Norwegian strain but this trend was not observed in the Mediterranean strain. Coccolith size changes with salinity compiled for other strains also show variability, strongly suggesting that the effect of salinity change on coccolithophore morphology is likely to be strain specific. We propose that physiological adaptation to local conditions, in particular strategies for plasticity under stress, has an important role in determining ecotype responses to salinity.
Collapse
Affiliation(s)
- Christina Gebühr
- Institute of Geosciences, Goethe-University Frankfurt, Frankfurt am Main, Germany
- Biodiversity and Climate Research Centre (BIK-F), Frankfurt am Main, Germany
| | - Rosie M. Sheward
- Institute of Geosciences, Goethe-University Frankfurt, Frankfurt am Main, Germany
| | - Jens O. Herrle
- Institute of Geosciences, Goethe-University Frankfurt, Frankfurt am Main, Germany
- Biodiversity and Climate Research Centre (BIK-F), Frankfurt am Main, Germany
| | - Jörg Bollmann
- Department of Earth Sciences, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
9
|
Chhun A, Sousoni D, Aguiló‐Ferretjans MDM, Song L, Corre C, Christie‐Oleza JA. Phytoplankton trigger the production of cryptic metabolites in the marine actinobacterium Salinispora tropica. Microb Biotechnol 2021; 14:291-306. [PMID: 33280260 PMCID: PMC7888443 DOI: 10.1111/1751-7915.13722] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 11/14/2020] [Indexed: 12/19/2022] Open
Abstract
Filamentous members of the phylum Actinobacteria are a remarkable source of natural products with pharmaceutical potential. The discovery of novel molecules from these organisms is, however, hindered because most of the biosynthetic gene clusters (BGCs) encoding these secondary metabolites are cryptic or silent and are referred to as orphan BGCs. While co-culture has proven to be a promising approach to unlock the biosynthetic potential of many microorganisms by activating the expression of these orphan BGCs, it still remains an underexplored technique. The marine actinobacterium Salinispora tropica, for instance, produces valuable compounds such as the anti-cancer molecule salinosporamide but half of its putative BGCs are still orphan. Although previous studies have used marine heterotrophs to induce orphan BGCs in Salinispora, its co-culture with marine phototrophs has yet to be investigated. Following the observation of an antimicrobial activity against a range of phytoplankton by S. tropica, we here report that the photosynthate released by photosynthetic primary producers influences its biosynthetic capacities with production of cryptic molecules and the activation of orphan BGCs. Our work, using an approach combining metabolomics and proteomics, pioneers the use of phototrophs as a promising strategy to accelerate the discovery of novel natural products from marine actinobacteria.
Collapse
Affiliation(s)
- Audam Chhun
- School of Life SciencesUniversity of WarwickCoventryUK
| | | | | | - Lijiang Song
- Department of ChemistryUniversity of WarwickCoventryUK
| | - Christophe Corre
- School of Life SciencesUniversity of WarwickCoventryUK
- Department of ChemistryUniversity of WarwickCoventryUK
| | - Joseph A. Christie‐Oleza
- School of Life SciencesUniversity of WarwickCoventryUK
- University of the Balearic IslandsPalmaSpain
- IMEDEA (CSIC‐UIB)EsporlesSpain
| |
Collapse
|
10
|
Proteomic Profiling of Emiliania huxleyi Using a Three-Dimensional Separation Method Combined with Tandem Mass Spectrometry. Molecules 2020; 25:molecules25133028. [PMID: 32630776 PMCID: PMC7411631 DOI: 10.3390/molecules25133028] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 06/30/2020] [Accepted: 06/30/2020] [Indexed: 12/31/2022] Open
Abstract
Emiliania huxleyi is one of the most abundant marine planktons, and it has a crucial feature in the carbon cycle. However, proteomic analyses of Emiliania huxleyi have not been done extensively. In this study, a three-dimensional liquid chromatography (3D-LC) system consisting of strong cation exchange, high- and low-pH reversed-phase liquid chromatography was established for in-depth proteomic profiling of Emiliania huxleyi. From tryptic proteome digest, 70 fractions were generated and analyzed using liquid chromatography-tandem mass spectrometry. In total, more than 84,000 unique peptides and 10,000 proteins groups were identified with a false discovery rate of ≤0.01. The physicochemical properties of the identified peptides were evaluated. Using ClueGO, approximately 700 gene ontology terms and 15 pathways were defined from the identified protein groups with p-value ≤0.05, covering a wide range of biological processes, cellular components, and molecular functions. Many biological processes associated with CO2 fixation, photosynthesis, biosynthesis, and metabolic process were identified. Various molecular functions relating to protein binding and enzyme activities were also found. The 3D-LC strategy is a powerful approach for comparative proteomic studies on Emiliania huxleyi to reveal changes in its protein level and related mechanism.
Collapse
|
11
|
Coccolith mass and morphology of different Emiliania huxleyi morphotypes: A critical examination using Canary Islands material. PLoS One 2020; 15:e0230569. [PMID: 32218602 PMCID: PMC7101162 DOI: 10.1371/journal.pone.0230569] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Accepted: 03/03/2020] [Indexed: 11/19/2022] Open
Abstract
Different morphotypes of the abundant marine calcifying algal species Emiliania huxleyi are commonly linked to various degrees of E. huxleyi calcification, but few studies have been done to validate this assumption. This study investigated therefore whether E. huxleyi morphotypes can be related to coccolithophore calcification and coccolith mass. Samples from January (high productivity) and September (low productivity) 1997 at an open ocean and a coastal site near the Canary Islands were analysed using a combination of thickness measurements (Circular Polarizer Retardation estimates (CPR) method), Scanning Electron Microscope imaging, and Markov Chain Monte Carlo (MCMC) models. Mean E. huxleyi coccolith mass varied from a maximum of 2.9pg at the open ocean station in January to a minimum of 1.7pg in September at both stations. In contrast, overall calcite produced by E. huxleyi (assuming 23 coccoliths/cell) varied from a maximum of 2.6 μgL-1 at the coastal station in January to a minimum of 0.5 μgL-1 in September at the open ocean site. The relative abundance of “Overcalcified” Type A, Type A, Group B and malformed coccoliths was determined from SEM images. The mean coccolith mass of “Overcalcified” Type A was 2.0pg using the CPR-method, while mean mass of Type A and Group B coccoliths was determined using coccolith length measurements from SEM images and MCMC models relating thickness measurements to morphotype relative abundance. Type A cocccolith mass varied from a 1.6pg to 2.6pg and Group B coccolith mass varied from 1.5pg to 2.0pg. These results demonstrate that the coccolith mass of Type A, “Overcalcified” Type A, and Group B do not differ systematically and there is no systematic relationship between relative abundance of a morphotype and the overall calcite production of E. huxleyi. Therefore, morphotype appearance and relative abundance can not be uniformly used as reliable indicators of E. huxleyi calcification or calcite production.
Collapse
|
12
|
Linge Johnsen SA, Bollmann J, Gebuehr C, Herrle JO. Relationship between coccolith length and thickness in the coccolithophore species Emiliania huxleyi and Gephyrocapsa oceanica. PLoS One 2019; 14:e0220725. [PMID: 31381588 PMCID: PMC6681965 DOI: 10.1371/journal.pone.0220725] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 07/22/2019] [Indexed: 12/03/2022] Open
Abstract
Coccolith mass is an important parameter for estimating coccolithophore contribution to carbonate sedimentation, organic carbon ballasting and coccolithophore calcification. Single coccolith mass is often estimated based on the ks model, which assumes that length and thickness increase proportionally. To evaluate this assumption, this study compared coccolith length, thickness, and mass of seven Emiliania huxleyi strains and one Gephyrocapsa oceanica strain grown in 25, 34, and 44 salinity artificial seawater. While coccolith length increased with salinity in four E. huxleyi strains, thickness did not increase significantly with salinity in three of these strains. Only G. oceanica showed a consistent increase in length with salinity that was accompanied by an increase in thickness. Coccolith length and thickness was also not correlated in 14 of 24 individual experiments, and in the experiments in which there was a positive relationship r2 was low (<0.4). Because thickness did not increase with length in E. huxleyi, the increase in mass was less than expected from the ks model, and thus, mass can not be accurately estimated from coccolith length alone.
Collapse
Affiliation(s)
| | - Jörg Bollmann
- Department of Earth Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Christina Gebuehr
- Institute of Geosciences, Goethe-University Frankfurt, Frankfurt am Main, Germany
- Biodiversity and Climate Research Centre (BIK-F), Frankfurt am Main, Germany
| | - Jens O. Herrle
- Institute of Geosciences, Goethe-University Frankfurt, Frankfurt am Main, Germany
| |
Collapse
|
13
|
Evans JS. The Biomineralization Proteome: Protein Complexity for a Complex Bioceramic Assembly Process. Proteomics 2019; 19:e1900036. [DOI: 10.1002/pmic.201900036] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 06/04/2019] [Indexed: 12/20/2022]
Affiliation(s)
- John Spencer Evans
- Laboratory for Chemical PhysicsDepartment of Skeletal and Craniofacial BiologyNew York University College of Dentistry New York NY 10010 USA
| |
Collapse
|
14
|
Heidenreich E, Wördenweber R, Kirschhöfer F, Nusser M, Friedrich F, Fahl K, Kruse O, Rost B, Franzreb M, Brenner-Weiß G, Rokitta S. Ocean acidification has little effect on the biochemical composition of the coccolithophore Emiliania huxleyi. PLoS One 2019; 14:e0218564. [PMID: 31291290 PMCID: PMC6619986 DOI: 10.1371/journal.pone.0218564] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 05/31/2019] [Indexed: 11/18/2022] Open
Abstract
Owing to the hierarchical organization of biology, from genomes over transcriptomes and proteomes down to metabolomes, there is continuous debate about the extent to which data and interpretations derived from one level, e.g. the transcriptome, are in agreement with other levels, e.g. the metabolome. Here, we tested the effect of ocean acidification (OA; 400 vs. 1000 μatm CO2) and its modulation by light intensity (50 vs. 300 μmol photons m-2 s-1) on the biomass composition (represented by 75 key metabolites) of diploid and haploid life-cycle stages of the coccolithophore Emiliania huxleyi (RCC1216 and RCC1217) and compared these data with interpretations from previous physiological and gene expression screenings. The metabolite patterns showed minor responses to OA in both life-cycle stages. Whereas previous gene expression analyses suggested that the observed increased biomass buildup derived from lipid and carbohydrate storage, this dataset suggests that OA slightly increases overall biomass of cells, but does not significantly alter their metabolite composition. Generally, light was shown to be a more dominant driver of metabolite composition than OA, increasing the relative abundances of amino acids, mannitol and storage lipids, and shifting pigment contents to accommodate increased irradiance levels. The diploid stage was shown to contain vastly more osmolytes and mannitol than the haploid stage, which in turn had a higher relative content of amino acids, especially aromatic ones. Besides the differences between the investigated cell types and the general effects on biomass buildup, our analyses indicate that OA imposes only negligible effects on E. huxleyi´s biomass composition.
Collapse
Affiliation(s)
- Elena Heidenreich
- Analytical Biochemistry, Department of Bioengineering and Biosystems, Institute of Functional Interfaces, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
- * E-mail: (EH); (SR)
| | - Robin Wördenweber
- Algae Biotechnology & Bioenergy, Department of Biology, Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany
| | - Frank Kirschhöfer
- Analytical Biochemistry, Department of Bioengineering and Biosystems, Institute of Functional Interfaces, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
| | - Michael Nusser
- Analytical Biochemistry, Department of Bioengineering and Biosystems, Institute of Functional Interfaces, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
| | - Frank Friedrich
- Competence Center for Material Moisture (CMM), Karlsruhe Institute for Technology, Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen, Germany
| | - Kirsten Fahl
- Marine Geology and Paleontology, Alfred-Wegener-Institute, Helmholtz-Centre for Polar and Marine Research, Bremerhaven, Germany
| | - Olaf Kruse
- Algae Biotechnology & Bioenergy, Department of Biology, Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany
| | - Björn Rost
- Marine Biogeosciences, Alfred-Wegener-Institute, Helmholtz-Centre for Polar and Marine Research, Bremerhaven, Germany
- University of Bremen, Bremen, Germany
| | - Matthias Franzreb
- Analytical Biochemistry, Department of Bioengineering and Biosystems, Institute of Functional Interfaces, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
| | - Gerald Brenner-Weiß
- Analytical Biochemistry, Department of Bioengineering and Biosystems, Institute of Functional Interfaces, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
| | - Sebastian Rokitta
- Marine Biogeosciences, Alfred-Wegener-Institute, Helmholtz-Centre for Polar and Marine Research, Bremerhaven, Germany
- * E-mail: (EH); (SR)
| |
Collapse
|
15
|
Iglesias-Rodriguez MD, Jones BM, Blanco-Ameijeiras S, Greaves M, Huete-Ortega M, Lebrato M. Physiological responses of coccolithophores to abrupt exposure of naturally low pH deep seawater. PLoS One 2017; 12:e0181713. [PMID: 28750008 PMCID: PMC5531516 DOI: 10.1371/journal.pone.0181713] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 07/06/2017] [Indexed: 11/18/2022] Open
Abstract
Upwelling is the process by which deep, cold, relatively high-CO2, nutrient-rich seawater rises to the sunlit surface of the ocean. This seasonal process has fueled geoengineering initiatives to fertilize the surface ocean with deep seawater to enhance productivity and thus promote the drawdown of CO2. Coccolithophores, which inhabit many upwelling regions naturally 'fertilized' by deep seawater, have been investigated in the laboratory in the context of ocean acidification to determine the extent to which nutrients and CO2 impact their physiology, but few data exist in the field except from mesocosms. Here, we used the Porcupine Abyssal Plain (north Atlantic Ocean) Observatory to retrieve seawater from depths with elevated CO2 and nutrients, mimicking geoengineering approaches. We tested the effects of abrupt natural deep seawater fertilization on the physiology and biogeochemistry of two strains of Emiliania huxleyi of known physiology. None of the strains tested underwent cell divisions when incubated in waters obtained from <1,000 m (pH = 7.99-8.08; CO2 = 373-485 p.p.m; 1.5-12 μM nitrate). However, growth was promoted in both strains when cells were incubated in seawater from ~1,000 m (pH = 7.9; CO2 ~560 p.p.m.; 14-17 μM nitrate) and ~4,800 m (pH = 7.9; CO2 ~600 p.p.m.; 21 μM nitrate). Emiliania huxleyi strain CCMP 88E showed no differences in growth rate or in cellular content or production rates of particulate organic (POC) and inorganic (PIC) carbon and cellular particulate organic nitrogen (PON) between treatments using water from 1,000 m and 4,800 m. However, despite the N:P ratio of seawater being comparable in water from ~1,000 and ~4,800 m, the PON production rates were three times lower in one incubation using water from ~1,000 m compared to values observed in water from ~4,800 m. Thus, the POC:PON ratios were threefold higher in cells that were incubated in ~1,000 m seawater. The heavily calcified strain NZEH exhibited lower growth rates and PIC production rates when incubated in water from ~4,800 m compared to ~1,000 m, while cellular PIC, POC and PON were higher in water from 4,800 m. Calcite Sr/Ca ratios increased with depth despite constant seawater Sr/Ca, indicating that upwelling changes coccolith geochemistry. Our study provides the first experimental and field trial of a geoengineering approach to test how deep seawater impacts coccolithophore physiological and biogeochemical properties. Given that coccolithophore growth was only stimulated using waters obtained from >1,000 m, artificial upwelling using shallower waters may not be a suitable approach for promoting carbon sequestration for some locations and assemblages, and should therefore be investigated on a site-by-site basis.
Collapse
Affiliation(s)
- Maria Debora Iglesias-Rodriguez
- Department of Ecology, Evolution and Marine Biology, University of California Santa Barbara, Santa Barbara, CA, United States of America.,Ocean and Earth Science, National Oceanography Centre, University of Southampton, Southampton, United Kingdom
| | - Bethan M Jones
- Ocean and Earth Science, National Oceanography Centre, University of Southampton, Southampton, United Kingdom.,Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, United States of America
| | - Sonia Blanco-Ameijeiras
- Department F.-A. Forel for Environmental and Aquatic Sciences, University of Geneva, 66 Boulevard Carl-Vogt, CH, Geneva, Switzerland
| | - Mervyn Greaves
- Department of Earth Sciences, University of Cambridge, Downing St, Cambridge, United Kingdom
| | - Maria Huete-Ortega
- Department of Chemical and Biological Engineering, University of Sheffield, Mappin Street, Sheffield United Kingdom.,Departamento de Ecología y Biología Animal, Universidad de Vigo, Vigo, Spain
| | - Mario Lebrato
- Department of Geosciences, Christian-Albrechts-University Kiel (CAU), Christian-Albrechts-Platz 4, Kiel, Germany.,Department of Marine Ecology, GEOMAR, Düsternbrooker Weg 20, Kiel, Germany
| |
Collapse
|
16
|
Pierangelini M, Raven JA, Giordano M. The relative availability of inorganic carbon and inorganic nitrogen influences the response of the dinoflagellate Protoceratium reticulatum to elevated CO 2. JOURNAL OF PHYCOLOGY 2017; 53:298-307. [PMID: 27624862 DOI: 10.1111/jpy.12463] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 07/23/2016] [Indexed: 06/06/2023]
Abstract
This work originates from three facts: (i) changes in CO2 availability influence metabolic processes in algal cells; (ii) Spatial and temporal variations of nitrogen availability cause repercussions on phytoplankton physiology; (iii) Growth and cell composition are dependent on the stoichiometry of nutritional resources. In this study, we assess whether the impact of rising pCO2 is influenced by N availability, through the impact that it would have on the C/N stoichiometry, in conditions of N sufficiency. Our experiments used the dinoflagellate Protoceratium reticulatum, which we cultured under three CO2 regimes (400, 1,000, and 5,000 ppmv, pH of 8.1) and either variable (the NO3- concentration was always 2.5 mmol · L-1 ) or constant (NO3- concentration varied to maintain the same Ci /NO3- ratio at all pCO2 ) Ci /NO3- ratio. Regardless of N availability, cells had higher specific growth rates, but lower cell dry weight and C and N quotas, at elevated CO2 . The carbohydrate pool size and the C/N was unaltered in all treatments. The lipid content only decreased at high pCO2 at constant Ci /NO3- ratio. In the variable Ci /NO3- conditions, the relative abundance of Rubisco (and other proteins) also changed; this did not occur at constant Ci /NO3- . Thus, the biomass quality of P. reticulatum for grazers was affected by the Ci /NO3- ratio in the environment and not only by the pCO2 , both with respect to the size of the main organic pools and the composition of the expressed proteome.
Collapse
Affiliation(s)
- Mattia Pierangelini
- Laboratorio di Fisiologia delle Alghe e delle Piante, Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, via Brecce Bianche, Ancona, 60131, Italy
| | - John A Raven
- Division of Plant Sciences, University of Dundee at the James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK
- Functional Plant Biology and Climate Change Cluster (C3), University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Mario Giordano
- Laboratorio di Fisiologia delle Alghe e delle Piante, Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, via Brecce Bianche, Ancona, 60131, Italy
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Trěboň, 379 01, Czech Republic
- Institute of Marine Science, National Research Council, Arsenale Castello, 2737/F, 30122, Venezia, Italy
- Istituto di Biologia Agro-Ambientale e Forestale, National Research Council, Via G. Marconi n. 2, Porano, 05010, Terni, Italy
| |
Collapse
|
17
|
Dineshram R, Quan Q, Sharma R, Chandramouli K, Yalamanchili HK, Chu I, Thiyagarajan V. Comparative and quantitative proteomics reveal the adaptive strategies of oyster larvae to ocean acidification. Proteomics 2016; 15:4120-34. [PMID: 26507238 DOI: 10.1002/pmic.201500198] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Revised: 10/08/2015] [Accepted: 10/15/2015] [Indexed: 01/01/2023]
Abstract
Decreasing pH due to anthropogenic CO2 inputs, called ocean acidification (OA), can make coastal environments unfavorable for oysters. This is a serious socioeconomical issue for China which supplies >70% of the world's edible oysters. Here, we present an iTRAQ-based protein profiling approach for the detection and quantification of proteome changes under OA in the early life stage of a commercially important oyster, Crassostrea hongkongensis. Availability of complete genome sequence for the pacific oyster (Crassostrea gigas) enabled us to confidently quantify over 1500 proteins in larval oysters. Over 7% of the proteome was altered in response to OA at pHNBS 7.6. Analysis of differentially expressed proteins and their associated functional pathways showed an upregulation of proteins involved in calcification, metabolic processes, and oxidative stress, each of which may be important in physiological adaptation of this species to OA. The downregulation of cytoskeletal and signal transduction proteins, on the other hand, might have impaired cellular dynamics and organelle development under OA. However, there were no significant detrimental effects in developmental processes such as metamorphic success. Implications of the differentially expressed proteins and metabolic pathways in the development of OA resistance in oyster larvae are discussed. The MS proteomics data have been deposited to the ProteomeXchange with identifiers PXD002138 (http://proteomecentral.proteomexchange.org/dataset/PXD002138).
Collapse
Affiliation(s)
- R Dineshram
- The Swire Institute of Marine Sciences and School of Biological Sciences, The University of Hong Kong, Hong Kong Special Administrative Region, P. R. China
| | - Q Quan
- Department of Chemistry, The University of Hong Kong, Hong Kong Special Administrative Region, P. R. China
| | - Rakesh Sharma
- Department of Biochemistry, L.K.S Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, P. R. China.,Department of Biology and Chemistry, City University of Hong Kong, Kowloon Tong, Hong Kong
| | - Kondethimmanahalli Chandramouli
- Biological, Environmental Sciences & Engineering, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia
| | | | - Ivan Chu
- Department of Chemistry, The University of Hong Kong, Hong Kong Special Administrative Region, P. R. China
| | - Vengatesen Thiyagarajan
- The Swire Institute of Marine Sciences and School of Biological Sciences, The University of Hong Kong, Hong Kong Special Administrative Region, P. R. China
| |
Collapse
|
18
|
Wäge J, Lerebours A, Hardege JD, Rotchell JM. Exposure to low pH induces molecular level changes in the marine worm, Platynereis dumerilii. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2016; 124:105-110. [PMID: 26476878 DOI: 10.1016/j.ecoenv.2015.10.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 10/06/2015] [Accepted: 10/08/2015] [Indexed: 06/05/2023]
Abstract
Fossil fuel emissions and changes in net land use lead to an increase in atmospheric CO2 concentration and a subsequent decrease of ocean pH. Noticeable effects on organisms' calcification rate, shell structure and energy metabolism have been reported in the literature. To date, little is known about the molecular mechanisms altered under low pH exposure, especially in non-calcifying organisms. We used a suppression subtractive hybridisation (SSH) approach to characterise differentially expressed genes isolated from Platynereis dumerilii, a non-calcifying marine polychaeta species, kept at normal and low pH conditions. Several gene sequences have been identified as differentially regulated. These are involved in processes previously considered as indicators of environment change, such as energy metabolism (NADH dehydrogenase, 2-oxoglutarate dehydrogenase, cytochrome c oxidase and ATP synthase subunit F), while others are involved in cytoskeleton function (paramyosin and calponin) and immune defence (fucolectin-1 and paneth cell-specific alpha-defensin) processes. This is the first study of differential gene expression in a non-calcifying, marine polychaete exposed to low pH seawater conditions and suggests that mechanisms of impact may include additional pathways not previously identified as impacted by low pH in other species.
Collapse
Affiliation(s)
- Janine Wäge
- School of Biological, Biomedical and Environmental Sciences, University of Hull, Cottingham Road, Hull HU6 7RX, United Kingdom
| | - Adelaide Lerebours
- School of Biological, Biomedical and Environmental Sciences, University of Hull, Cottingham Road, Hull HU6 7RX, United Kingdom
| | - Jörg D Hardege
- School of Biological, Biomedical and Environmental Sciences, University of Hull, Cottingham Road, Hull HU6 7RX, United Kingdom
| | - Jeanette M Rotchell
- School of Biological, Biomedical and Environmental Sciences, University of Hull, Cottingham Road, Hull HU6 7RX, United Kingdom.
| |
Collapse
|
19
|
Bolton CT, Hernández-Sánchez MT, Fuertes MÁ, González-Lemos S, Abrevaya L, Mendez-Vicente A, Flores JA, Probert I, Giosan L, Johnson J, Stoll HM. Decrease in coccolithophore calcification and CO2 since the middle Miocene. Nat Commun 2016; 7:10284. [PMID: 26762469 PMCID: PMC4735581 DOI: 10.1038/ncomms10284] [Citation(s) in RCA: 116] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 11/26/2015] [Indexed: 12/11/2022] Open
Abstract
Marine algae are instrumental in carbon cycling and atmospheric carbon dioxide (CO2) regulation. One group, coccolithophores, uses carbon to photosynthesize and to calcify, covering their cells with chalk platelets (coccoliths). How ocean acidification influences coccolithophore calcification is strongly debated, and the effects of carbonate chemistry changes in the geological past are poorly understood. This paper relates degree of coccolith calcification to cellular calcification, and presents the first records of size-normalized coccolith thickness spanning the last 14 Myr from tropical oceans. Degree of calcification was highest in the low-pH, high-CO2 Miocene ocean, but decreased significantly between 6 and 4 Myr ago. Based on this and concurrent trends in a new alkenone ɛp record, we propose that decreasing CO2 partly drove the observed trend via reduced cellular bicarbonate allocation to calcification. This trend reversed in the late Pleistocene despite low CO2, suggesting an additional regulator of calcification such as alkalinity.
Collapse
Affiliation(s)
- Clara T. Bolton
- Geology Department, Oviedo University, Arias de Velasco s/n, 33005 Oviedo, Asturias, Spain
- Aix-Marseille University, CNRS, IRD, CEREGE UM34, 13545 Aix en Provence, France
| | | | - Miguel-Ángel Fuertes
- Grupo de Geociencias Oceánicas, Geology Department, University of Salamanca, Salamanca 37008, Spain
| | - Saúl González-Lemos
- Geology Department, Oviedo University, Arias de Velasco s/n, 33005 Oviedo, Asturias, Spain
| | - Lorena Abrevaya
- Geology Department, Oviedo University, Arias de Velasco s/n, 33005 Oviedo, Asturias, Spain
| | - Ana Mendez-Vicente
- Geology Department, Oviedo University, Arias de Velasco s/n, 33005 Oviedo, Asturias, Spain
| | - José-Abel Flores
- Grupo de Geociencias Oceánicas, Geology Department, University of Salamanca, Salamanca 37008, Spain
| | - Ian Probert
- CNRS, Sorbonne Universités-Université Pierre et Marie Curie (UPMC) Paris 06, FR2424, Roscoff Culture Collection, Station Biologique de Roscoff, Place Georges Teissier, 29680 Roscoff, France
| | - Liviu Giosan
- Department of Geology and Geophysics, Woods Hole Oceanographic Institution, 266 Woods Hole Road, MS# 22, Woods Hole, Massachusetts 02543-1050, USA
| | - Joel Johnson
- University of New Hampshire, Department of Earth Sciences, 56 College Road, James Hall, Durham, New Hampshire 03824-3589, USA
| | - Heather M. Stoll
- Geology Department, Oviedo University, Arias de Velasco s/n, 33005 Oviedo, Asturias, Spain
| |
Collapse
|
20
|
Rivero-Calle S, Gnanadesikan A, Del Castillo CE, Balch WM, Guikema SD. Multidecadal increase in North Atlantic coccolithophores and the potential role of rising CO2. Science 2015; 350:1533-7. [DOI: 10.1126/science.aaa8026] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 11/11/2015] [Indexed: 11/02/2022]
|
21
|
McKew BA, Metodieva G, Raines CA, Metodiev MV, Geider RJ. Acclimation of Emiliania huxleyi (1516) to nutrient limitation involves precise modification of the proteome to scavenge alternative sources of N and P. Environ Microbiol 2015; 17:4050-62. [PMID: 26119724 PMCID: PMC4989451 DOI: 10.1111/1462-2920.12957] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 06/15/2015] [Accepted: 06/15/2015] [Indexed: 11/26/2022]
Abstract
Limitation of marine primary production by the availability of nitrogen or phosphorus is common. Emiliania huxleyi, a ubiquitous phytoplankter that plays key roles in primary production, calcium carbonate precipitation and production of dimethyl sulfide, often blooms in mid-latitude at the beginning of summer when inorganic nutrient concentrations are low. To understand physiological mechanisms that allow such blooms, we examined how the proteome of E. huxleyi (strain 1516) responds to N and P limitation. We observed modest changes in much of the proteome despite large physiological changes (e.g. cellular biomass, C, N and P) associated with nutrient limitation of growth rate. Acclimation to nutrient limitation did however involve significant increases in the abundance of transporters for ammonium and nitrate under N limitation and for phosphate under P limitation. More notable were large increases in proteins involved in the acquisition of organic forms of N and P, including urea and amino acid/polyamine transporters and numerous C-N hydrolases under N limitation and a large upregulation of alkaline phosphatase under P limitation. This highly targeted reorganization of the proteome towards scavenging organic forms of macronutrients gives unique insight into the molecular mechanisms that underpin how E. huxleyi has found its niche to bloom in surface waters depleted of inorganic nutrients.
Collapse
Affiliation(s)
- Boyd A McKew
- School of Biological Sciences, University of Essex, Wivenhoe Park, Wivenhoe, Colchester, CO4 3SQ, UK
| | - Gergana Metodieva
- School of Biological Sciences, University of Essex, Wivenhoe Park, Wivenhoe, Colchester, CO4 3SQ, UK
| | - Christine A Raines
- School of Biological Sciences, University of Essex, Wivenhoe Park, Wivenhoe, Colchester, CO4 3SQ, UK
| | - Metodi V Metodiev
- School of Biological Sciences, University of Essex, Wivenhoe Park, Wivenhoe, Colchester, CO4 3SQ, UK
| | - Richard J Geider
- School of Biological Sciences, University of Essex, Wivenhoe Park, Wivenhoe, Colchester, CO4 3SQ, UK
| |
Collapse
|
22
|
Xu K, Gao K. Solar UV Irradiances Modulate Effects of Ocean Acidification on the CoccolithophoridEmiliania huxleyi. Photochem Photobiol 2014; 91:92-101. [DOI: 10.1111/php.12363] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Accepted: 10/12/2014] [Indexed: 01/08/2023]
Affiliation(s)
- Kai Xu
- State Key Laboratory of Marine Environmental Science; Xiamen University; Xiamen China
- Department of Biological Sciences; University of Southern California; Los Angeles CA
| | - Kunshan Gao
- State Key Laboratory of Marine Environmental Science; Xiamen University; Xiamen China
| |
Collapse
|
23
|
Tomanek L. Proteomics to study adaptations in marine organisms to environmental stress. J Proteomics 2014; 105:92-106. [PMID: 24788067 DOI: 10.1016/j.jprot.2014.04.009] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2014] [Revised: 03/25/2014] [Accepted: 04/07/2014] [Indexed: 10/25/2022]
Abstract
Comparisons of proteomic responses of closely related congeners and populations have shown which cellular processes are critical to adapt to environmental stress. For example, several proteomic species comparisons showed that increasing abundances of oxidative stress proteins indicate that reactive oxygen species (ROS) represent a ubiquitous signal and possible co-stressor of warm and cold temperature, acute hyposaline and low pH stress, possibly causing a shift from pro-oxidant NADH-producing to anti-oxidant NADPH-producing and -consuming metabolic pathways. Changes in cytoskeletal and actin-binding proteins in response to several stressors, including ROS, suggest that both are important structural and functional elements in responding to stress. Disruption of protein homeostasis, e.g., increased abundance of molecular chaperones, was severe in response to acute heat stress, inducing proteolysis, but was also observed in response to chronic heat and cold stress and was concentrated to the endoplasmic reticulum during hyposaline stress. Small GTPases affecting vesicle formation and transport, Ca(2+)-signaling and ion transport responded to salinity stress in species- and population-specific ways. Aerobic energy metabolism was in general down-regulated in response to temperature, hypoxia, hyposalinity and low pH stress, but other metabolic pathways were activated to respond to increased oxidative stress or to switch metabolic fuels. Thus, comparative proteomics is a powerful approach to identify functionally adaptive variation. This article is part of a Special Issue entitled: Proteomics of non-model organisms.
Collapse
Affiliation(s)
- Lars Tomanek
- California Polytechnic State University, Department of Biological Sciences, Center for Coastal Marine Sciences, Environmental Proteomics Laboratory, 1 Grand Ave., San Luis Obispo, CA 93407-0401, USA.
| |
Collapse
|