1
|
Kondethimmanahalli C, Ganta RR. Ehrlichia chaffeensis proteomic profiling reveals distinct expression patterns of infectious and replicating forms. Front Cell Infect Microbiol 2025; 15:1463479. [PMID: 40330017 PMCID: PMC12053472 DOI: 10.3389/fcimb.2025.1463479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 03/13/2025] [Indexed: 05/08/2025] Open
Abstract
Ehrlichia chaffeensis is a tick-transmitted rickettsial pathogen responsible for causing human monocytic ehrlichiosis (HME). The pathogen's developmental cycle includes infectious dense-core cells (DCs) and non-infectious replicating cells (RCs). Defining the proteins crucial for the two growth forms is of fundamental importance in understanding the infection and replication process, which also aids in identifying novel therapeutic targets against HME and other related rickettsial diseases. E. chaffeensis organisms cultivated in a macrophage cell line were purified as DC and RC fractions and subjected to comprehensive quantitative proteome analysis. From triplicate sample analysis, we identified 195 proteins as commonly expressed in both the DC and RC forms, while an additional 189 proteins were recognized as exclusively expressed in the RC form. Equal numbers of commonly expressed proteins in the RC and DC forms and having substantially more proteins exclusively expressed in the metabolically active RC form may reflect specific functional priorities of E. chaffeensis supporting its replication within a phagosome. The high abundance of metabolic processes and transport proteins in the RC compared to the DC form may reflect its higher metabolic requirements and interactions with a host cell supporting its intraphagosomal replication. This study provides comprehensive proteome data for E. chaffeensis which will be valuable for a better understanding of protein expression dynamics during its infectious and replicating stages.
Collapse
Affiliation(s)
- Chandramouli Kondethimmanahalli
- Center of Excellence for Vector-Borne Diseases, Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, United States
| | - Roman R. Ganta
- Center of Excellence for Vector-Borne Diseases, Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, United States
- Department of Veterinary Pathobiology, Bond Life Sciences Center, College of Veterinary Medicine, University of Missouri, Columbia, MO, United States
| |
Collapse
|
2
|
Kumari S, Ali A, Kumar M. Nucleotide-induced ClpC oligomerization and its non-preferential association with ClpP isoforms of pathogenic Leptospira. Int J Biol Macromol 2024; 266:131371. [PMID: 38580013 DOI: 10.1016/j.ijbiomac.2024.131371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 03/15/2024] [Accepted: 04/02/2024] [Indexed: 04/07/2024]
Abstract
Bacterial caseinolytic protease-chaperone complexes participate in the elimination of misfolded and aggregated protein substrates. The spirochete Leptospira interrogans possess a set of Clp-chaperones (ClpX, ClpA, and ClpC), which may associate functionally with two different isoforms of LinClpP (ClpP1 and ClpP2). The L. interrogans ClpC (LinClpC) belongs to class-I chaperone with two active ATPase domains separated by a middle domain. Using the size exclusion chromatography, ANS dye binding, and dynamic light scattering analysis, the LinClpC is suggested to undergo nucleotide-induced oligomerization. LinClpC associates with either pure LinClpP1 or LinClpP2 isoforms non-preferentially and with equal affinity. Regardless, pure LinClpP isoforms cannot constitute an active protease complex with LinClpC. Interestingly, the heterocomplex LinClpP1P2 in association with LinClpC forms a functional proteolytic machinery and degrade β-casein or FITC-casein in an energy-independent manner. Adding either ATP or ATPγS further fosters the LinClpCP1P2 complex protease activity by nurturing the functional oligomerization of LinClpC. The antibiotic, acyldepsipeptides (ADEP1) display a higher activatory role on LinClpP1P2 protease activity than LinClpC. Altogether, this work illustrates an in-depth study of hetero-tetradecamer LinClpP1P2 association with its cognate ATPase and unveils a new insight into the structural reorganization of LinClpP1P2 in the presence of chaperone, LinClpC to gain protease activity.
Collapse
Affiliation(s)
- Surbhi Kumari
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Arfan Ali
- Department of Veterinary Microbiology, College of Veterinary Science, Assam Agricultural University, Khanapara, Assam 781022, India
| | - Manish Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India.
| |
Collapse
|
3
|
Chernova LS, Vishnyakov IE, Börner J, Bogachev MI, Thormann KM, Kayumov AR. The Functionality of IbpA from Acholeplasma laidlawii Is Governed by Dynamic Rearrangement of Its Globular-Fibrillar Quaternary Structure. Int J Mol Sci 2023; 24:15445. [PMID: 37895124 PMCID: PMC10607609 DOI: 10.3390/ijms242015445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/18/2023] [Accepted: 10/20/2023] [Indexed: 10/29/2023] Open
Abstract
Small heat shock proteins (sHSPs) represent a first line of stress defense in many bacteria. The primary function of these molecular chaperones involves preventing irreversible protein denaturation and aggregation. In Escherichia coli, fibrillar EcIbpA binds unfolded proteins and keeps them in a folding-competent state. Further, its structural homologue EcIbpB induces the transition of EcIbpA to globules, thereby facilitating the substrate transfer to the HSP70-HSP100 system for refolding. The phytopathogenic Acholeplasma laidlawii possesses only a single sHSP, AlIbpA. Here, we demonstrate non-trivial features of the function and regulation of the chaperone-like activity of AlIbpA according to its interaction with other components of the mycoplasma multi-chaperone network. Our results show that the efficiency of the A. laidlawii multi-chaperone system is driven with the ability of AlIbpA to form both globular and fibrillar structures, thus combining functions of both IbpA and IbpB when transferring the substrate proteins to the HSP70-HSP100 system. In contrast to EcIbpA and EcIbpB, AlIbpA appears as an sHSP, in which the competition between the N- and C-terminal domains regulates the shift of the protein quaternary structure between a fibrillar and globular form, thus representing a molecular mechanism of its functional regulation. While the C-terminus of AlIbpA is responsible for fibrils formation and substrate capture, the N-terminus seems to have a similar function to EcIbpB through facilitating further substrate protein disaggregation using HSP70. Moreover, our results indicate that prior to the final disaggregation process, AlIbpA can directly transfer the substrate to HSP100, thereby representing an alternative mechanism in the HSP interaction network.
Collapse
Affiliation(s)
- Liliya S. Chernova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kremlevskaya 18, 420008 Kazan, Russia;
- Institute of Cytology, Russian Academy of Sciences, Tikhoretsky Ave. 4, 194064 St. Petersburg, Russia;
- Institute of Microbiology and Molecular Biology, Justus Liebig University, Heinrich-Buff-Ring 26, 35392 Giessen, Germany; (J.B.); (K.M.T.)
| | - Innokentii E. Vishnyakov
- Institute of Cytology, Russian Academy of Sciences, Tikhoretsky Ave. 4, 194064 St. Petersburg, Russia;
| | - Janek Börner
- Institute of Microbiology and Molecular Biology, Justus Liebig University, Heinrich-Buff-Ring 26, 35392 Giessen, Germany; (J.B.); (K.M.T.)
| | - Mikhail I. Bogachev
- Centre for Digital Telecommunication Technologies, St. Petersburg Electrotechnical University, Professora Popova 5, 197376 St. Petersburg, Russia;
| | - Kai M. Thormann
- Institute of Microbiology and Molecular Biology, Justus Liebig University, Heinrich-Buff-Ring 26, 35392 Giessen, Germany; (J.B.); (K.M.T.)
| | - Airat R. Kayumov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kremlevskaya 18, 420008 Kazan, Russia;
| |
Collapse
|
4
|
Kondethimmanahalli C, Ganta RR. Proteome analysis of Ehrlichia chaffeensis containing phagosome membranes revealed the presence of numerous bacterial and host proteins. Front Cell Infect Microbiol 2022; 12:1070356. [PMID: 36619760 PMCID: PMC9816426 DOI: 10.3389/fcimb.2022.1070356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022] Open
Abstract
Tick-transmitted Ehrlichia chaffeensis, the causative agent for human monocytic ehrlichiosis, resides and multiplies within a host cell phagosome. Infection progression of E. chaffeensis includes internalization into a host cell by host cell membrane fusion events following engulfment leading to the formation of E. chaffeensis containing vacuole (ECV). Revealing the molecular composition of ECV is important in understanding the host cellular processes, evasion of host defense pathways and in defining host-pathogen interactions. ECVs purified from infected host cells were analyzed to define both host and bacterial proteomes associated with the phagosome membranes. About 160 bacterial proteins and 2,683 host proteins were identified in the ECV membranes. The host proteins included predominantly known phagosome proteins involved in phagocytic trafficking, fusion of vesicles, protein transport, Ras signaling pathway and pathogenic infection. Many highly expressed proteins were similar to the previously documented proteins of phagosome vacuole membranes containing other obligate pathogenic bacteria. The finding of many bacterial membrane proteins is novel; they included multiple outer membrane proteins, such as the p28-Omps, the 120 kDa protein, preprotein translocases, lipoproteins, metal binding proteins, and chaperonins, although the presence of ankyrin repeat proteins, several Type I and IV secretion system proteins is anticipated. This study demonstrates that ECV membrane is extensively modified by the pathogen. This study represents the first and the most comprehensive description of ECV membrane proteome. The identity of many host and Ehrlichia proteins in the ECV membrane will be a valuable to define pathogenic mechanisms critical for the replication of the pathogen within macrophages.
Collapse
Affiliation(s)
| | - Roman R. Ganta
- Center of Excellence for Vector-Borne Diseases, Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, United States
| |
Collapse
|
5
|
Study on spoilage potential and its molecular basis of Shewanella putrefaciens in response to cold conditions by Label-free quantitative proteomic analysis. World J Microbiol Biotechnol 2022; 39:40. [PMID: 36512125 DOI: 10.1007/s11274-022-03479-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 11/18/2022] [Indexed: 12/15/2022]
Abstract
To elucidate how Shewanella putrefaciens survives and produces spoilage products in response to cold conditions, the metabolic and protease activity of S. putrefaciens DSM6067 cultured at three different temperatures (30 °C, 10 °C, and 4 °C) was studied by determining the bacterial growth, total volatile basic nitrogen (TVB-N), biogenic amines, extracellular protease activity, as well as the differential expressed proteins via Label-free quantitative proteomics analysis. The lag phase of the strain cultured at 10 °C and 4 °C was about 20 h and 120 h longer than at 30 °C, respectively. The TVB-N increased to 89.23 mg N/100 g within 28 h at 30 °C, and it needed at least 72 h and 224 h at 10 °C and 4 °C, respectively. Cold temperatures (10 °C and 4 °C) also inhibited the yield factors and the extracellular protease activity per cell at the lag phase. However, the protease activity per cell and the yield factors of the sample cultivated at 10 °C and 4 °C well recovered, especially at the mid and latter stages of the log phase. The further quantitative proteomic analysis displayed a complex biological network to tackle cold stress: cold stress responses, nutrient uptake, and energy conservation strategy. It was observed that the protease and peptidase were upregulated, so as to the degradation pathways of serine, arginine, and aspartate, which might lead to the accumulation of spoilage products. This study highlighted the spoilage potential of S. putrefaciens still should be concerned even at low temperatures.
Collapse
|
6
|
Liu H, Knox CA, Jakkula LUMR, Wang Y, Peddireddi L, Ganta RR. Evaluating EcxR for Its Possible Role in Ehrlichia chaffeensis Gene Regulation. Int J Mol Sci 2022; 23:12719. [PMID: 36361509 PMCID: PMC9657007 DOI: 10.3390/ijms232112719] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/17/2022] [Accepted: 10/19/2022] [Indexed: 04/14/2024] Open
Abstract
Ehrlichia chaffeensis, a tick-transmitted intraphagosomal bacterium, is the causative agent of human monocytic ehrlichiosis. The pathogen also infects several other vertebrate hosts. E. chaffeensis has a biphasic developmental cycle during its growth in vertebrate monocytes/macrophages and invertebrate tick cells. Host- and vector-specific differences in the gene expression from many genes of E. chaffeensis are well documented. It is unclear how the organism regulates gene expression during its developmental cycle and for its adaptation to vertebrate and tick host cell environments. We previously mapped promoters of several E. chaffeensis genes which are recognized by its only two sigma factors: σ32 and σ70. In the current study, we investigated in assessing five predicted E. chaffeensis transcription regulators; EcxR, CtrA, MerR, HU and Tr1 for their possible roles in regulating the pathogen gene expression. Promoter segments of three genes each transcribed with the RNA polymerase containing σ70 (HU, P28-Omp14 and P28-Omp19) and σ32 (ClpB, DnaK and GroES/L) were evaluated by employing multiple independent molecular methods. We report that EcxR binds to all six promoters tested. Promoter-specific binding of EcxR to several gene promoters results in varying levels of gene expression enhancement. This is the first detailed molecular characterization of transcription regulators where we identified EcxR as a gene regulator having multiple promoter-specific interactions.
Collapse
Affiliation(s)
| | | | | | | | | | - Roman R. Ganta
- Center of Excellence for Vector-Borne Diseases (CEVBD), Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA
| |
Collapse
|
7
|
Functional Characterization of Multiple Ehrlichia chaffeensis Sodium (Cation)/Proton Antiporter Genes Involved in the Bacterial pH Homeostasis. Int J Mol Sci 2021; 22:ijms22168420. [PMID: 34445146 PMCID: PMC8395091 DOI: 10.3390/ijms22168420] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 07/30/2021] [Accepted: 08/02/2021] [Indexed: 11/16/2022] Open
Abstract
Ehrlichia chaffeensis causes human monocytic ehrlichiosis. Little is known about how this and other related tick-borne rickettsia pathogens maintain pH homeostasis in acidified phagosomes and the extracellular milieu. The membrane-bound sodium (cation)/proton antiporters are found in a wide range of organisms aiding pH homeostasis. We recently reported a mutation in an antiporter gene of E. chaffeensis (ECH_0379) which causes bacterial in vivo attenuation. The E. chaffeensis genome contains 10 protein coding sequences encoding for predicted antiporters. We report here that nine of these genes are transcribed during the bacterial growth in macrophages and tick cells. All E. chaffeensis antiporter genes functionally complemented antiporter deficient Escherichia coli. Antiporter activity for all predicted E. chaffeensis genes was observed at pH 5.5, while gene products of ECH_0179 and ECH_0379 were also active at pH 8.0, and ECH_0179 protein was complemented at pH 7.0. The antiporter activity was independently verified for the ECH_0379 protein by proteoliposome diffusion analysis. This is the first description of antiporters in E. chaffeensis and demonstrates that the pathogen contains multiple antiporters with varying biological functions, which are likely important for the pH homeostasis of the pathogen’s replicating and infectious forms.
Collapse
|
8
|
Creekmore BC, Chang YW, Lee EB. The Cryo-EM Effect: Structural Biology of Neurodegenerative Disease Proteostasis Factors. J Neuropathol Exp Neurol 2021; 80:494-513. [PMID: 33860329 PMCID: PMC8177850 DOI: 10.1093/jnen/nlab029] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Neurodegenerative diseases are characterized by the accumulation of misfolded proteins. This protein aggregation suggests that abnormal proteostasis contributes to aging-related neurodegeneration. A better fundamental understanding of proteins that regulate proteostasis may provide insight into the pathophysiology of neurodegenerative disease and may perhaps reveal novel therapeutic opportunities. The 26S proteasome is the key effector of the ubiquitin-proteasome system responsible for degrading polyubiquitinated proteins. However, additional factors, such as valosin-containing protein (VCP/p97/Cdc48) and C9orf72, play a role in regulation and trafficking of substrates through the normal proteostasis systems of a cell. Nonhuman AAA+ ATPases, such as the disaggregase Hsp104, also provide insights into the biochemical processes that regulate protein aggregation. X-ray crystallography and cryo-electron microscopy (cryo-EM) structures not bound to substrate have provided meaningful information about the 26S proteasome, VCP, and Hsp104. However, recent cryo-EM structures bound to substrate have provided new information about the function and mechanism of these proteostasis factors. Cryo-EM and cryo-electron tomography data combined with biochemical data have also increased the understanding of C9orf72 and its role in maintaining proteostasis. These structural insights provide a foundation for understanding proteostasis mechanisms with near-atomic resolution upon which insights can be gleaned regarding the pathophysiology of neurodegenerative diseases.
Collapse
Affiliation(s)
- Benjamin C Creekmore
- From the Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Graduate Program in Biochemistry and Molecular Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Translational Neuropathology Research Laboratory, Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Yi-Wei Chang
- From the Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Edward B Lee
- Translational Neuropathology Research Laboratory, Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
9
|
Hsp100 Molecular Chaperone ClpB and Its Role in Virulence of Bacterial Pathogens. Int J Mol Sci 2021; 22:ijms22105319. [PMID: 34070174 PMCID: PMC8158500 DOI: 10.3390/ijms22105319] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/14/2021] [Accepted: 05/15/2021] [Indexed: 01/05/2023] Open
Abstract
This review focuses on the molecular chaperone ClpB that belongs to the Hsp100/Clp subfamily of the AAA+ ATPases and its biological function in selected bacterial pathogens, causing a variety of human infectious diseases, including zoonoses. It has been established that ClpB disaggregates and reactivates aggregated cellular proteins. It has been postulated that ClpB’s protein disaggregation activity supports the survival of pathogenic bacteria under host-induced stresses (e.g., high temperature and oxidative stress), which allows them to rapidly adapt to the human host and establish infection. Interestingly, ClpB may also perform other functions in pathogenic bacteria, which are required for their virulence. Since ClpB is not found in human cells, this chaperone emerges as an attractive target for novel antimicrobial therapies in combating bacterial infections.
Collapse
|
10
|
Alam A, Bröms JE, Kumar R, Sjöstedt A. The Role of ClpB in Bacterial Stress Responses and Virulence. Front Mol Biosci 2021; 8:668910. [PMID: 33968993 PMCID: PMC8100447 DOI: 10.3389/fmolb.2021.668910] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 04/06/2021] [Indexed: 02/04/2023] Open
Abstract
Bacterial survival within a mammalian host is contingent upon sensing environmental perturbations and initiating an appropriate counter-response. To achieve this, sophisticated molecular machineries are used, where bacterial chaperone systems play key roles. The chaperones are a prerequisite for bacterial survival during normal physiological conditions as well as under stressful situations, e.g., infection or inflammation. Specific stress factors include, but are not limited to, high temperature, osmolarity, pH, reactive oxidative species, or bactericidal molecules. ClpB, a member of class 1 AAA+ proteins, is a key chaperone that via its disaggregase activity plays a crucial role for bacterial survival under various forms of stress, in particular heat shock. Recently, it has been reported that ClpB also regulates secretion of bacterial effector molecules related to type VI secretion systems. In this review, the roles of ClpB in stress responses and the mechanisms by which it promotes survival of pathogenic bacteria are discussed.
Collapse
Affiliation(s)
- Athar Alam
- Laboratory for Molecular Infection Medicine Sweden (MIMS), Department of Clinical Microbiology, Umeå University, Umeå, Sweden
| | - Jeanette E Bröms
- Laboratory for Molecular Infection Medicine Sweden (MIMS), Department of Clinical Microbiology, Umeå University, Umeå, Sweden
| | - Rajender Kumar
- Laboratory for Molecular Infection Medicine Sweden (MIMS), Department of Clinical Microbiology, Umeå University, Umeå, Sweden
| | - Anders Sjöstedt
- Laboratory for Molecular Infection Medicine Sweden (MIMS), Department of Clinical Microbiology, Umeå University, Umeå, Sweden
| |
Collapse
|
11
|
Protein and DNA Biosynthesis Demonstrated in Host Cell-Free Phagosomes Containing Anaplasma phagocytophilum or Ehrlichia chaffeensis in Axenic Media. Infect Immun 2021; 89:IAI.00638-20. [PMID: 33431703 PMCID: PMC8090944 DOI: 10.1128/iai.00638-20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 12/23/2020] [Indexed: 11/20/2022] Open
Abstract
Rickettsiae belong to the Anaplasmataceae family, which includes mostly tick-transmitted pathogens causing human, canine, and ruminant diseases. Biochemical characterization of the pathogens remains a major challenge because of their obligate parasitism. Rickettsiae belong to the Anaplasmataceae family, which includes mostly tick-transmitted pathogens causing human, canine, and ruminant diseases. Biochemical characterization of the pathogens remains a major challenge because of their obligate parasitism. We investigated the use of an axenic medium for growth of two important pathogens—Anaplasma phagocytophilum and Ehrlichia chaffeensis—in host cell-free phagosomes. We recently reported that the axenic medium promotes protein and DNA biosynthesis in host cell-free replicating form of E. chaffeensis, although the bacterial replication is limited. We now tested the hypothesis that growth on axenic medium can be improved if host cell-free rickettsia-containing phagosomes are used. Purification of phagosomes from A. phagocytophilum- and E. chaffeensis-infected host cells was accomplished by density gradient centrifugation combined with magnet-assisted cell sorting. Protein and DNA synthesis was observed for both organisms in cell-free phagosomes with glucose-6-phosphate and/or ATP. The levels of protein and DNA synthesis were the highest for a medium pH of 7. The data demonstrate bacterial DNA and protein synthesis for the first time in host cell-free phagosomes for two rickettsial pathogens. The host cell support-free axenic growth of obligate pathogenic rickettsiae will be critical in advancing research goals in many important tick-borne diseases impacting human and animal health.
Collapse
|
12
|
Scieuzo C, Salvia R, Franco A, Pezzi M, Cozzolino F, Chicca M, Scapoli C, Vogel H, Monti M, Ferracini C, Pucci P, Alma A, Falabella P. An integrated transcriptomic and proteomic approach to identify the main Torymus sinensis venom components. Sci Rep 2021; 11:5032. [PMID: 33658582 PMCID: PMC7930282 DOI: 10.1038/s41598-021-84385-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 12/22/2020] [Indexed: 01/31/2023] Open
Abstract
During oviposition, ectoparasitoid wasps not only inject their eggs but also a complex mixture of proteins and peptides (venom) in order to regulate the host physiology to benefit their progeny. Although several endoparasitoid venom proteins have been identified, little is known about the components of ectoparasitoid venom. To characterize the protein composition of Torymus sinensis Kamijo (Hymenoptera: Torymidae) venom, we used an integrated transcriptomic and proteomic approach and identified 143 venom proteins. Moreover, focusing on venom gland transcriptome, we selected additional 52 transcripts encoding putative venom proteins. As in other parasitoid venoms, hydrolases, including proteases, phosphatases, esterases, and nucleases, constitute the most abundant families in T. sinensis venom, followed by protease inhibitors. These proteins are potentially involved in the complex parasitic syndrome, with different effects on the immune system, physiological processes and development of the host, and contribute to provide nutrients to the parasitoid progeny. Although additional in vivo studies are needed, initial findings offer important information about venom factors and their putative host effects, which are essential to ensure the success of parasitism.
Collapse
Affiliation(s)
- Carmen Scieuzo
- grid.7367.50000000119391302Department of Sciences, University of Basilicata, Via dell’Ateneo Lucano 10, 85100 Potenza, Italy ,grid.7367.50000000119391302Spinoff XFlies S.R.L, University of Basilicata, Via dell’Ateneo Lucano 10, 85100 Potenza, Italy
| | - Rosanna Salvia
- grid.7367.50000000119391302Department of Sciences, University of Basilicata, Via dell’Ateneo Lucano 10, 85100 Potenza, Italy ,grid.7367.50000000119391302Spinoff XFlies S.R.L, University of Basilicata, Via dell’Ateneo Lucano 10, 85100 Potenza, Italy
| | - Antonio Franco
- grid.7367.50000000119391302Department of Sciences, University of Basilicata, Via dell’Ateneo Lucano 10, 85100 Potenza, Italy ,grid.7367.50000000119391302Spinoff XFlies S.R.L, University of Basilicata, Via dell’Ateneo Lucano 10, 85100 Potenza, Italy
| | - Marco Pezzi
- grid.8484.00000 0004 1757 2064Department of Life Sciences and Biotechnology, University of Ferrara, Via L. Borsari 46, 44121 Ferrara, Italy
| | - Flora Cozzolino
- grid.4691.a0000 0001 0790 385XDepartment of Chemical Sciences, University Federico II of Napoli, Via Cinthia 6, 80126 Naples, Italy ,CEINGE Advanced Biotechnology, Via Gaetano Salvatore 486, 80126 Naples, Italy
| | - Milvia Chicca
- grid.8484.00000 0004 1757 2064Department of Life Sciences and Biotechnology, University of Ferrara, Via L. Borsari 46, 44121 Ferrara, Italy
| | - Chiara Scapoli
- grid.8484.00000 0004 1757 2064Department of Life Sciences and Biotechnology, University of Ferrara, Via L. Borsari 46, 44121 Ferrara, Italy
| | - Heiko Vogel
- grid.418160.a0000 0004 0491 7131Department of Entomology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, 07745 Jena, Germany
| | - Maria Monti
- grid.4691.a0000 0001 0790 385XDepartment of Chemical Sciences, University Federico II of Napoli, Via Cinthia 6, 80126 Naples, Italy ,CEINGE Advanced Biotechnology, Via Gaetano Salvatore 486, 80126 Naples, Italy
| | - Chiara Ferracini
- grid.7605.40000 0001 2336 6580Department of Agricultural, Forest and Food Sciences, University of Torino, Largo Paolo Braccini 2, 10095 Grugliasco, Italy
| | - Pietro Pucci
- grid.4691.a0000 0001 0790 385XDepartment of Chemical Sciences, University Federico II of Napoli, Via Cinthia 6, 80126 Naples, Italy ,CEINGE Advanced Biotechnology, Via Gaetano Salvatore 486, 80126 Naples, Italy
| | - Alberto Alma
- grid.7605.40000 0001 2336 6580Department of Agricultural, Forest and Food Sciences, University of Torino, Largo Paolo Braccini 2, 10095 Grugliasco, Italy
| | - Patrizia Falabella
- grid.7367.50000000119391302Department of Sciences, University of Basilicata, Via dell’Ateneo Lucano 10, 85100 Potenza, Italy ,grid.7367.50000000119391302Spinoff XFlies S.R.L, University of Basilicata, Via dell’Ateneo Lucano 10, 85100 Potenza, Italy
| |
Collapse
|
13
|
Belisario JC, Lee HH, Luknauth H, Rigel NW, Martinez LR. Acinetobacter baumannii Strains Deficient in the Clp Chaperone-Protease Genes Have Reduced Virulence in a Murine Model of Pneumonia. Pathogens 2021; 10:pathogens10020204. [PMID: 33668542 PMCID: PMC7917692 DOI: 10.3390/pathogens10020204] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 02/08/2021] [Accepted: 02/09/2021] [Indexed: 01/05/2023] Open
Abstract
Acinetobacter baumannii has emerged as a significant opportunistic Gram-negative pathogen and causative agent of nosocomial pneumonia especially in immunocompromised individuals in intensive care units. Recent advances to understand the contribution and function of A. baumannii virulence factors in its pathogenesis have begun to elucidate how this bacterium interacts with immune cells and its interesting mechanisms for multi-antibiotic resistance. Taking advantage of the availability of the A. baumannii AB5075 transposon mutant library, we investigated the impact of the A. baumannii Clp genes, which encode for a chaperone-protease responsible for the degradation of misfolded proteins, on bacterial virulence in a model of pneumonia using C57BL/6 mice and survival within J774.16 macrophage-like cells. Clp-protease A. baumannii mutants exhibit decreased virulence in rodents, high phagocytic cell-mediated killing and reduced biofilm formation. Capsular staining showed evidence of encapsulation in A. baumannii AB5075 and Clp-mutant strains. Surprisingly, clpA and clpS mutants displayed irregular cell morphology, which may be important in the biofilm structural deficiencies observed in these strains. Interestingly, clpA showed apical-like growth, proliferation normally observed in filamentous fungi. These findings provide new information regarding A. baumannii pathogenesis and may be important for the development of therapies intended at reducing morbidity and mortality associated with this remarkable pathogen.
Collapse
Affiliation(s)
- J Christian Belisario
- Department of Physical Medicine and Rehabilitation, University of Pennsylvania, Philadelphia, PA 19146, USA;
- Department of Biomedical Sciences, NYIT College of Osteopathic Medicine, New York Institute of Technology, Old Westbury, NY 11568, USA;
| | - Hiu Ham Lee
- Department of Biomedical Sciences, NYIT College of Osteopathic Medicine, New York Institute of Technology, Old Westbury, NY 11568, USA;
| | - Harshani Luknauth
- Department of Biology, Hofstra University, Hempstead, NY 11549, USA; (H.L.); (N.W.R.)
| | - Nathan W. Rigel
- Department of Biology, Hofstra University, Hempstead, NY 11549, USA; (H.L.); (N.W.R.)
| | - Luis R. Martinez
- Department of Biomedical Sciences, NYIT College of Osteopathic Medicine, New York Institute of Technology, Old Westbury, NY 11568, USA;
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, FL 32610, USA
- Correspondence:
| |
Collapse
|
14
|
Glaza P, Ranaweera CB, Shiva S, Roy A, Geisbrecht BV, Schoenen FJ, Zolkiewski M. Repurposing p97 inhibitors for chemical modulation of the bacterial ClpB-DnaK bichaperone system. J Biol Chem 2021; 296:100079. [PMID: 33187983 PMCID: PMC7948422 DOI: 10.1074/jbc.ra120.015413] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 10/31/2020] [Accepted: 11/13/2020] [Indexed: 01/18/2023] Open
Abstract
The ClpB-DnaK bichaperone system reactivates aggregated cellular proteins and is essential for survival of bacteria, fungi, protozoa, and plants under stress. AAA+ ATPase ClpB is a promising target for the development of antimicrobials because a loss of its activity is detrimental for survival of many pathogens and no apparent ClpB orthologs are found in metazoans. We investigated ClpB activity in the presence of several compounds that were previously described as inhibitor leads for the human AAA+ ATPase p97, an antitumor target. We discovered that N2,N4-dibenzylquinazoline-2,4-diamine (DBeQ), the least potent among the tested p97 inhibitors, binds to ClpB with a Kd∼60 μM and inhibits the casein-activated, but not the basal, ATPase activity of ClpB with an IC50∼5 μM. The remaining p97 ligands, which displayed a higher affinity toward p97, did not affect the ClpB ATPase. DBeQ also interacted with DnaK with a Kd∼100 μM and did not affect the DnaK ATPase but inhibited the DnaK chaperone activity in vitro. DBeQ inhibited the reactivation of aggregated proteins by the ClpB-DnaK bichaperone system in vitro with an IC50∼5 μM and suppressed the growth of cultured Escherichia coli. The DBeQ-induced loss of E. coli proliferation was exacerbated by heat shock but was nearly eliminated in a ClpB-deficient E. coli strain, which demonstrates a significant selectivity of DBeQ toward ClpB in cells. Our results provide chemical validation of ClpB as a target for developing novel antimicrobials. We identified DBeQ as a promising lead compound for structural optimization aimed at selective targeting of ClpB and/or DnaK.
Collapse
Affiliation(s)
- Przemyslaw Glaza
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas, USA
| | - Chathurange B Ranaweera
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas, USA
| | - Sunitha Shiva
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas, USA
| | - Anuradha Roy
- High Throughput Screening Laboratory, University of Kansas, Lawrence, Kansas, USA; Lead Development and Optimization Shared Resource, University of Kansas Cancer Center, Kansas City, Kansas, USA
| | - Brian V Geisbrecht
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas, USA
| | - Frank J Schoenen
- Lead Development and Optimization Shared Resource, University of Kansas Cancer Center, Kansas City, Kansas, USA; Higuchi Biosciences Center, University of Kansas, Lawrence, Kansas, USA
| | - Michal Zolkiewski
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas, USA.
| |
Collapse
|
15
|
Parcerisa IL, Rosano GL, Ceccarelli EA. Biochemical characterization of ClpB3, a chloroplastic disaggregase from Arabidopsis thaliana. PLANT MOLECULAR BIOLOGY 2020; 104:451-465. [PMID: 32803477 DOI: 10.1007/s11103-020-01050-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 08/11/2020] [Indexed: 06/11/2023]
Abstract
The first biochemical characterization of a chloroplastic disaggregase is reported (Arabidopsis thaliana ClpB3). ClpB3 oligomerizes into active hexamers that resolubilize aggregated substrates using ATP and without the aid of partners. Disaggregases from the Hsp100/Clp family are a type of molecular chaperones involved in disassembling protein aggregates. Plant cells are uniquely endowed with ClpB proteins in the cytosol, mitochondria and chloroplasts. Chloroplastic ClpB proteins have been implicated in key processes like the unfolded protein response; however, they have not been studied in detail. In this study, we explored the biochemical properties of a chloroplastic ClpB disaggregase, in particular, ClpB3 from A. thaliana. ClpB3 was produced recombinantly in Escherichia coli and affinity-purified to near homogeneity. ClpB3 forms a hexameric complex in the presence of MgATP and displays intrinsic ATPase activity. We demonstrate that ClpB3 has ATPase activity in a wide range of pH and temperature values and is particularly resistant to heat. ClpB3 specifically targets unstructured polypeptides and mediates the reactivation of heat-denatured model substrates without the aid of the Hsp70 system. Overall, this work represents the first in-depth biochemical description of a ClpB protein from plants and strongly supports its role as the putative disaggregase chaperone in chloroplasts.
Collapse
Affiliation(s)
- Ivana L Parcerisa
- Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET. Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, 2000, Rosario, Argentina
| | - Germán L Rosano
- Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET. Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, 2000, Rosario, Argentina.
| | - Eduardo A Ceccarelli
- Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET. Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, 2000, Rosario, Argentina
| |
Collapse
|
16
|
Singh P, Khurana H, Yadav SP, Dhiman K, Singh P, Ashish, Singh R, Sharma D. Biochemical characterization of ClpB protein from Mycobacterium tuberculosis and identification of its small-molecule inhibitors. Int J Biol Macromol 2020; 165:375-387. [PMID: 32987071 DOI: 10.1016/j.ijbiomac.2020.09.131] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/25/2020] [Accepted: 09/18/2020] [Indexed: 12/14/2022]
Abstract
Tuberculosis, caused by pathogenic M. tuberculosis, remains a global health concern among various infectious diseases. Studies show that ClpB, a major disaggregase, protects the pathogen from various stresses encountered in the host environment. In the present study we have performed a detailed biophysical characterization of M. tuberculosis ClpB followed by a high throughput screening to identify small molecule inhibitors. The sedimentation velocity studies reveal that ClpB oligomerization varies with its concentration and presence of nucleotides. Further, using high throughput malachite green-based screening assay, we identified potential novel inhibitors of ClpB ATPase activity. The enzyme kinetics revealed that the lead molecule inhibits ClpB activity in a competitive manner. These drugs were also able to inhibit ATPase activity associated with E. coli ClpB and yeast Hsp104. The identified drugs inhibited the growth of intracellular bacteria in macrophages. Small angle X-ray scattering based modeling shows that ATP, and not its non-hydrolyzable analogs induce large scale conformational rearrangements in ClpB. Remarkably, the identified small molecules inhibited these ATP inducible conformational changes, suggesting that nucleotide induced shape changes are crucial for ClpB activity. The study broadens our understanding of M. tuberculosis chaperone machinery and provides the basis for designing more potent inhibitors against ClpB chaperone.
Collapse
Affiliation(s)
- Prashant Singh
- Council of Scientific and Industrial Research-Institute of Microbial Technology, India
| | - Harleen Khurana
- Tuberculosis Research Laboratory, Translational Health Science and Technology Institute, India
| | - Shiv Pratap Yadav
- Council of Scientific and Industrial Research-Institute of Microbial Technology, India
| | - Kanika Dhiman
- Council of Scientific and Industrial Research-Institute of Microbial Technology, India
| | - Padam Singh
- Tuberculosis Research Laboratory, Translational Health Science and Technology Institute, India
| | - Ashish
- Council of Scientific and Industrial Research-Institute of Microbial Technology, India
| | - Ramandeep Singh
- Tuberculosis Research Laboratory, Translational Health Science and Technology Institute, India
| | - Deepak Sharma
- Council of Scientific and Industrial Research-Institute of Microbial Technology, India.
| |
Collapse
|
17
|
Green RS, Izac JR, Naimi WA, O'Bier N, Breitschwerdt EB, Marconi RT, Carlyon JA. Ehrlichia chaffeensis EplA Interaction With Host Cell Protein Disulfide Isomerase Promotes Infection. Front Cell Infect Microbiol 2020; 10:500. [PMID: 33072622 PMCID: PMC7538545 DOI: 10.3389/fcimb.2020.00500] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 08/11/2020] [Indexed: 12/19/2022] Open
Abstract
Ehrlichia chaffeensis is an obligate intracellular bacterium that invades monocytes to cause the emerging and potentially severe disease, monocytic ehrlichiosis. Ehrlichial invasion of host cells, a process that is essential for the bacterium's survival and pathogenesis, is incompletely understood. In this study, we identified ECH_0377, henceforth designated as EplA (E. chaffeensis PDI ligand A) as an E. chaffeensis adhesin that interacts with host cell protein disulfide isomerase (PDI) to mediate bacterial entry into host cells. EplA is an outer membrane protein that E. chaffeensis expresses during growth in THP-1 monocytic cells. Canine sera confirmed to be positive for exposure to Ehrlichia spp. recognized recombinant EplA, indicating that it is expressed during infection in vivo. EplA antiserum inhibited the bacterium's ability to infect monocytic cells. The EplA-PDI interaction was confirmed via co-immunoprecipitation. Treating host cell surfaces with antibodies that inhibit PDI and/or thioredoxin-1 thiol reductase activity impaired E. chaffeensis infection. Chemical reduction of host cell surfaces, but not bacterial surfaces with tris(2-carboxyethyl)phosphine (TCEP) restored ehrlichial infectivity in the presence of the PDI-neutralizing antibody. Antisera specific for EplA C-terminal residues 95-104 (EplA95−104) or outer membrane protein A amino acids 53-68 (OmpA53−68) reduced E. chaffeensis infection of THP-1 cells. Notably, TCEP rescued ehrlichial infectivity of bacteria that had been treated with anti-EplA95−104, but not anti-EcOmpA53−68. These results demonstrate that EplA contributes to E. chaffeensis infection of monocytic cells by engaging PDI and exploiting the enzyme's reduction of host cell surface disulfide bonds in an EplA C-terminus-dependent manner and identify EplA95−104 and EcOmpA53−68 as novel ehrlichial receptor binding domains.
Collapse
Affiliation(s)
- Ryan S Green
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, School of Medicine, Richmond, VA, United States
| | - Jerilyn R Izac
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, School of Medicine, Richmond, VA, United States
| | - Waheeda A Naimi
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, School of Medicine, Richmond, VA, United States
| | - Nathaniel O'Bier
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, School of Medicine, Richmond, VA, United States
| | - Edward B Breitschwerdt
- Department of Clinical Sciences and the Intracellular Pathogens Research Laboratory, Comparative Medicine Institute, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States
| | - Richard T Marconi
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, School of Medicine, Richmond, VA, United States
| | - Jason A Carlyon
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, School of Medicine, Richmond, VA, United States
| |
Collapse
|
18
|
Liu H, Ganta RR. Sequence Determinants Spanning -10 Motif and Spacer Region Implicated in Unique Ehrlichia chaffeensis Sigma 32-Dependent Promoter Activity of dnaK Gene. Front Microbiol 2019; 10:1772. [PMID: 31428069 PMCID: PMC6687850 DOI: 10.3389/fmicb.2019.01772] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 07/18/2019] [Indexed: 11/21/2022] Open
Abstract
Ehrlichia chaffeensis is an obligate intracellular tick-borne bacterium that causes human monocytic ehrlichiosis. Studying Ehrlichia gene regulation is challenge, as this and related rickettsiales lack natural plasmids and mutagenesis experiments are of a limited scope. E. chaffeensis contains only two sigma factors, σ32 and σ70. We previously developed Escherichia coli surrogate system to study transcriptional regulation from RNA polymerase (RNAP) containing Ehrlichia σ32 or σ70. We reported that RNAP binding motifs of E. chaffeensis genes recognized by σ32 or σ70 share extensive homology and that transcription may be initiated by either one of the sigma factors, although transcriptional efficiencies differ. In the current study, we investigated mapping the E. chaffeensis dnaK gene promoter using the pathogen σ32 expressed in E. coli lacking its native σ32. The E. coli surrogate system and our previously described in vitro transcription system aided in defining the unique −10 motif and spacer sequence of the dnaK promoter. We also mapped σ32 amino acids/domains engaged in its promoter regulation in E. chaffeensis. The data reported in this study demonstrate that the −10 and −35 motifs and spacer sequence located between the two motifs of dnaK promoter are critical for the RNAP function. Further, we mapped the importance of all six nucleotide positions of the −10 motif and identified critical determinants within it. In addition, we reported that the lack of C-rich sequence upstream to the −10 motif is unique in driving the pathogen-specific transcription by its σ32 from dnaK gene promoter. This is the first study in defining an E. chaffeensis σ32-dependent promoter and it offers insights about how this and other related rickettsial pathogens regulate stress response genes.
Collapse
Affiliation(s)
- Huitao Liu
- Center of Excellence for Vector-Borne Diseases, Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, United States
| | - Roman R Ganta
- Center of Excellence for Vector-Borne Diseases, Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, United States
| |
Collapse
|
19
|
Shorter J, Southworth DR. Spiraling in Control: Structures and Mechanisms of the Hsp104 Disaggregase. Cold Spring Harb Perspect Biol 2019; 11:cshperspect.a034033. [PMID: 30745294 DOI: 10.1101/cshperspect.a034033] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Hsp104 is a hexameric AAA+ ATPase and protein disaggregase found in yeast, which couples ATP hydrolysis to the dissolution of diverse polypeptides trapped in toxic preamyloid oligomers, phase-transitioned gels, disordered aggregates, amyloids, and prions. Hsp104 shows plasticity in disaggregating diverse substrates, but how its hexameric architecture operates as a molecular machine has remained unclear. Here, we highlight structural advances made via cryoelectron microscopy (cryo-EM) that enhance our mechanistic understanding of Hsp104 and other related AAA+ translocases. Hsp104 hexamers are dynamic and adopt open "lock-washer" spiral states and closed ring structures that envelope polypeptide substrate inside the axial channel. ATP hydrolysis-driven conformational changes at the spiral seam ratchet substrate deeper into the channel. Remarkably, this mode of polypeptide translocation is reminiscent of models for how hexameric helicases unwind DNA and RNA duplexes. Thus, Hsp104 likely adapts elements of a deeply rooted, ring-translocase mechanism to the specialized task of protein disaggregation.
Collapse
Affiliation(s)
- James Shorter
- Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Daniel R Southworth
- Department of Biochemistry and Biophysics; and the Institute for Neurodegenerative Diseases, University of California San Francisco, San Francisco, California 94158
| |
Collapse
|
20
|
Kondethimmanahalli C, Liu H, Ganta RR. Proteome Analysis Revealed Changes in Protein Expression Patterns Caused by Mutations in Ehrlichia chaffeensis. Front Cell Infect Microbiol 2019; 9:58. [PMID: 30937288 PMCID: PMC6431617 DOI: 10.3389/fcimb.2019.00058] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 02/25/2019] [Indexed: 01/31/2023] Open
Abstract
The tick-borne rickettsial pathogen, Ehrlichia chaffeensis, causes monocytic ehrlichiosis in people and other vertebrate hosts. Mutational analysis in E. chaffeensis genome aids in better understanding of its infection and persistence in host cells and in the development of attenuated vaccines. Our recent RNA deep sequencing study revealed that three genomic mutations caused global changes in the gene expression patterns, which in turn affect the ability of pathogen's survival in a host and the host's ability to induce protection against the pathogen. In this follow-up study, we document the impact of mutations on the pathogen's global protein expression and the influence of protein abundance on a mutant's attenuation and protection of vertebrate host against infection. iTRAQ labeling and mass spectrometry analysis of E. chaffeensis wildtype and mutants identified 564 proteins covering about 63% of the genome. Mutation in ECH_0379 gene encoding for an antiporter protein, causing attenuated growth in vertebrate hosts, led to overexpression of p28 outer membrane proteins, molecular chaperons, and metabolic enzymes, while a mutation downstream to the ECH_0490 gene that caused minimal impact on the pathogen's in vivo growth resulted in major changes in the expression of outer membrane proteins, transcriptional regulators and T4SS proteins. ECH_0660 gene mutation, causing the pathogen's rapid clearance and offering protection against wild type infection challenge in a vertebrate host, had a minimal impact on proteome similar to our prior observations from transcriptome analysis. While the global proteome data revealed fewer translated proteins compared to the transcripts identified from RNA deep sequencing analysis, there is a great deal of correlation noted between the global proteome and transcriptome analysis. Further, global proteome analysis, including the assessment of 2D resolved total and immunoproteomes revealed greater variations in the highly immunogenic p28-Omp proteins.
Collapse
Affiliation(s)
- Chandramouli Kondethimmanahalli
- Department of Diagnostic Medicine/Pathobiology, Center of Excellence for Vector-Borne Diseases, College of Veterinary Medicine, Kansas State University, Manhattan, KS, United States
| | - Huitao Liu
- Department of Diagnostic Medicine/Pathobiology, Center of Excellence for Vector-Borne Diseases, College of Veterinary Medicine, Kansas State University, Manhattan, KS, United States
| | - Roman R Ganta
- Department of Diagnostic Medicine/Pathobiology, Center of Excellence for Vector-Borne Diseases, College of Veterinary Medicine, Kansas State University, Manhattan, KS, United States
| |
Collapse
|
21
|
Protein and DNA synthesis demonstrated in cell-free Ehrlichia chaffeensis organisms in axenic medium. Sci Rep 2018; 8:9293. [PMID: 29915240 PMCID: PMC6006305 DOI: 10.1038/s41598-018-27574-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 05/30/2018] [Indexed: 01/23/2023] Open
Abstract
Ehrlichia chaffeensis, a tick-transmitted rickettsial bacterium, is the causative agent of human monocytic ehrlichiosis. Biochemical characterization of this and other related Rickettsiales remains a major challenge, as they require a host cell for their replication. We investigated the use of an axenic medium for E. chaffeensis growth, assessed by protein and DNA synthesis, in the absence of a host cell. E. chaffeensis organisms harvested from in vitro cultures grown in a vertebrate cell line were fractionated into infectious dense-core cells (DC) and the non-infectious replicating form, known as reticulate cells (RC) by renografin density gradient centrifugation and incubated in the axenic medium containing amino acids, nucleotides, and different energy sources. Bacterial protein and DNA synthesis were observed in RCs in response to glucose-6-phosphate, although adenosine triphosphate, alpha-ketoglutarate or sodium acetate supported protein synthesis. The biosynthetic activity could not be detected in DCs in the axenic medium. While the data demonstrate de novo protein and DNA synthesis under axenic conditions for E. chaffeensis RCs, additional modifications are required in order to establish conditions that support bacterial replication, and transition to DCs.
Collapse
|
22
|
Kondethimmanahalli C, Ganta R. Impact of Three Different Mutations in Ehrlichia chaffeensis in Altering the Global Gene Expression Patterns. Sci Rep 2018; 8:6162. [PMID: 29670161 PMCID: PMC5906474 DOI: 10.1038/s41598-018-24471-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 03/26/2018] [Indexed: 02/06/2023] Open
Abstract
The rickettsial pathogen Ehrlichia chaffeensis causes a tick-borne disease, human monocytic ehrlichiosis. Mutations within certain genomic locations of the pathogen aid in understanding the pathogenesis and in developing attenuated vaccines. Our previous studies demonstrated that mutations in different genomic sites in E. chaffeensis caused variable impacts on their growth and attenuation in vertebrate and tick hosts. Here, we assessed the effect of three mutations on transcriptional changes using RNA deep-sequencing technology. RNA sequencing aided in detecting 66-80% of the transcripts of wildtype and mutant E. chaffeensis. Mutation in an antiporter gene (ECH_0379) causing attenuated growth in vertebrate hosts resulted in the down regulation of many transcribed genes. Similarly, a mutation downstream to the ECH_0490 coding sequence resulted in minimal impact on the pathogen's in vivo growth, but caused major changes in its transcriptome. This mutation caused enhanced expression of several host stress response genes. Even though the ECH_0660 gene mutation caused the pathogen's rapid clearance in vertebrate hosts and aids in generating a protective response, there was minimal impact on the transcriptome. The transcriptomic data offer novel insights about the impact of mutations on global gene expression and how they may contribute to the pathogen's resistance and/or clearance from the host.
Collapse
Affiliation(s)
- Chandramouli Kondethimmanahalli
- Center of Excellence for Vector-Borne Diseases, Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, 66506, USA
| | - Roman Ganta
- Center of Excellence for Vector-Borne Diseases, Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, 66506, USA.
| |
Collapse
|
23
|
Abstract
By assisting in the proteolysis, disaggregation and refolding of the aggregated proteins, Caseinolytic proteases (Clps) enhance the cellular survival under stress conditions. In the current study, comparative roles of two such Clps, ClpA (involved in proteolysis) and ClpB (involved in protein disaggregation and refolding) in the survival of Salmonella Typhimurium (S. Typhimurium) under different stresses and in virulence have been investigated. clpA and clpB gene deletion mutant strains (∆clpA and ∆clpB) of S. Typhimurium have been hypersensitive to 42 °C, HOCl and paraquat. However, the ∆clpB strain was comparatively much more susceptible (p < 0.001) to the above stresses than ∆clpA strain. ∆clpB strain also showed reduced survival (p < 0.001) in poultry macrophages. The hypersusceptibilities of ∆clpB strain to oxidants and macrophages were restored in plasmid based complemented (∆clpB + pclpB) strain. Further, the ∆clpB strain was defective for colonization in the poultry caecum and showed decreased dissemination to the spleen and liver. Our findings suggest that the role of ClpB is more important than the role of ClpA for the survival of S. Typhimurium under stress and colonization in chickens.
Collapse
|
24
|
Krajewska J, Modrak-Wójcik A, Arent ZJ, Więckowski D, Zolkiewski M, Bzowska A, Kędzierska-Mieszkowska S. Characterization of the molecular chaperone ClpB from the pathogenic spirochaete Leptospira interrogans. PLoS One 2017; 12:e0181118. [PMID: 28700685 PMCID: PMC5507356 DOI: 10.1371/journal.pone.0181118] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 06/26/2017] [Indexed: 11/18/2022] Open
Abstract
Leptospira interrogans is a spirochaete responsible for leptospirosis in mammals. The molecular mechanisms of the Leptospira virulence remain mostly unknown. Recently, it has been demonstrated that an AAA+ chaperone ClpB (a member of the Hsp100 family) from L. interrogans (ClpBLi) is not only essential for survival of Leptospira under the thermal and oxidative stresses, but also during infection of a host. The aim of this study was to provide further insight into the role of ClpB in the pathogenic spirochaetes and explore its biochemical properties. We found that a non-hydrolysable ATP analogue, ATPγS, but not AMP-PNP induces the formation of ClpBLi hexamers and stabilizes the associated form of the chaperone. ADP also induces structural changes in ClpBLi and promotes its self-assembly, but does not produce full association into the hexamers. We also demonstrated that ClpBLi exhibits a weak ATPase activity that is stimulated by κ-casein and poly-lysine, and may mediate protein disaggregation independently from the DnaK chaperone system. Unexpectedly, the presence of E. coli DnaK/DnaJ/GrpE did not significantly affect the disaggregation activity of ClpBLi and ClpBLi did not substitute for the ClpBEc function in the clpB-null E. coli strain. This result underscores the species-specificity of the ClpB cooperation with the co-chaperones and is most likely due to a loss of interactions between the ClpBLi middle domain and the E. coli DnaK. We also found that ClpBLi interacts more efficiently with the aggregated G6PDH in the presence of ATPγS rather than ATP. Our results indicate that ClpB's importance during infection might be due to its role as a molecular chaperone involved in reactivation of protein aggregates.
Collapse
Affiliation(s)
- Joanna Krajewska
- Department of General and Medical Biochemistry, University of Gdańsk, Faculty of Biology, Gdańsk, Poland
| | - Anna Modrak-Wójcik
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland
| | - Zbigniew J. Arent
- University Centre of Veterinary Medicine UJ-UR, University of Agriculture in Krakow, Krakow, Poland
| | - Daniel Więckowski
- Department of General and Medical Biochemistry, University of Gdańsk, Faculty of Biology, Gdańsk, Poland
| | - Michal Zolkiewski
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas, United States of America
| | - Agnieszka Bzowska
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland
| | | |
Collapse
|
25
|
Kuczynska-Wisnik D, Cheng C, Ganta RR, Zolkiewski M. Protein aggregation in Ehrlichia chaffeensis during infection of mammalian cells. FEMS Microbiol Lett 2017; 364:3071827. [PMID: 28333306 PMCID: PMC5399918 DOI: 10.1093/femsle/fnx059] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 03/11/2017] [Indexed: 12/21/2022] Open
Abstract
Ehrlichia chaffeensis is an obligatory intracellular pathogen transmitted through infected ticks to humans and other vertebrates. We investigated the extent of protein aggregation in E. chaffeensis during infection of canine macrophage cell line, DH82. We discovered that the size of the aggregated fraction of E. chaffeensis proteins increased during the first 48 h post infection. We also incubated the infected cells with guanidinium chloride (GuHCl), a known inhibitor of the protein-disaggregating molecular chaperone ClpB. Up to 0.5 mM GuHCl had no impact on the host cells, whereas the viability of the pathogen was reduced by ∼60% in the presence of the inhibitor. Furthermore, we found that the size of the aggregated protein fraction in E. chaffeensis increased significantly in cultures supplemented with 0.5 mM GuHCl, which also resulted in the preferential accumulation of ClpB with the aggregated proteins. Altogether, our results suggest that an exposure of E. chaffeensis to the stressful environment of a host cell results in an increased aggregation of the pathogen's proteins, which is exacerbated upon inhibition of ClpB. Our studies establish a link between protein quality control and pathogen survival during infection of a host.
Collapse
Affiliation(s)
- Dorota Kuczynska-Wisnik
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS 66506, USA.,Center of Excellence for Vector-Borne Diseases, Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS 66506, USA
| | - Chuanmin Cheng
- Center of Excellence for Vector-Borne Diseases, Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS 66506, USA
| | - Roman R Ganta
- Center of Excellence for Vector-Borne Diseases, Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS 66506, USA
| | - Michal Zolkiewski
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS 66506, USA
| |
Collapse
|
26
|
Krajewska J, Arent Z, Więckowski D, Zolkiewski M, Kędzierska-Mieszkowska S. Immunoreactivity of the AAA+ chaperone ClpB from Leptospira interrogans with sera from Leptospira-infected animals. BMC Microbiol 2016; 16:151. [PMID: 27421882 PMCID: PMC4947342 DOI: 10.1186/s12866-016-0774-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 07/12/2016] [Indexed: 11/10/2022] Open
Abstract
Background Leptospira interrogans is a spirochaete responsible for leptospirosis in mammals. The molecular mechanisms of the Leptospira virulence remain mostly unknown. Recently, it has been demonstrated that L. interrogans ClpB (ClpBLi) is essential for bacterial survival under stressful conditions and also during infection. The aim of this study was to provide further insight into the role of ClpB in L. interrogans and answer the question whether ClpBLi as a potential virulence factor may be a target of the humoral immune response during leptospiral infections in mammals. Results ClpBLi consists of 860 amino acid residues with a predicted molecular mass of 96.3 kDa and shows multi-domain organization similar to that of the well-characterized ClpB from Escherichia coli. The amino acid sequence identity between ClpBLi and E. coli ClpB is 52 %. The coding sequence of the clpBLi gene was cloned and expressed in E. coli BL21(DE3) strain. Immunoreactivity of the recombinant ClpBLi protein was assessed with the sera collected from Leptospira-infected animals and uninfected healthy controls. Western blotting and ELISA analysis demonstrated that ClpBLi activates the host immune system, as evidenced by an increased level of antibodies against ClpBLi in the sera from infected animals, as compared to the control group. Additionally, ClpBLi was found in kidney tissues of Leptospira-infected hamsters. Conclusions ClpBLi is both synthesized and immunogenic during the infectious process, further supporting its involvement in the pathogenicity of Leptospira. In addition, the immunological properties of ClpBLi point to its potential value as a diagnostic antigen for the detection of leptospirosis.
Collapse
Affiliation(s)
- Joanna Krajewska
- Department of General and Medical Biochemistry, University of Gdansk, Faculty of Biology, 80-308, Gdańsk, Poland
| | - Zbigniew Arent
- University Centre of Veterinary Medicine JU-UAK, University of Agriculture in Krakow, 30-059, Krakow, Poland
| | - Daniel Więckowski
- Department of General and Medical Biochemistry, University of Gdansk, Faculty of Biology, 80-308, Gdańsk, Poland
| | - Michal Zolkiewski
- Departament of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS, 66506, USA
| | | |
Collapse
|
27
|
Cheng C, Nair ADS, Jaworski DC, Ganta RR. Mutations in Ehrlichia chaffeensis Causing Polar Effects in Gene Expression and Differential Host Specificities. PLoS One 2015; 10:e0132657. [PMID: 26186429 PMCID: PMC4505860 DOI: 10.1371/journal.pone.0132657] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 06/18/2015] [Indexed: 12/20/2022] Open
Abstract
Ehrlichia chaffeensis, a tick-borne rickettsial, is responsible for human monocytic ehrlichiosis. In this study, we assessed E. chaffeensis insertion mutations impacting the transcription of genes near the insertion sites. We presented evidence that the mutations within the E. chaffeensis genome at four genomic locations cause polar effects in altering gene expressions. We also reported mutations causing attenuated growth in deer (the pathogen’s reservoir host) and in dog (an incidental host), but not in its tick vector, Amblyomma americanum. This is the first study documenting insertion mutations in E. chaffeensis that cause polar effects in altering gene expression from the genes located upstream and downstream to insertion sites and the differential requirements of functionally active genes of the pathogen for its persistence in vertebrate and tick hosts. This study is important in furthering our knowledge on E. chaffeensis pathogenesis.
Collapse
Affiliation(s)
- Chuanmin Cheng
- Center of Excellence for Vector-Borne Diseases, Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, United States of America
| | - Arathy D. S. Nair
- Center of Excellence for Vector-Borne Diseases, Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, United States of America
| | - Deborah C. Jaworski
- Center of Excellence for Vector-Borne Diseases, Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, United States of America
- Department of Entomology and Plant Pathology, Oklahoma State University, Noble Research Center, Stillwater, OK 74074, United States of America
| | - Roman R. Ganta
- Center of Excellence for Vector-Borne Diseases, Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, United States of America
- * E-mail:
| |
Collapse
|
28
|
Desantis ME, Sweeny EA, Snead D, Leung EH, Go MS, Gupta K, Wendler P, Shorter J. Conserved distal loop residues in the Hsp104 and ClpB middle domain contact nucleotide-binding domain 2 and enable Hsp70-dependent protein disaggregation. J Biol Chem 2013; 289:848-67. [PMID: 24280225 PMCID: PMC3887210 DOI: 10.1074/jbc.m113.520759] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The homologous hexameric AAA+ proteins, Hsp104 from yeast and ClpB from bacteria, collaborate with Hsp70 to dissolve disordered protein aggregates but employ distinct mechanisms of intersubunit collaboration. How Hsp104 and ClpB coordinate polypeptide handover with Hsp70 is not understood. Here, we define conserved distal loop residues between middle domain (MD) helix 1 and 2 that are unexpectedly critical for Hsp104 and ClpB collaboration with Hsp70. Surprisingly, the Hsp104 and ClpB MD distal loop does not contact Hsp70 but makes intrasubunit contacts with nucleotide-binding domain 2 (NBD2). Thus, the MD does not invariably project out into solution as in one structural model of Hsp104 and ClpB hexamers. These intrasubunit contacts as well as those between MD helix 2 and NBD1 are different in Hsp104 and ClpB. NBD2-MD contacts dampen disaggregase activity and must separate for protein disaggregation. We demonstrate that ClpB requires DnaK more stringently than Hsp104 requires Hsp70 for protein disaggregation. Thus, we reveal key differences in how Hsp104 and ClpB coordinate polypeptide handover with Hsp70, which likely reflects differential tuning for yeast and bacterial proteostasis.
Collapse
|
29
|
Transcription of Ehrlichia chaffeensis genes is accomplished by RNA polymerase holoenzyme containing either sigma 32 or sigma 70. PLoS One 2013; 8:e81780. [PMID: 24278458 PMCID: PMC3836757 DOI: 10.1371/journal.pone.0081780] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Accepted: 10/22/2013] [Indexed: 11/19/2022] Open
Abstract
Bacterial gene transcription is initiated by RNA polymerase containing a sigma factor. To understand gene regulation in Ehrlichia chaffeensis, an important tick-transmitted rickettsiae responsible for human monocytic ehrlichiosis, we initiated studies evaluating the transcriptional machinery of several genes of this organism. We mapped the transcription start sites of 10 genes and evaluated promoters of five genes (groE, dnaK, hup, p28-Omp14 and p28-Omp19 genes). We report here that the RNA polymerase binding elements of E. chaffeensis gene promoters are highly homologous for its only two transcription regulators, sigma 32 and sigma 70, and that gene expression is accomplished by either of the transcription regulators. RNA analysis revealed that although transcripts for both sigma 32 and sigma 70 are upregulated during the early replicative stage, their expression patterns remained similar for the entire replication cycle. We further present evidence demonstrating that the organism’s -35 motifs are essential to transcription initiations. The data suggest that E. chaffeensis gene regulation has evolved to support the organism’s growth, possibly to facilitate its intraphagosomal growth. Considering the limited availability of genetic tools, this study offers a novel alternative in defining gene regulation in E. chaffeensis and other related intracellular pathogens.
Collapse
|