1
|
Basmaeil Y, Subayyil AA, Kulayb HB, Kondkar AA, Alrodayyan M, Khatlani T. Partial Inhibition of Epithelial-to-Mesenchymal Transition (EMT) Phenotypes by Placenta-Derived DBMSCs in Human Breast Cancer Cell Lines, In Vitro. Cells 2024; 13:2131. [PMID: 39768220 PMCID: PMC11674051 DOI: 10.3390/cells13242131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 12/09/2024] [Accepted: 12/20/2024] [Indexed: 01/11/2025] Open
Abstract
Stem cell-based therapies hold significant potential for cancer treatment due to their unique properties, including migration toward tumor niche, secretion of bioactive molecules, and immunosuppression. Mesenchymal stem cells (MSCs) from adult tissues can inhibit tumor progression, angiogenesis, and apoptosis of cancer cells. We have previously reported the isolation and characterization of placenta-derived decidua basalis mesenchymal stem cells (DBMSCs), which demonstrated higher levels of pro-migratory and anti-apoptotic genes, indicating potential anti-cancer effects. In this study, we analyzed the anti-cancer effects of DBMSCs on human breast cancer cell lines MDA231 and MCF7, with MCF 10A used as control. We also investigated how these cancer cells lines affect the functional competence of DBMSCs. By co-culturing DBMSCs with cancer cells, we analyzed changes in functions of both cell types, as well as alterations in their genomic and proteomic profile. Our results showed that treatment with DBMSCs significantly reduced the functionality of MDA231 and MCF7 cells, while MCF 10A cells remained unaffected. DBMSC treatment decreased epithelial-to-mesenchymal transition (EMT)-related protein levels in MDA231 cells and modulated expression of other cancer-related genes in MDA231 and MCF7 cells. Although cancer cells reduced DBMSC proliferation, they increased their expression of anti-apoptotic genes. These findings suggest that DBMSCs can inhibit EMT-related proteins and reduce the invasive characteristics of MDA231 and MCF7 breast cancer cells, highlighting their potential as candidates for cell-based cancer therapies.
Collapse
Affiliation(s)
- Yasser Basmaeil
- Stem Cells and Regenerative Medicine Unit, Blood and Cancer Research (BCR) Department, King Abdullah International Medical Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences (KSAU), Ministry of National Guard Health Affairs (MNGHA), Riyadh 11426, Saudi Arabia; (Y.B.); (A.A.S.); (H.B.K.); (M.A.)
| | - Abdullah Al Subayyil
- Stem Cells and Regenerative Medicine Unit, Blood and Cancer Research (BCR) Department, King Abdullah International Medical Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences (KSAU), Ministry of National Guard Health Affairs (MNGHA), Riyadh 11426, Saudi Arabia; (Y.B.); (A.A.S.); (H.B.K.); (M.A.)
| | - Haya Bin Kulayb
- Stem Cells and Regenerative Medicine Unit, Blood and Cancer Research (BCR) Department, King Abdullah International Medical Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences (KSAU), Ministry of National Guard Health Affairs (MNGHA), Riyadh 11426, Saudi Arabia; (Y.B.); (A.A.S.); (H.B.K.); (M.A.)
| | - Altaf A. Kondkar
- Department of Ophthalmology, College of Medicine, King Saud University, Riyadh 11411, Saudi Arabia;
| | - Maha Alrodayyan
- Stem Cells and Regenerative Medicine Unit, Blood and Cancer Research (BCR) Department, King Abdullah International Medical Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences (KSAU), Ministry of National Guard Health Affairs (MNGHA), Riyadh 11426, Saudi Arabia; (Y.B.); (A.A.S.); (H.B.K.); (M.A.)
| | - Tanvir Khatlani
- Stem Cells and Regenerative Medicine Unit, Blood and Cancer Research (BCR) Department, King Abdullah International Medical Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences (KSAU), Ministry of National Guard Health Affairs (MNGHA), Riyadh 11426, Saudi Arabia; (Y.B.); (A.A.S.); (H.B.K.); (M.A.)
| |
Collapse
|
2
|
Palizkaran Yazdi M, Barjasteh A, Moghbeli M. MicroRNAs as the pivotal regulators of Temozolomide resistance in glioblastoma. Mol Brain 2024; 17:42. [PMID: 38956588 PMCID: PMC11218189 DOI: 10.1186/s13041-024-01113-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 06/17/2024] [Indexed: 07/04/2024] Open
Abstract
Glioblastoma (GBM) is an aggressive nervous system tumor with a poor prognosis. Although, surgery, radiation therapy, and chemotherapy are the current standard protocol for GBM patients, there is still a poor prognosis in these patients. Temozolomide (TMZ) as a first-line therapeutic agent in GBM can easily cross from the blood-brain barrier to inhibit tumor cell proliferation. However, there is a high rate of TMZ resistance in GBM patients. Since, there are limited therapeutic choices for GBM patients who develop TMZ resistance; it is required to clarify the molecular mechanisms of chemo resistance to introduce the novel therapeutic targets. MicroRNAs (miRNAs) regulate chemo resistance through regulation of drug metabolism, absorption, DNA repair, apoptosis, and cell cycle. In the present review we discussed the role of miRNAs in TMZ response of GBM cells. It has been reported that miRNAs mainly induced TMZ sensitivity by regulation of signaling pathways and autophagy in GBM cells. Therefore, miRNAs can be used as the reliable diagnostic/prognostic markers in GBM patients. They can also be used as the therapeutic targets to improve the TMZ response in GBM cells.
Collapse
Affiliation(s)
- Mahsa Palizkaran Yazdi
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhosein Barjasteh
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Meysam Moghbeli
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
3
|
Taeb S, Rostamzadeh D, Mafi S, Mofatteh M, Zarrabi A, Hushmandi K, Safari A, Khodamoradi E, Najafi M. Update on Mesenchymal Stem Cells: A Crucial Player in Cancer Immunotherapy. Curr Mol Med 2024; 24:98-113. [PMID: 36573062 DOI: 10.2174/1566524023666221226143814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 10/17/2022] [Accepted: 10/17/2022] [Indexed: 12/28/2022]
Abstract
The idea of cancer immunotherapy has spread, and it has made tremendous progress with the advancement of new technology. Immunotherapy, which serves to assist the natural defenses of the body in eradicating cancerous cells, is a remarkable achievement that has revolutionized both cancer research and cancer treatments. Currently, the use of stem cells in immunotherapy is widespread and shares a special characteristic, including cancer cell migration, bioactive component release, and immunosuppressive activity. In the context of cancer, mesenchymal stem cells (MSCs) are rapidly being identified as vital stromal regulators of tumor progression. MSCs therapy has been implicated in treating a wide range of diseases, including bone damage, autoimmune diseases, and particularly hematopoietic abnormalities, providing stem cell-based therapy with an extra dimension. Moreover, the implication of MSCs does not have ethical concerns, and the complications known in pluripotent and totipotent stem cells are less common in MSCs. MSCs have a lot of distinctive characteristics that, when coupled, make them excellent for cellular-based immunotherapy and as vehicles for gene and drug delivery in a variety of inflammations and malignancies. MSCs can migrate to the inflammatory site and exert immunomodulatory responses via cell-to-cell contacts with lymphocytes by generating soluble substances. In the current review, we discuss the most recent research on the immunological characteristics of MSCs, their use as immunomodulatory carriers, techniques for approving MSCs to adjust their immunological contour, and their usages as vehicles for delivering therapeutic as well as drugs and genes engineered to destroy tumor cells.
Collapse
Affiliation(s)
- Shahram Taeb
- Department of Radiology, School of Paramedical Sciences, Guilan University of Medical Sciences, Rasht, Iran
| | - Davoud Rostamzadeh
- Department of Clinical Biochemistry, Yasuj University of Medical Sciences, Yasuj, Iran
- Medicinal Plants Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Sahar Mafi
- Department of Clinical Biochemistry, Yasuj University of Medical Sciences, Yasuj, Iran
- Medicinal Plants Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Mohammad Mofatteh
- Sir William Dunn School of Pathology, Medical Sciences Division, University of Oxford, South Parks Road, Oxford OX1 3RE, United Kingdom
- Lincoln College, University of Oxford, Turl Street, Oxford OX1 3DR, United Kingdom
| | - Ali Zarrabi
- Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Üniversite Caddesi No. 27, Orhanlı, Tuzla, Istanbul, Turkey
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, Istanbul, Turkey
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology & Zoonoses, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Arash Safari
- Department of Radiology, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ehsan Khodamoradi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Masoud Najafi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Medical Technology Research Center, Institute of Health Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
4
|
Zhang S, Yahaya BH, Pan Y, Liu Y, Lin J. Menstrual blood-derived endometrial stem cell, a unique and promising alternative in the stem cell-based therapy for chemotherapy-induced premature ovarian insufficiency. Stem Cell Res Ther 2023; 14:327. [PMID: 37957675 PMCID: PMC10644549 DOI: 10.1186/s13287-023-03551-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 10/27/2023] [Indexed: 11/15/2023] Open
Abstract
Chemotherapy can cause ovarian dysfunction and infertility since the ovary is extremely sensitive to chemotherapeutic drugs. Apart from the indispensable role of the ovary in the overall hormonal milieu, ovarian dysfunction also affects many other organ systems and functions including sexuality, bones, the cardiovascular system, and neurocognitive function. Although conventional hormone replacement therapy can partly relieve the adverse symptoms of premature ovarian insufficiency (POI), the treatment cannot fundamentally prevent deterioration of POI. Therefore, effective treatments to improve chemotherapy-induced POI are urgently needed, especially for patients desiring fertility preservation. Recently, mesenchymal stem cell (MSC)-based therapies have resulted in promising improvements in chemotherapy-induced ovary dysfunction by enhancing the anti-apoptotic capacity of ovarian cells, preventing ovarian follicular atresia, promoting angiogenesis and improving injured ovarian structure and the pregnancy rate. These improvements are mainly attributed to MSC-derived biological factors, functional RNAs, and even mitochondria, which are directly secreted or indirectly translocated with extracellular vesicles (microvesicles and exosomes) to repair ovarian dysfunction. Additionally, as a novel source of MSCs, menstrual blood-derived endometrial stem cells (MenSCs) have exhibited promising therapeutic effects in various diseases due to their comprehensive advantages, such as periodic and non-invasive sample collection, abundant sources, regular donation and autologous transplantation. Therefore, this review summarizes the efficacy of MSCs transplantation in improving chemotherapy-induced POI and analyzes the underlying mechanism, and further discusses the benefit and existing challenges in promoting the clinical application of MenSCs in chemotherapy-induced POI.
Collapse
Affiliation(s)
- Shenghui Zhang
- Stem Cell and Biotherapy Technology Research Center, Henan Joint International Research Laboratory of Stem Cell Medicine, Xinxiang Medical University, East of JinSui Road, Xinxiang, Henan, China
- Lung Stem Cell and Gene Therapy Group, Regenerative Medicine Cluster, Advanced Medical and Dental Institute (IPPT), Universiti Sains Malaysia, Penang, Malaysia
| | - Badrul Hisham Yahaya
- Lung Stem Cell and Gene Therapy Group, Regenerative Medicine Cluster, Advanced Medical and Dental Institute (IPPT), Universiti Sains Malaysia, Penang, Malaysia
| | - Ying Pan
- The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, , China
| | - Yanli Liu
- Stem Cell and Biotherapy Technology Research Center, Henan Joint International Research Laboratory of Stem Cell Medicine, Xinxiang Medical University, East of JinSui Road, Xinxiang, Henan, China.
| | - Juntang Lin
- Stem Cell and Biotherapy Technology Research Center, Henan Joint International Research Laboratory of Stem Cell Medicine, Xinxiang Medical University, East of JinSui Road, Xinxiang, Henan, China.
| |
Collapse
|
5
|
Samadi A, Moammeri A, Pourmadadi M, Abbasi P, Hosseinpour Z, Farokh A, Shamsabadipour A, Heydari M, Mohammadi MR. Cell Encapsulation and 3D Bioprinting for Therapeutic Cell Transplantation. ACS Biomater Sci Eng 2023; 9:1862-1890. [PMID: 36877212 DOI: 10.1021/acsbiomaterials.2c01183] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Abstract
The promise of cell therapy has been augmented by introducing biomaterials, where intricate scaffold shapes are fabricated to accommodate the cells within. In this review, we first discuss cell encapsulation and the promising potential of biomaterials to overcome challenges associated with cell therapy, particularly cellular function and longevity. More specifically, cell therapies in the context of autoimmune disorders, neurodegenerative diseases, and cancer are reviewed from the perspectives of preclinical findings as well as available clinical data. Next, techniques to fabricate cell-biomaterials constructs, focusing on emerging 3D bioprinting technologies, will be reviewed. 3D bioprinting is an advancing field that enables fabricating complex, interconnected, and consistent cell-based constructs capable of scaling up highly reproducible cell-biomaterials platforms with high precision. It is expected that 3D bioprinting devices will expand and become more precise, scalable, and appropriate for clinical manufacturing. Rather than one printer fits all, seeing more application-specific printer types, such as a bioprinter for bone tissue fabrication, which would be different from a bioprinter for skin tissue fabrication, is anticipated in the future.
Collapse
Affiliation(s)
- Amirmasoud Samadi
- Department of Chemical and Biomolecular Engineering, 6000 Interdisciplinary Science & Engineering Building (ISEB), Irvine, California 92617, United States
| | - Ali Moammeri
- School of Chemical Engineering, College of Engineering, University of Tehran, Enghelab Square, 16 Azar Street, Tehran 1417935840, Iran
| | - Mehrab Pourmadadi
- School of Chemical Engineering, College of Engineering, University of Tehran, Enghelab Square, 16 Azar Street, Tehran 1417935840, Iran
| | - Parisa Abbasi
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Azadi Avenue, Tehran 1458889694, Iran
| | - Zeinab Hosseinpour
- Biotechnology Research Laboratory, Faculty of Chemical Engineering, Babol Noshirvani University of Technology, Babol 4714871167, Mazandaran Province, Iran
| | - Arian Farokh
- School of Chemical Engineering, College of Engineering, University of Tehran, Enghelab Square, 16 Azar Street, Tehran 1417935840, Iran
| | - Amin Shamsabadipour
- School of Chemical Engineering, College of Engineering, University of Tehran, Enghelab Square, 16 Azar Street, Tehran 1417935840, Iran
| | - Maryam Heydari
- Department of Cell and Molecular Biology, Faculty of Biological Science, University of Kharazmi, Tehran 199389373, Iran
| | - M Rezaa Mohammadi
- Dale E. and Sarah Ann Fowler School of Engineering, Chapman University, Orange, California 92866, United States
| |
Collapse
|
6
|
Silini AR, Ramuta TŽ, Pires AS, Banerjee A, Dubus M, Gindraux F, Kerdjoudj H, Maciulatis J, Weidinger A, Wolbank S, Eissner G, Giebel B, Pozzobon M, Parolini O, Kreft ME. Methods and criteria for validating the multimodal functions of perinatal derivatives when used in oncological and antimicrobial applications. Front Bioeng Biotechnol 2022; 10:958669. [PMID: 36312547 PMCID: PMC9607958 DOI: 10.3389/fbioe.2022.958669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 09/26/2022] [Indexed: 11/18/2022] Open
Abstract
Perinatal derivatives or PnDs refer to tissues, cells and secretomes from perinatal, or birth-associated tissues. In the past 2 decades PnDs have been highly investigated for their multimodal mechanisms of action that have been exploited in various disease settings, including in different cancers and infections. Indeed, there is growing evidence that PnDs possess anticancer and antimicrobial activities, but an urgent issue that needs to be addressed is the reproducible evaluation of efficacy, both in vitro and in vivo. Herein we present the most commonly used functional assays for the assessment of antitumor and antimicrobial properties of PnDs, and we discuss their advantages and disadvantages in assessing the functionality. This review is part of a quadrinomial series on functional assays for the validation of PnDs spanning biological functions such as immunomodulation, anticancer and antimicrobial, wound healing, and regeneration.
Collapse
Affiliation(s)
- Antonietta R. Silini
- Centro di Ricerca E. Menni, Fondazione Poliambulanza Istituto Ospedaliero, Brescia, Italy
| | - Taja Železnik Ramuta
- Faculty of Medicine, Institute of Cell Biology, University of Ljubljana, Ljubljana, Slovenia
| | - Ana Salomé Pires
- Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR) Area of Environment, Genetics and Oncobiology (CIMAGO), Institute of Biophysics, University of Coimbra, Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal
| | - Asmita Banerjee
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Marie Dubus
- Université de Reims Champagne Ardenne, EA 4691 Biomatériaux et Inflammation en Site Osseux (BIOS), Reims, France
| | - Florelle Gindraux
- Service de Chirurgie Orthopédique, Traumatologique et Plastique, CHU Besançon and Laboratoire de Nanomédecine, Imagerie, Thérapeutique EA 4662, Université Bourgogne Franche-Comté, Besançon, France
| | - Halima Kerdjoudj
- Université de Reims Champagne Ardenne, EA 4691 Biomatériaux et Inflammation en Site Osseux (BIOS), Reims, France
| | - Justinas Maciulatis
- The Institute of Physiology and Pharmacology, Medical Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Adelheid Weidinger
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Susanne Wolbank
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Günther Eissner
- Systems Biology Ireland, UCD School of Medicine, University College Dublin, Dublin, Ireland
| | - Bernd Giebel
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Michela Pozzobon
- Stem Cells and Regenerative Medicine Lab, Department of Women’s and Children’s Health, University of Padova, Fondazione Istituto di Ricerca Pediatrica Città Della Speranza, Padoa, Italy
| | - Ornella Parolini
- Department of Life Science and Public Health, Università Cattolica Del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, Rome, Italy
| | - Mateja Erdani Kreft
- Faculty of Medicine, Institute of Cell Biology, University of Ljubljana, Ljubljana, Slovenia
- *Correspondence: Mateja Erdani Kreft,
| |
Collapse
|
7
|
Isidan A, Yenigun A, Soma D, Aksu E, Lopez K, Park Y, Cross-Najafi A, Li P, Kundu D, House MG, Chakraborty S, Glaser S, Kennedy L, Francis H, Zhang W, Alpini G, Ekser B. Development and Characterization of Human Primary Cholangiocarcinoma Cell Lines. THE AMERICAN JOURNAL OF PATHOLOGY 2022; 192:1200-1217. [PMID: 35640676 PMCID: PMC9472155 DOI: 10.1016/j.ajpath.2022.05.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 05/12/2022] [Accepted: 05/18/2022] [Indexed: 06/15/2023]
Abstract
Cholangiocarcinoma (CCA) is the second most common primary liver tumor and is associated with late diagnosis, limited treatment options, and a 5-year survival rate of around 30%. CCA cell lines were first established in 1971, and since then, only 70 to 80 CCA cell lines have been established. These cell lines have been essential in basic and translational research to understand and identify novel mechanistic pathways, biomarkers, and disease-specific genes. Each CCA cell line has unique characteristics, reflecting a specific genotype, sex-related properties, and patient-related signatures, making them scientifically and commercially valuable. CCA cell lines are crucial in the use of novel technologies, such as three-dimensional organoid models, which help to model the tumor microenvironment and cell-to-cell crosstalk between tumor-neighboring cells. This review highlights crucial information on CCA cell lines, including: i) type of CCA (eg, intra- or extrahepatic), ii) isolation source (eg, primary tumor or xenograft), iii) chemical digestion method (eg, trypsin or collagenase), iv) cell-sorting method (colony isolation or removal of fibroblasts), v) maintenance-medium choice (eg, RPMI or Dulbecco's modified Eagle's medium), vi) cell morphology (eg, spindle or polygonal shape), and vii) doubling time of cells.
Collapse
Affiliation(s)
- Abdulkadir Isidan
- Transplant Division, Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana
| | - Ali Yenigun
- Transplant Division, Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana; Department of General Surgery, Yeditepe University Faculty of Medicine, Istanbul, Turkey
| | - Daiki Soma
- Transplant Division, Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana; Division of Transplantation & Hepatobiliary Surgery, Department of Surgery, University of Florida College of Medicine, Gainesville, Florida
| | - Eric Aksu
- Transplant Division, Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana
| | - Kevin Lopez
- Transplant Division, Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana
| | - Yujin Park
- Transplant Division, Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana
| | - Arthur Cross-Najafi
- Transplant Division, Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana
| | - Ping Li
- Transplant Division, Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana
| | - Debjyoti Kundu
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana; Division of Research, Richard L. Roudebush VA Medical Center, Indianapolis, Indiana
| | - Michael G House
- Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana
| | - Sanjukta Chakraborty
- Department of Medical Physiology, Texas A&M University College of Medicine, Bryan, Texas
| | - Shannon Glaser
- Department of Medical Physiology, Texas A&M University College of Medicine, Bryan, Texas
| | - Lindsey Kennedy
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana; Division of Research, Richard L. Roudebush VA Medical Center, Indianapolis, Indiana
| | - Heather Francis
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana; Division of Research, Richard L. Roudebush VA Medical Center, Indianapolis, Indiana
| | - Wenjun Zhang
- Transplant Division, Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana
| | - Gianfranco Alpini
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana; Division of Research, Richard L. Roudebush VA Medical Center, Indianapolis, Indiana
| | - Burcin Ekser
- Transplant Division, Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana.
| |
Collapse
|
8
|
Hoang DM, Pham PT, Bach TQ, Ngo ATL, Nguyen QT, Phan TTK, Nguyen GH, Le PTT, Hoang VT, Forsyth NR, Heke M, Nguyen LT. Stem cell-based therapy for human diseases. Signal Transduct Target Ther 2022; 7:272. [PMID: 35933430 PMCID: PMC9357075 DOI: 10.1038/s41392-022-01134-4] [Citation(s) in RCA: 435] [Impact Index Per Article: 145.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 07/19/2022] [Accepted: 07/21/2022] [Indexed: 02/07/2023] Open
Abstract
Recent advancements in stem cell technology open a new door for patients suffering from diseases and disorders that have yet to be treated. Stem cell-based therapy, including human pluripotent stem cells (hPSCs) and multipotent mesenchymal stem cells (MSCs), has recently emerged as a key player in regenerative medicine. hPSCs are defined as self-renewable cell types conferring the ability to differentiate into various cellular phenotypes of the human body, including three germ layers. MSCs are multipotent progenitor cells possessing self-renewal ability (limited in vitro) and differentiation potential into mesenchymal lineages, according to the International Society for Cell and Gene Therapy (ISCT). This review provides an update on recent clinical applications using either hPSCs or MSCs derived from bone marrow (BM), adipose tissue (AT), or the umbilical cord (UC) for the treatment of human diseases, including neurological disorders, pulmonary dysfunctions, metabolic/endocrine-related diseases, reproductive disorders, skin burns, and cardiovascular conditions. Moreover, we discuss our own clinical trial experiences on targeted therapies using MSCs in a clinical setting, and we propose and discuss the MSC tissue origin concept and how MSC origin may contribute to the role of MSCs in downstream applications, with the ultimate objective of facilitating translational research in regenerative medicine into clinical applications. The mechanisms discussed here support the proposed hypothesis that BM-MSCs are potentially good candidates for brain and spinal cord injury treatment, AT-MSCs are potentially good candidates for reproductive disorder treatment and skin regeneration, and UC-MSCs are potentially good candidates for pulmonary disease and acute respiratory distress syndrome treatment.
Collapse
Affiliation(s)
- Duc M Hoang
- Department of Research and Development, Vinmec Research Institute of Stem Cell and Gene Technology, Vinmec Healthcare System, Hanoi, Vietnam.
| | - Phuong T Pham
- Department of Cellular Therapy, Vinmec High-Tech Center, Vinmec Healthcare System, Hanoi, Vietnam
| | - Trung Q Bach
- Department of Research and Development, Vinmec Research Institute of Stem Cell and Gene Technology, Vinmec Healthcare System, Hanoi, Vietnam
| | - Anh T L Ngo
- Department of Cellular Therapy, Vinmec High-Tech Center, Vinmec Healthcare System, Hanoi, Vietnam
| | - Quyen T Nguyen
- Department of Research and Development, Vinmec Research Institute of Stem Cell and Gene Technology, Vinmec Healthcare System, Hanoi, Vietnam
| | - Trang T K Phan
- Department of Research and Development, Vinmec Research Institute of Stem Cell and Gene Technology, Vinmec Healthcare System, Hanoi, Vietnam
| | - Giang H Nguyen
- Department of Research and Development, Vinmec Research Institute of Stem Cell and Gene Technology, Vinmec Healthcare System, Hanoi, Vietnam
| | - Phuong T T Le
- Department of Research and Development, Vinmec Research Institute of Stem Cell and Gene Technology, Vinmec Healthcare System, Hanoi, Vietnam
| | - Van T Hoang
- Department of Research and Development, Vinmec Research Institute of Stem Cell and Gene Technology, Vinmec Healthcare System, Hanoi, Vietnam
| | - Nicholas R Forsyth
- Institute for Science & Technology in Medicine, Keele University, Keele, UK
| | - Michael Heke
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Liem Thanh Nguyen
- Department of Research and Development, Vinmec Research Institute of Stem Cell and Gene Technology, Vinmec Healthcare System, Hanoi, Vietnam
| |
Collapse
|
9
|
Teixo R, Pires AS, Pereira E, Serambeque B, Marques IA, Laranjo M, Mojsilović S, Gramignoli R, Ponsaerts P, Schoeberlein A, Botelho MF. Application of Perinatal Derivatives on Oncological Preclinical Models: A Review of Animal Studies. Int J Mol Sci 2022; 23:8570. [PMID: 35955703 PMCID: PMC9369310 DOI: 10.3390/ijms23158570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 07/21/2022] [Accepted: 07/28/2022] [Indexed: 11/16/2022] Open
Abstract
The increasing cancer incidence has certified oncological management as one of the most critical challenges for the coming decades. New anticancer strategies are still needed, despite the significant advances brought to the forefront in the last decades. The most recent, promising therapeutic approaches have benefitted from the application of human perinatal derivatives (PnD), biological mediators with proven benefits in several fields beyond oncology. To elucidate preclinical results and clinic outcomes achieved in the oncological field, we present a narrative review of the studies resorting to animal models to assess specific outcomes of PnD products. Recent preclinical evidence points to promising anticancer effects offered by PnD mediators isolated from the placenta, amniotic membrane, amniotic fluid, and umbilical cord. Described effects include tumorigenesis prevention, uncontrolled growth or regrowth inhibition, tumor homing ability, and adequate cell-based delivery capacity. Furthermore, PnD treatments have been described as supportive of chemotherapy and radiological therapies, particularly when resistance has been reported. However, opposite effects of PnD products have also been observed, offering support and trophic effect to malignant cells. Such paradoxical and dichotomous roles need to be intensively investigated. Current hypotheses identify as explanatory some critical factors, such as the type of the PnD biological products used or the manufacturing procedure to prepare the tissue/cellular treatment, the experimental design (including human-relevant animal models), and intrinsic pathophysiological characteristics. The effective and safe translation of PnD treatments to clinical practice relies on the collaborative efforts of all researchers working with human-relevant oncological preclinical models. However, it requires proper guidelines and consensus compiled by experts and health workers who accurately describe the methodology of tissue collection, PnD isolation, manufacturing, preservation, and delivery to the final user.
Collapse
Affiliation(s)
- Ricardo Teixo
- Coimbra Institute for Clinical and Biomedical Research (iCBR) Area of Environment, Genetics and Oncobiology (CIMAGO), Institute of Biophysics, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (R.T.); (E.P.); (B.S.); (I.A.M.); (M.L.); (M.F.B.)
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), 3000-548 Coimbra, Portugal
| | - Ana Salomé Pires
- Coimbra Institute for Clinical and Biomedical Research (iCBR) Area of Environment, Genetics and Oncobiology (CIMAGO), Institute of Biophysics, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (R.T.); (E.P.); (B.S.); (I.A.M.); (M.L.); (M.F.B.)
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), 3000-548 Coimbra, Portugal
| | - Eurico Pereira
- Coimbra Institute for Clinical and Biomedical Research (iCBR) Area of Environment, Genetics and Oncobiology (CIMAGO), Institute of Biophysics, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (R.T.); (E.P.); (B.S.); (I.A.M.); (M.L.); (M.F.B.)
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), 3000-548 Coimbra, Portugal
| | - Beatriz Serambeque
- Coimbra Institute for Clinical and Biomedical Research (iCBR) Area of Environment, Genetics and Oncobiology (CIMAGO), Institute of Biophysics, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (R.T.); (E.P.); (B.S.); (I.A.M.); (M.L.); (M.F.B.)
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), 3000-548 Coimbra, Portugal
| | - Inês Alexandra Marques
- Coimbra Institute for Clinical and Biomedical Research (iCBR) Area of Environment, Genetics and Oncobiology (CIMAGO), Institute of Biophysics, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (R.T.); (E.P.); (B.S.); (I.A.M.); (M.L.); (M.F.B.)
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), 3000-548 Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Mafalda Laranjo
- Coimbra Institute for Clinical and Biomedical Research (iCBR) Area of Environment, Genetics and Oncobiology (CIMAGO), Institute of Biophysics, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (R.T.); (E.P.); (B.S.); (I.A.M.); (M.L.); (M.F.B.)
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), 3000-548 Coimbra, Portugal
| | - Slavko Mojsilović
- Group for Hematology and Stem Cells, Institute for Medical Research, University of Belgrade, 11129 Belgrade, Serbia;
| | - Roberto Gramignoli
- Division of Pathology, Department of Laboratory Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden;
- Department of Pathology, Medicinsk Cancer Diagnostik, Karolinska University Hospital, 171 64 Huddinge, Sweden
| | - Peter Ponsaerts
- Laboratory of Experimental Hematology, Vaccine and Infectious Disease Institute (Vaxinfectio), University of Antwerp, 2610 Antwerp, Belgium;
| | - Andreina Schoeberlein
- Department of Obstetrics and Feto-Maternal Medicine, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland;
- Department for BioMedical Research (DBMR), University of Bern, 3012 Bern, Switzerland
| | - Maria Filomena Botelho
- Coimbra Institute for Clinical and Biomedical Research (iCBR) Area of Environment, Genetics and Oncobiology (CIMAGO), Institute of Biophysics, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (R.T.); (E.P.); (B.S.); (I.A.M.); (M.L.); (M.F.B.)
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), 3000-548 Coimbra, Portugal
| |
Collapse
|
10
|
Jantalika T, Manochantr S, Kheolamai P, Tantikanlayaporn D, Saijuntha W, Pinlaor S, Chairoungdua A, Paraoan L, Tantrawatpan C. Human chorion-derived mesenchymal stem cells suppress JAK2/STAT3 signaling and induce apoptosis of cholangiocarcinoma cell lines. Sci Rep 2022; 12:11341. [PMID: 35790790 PMCID: PMC9256624 DOI: 10.1038/s41598-022-15298-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 06/22/2022] [Indexed: 11/09/2022] Open
Abstract
Cholangiocarcinoma (CCA) is an aggressive malignancy arising from the damaged epithelial cells of the biliary tract. Previous studies have reported that the multi-potent mesenchymal stem cells (MSCs) activate a series of tumor signaling pathways by releasing several cytokines to influence tumor cell development. However, the roles and mechanisms of human chorion-derived MSCs (CH-MSCs) in cholangiocarcinoma progression have not been fully addressed. This present study aims to examine the effects of conditioned media derived from CH-MSCs (CH-CM) on CCA cell lines and investigate the respective underlying mechanism of action. For this purpose, MSCs were isolated from chorion tissue, and three cholangiocarcinoma cell lines, namely KKU100, KKU213A, and KKU213B, were used. MTT assay, annexin V/PI analysis, and JC-1 staining were used to assess the effects of CH-CM on proliferation and apoptosis of CCA cells, respectively. Moreover, the effect of CH-CM on caspase-dependent apoptotic pathways was also evaluated. The western blotting assay was also used for measuring the expression of JAK2/STAT3 signaling pathway-associated proteins. The results showed that CH-CM suppressed proliferation and promoted apoptosis of CCA cell lines. CH-CM treatment-induced loss of mitochondrial membrane potential (∆Ψm) in CCA cell lines. The factors presented in the CH-CM also inhibited JAK2/STAT3 signaling, reduced the expression of BCL-2, and increased BAX expression in CCA cells. In conclusion, our study suggests that the CH-CM has a potent anti-cancer effect on cholangiocarcinoma cells and thus provides opportunities for use in alternative cell therapy or in combination with a conventional chemotherapeutic drug to increase the efficiency of CCA treatment.
Collapse
Affiliation(s)
- Tanachapa Jantalika
- Division of Cell Biology, Department of Preclinical Sciences, Faculty of Medicine, Thammasat University, Pathumthani, 12120, Thailand.,Center of Excellence in Stem Cell Research, Thammasat University, Pathumthani, 12120, Thailand
| | - Sirikul Manochantr
- Division of Cell Biology, Department of Preclinical Sciences, Faculty of Medicine, Thammasat University, Pathumthani, 12120, Thailand.,Center of Excellence in Stem Cell Research, Thammasat University, Pathumthani, 12120, Thailand
| | - Pakpoom Kheolamai
- Division of Cell Biology, Department of Preclinical Sciences, Faculty of Medicine, Thammasat University, Pathumthani, 12120, Thailand.,Center of Excellence in Stem Cell Research, Thammasat University, Pathumthani, 12120, Thailand
| | - Duangrat Tantikanlayaporn
- Division of Cell Biology, Department of Preclinical Sciences, Faculty of Medicine, Thammasat University, Pathumthani, 12120, Thailand.,Center of Excellence in Stem Cell Research, Thammasat University, Pathumthani, 12120, Thailand
| | - Weerachai Saijuntha
- Biodiversity and Conservation Research Unit, Walai Rukhavej Botanical Research Institute (WRBRI), Mahasarakham University, Maha Sarakham, 44150, Thailand
| | - Somchai Pinlaor
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Arthit Chairoungdua
- Department of Physiology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Luminita Paraoan
- Department of Biology, Faculty of Arts and Sciences, Edge Hill University, BioSciences Building, St Helens Road, Ormskirk, L39 4QP, UK.
| | - Chairat Tantrawatpan
- Division of Cell Biology, Department of Preclinical Sciences, Faculty of Medicine, Thammasat University, Pathumthani, 12120, Thailand. .,Center of Excellence in Stem Cell Research, Thammasat University, Pathumthani, 12120, Thailand.
| |
Collapse
|
11
|
Asl Iranifam R, Maleki M, Vahdani Kia V, Safavi E, Sadi Khosroshahi N. Assessment the Effect of Human Umbilical Cord Wharton's Jelly Stem Cells on the Expression of Homing Genes: CXCR4 and VLA-4 in Cell Line of Prostate Cancer. Int J Hematol Oncol Stem Cell Res 2022; 16:157-163. [PMID: 36694702 PMCID: PMC9831870 DOI: 10.18502/ijhoscr.v16i3.10138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 10/23/2021] [Indexed: 01/27/2023] Open
Abstract
Background : Prostate cancer is the second most common cancer in the male that affects the health, social and economic life of person. Different compounds such as Wharton's jelly, have been used to treat prostate cancer. Wharton's jelly is a tissue rich in cells with mesenchymal morphology. Wharton's jelly compound inhibited the growth of various cancer cells, including ovarian, osteosarcoma, breast, and prostate cancers, and also reduced the expression of CXCR4 and VLA-4 genes involved in the metastasis process. Materials and Methods: To do this research, Wharton's jelly stem cells and DU145 cancer cell line were cultured. After cell culture, the effect of Wharton's jelly on this cell line was evaluated by scratching and MTT assay. The expression of CXCR4 and VLA-4 genes was also evaluated by Real-time PCR. Results: The results of MTT and Scratching tests showed that Wharton's jelly inhibited the growth of DU145 cancer cells and also decreased the expression level of CXCR4 and VLA-4 genes. Conclusion: The results of this study showed that Wharton's jelly can be considered as an effective compound for decreasing metastasis of prostate cancer.
Collapse
Affiliation(s)
- Roya Asl Iranifam
- Department of Biology, Islamic Azad University, Tabriz Branch, Tabriz, Iran
| | - Masoud Maleki
- Department of Biology, Islamic Azad University, Tabriz Branch, Tabriz, Iran
| | - Vida Vahdani Kia
- Department of Biology, Islamic Azad University, Tabriz Branch, Tabriz, Iran
| | - Esmaeil Safavi
- Department of Basic sciences, Biotechnology Research Center, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Negin Sadi Khosroshahi
- Department of Biology, Faculty of Basic Sciences, Azarbaijan Shahid Madani University, Tabriz, Iran
| |
Collapse
|
12
|
Feng X, Jiang J, Sun L, Zhou Q. CDK5RAP3 acts as a putative tumor inhibitor in papillary thyroid carcinoma via modulation of Akt/GSK-3β/Wnt/β-catenin signaling. Toxicol Appl Pharmacol 2022; 440:115940. [DOI: 10.1016/j.taap.2022.115940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 02/14/2022] [Accepted: 02/21/2022] [Indexed: 02/07/2023]
|
13
|
Decidua Parietalis Mesenchymal Stem/Stromal Cells and Their Secretome Diminish the Oncogenic Properties of MDA231 Cells In Vitro. Cells 2021; 10:cells10123493. [PMID: 34944000 PMCID: PMC8700435 DOI: 10.3390/cells10123493] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 11/28/2021] [Accepted: 11/30/2021] [Indexed: 12/27/2022] Open
Abstract
Mesenchymal stem cells (MSCs) have been shown to suppress tumor growth, inhibit angiogenesis, regulate cellular signaling, and induce apoptosis in cancer cells. We have earlier reported that placenta-derived decidua parietalis mesenchymal stem/stromal cells (DPMSCs) not only retained their functional characteristics in the cancer microenvironment but also exhibited increased expression of anti-apoptotic genes, demonstrating their anti-tumor properties in the tumor setting. In this study, we have further evaluated the effects of DPMSCs on the functional outcome of human breast cancer cell line MDA231. MDA231 cells were exposed to DPMSCs, and their biological functions, including adhesion, proliferation, migration, and invasion, were evaluated. In addition, genomic and proteomic modifications of the MDA231 cell line, in response to the DPMSCs, were also evaluated. MDA231 cells exhibited a significant reduction in proliferation, migration, and invasion potential after their treatment with DPMSCs. Furthermore, DPMSC treatment diminished the angiogenic potential of MDA231 cells. DPMSC treatment modulated the expression of various pro-apoptotic as well as oncogenes in MDA231 cells. The properties of DPMSCs to inhibit the invasive characteristics of MDA231 cells demonstrate that they may be a useful candidate in a stem-cell-based therapy against cancer.
Collapse
|
14
|
Zhuang WZ, Lin YH, Su LJ, Wu MS, Jeng HY, Chang HC, Huang YH, Ling TY. Mesenchymal stem/stromal cell-based therapy: mechanism, systemic safety and biodistribution for precision clinical applications. J Biomed Sci 2021; 28:28. [PMID: 33849537 PMCID: PMC8043779 DOI: 10.1186/s12929-021-00725-7] [Citation(s) in RCA: 150] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Accepted: 04/07/2021] [Indexed: 12/13/2022] Open
Abstract
Mesenchymal stem/stromal cells (MSCs) are a promising resource for cell-based therapy because of their high immunomodulation ability, tropism towards inflamed and injured tissues, and their easy access and isolation. Currently, there are more than 1200 registered MSC clinical trials globally. However, a lack of standardized methods to characterize cell safety, efficacy, and biodistribution dramatically hinders the progress of MSC utility in clinical practice. In this review, we summarize the current state of MSC-based cell therapy, focusing on the systemic safety and biodistribution of MSCs. MSC-associated risks of tumor initiation and promotion and the underlying mechanisms of these risks are discussed. In addition, MSC biodistribution methodology and the pharmacokinetics and pharmacodynamics of cell therapies are addressed. Better understanding of the systemic safety and biodistribution of MSCs will facilitate future clinical applications of precision medicine using stem cells.
Collapse
Affiliation(s)
- Wei-Zhan Zhuang
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, 250 Wuxing Street, Taipei, 11031, Taiwan.,Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, 250 Wuxing Street, Taipei, 11031, Taiwan.,TMU Research Center of Cell Therapy and Regeneration Medicine, Taipei Medical University, 250 Wuxing Street, Taipei, 11031, Taiwan
| | - Yi-Heng Lin
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, 250 Wuxing Street, Taipei, 11031, Taiwan.,Department of Obstetrics and Gynecology, College of Medicine, National Taiwan University, Taipei, 10041, Taiwan.,Department of Obstetrics and Gynecology, National Taiwan University Hospital Yunlin Branch, Yunlin, 64041, Taiwan
| | - Long-Jyun Su
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, 106, Taiwan
| | - Meng-Shiue Wu
- Department and Graduate Institute of Pharmacology, College of Medicine, National Taiwan University, Taipei, 10617, Taiwan
| | - Han-Yin Jeng
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, 250 Wuxing Street, Taipei, 11031, Taiwan.,TMU Research Center of Cell Therapy and Regeneration Medicine, Taipei Medical University, 250 Wuxing Street, Taipei, 11031, Taiwan
| | - Huan-Cheng Chang
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, 106, Taiwan.,Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, 106, Taiwan
| | - Yen-Hua Huang
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, 250 Wuxing Street, Taipei, 11031, Taiwan. .,Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, 250 Wuxing Street, Taipei, 11031, Taiwan. .,TMU Research Center of Cell Therapy and Regeneration Medicine, Taipei Medical University, 250 Wuxing Street, Taipei, 11031, Taiwan. .,International PhD Program for Cell Therapy and Regeneration Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan. .,Center for Reproductive Medicine, Taipei Medical University Hospital, Taipei Medical University, Taipei, 11031, Taiwan. .,Comprehensive Cancer Center of Taipei Medical University, Taipei, 11031, Taiwan. .,The PhD Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, 11031, Taiwan.
| | - Thai-Yen Ling
- Department and Graduate Institute of Pharmacology, College of Medicine, National Taiwan University, Taipei, 10617, Taiwan. .,Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei, 100, Taiwan.
| |
Collapse
|
15
|
Wnt/β-catenin signaling as an emerging potential key pharmacological target in cholangiocarcinoma. Biosci Rep 2021; 40:222119. [PMID: 32140709 PMCID: PMC7953494 DOI: 10.1042/bsr20193353] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 01/07/2020] [Accepted: 01/31/2020] [Indexed: 02/06/2023] Open
Abstract
Cholangiocarcinoma (CCA) is a fatal malignant tumor of biliary epithelial cells involving intra- or extra-hepatic bile ducts. The prognosis of CCA is generally poor due to its diagnosis at the late stages. The currently employed chemotherapeutic agents do not increase the survival rate in patients with unresectable CCA. Accordingly, there is a need to identify new therapeutic agents for the effective management of intra- and extra-hepatic CCA. Clinical as well as preclinical studies have suggested the key role of the activation of Wnt/β-catenin signaling pathway in the induction and progression of CCA. There is an up-regulation of different Wnt ligands including Wnt2, Wnt3, Wnt5, Wnt7 and Wnt10 along with redistribution of β-catenin (more expression in the nucleus and lesser on the cell surface due to nuclear translocation of β-catenin) in different types of malignant biliary tumors. Apart from the role of this pathway in the induction and progression of CCA, this pathway is also involved in inducing multidrug resistance by inducing the expression of P-glycoprotein efflux pump on the cancer cells. These deleterious effects of Wnt/β-catenin signaling are mediated in association with other signaling pathways involving microRNAs (miRNAs), PI3K/AKT/PTEN/GSK-3β, retinoic acid receptors (RARs), dickkopf-1 (DKK1), protein kinase A regulatory subunit 1 α (PRKAR1A/PKAI), (SLAP), liver kinase B1 (LKB1) and CXCR4. The selective inhibitors of Wnt/β-catenin signaling may be potentially employed to overcome multidrug-resistant, fatal CCA. The present review discusses the role of Wnt/β-catenin along with its relation with other signaling pathways in the induction and progression of CCA.
Collapse
|
16
|
Brandi G, Tavolari S. In Vitro and In Vivo Model Systems of Cholangiocarcinoma. DIAGNOSIS AND MANAGEMENT OF CHOLANGIOCARCINOMA 2021:471-494. [DOI: 10.1007/978-3-030-70936-5_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
17
|
Massa A, Varamo C, Vita F, Tavolari S, Peraldo-Neia C, Brandi G, Rizzo A, Cavalloni G, Aglietta M. Evolution of the Experimental Models of Cholangiocarcinoma. Cancers (Basel) 2020; 12:cancers12082308. [PMID: 32824407 PMCID: PMC7463907 DOI: 10.3390/cancers12082308] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/14/2020] [Accepted: 08/14/2020] [Indexed: 02/06/2023] Open
Abstract
Cholangiocarcinoma (CCA) is a rare, aggressive disease with poor overall survival. In advanced cases, surgery is often not possible or fails; in addition, there is a lack of effective and specific therapies. Multidisciplinary approaches and advanced technologies have improved the knowledge of CCA molecular pathogenesis, highlighting its extreme heterogeneity and high frequency of genetic and molecular aberrations. Effective preclinical models, therefore, should be based on a comparable level of complexity. In the past years, there has been a consistent increase in the number of available CCA models. The exploitation of even more complex CCA models is rising. Examples are the use of CRISPR/Cas9 or stabilized organoids for in vitro studies, as well as patient-derived xenografts or transgenic mouse models for in vivo applications. Here, we examine the available preclinical CCA models exploited to investigate: (i) carcinogenesis processes from initiation to progression; and (ii) tools for personalized therapy and innovative therapeutic approaches, including chemotherapy and immune/targeted therapies. For each model, we describe the potential applications, highlighting both its advantages and limits.
Collapse
Affiliation(s)
- Annamaria Massa
- Division of Medical Oncology, Candiolo Cancer Institute, FPO-IRCCS, Candiolo, 10060 Torino, Italy; (A.M.); (G.C.)
| | - Chiara Varamo
- Department of Oncology, University of Turin, 10126 Torino, Italy; (C.V.); (F.V.)
- Department of Oncology, Laboratory of Tumor Inflammation and Angiogenesis, B3000 KU Leuven, Belgium
| | - Francesca Vita
- Department of Oncology, University of Turin, 10126 Torino, Italy; (C.V.); (F.V.)
| | - Simona Tavolari
- Center for Applied Biomedical Research, S. Orsola-Malpighi University Hospital, 40138 Bologna, Italy;
| | | | - Giovanni Brandi
- Department of Experimental, Diagnostic and Specialty Medicine, S. Orsola-Malpighi University Hospital, 40138 Bologna, Italy; (G.B.); (A.R.)
| | - Alessandro Rizzo
- Department of Experimental, Diagnostic and Specialty Medicine, S. Orsola-Malpighi University Hospital, 40138 Bologna, Italy; (G.B.); (A.R.)
| | - Giuliana Cavalloni
- Division of Medical Oncology, Candiolo Cancer Institute, FPO-IRCCS, Candiolo, 10060 Torino, Italy; (A.M.); (G.C.)
| | - Massimo Aglietta
- Division of Medical Oncology, Candiolo Cancer Institute, FPO-IRCCS, Candiolo, 10060 Torino, Italy; (A.M.); (G.C.)
- Department of Oncology, University of Turin, 10126 Torino, Italy; (C.V.); (F.V.)
- Correspondence:
| |
Collapse
|
18
|
Kwon Y, Kim M, Kim Y, Jung HS, Jeoung D. Exosomal MicroRNAs as Mediators of Cellular Interactions Between Cancer Cells and Macrophages. Front Immunol 2020; 11:1167. [PMID: 32595638 PMCID: PMC7300210 DOI: 10.3389/fimmu.2020.01167] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 05/12/2020] [Indexed: 02/06/2023] Open
Abstract
Tumor microenvironment consists of cancer cells and various stromal cells such as endothelial cells, cancer-associated fibroblasts (CAFs), myeloid-derived suppressor cells (MDSCs), neutrophils, macrophages, and other innate and adaptive immune cells. Of these innate immune cells, macrophages are an extremely heterogeneous population, and display both pro-inflammatory and anti-inflammatory functions. While M1 macrophages (classically activated macrophages) display anti-tumoral and pro-inflammatory functions, M2 macrophages display pro-tumoral and anti-inflammatory functions. Cellular interactions and molecular factors in the tumor microenvironment affect the polarization of macrophages. We review molecules and immune cells that influence the polarization status of macrophages. Tumor-associated macrophages (TAMs) generally express M2 phenotype, and mediate many processes that include tumor initiation, angiogenesis, and metastasis. A high number of TAMs has been associated with the poor prognosis of cancers. MicroRNAs (miRNAs) have been known to regulate cellular interactions that involve cancer cells and macrophages. Tumor-derived exosomes play critical roles in inducing the M1 or M2-like polarization of macrophages. The roles of exosomal miRNAs from tumor cells in the polarization of macrophages are also discussed and the targets of these miRNAs are presented. We review the effects of exosomal miRNAs from TAMs on cancer cell invasion, growth, and anti-cancer drug resistance. The relevance of exosomal microRNAs (miRNAs) as targets for the development of anti-cancer drugs is discussed. We review recent progress in the development of miRNA therapeutics aimed at elevating or decreasing levels of miRNAs.
Collapse
Affiliation(s)
- Yoojung Kwon
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon, South Korea
| | - Misun Kim
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon, South Korea
| | - Youngmi Kim
- Institute of New Frontier Research, College of Medicine, Hallym University, Chuncheon, South Korea
| | - Hyun Suk Jung
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon, South Korea
| | - Dooil Jeoung
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon, South Korea
| |
Collapse
|
19
|
Wang Q, Li T, Wu W, Ding G. Interplay between mesenchymal stem cell and tumor and potential application. Hum Cell 2020; 33:444-458. [PMID: 32378164 DOI: 10.1007/s13577-020-00369-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Accepted: 04/24/2020] [Indexed: 12/12/2022]
Abstract
Mesenchymal stem cells (MSCs) possess the capabilities of self-renewal and multipotent differentiation. Firstly isolated from bone marrow, MSCs are subsequently identified from various post-natal tissue types. Based the differentiation into tissue-specific cells, MSCs were capable of replacing damaged and diseased tissues. In addition, MSCs have been demonstrated to possess important immunomodulatory properties. Increasing data showed that MSCs exhibited tropism for sites of the tumor microenvironment and interacted with tumor cells closely through paracrine signaling. Therefore, better understanding of crosstalk between MSCs and tumor cells will be able to develop potential strategies in the treatment of tumors in the future. Herein, we summarize the research progress of the influence of MSCs on tumor cells and the prospect of their application in tumor therapy in this review.
Collapse
Affiliation(s)
- Qing Wang
- Department of Dentistry, Weifang People's Hospital, Weifang, 261000, Shandong, People's Republic of China
| | - Ti Li
- Department of Dentistry, Weifang People's Hospital, Weifang, 261000, Shandong, People's Republic of China
| | - Wei Wu
- Department of Dentistry, Weifang People's Hospital, Weifang, 261000, Shandong, People's Republic of China
| | - Gang Ding
- Department of Stomatology, Yidu Central Hospital, Weifang Medical University, Linglongshan South Road No. 4138, Qingzhou, 262500, Shandong, People's Republic of China.
| |
Collapse
|
20
|
Lyu Z, Ma M, Xu Y, Wang X, Zhu Y, Ren W, Li T. Expression and prognostic significance of epithelial tissue-specific transcription factor ESE3 in hepatocellular carcinoma. Int J Clin Oncol 2020; 25:1334-1345. [PMID: 32347431 DOI: 10.1007/s10147-020-01675-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 03/31/2020] [Indexed: 01/29/2023]
Abstract
BACKGROUND Epithelium-specific ETS 3 (ESE3) is down-regulated frequently in several malignancies and involved in carcinogenesis and progression. However, ESE3 expression pattern and its relationship with clinical features and prognosis in hepatocellular carcinoma (HCC) are still largely unknown. METHODS ESE3 expression was analyzed by quantitative real-time PCR and western blotting in HCC cell lines, and then, it was analyzed by immunohistochemistry in HCC tissues and peritumoral normal tissues from total 94 HCC patients. The relationship between ESE3 expression and clinical features was investigated to illustrate the potential prognostic value in HCC. ESE3 roles on HCC progression were evaluated in vitro and vivo by MTT assay and mice tumor model, respectively. RESULTS ESE3, mainly located in the cytoplasm, was remarkably down-regulated in HCC tissues and cell lines. Low ESE3 expression was positively associated with tumor progression and metastasis features. Kaplan-Meier analysis demonstrated that low ESE3 expression contributed to poor recurrence-free survival (RFS) and overall survival (OS) (both p < 0.01) of patients, and maintained its prognostic value in predicting poor RFS and OS of "Early-stage" HCC patients regardless of clinical features being studied. Multivariate survival analysis was also identified ESE3 as an independent prognostic factor for RFS (p = 0.05 for marginal significance) and OS (p = 0.031). ESE3 expression restoration in cells led to a significant inhibition in HepG2 cell proliferation in vitro and vivo (both p < 0.001). CONCLUSIONS Down-regulated ESE3 expression in HCC tissues could serve as a potential therapeutic target against HCC and appears to be as a poor prognostic indicator for prognosis, especially in "Early-stage" HCC patients.
Collapse
Affiliation(s)
- Zhuozhen Lyu
- Department of Infectious Diseases, Shandong Provincial Hospital Affiliated To Shandong University, 324#, Jing 5 Road, Jinan, 250021, China
| | - Mingze Ma
- Department of Infectious Diseases, Shandong Provincial Hospital Affiliated To Shandong University, 324#, Jing 5 Road, Jinan, 250021, China
| | - Yantian Xu
- Department of Liver Transplantation and Hepatobiliary Surgery, Shandong Provincial Hospital Affiliated To Shandong University, 324#, Jing 5 Road, Jinan, 250021, China
| | - Xinxing Wang
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital Affiliated To Shandong University, 324#, Jing 5 Road, Jinan, 250021, China
| | - Yuhua Zhu
- Department of Infectious Diseases, Shandong Provincial Hospital Affiliated To Shandong University, 324#, Jing 5 Road, Jinan, 250021, China
| | - WanHua Ren
- Department of Infectious Diseases, Shandong Provincial Hospital Affiliated To Shandong University, 324#, Jing 5 Road, Jinan, 250021, China.
| | - Tao Li
- Department of Infectious Diseases, Shandong Provincial Hospital Affiliated To Shandong University, 324#, Jing 5 Road, Jinan, 250021, China.
| |
Collapse
|
21
|
Hypoxic Wharton's Jelly Stem Cell Conditioned Medium Induces Immunogenic Cell Death in Lymphoma Cells. Stem Cells Int 2020; 2020:4670948. [PMID: 32377203 PMCID: PMC7189315 DOI: 10.1155/2020/4670948] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 03/03/2020] [Accepted: 03/16/2020] [Indexed: 12/22/2022] Open
Abstract
Mesenchymal stem cells from Wharton's jelly of the human umbilical cord (hWJSCs), and the conditioned medium (hWJSC-CM) prepared from them, were shown to be tumoricidal on many cancers. However, these tumoricidal effects were observed in hWJSCs grown under normoxic conditions of 21% oxygen in the laboratory. Since oxygen concentrations in the stem cell niche or physiological microenvironment are hypoxic and help to maintain stemness properties, the objective of this work was to evaluate whether there were differences in the tumoricidal properties of hWJSC-CM grown in 21% O2 (normoxic) or 5% O2 (hypoxic) environments. The results showed that hWJSCs grown under normoxic or hypoxic conditions showed no distinct morphological differences in culture and remained positive in trilineage differentiation into adipocytes, osteocytes, and chondrocytes. Hypoxic hWJSCs expressed the mesenchymal stem cell surface markers CD105, CD90, CD73, CD146, and CD108 similar to normoxic hWJSCs but were negative for the hematopoietic markers CD14, CD19, CD34, CD45, CD117, and HLA-DR. Hypoxic hWJSC-CM produced a significantly greater reduction in cell viability and a significantly greater increase in apoptosis, oxidative stress, and lipid peroxidation in human lymphoma cells compared to normoxic hWJSC-CM. Hypoxic hWJSC-CM also produced significantly greater expression of immunogenic cell death (ICD) hallmarks such as surface-bound calreticulin, HSP70, HSP90, and high mobility group binding 1 proteins and significantly decreased expression of the defense molecules CD47 and PD-L1. This study showed that the tumoricidal effect of hypoxic hWJSC-CM was superior to normoxic hWJSC-CM and should be the preferred choice of preparing hWJSC-CM for the induction of ICD on lymphoma cells.
Collapse
|
22
|
Rahmatizadeh F, Gholizadeh-Ghaleh Aziz S, Khodadadi K, Lale Ataei M, Ebrahimie E, Soleimani Rad J, Pashaiasl M. Bidirectional and Opposite Effects of Naïve Mesenchymal Stem Cells on Tumor Growth and Progression. Adv Pharm Bull 2019; 9:539-558. [PMID: 31857958 PMCID: PMC6912184 DOI: 10.15171/apb.2019.063] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 07/31/2019] [Accepted: 08/13/2019] [Indexed: 12/16/2022] Open
Abstract
Cancer has long been considered as a heterogeneous population of uncontrolled proliferation of
different transformed cell types. The recent findings concerning tumorigeneses have highlighted
the fact that tumors can progress through tight relationships among tumor cells, cellular, and
non-cellular components which are present within tumor tissues. In recent years, studies have
shown that mesenchymal stem cells (MSCs) are essential components of non-tumor cells within
the tumor tissues that can strongly affect tumor development. Several forms of MSCs have been
identified within tumor stroma. Naïve (innate) mesenchymal stem cells (N-MSCs) derived from
different sources are mostly recruited into the tumor stroma. N-MSCs exert dual and divergent
effects on tumor growth through different conditions and factors such as toll-like receptor
priming (TLR-priming), which is the primary underlying causes of opposite effects. Moreover,
MSCs also have the contrary effects by various molecular mechanisms relying on direct cellto-
cell connections and indirect communications through the autocrine, paracrine routes, and
tumor microenvironment (TME).
Overall, cell-based therapies will hold great promise to provide novel anticancer treatments.
However, the application of intact MSCs in cancer treatment can theoretically cause adverse
clinical outcomes. It is essential that to extensively analysis the effective factors and conditions
in which underlying mechanisms are adopted by MSCs when encounter with cancer.
The aim is to review the cellular and molecular mechanisms underlying the dual effects of
MSCs followed by the importance of polarization of MSCs through priming of TLRs.
Collapse
Affiliation(s)
- Faramarz Rahmatizadeh
- Department of Molecular Medicine, Faculty of Advanced Medical Science, Tabriz University of Medical Science, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.,Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Khodadad Khodadadi
- Murdoch Children's Research Institute, Royal Children's Hospital, The University of Melbourne, Melbourne, Australia
| | - Maryam Lale Ataei
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Esmaeil Ebrahimie
- Adelaide Medical School, University of Adelaide, Adelaide, Australia.,School of Animal and Veterinary Sciences, University of Adelaide, Adelaide, Australia
| | - Jafar Soleimani Rad
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Reproductive Biology, Faculty of Advanced Medical Science, Tabriz University of Medical Science, Tabriz, Iran
| | - Maryam Pashaiasl
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Reproductive Biology, Faculty of Advanced Medical Science, Tabriz University of Medical Science, Tabriz, Iran.,Women's Reproductive Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
23
|
Encapsulated human mesenchymal stem cells (eMSCs) as a novel anti-cancer agent targeting breast cancer stem cells: Development of 3D primed therapeutic MSCs. Int J Biochem Cell Biol 2019; 110:59-69. [DOI: 10.1016/j.biocel.2019.02.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Revised: 01/28/2019] [Accepted: 02/01/2019] [Indexed: 02/06/2023]
|
24
|
Abstract
In recent years, stem cell therapy has become a very promising and advanced scientific research topic. The development of treatment methods has evoked great expectations. This paper is a review focused on the discovery of different stem cells and the potential therapies based on these cells. The genesis of stem cells is followed by laboratory steps of controlled stem cell culturing and derivation. Quality control and teratoma formation assays are important procedures in assessing the properties of the stem cells tested. Derivation methods and the utilization of culturing media are crucial to set proper environmental conditions for controlled differentiation. Among many types of stem tissue applications, the use of graphene scaffolds and the potential of extracellular vesicle-based therapies require attention due to their versatility. The review is summarized by challenges that stem cell therapy must overcome to be accepted worldwide. A wide variety of possibilities makes this cutting edge therapy a turning point in modern medicine, providing hope for untreatable diseases.
Collapse
Affiliation(s)
- Wojciech Zakrzewski
- Department of Experimental Surgery and Biomaterials Research, Wroclaw Medical University, Bujwida 44, Wrocław, 50-345 Poland
| | - Maciej Dobrzyński
- Department of Conservative Dentistry and Pedodontics, Krakowska 26, Wrocław, 50-425 Poland
| | - Maria Szymonowicz
- Department of Experimental Surgery and Biomaterials Research, Wroclaw Medical University, Bujwida 44, Wrocław, 50-345 Poland
| | - Zbigniew Rybak
- Department of Experimental Surgery and Biomaterials Research, Wroclaw Medical University, Bujwida 44, Wrocław, 50-345 Poland
| |
Collapse
|
25
|
Barrett AN, Fong CY, Subramanian A, Liu W, Feng Y, Choolani M, Biswas A, Rajapakse JC, Bongso A. Human Wharton's Jelly Mesenchymal Stem Cells Show Unique Gene Expression Compared with Bone Marrow Mesenchymal Stem Cells Using Single-Cell RNA-Sequencing. Stem Cells Dev 2019; 28:196-211. [PMID: 30484393 DOI: 10.1089/scd.2018.0132] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Human Wharton's jelly stem cells (hWJSCs) isolated from the human umbilical cord are a unique population of mesenchymal stem cells (MSCs) with significant clinical utility. Their broad differentiation potential, high rate of proliferation, ready availability from discarded cords, and prolonged maintenance of stemness properties in culture make them an attractive alternative source of MSCs with therapeutic value compared with human bone marrow MSCs (hBMMSCs). We aimed to characterize the differences in gene expression profiles between these two stem cell types using single-cell RNA sequencing (scRNA-Seq) to determine which pathways are involved in conferring hWJSCs with their unique properties. We identified 436 significantly differentially expressed genes between the two cell types, playing roles in processes, including immunomodulation, angiogenesis, wound healing, apoptosis, antitumor activity, and chemotaxis. Expression of immune molecules is particularly high in hWJSCs compared with hBMMSCs. These differences in gene expression may help to explain many of the advantages that hWJSCs have over hBMMSCs for clinical application. Although cell surface protein marker expression indicates that isolated hWJSCs and hBMMSCs are both homogenous populations, using scRNA-Seq we can clearly identify extreme variability in expression levels between individual cells within a certain cell type. If the cells are examined as bulk populations, it is not possible to appreciate that a single cell may be making a major unique contribution to the apparent overall expression level. We demonstrated how the fine tuning of expression within hWJSCs and hBMMSCs may be achieved by expression of molecules with opposing function between two cells. We hypothesize that a greater understanding of these differences in gene expression between the two cell types may aid in the development of new therapies using hWJSCs.
Collapse
Affiliation(s)
- Angela N Barrett
- 1 Department of Obstetrics and Gynaecology, National University of Singapore, Singapore, Singapore
| | - Chui-Yee Fong
- 1 Department of Obstetrics and Gynaecology, National University of Singapore, Singapore, Singapore
| | - Arjunan Subramanian
- 1 Department of Obstetrics and Gynaecology, National University of Singapore, Singapore, Singapore
| | - Wenting Liu
- 2 Division of Human Genetics, Genome Institute of Singapore, Singapore, Singapore
| | - Yirui Feng
- 3 School of Computer Science and Engineering, Nanyang Technological University, Singapore, Singapore
| | - Mahesh Choolani
- 1 Department of Obstetrics and Gynaecology, National University of Singapore, Singapore, Singapore
| | - Arijit Biswas
- 1 Department of Obstetrics and Gynaecology, National University of Singapore, Singapore, Singapore
| | - Jagath C Rajapakse
- 3 School of Computer Science and Engineering, Nanyang Technological University, Singapore, Singapore
| | - Ariff Bongso
- 1 Department of Obstetrics and Gynaecology, National University of Singapore, Singapore, Singapore
| |
Collapse
|
26
|
Razmkhah M, Abtahi S, Ghaderi A. Mesenchymal Stem Cells, Immune Cells and Tumor Cells Crosstalk: A Sinister Triangle in the Tumor Microenvironment. Curr Stem Cell Res Ther 2019; 14:43-51. [PMID: 30112998 DOI: 10.2174/1574888x13666180816114809] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 08/08/2018] [Accepted: 08/09/2018] [Indexed: 02/07/2023]
Abstract
Mesenchymal Stem Cells [MSCs] are a heterogeneous population of fibroblast-like cells which maintain self-renewability and pluripotency. Many studies have demonstrated the immunomodulatory effects of MSCs on the innate and adaptive immune cells. As a result of interactions with tumor cells, microenvironment and immune-stimulating milieu, MSCs contribute to tumor progression by several mechanisms, including sustained proliferative signal in cancer stem cells [CSCs], inhibition of tumor cell apoptosis, transition to tumor-associated fibroblasts [TAFs], promotion of angiogenesis, stimulation of epithelial-mesenchymal transition [EMT], suppression of immune responses, and consequential promotion of tumor metastasis. Here, we present an overview of the latest findings on Janusfaced roles that MSCs play in the tumor microenvironment [TME], with a concise focus on innate and adaptive immune responses.
Collapse
Affiliation(s)
- Mahboobeh Razmkhah
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Shabnam Abtahi
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Abbas Ghaderi
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
27
|
Chen Z, Guo P, Xie X, Yu H, Wang Y, Chen G. The role of tumour microenvironment: a new vision for cholangiocarcinoma. J Cell Mol Med 2018; 23:59-69. [PMID: 30394682 PMCID: PMC6307844 DOI: 10.1111/jcmm.13953] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 09/10/2018] [Indexed: 12/18/2022] Open
Abstract
Cholangiocarcinoma (CCA) is a relatively rare malignant and lethal tumour derived from bile duct epithelium and the morbidity is now increasing worldwide. This disease is difficult to diagnose at its inchoate stage and has poor prognosis. Therefore, a clear understanding of pathogenesis and major influencing factors is the key to develop effective therapeutic methods for CCA. In previous studies, canonical correlation analysis has demonstrated that tumour microenvironment plays an intricate role in the progression of various types of cancers including CCA. CCA tumour microenvironment is a dynamic environment consisting of authoritative tumour stromal cells and extracellular matrix where tumour stromal cells and cancer cells can thrive. CCA stromal cells include immune and non‐immune cells, such as inflammatory cells, endothelial cells, fibroblasts, and macrophages. Likewise, CCA tumour microenvironment contains abundant proliferative factors and can significantly impact the behaviour of cancer cells. Through abominably intricate interactions with CCA cells, CCA tumour microenvironment plays an important role in promoting tumour proliferation, accelerating neovascularization, facilitating tumour invasion, and preventing tumour cells from organismal immune reactions and apoptosis. This review summarizes the recent research progress regarding the connection between tumour behaviours and tumour stromal cells in CCA, as well as the mechanism underlying the effect of tumour stromal cells on the growth of CCA. A thorough understanding of the relationship between CCA and tumour stromal cells can shed some light on the development of new therapeutic methods for treating CCA.
Collapse
Affiliation(s)
- Ziyan Chen
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | - Pengyi Guo
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | - Xiaozai Xie
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | - Haitao Yu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | - Yi Wang
- Environmental and Public, Health School of Wenzhou Medical University, Wenzhou, China
| | - Gang Chen
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
28
|
Yuan Y, Zhou C, Chen X, Tao C, Cheng H, Lu X. Suppression of tumor cell proliferation and migration by human umbilical cord mesenchymal stem cells: A possible role for apoptosis and Wnt signaling. Oncol Lett 2018; 15:8536-8544. [PMID: 29805590 PMCID: PMC5950566 DOI: 10.3892/ol.2018.8368] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Accepted: 02/28/2018] [Indexed: 02/07/2023] Open
Abstract
Human umbilical cord-derived mesenchymal stem cells (hUCMSCs) represent potential therapeutic tools for solid tumors. However, there are numerous inconsistent results regarding the effects of hUCMSCs on tumors, and the mechanisms underlying this remain poorly understood. The present study further examined this controversial issue by analyzing the molecular mechanisms of the inhibitory effects of hUCMSCs on the proliferation and migration of the human lung cancer A549 cell line and the human hepatocellular carcinoma (HCC) BEL7402 cell line in vitro. Flow cytometric analysis demonstrated that hUCMSCs arrested tumor cells in specific phases of the cell cycle and induced the apoptosis of tumor cells by using the hUCMSC-conditioned medium (hUCMSC-CM). The hUCMSC-CM also attenuated the migratory abilities of the two tumor cell types. Furthermore, the expression of B-cell lymphoma 2 (Bcl-2), the pro-form of caspase-7 (pro-caspase-7), β-catenin and c-Myc was downregulated, while that of ephrin receptor (EphA5), a biomarker of cancer cell dormancy, was slightly increased in these two tumor cell lines treated with hUCMSC-CM. Specifically, when co-cultured via direct cell-to-cell contact, hUCMSCs were able to spontaneously fuse with any of the two types of solid tumor cells. These observations suggested that hUCMSCs may be a promising candidate for the biological therapy of lung cancer and HCC. Future studies should focus on detailed evidence for cell fusion, as well as other mechanisms proposed in the present study, by introducing additional experimental approaches and models.
Collapse
Affiliation(s)
- Yin Yuan
- School of Life Science and Biopharmacology, School of Anatomy and Histology, Guangdong Provincial Key Laboratory of Biotechnology Candidate Drug Research, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, P.R. China
| | - Chang Zhou
- School of Life Science and Biopharmacology, School of Anatomy and Histology, Guangdong Provincial Key Laboratory of Biotechnology Candidate Drug Research, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, P.R. China
| | - Xuan Chen
- School of Life Science and Biopharmacology, School of Anatomy and Histology, Guangdong Provincial Key Laboratory of Biotechnology Candidate Drug Research, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, P.R. China
| | - Changli Tao
- School of Life Science and Biopharmacology, School of Anatomy and Histology, Guangdong Provincial Key Laboratory of Biotechnology Candidate Drug Research, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, P.R. China
| | - Huiqing Cheng
- School of Life Science, South China Normal University, Guangzhou, Guangdong 510631, P.R. China
| | - Xin Lu
- School of Life Science, South China Normal University, Guangzhou, Guangdong 510631, P.R. China
| |
Collapse
|
29
|
Multifaceted Roles of GSK-3 in Cancer and Autophagy-Related Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:4629495. [PMID: 29379583 PMCID: PMC5742885 DOI: 10.1155/2017/4629495] [Citation(s) in RCA: 168] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 10/07/2017] [Accepted: 10/23/2017] [Indexed: 02/07/2023]
Abstract
GSK-3 is a ubiquitously expressed serine/threonine kinase existing as GSK-3α and GSK-3β isoforms, both active under basal conditions and inactivated upon phosphorylation by different upstream kinases. Initially discovered as a regulator of glycogen synthesis, GSK-3 is also involved in several signaling pathways controlling many different key functions. Here, we discuss recent advances regarding (i) GSK-3 structure, function, regulation, and involvement in several cancers, including hepatocarcinoma, cholangiocarcinoma, breast cancer, prostate cancer, leukemia, and melanoma (active GSK-3 has been shown to induce apoptosis in some cases or inhibit apoptosis in other cases and to induce cancer progression or inhibit tumor cell proliferation, suggesting that different GSK-3 modulators may address different specific targets); (ii) GSK-3 involvement in autophagy modulation, reviewing signaling pathways involved in neurodegenerative and liver diseases; (iii) GSK-3 role in oxidative stress and autophagic cell death, focusing on liver injury; (iv) GSK-3 as a possible therapeutic target of natural substances and synthetic inhibitors in many diseases; and (v) GSK-3 role as modulator of mammalian aging, related to metabolic alterations characterizing senescent cells and age-related diseases. Studies summarized here underline the GSK-3 multifaceted role and indicate such kinase as a molecular target in different pathologies, including diseases associated with autophagy dysregulation.
Collapse
|
30
|
Chai L, Bai L, Li L, Chen F, Zhang J. Biological functions of lung cancer cells are suppressed in co-culture with mesenchymal stem cells isolated from umbilical cord. Exp Ther Med 2017; 15:1076-1080. [PMID: 29399109 DOI: 10.3892/etm.2017.5456] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 11/03/2017] [Indexed: 02/05/2023] Open
Abstract
Stem cell-based therapy serves a key role in clinical treatments, and mesenchymal stem cells (MSCs) have been widely used in clinical tumor therapy trials. In the present study, MSCs were isolated from umbilical cord (UC) and co-cultured with the lung cancer cell line H1299. The effects of UC-derived MSCs (UCMSCs) on H1299 cell invasion and proliferation were evaluated using a Matrigel-based Transwell assay and CCK8 assay, respectively. Apoptosis and cell cycle progression among H1299 cells were detected by flow cytometry, and kinase expression in H1299 cells was detected by western blotting. The results indicated that UCMSCs significantly inhibited H1299 cell invasion and significantly induced apoptosis of H1299 cells, but exhibited no effect on H1299 cell proliferation and cell cycle progression. It was also identified that H1299 cell expression of key kinases (AKT, phosphoinositide 3-kinase, signal transducer and activator of transcription 3 and mechanistic target of rapamycin) was significantly suppressed in the presence of UCMSCs. To the best of our knowledge, the present study demonstrates for the first time that UCMSCs have an anti-tumor effect against lung cancer cells, which may indicate that AKT/phosphoinositide 3-kinase/signal transducer and activator of transcription 3 signaling is important in the UCMSC-mediated regulation of H1299 cell functions.
Collapse
Affiliation(s)
- Li Chai
- Core Facility, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Lin Bai
- Regenerative Medicine Research Centre, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Li Li
- Laboratory of Pathology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Fei Chen
- Laboratory of Pathology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Jie Zhang
- Key Laboratory of Transplant Engineering and Immunology, Ministry of Health, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
31
|
Silini AR, Cancelli S, Signoroni PB, Cargnoni A, Magatti M, Parolini O. The dichotomy of placenta-derived cells in cancer growth. Placenta 2017; 59:154-162. [DOI: 10.1016/j.placenta.2017.05.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 04/28/2017] [Accepted: 05/16/2017] [Indexed: 02/07/2023]
|
32
|
Induction of Immunogenic Cell Death in Lymphoma Cells by Wharton’s Jelly Mesenchymal Stem Cell Conditioned Medium. Stem Cell Rev Rep 2017; 13:801-816. [DOI: 10.1007/s12015-017-9767-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
33
|
Zhang J, Hou L, Zhao D, Pan M, Wang Z, Hu H, He J. Inhibitory effect and mechanism of mesenchymal stem cells on melanoma cells. Clin Transl Oncol 2017; 19:1358-1374. [PMID: 28733866 DOI: 10.1007/s12094-017-1677-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 05/15/2017] [Indexed: 12/26/2022]
Abstract
PURPOSE To explore the inhibitory effect and mechanism of MSCs on melanoma proliferation. METHODS The inhibitory effect of MSCs on melanoma A375 cells was detected by co-culture and conditioned medium (CM) experiments using MTT method. The cell cycle was analyzed by flow cytometry. Then, Western Blot experiment detected the expression of proteins related to NF-κB signaling in A375 cells. The expression of IL-1Ra in MSCs was proved by RT-PCR. The over-expression and silencing vector pcDNA3.1-EGFP-IL-1Ra and pGPH1-IL-1R were constructed and transfected into MSCs cells. After that, the changes of inhibitory effect and cell cycle from MSCs-S and MSCs-O CM on A375 cells were explored. The expression of proteins related to NF-κB signaling in A375 cells after MSCs-S or MSCs-O CM treatment was detected by Western Blot. MSCs, MSCs-S, or MSCs-O and A375 cells were co-injected into nude mice under the arms, the growth of tumor was observed, the frozen sections were made, and H&E staining of tumor tissue was performed. RESULTS The proliferation of A375 cells was inhibited and the cell cycle of A375 was arrested by MSCs. The expressions of cytokines related to NF-κB signaling were down-regulated. Over-expression and silence of Interleukin 1 receptor antagonist (IL-1Ra), specifically blocking activation of NF-κB signaling, indicated that inhibitory effect from MSCs was enhanced or weakened respectively, which suggested that IL-1Ra was involved in the inhibitory effect. In vivo, tumor initiation and growth were significantly inhibited when A375 cells were co-injected with MSCs into nude mice, which were related to the expression level of IL-1Ra. CONCLUSION MSCs could inhibit the proliferation and tumor initiation of melanoma A375 cells through NF-κB signaling. MSCs could secret IL-1Ra and inhibit expressions of NF-κB signaling-related factors of tumor cells, and cause cell cycle arrest in G1 phase.
Collapse
Affiliation(s)
- J Zhang
- College of Life Sciences and Bioengineering, Beijing Jiaotong University, Beijing, 100044, People's Republic of China
| | - L Hou
- College of Life Sciences and Bioengineering, Beijing Jiaotong University, Beijing, 100044, People's Republic of China.
| | - D Zhao
- College of Life Sciences and Bioengineering, Beijing Jiaotong University, Beijing, 100044, People's Republic of China
| | - M Pan
- College of Life Sciences and Bioengineering, Beijing Jiaotong University, Beijing, 100044, People's Republic of China
| | - Z Wang
- College of Life Sciences and Bioengineering, Beijing Jiaotong University, Beijing, 100044, People's Republic of China
| | - H Hu
- College of Life Sciences and Bioengineering, Beijing Jiaotong University, Beijing, 100044, People's Republic of China
| | - J He
- College of Life Sciences and Bioengineering, Beijing Jiaotong University, Beijing, 100044, People's Republic of China
| |
Collapse
|
34
|
Fong CY, Biswas A, Stunkel W, Chong YS, Bongso A. Tissues Derived From Reprogrammed Wharton's Jelly Stem Cells of the Umbilical Cord Provide an Ideal Platform to Study the Effects of Glucose, Zika Virus, and Other Agents on the Fetus. J Cell Biochem 2016; 118:437-441. [DOI: 10.1002/jcb.25733] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 09/09/2016] [Indexed: 12/11/2022]
Affiliation(s)
- Chui-Yee Fong
- Department of Obstetrics and Gynaecology; National University Health System; National University of Singapore; Singapore Singapore
| | - Arijit Biswas
- Department of Obstetrics and Gynaecology; National University Health System; National University of Singapore; Singapore Singapore
| | - Walter Stunkel
- Singapore Institute of Clinical Sciences; Singapore Singapore
| | - Yap-Seng Chong
- Department of Obstetrics and Gynaecology; National University Health System; National University of Singapore; Singapore Singapore
- Singapore Institute of Clinical Sciences; Singapore Singapore
| | - Ariff Bongso
- Department of Obstetrics and Gynaecology; National University Health System; National University of Singapore; Singapore Singapore
| |
Collapse
|
35
|
Bai L, Li D, Li J, Luo Z, Yu S, Cao S, Shen L, Zuo Z, Ma X. Bioactive molecules derived from umbilical cord mesenchymal stem cells. Acta Histochem 2016; 118:761-769. [PMID: 27692875 DOI: 10.1016/j.acthis.2016.09.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 09/05/2016] [Accepted: 09/19/2016] [Indexed: 02/06/2023]
Abstract
Umbilical cord mesenchymal stem cells (UCMSCs) retain their intrinsic stem cell potential while at the same time displaying high proliferation rates, powerful differentiation capacity, and low immunogenicity. They can also secrete multiple bioactive molecules that exert specific physiological functions. Thus, UCMSCs represent excellent candidates for cell therapy in regenerative medicine and tissue engineering. Abundant preclinical research on different disease models has shown that UCMSCs can accelerate wound or nerve damage recovery and suppress tumor progression. In fact, UCMSCs are thought to possess a higher therapeutic potential than MSCs derived from other tissues. Increasing evidence suggests that the mechanism underlying UCSMCs efficacy depends mostly on cell secretions, in contrast to the early paradigm of cell replacement and differentiation. In this review, we discuss UCMSCs biological characteristics, their secretome-based therapeutic mechanism, and potential applications.
Collapse
|
36
|
Wang W, Zhong W, Yuan J, Yan C, Hu S, Tong Y, Mao Y, Hu T, Zhang B, Song G. Involvement of Wnt/β-catenin signaling in the mesenchymal stem cells promote metastatic growth and chemoresistance of cholangiocarcinoma. Oncotarget 2016; 6:42276-89. [PMID: 26474277 PMCID: PMC4747224 DOI: 10.18632/oncotarget.5514] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 09/05/2015] [Indexed: 12/11/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are multi-potent progenitor cells with ability to differentiate into multiple lineages, including bone, cartilage, fat, and muscles. Recent research indicates that MSCs can be efficiently recruited to tumor sites, modulating tumor growth and metastasis. However, the underlying molecular mechanisms are not fully understood. Here, we first demonstrated that human umbilical cord-derived mesenchymal stem cells (hUC-MSCs), when mixed with human cholangiocarcinoma cell lines QBC939 in a xenograft tumor model, significantly increased the cancer cells proliferation and metastatic potency. MSCs and their conditioned media (MSC-CM) could improve the drug resistance of tumor when the compound K (CK) as an anti-cancer drug, a major intestinal bacterial metabolite of panaxoside, was administered to xenograft tumor mice. Furthermore, MSCs greatly increased the colony formation and invasion of cholangiocarcinoma cells QBC939 and Mz-ChA-1. Immunochemistry studies of cholangiocarcinoma tissue chips and transplantation tumor from nude mice showed that the expression of β-catenin was important for cholangiocarcinoma development. We further demonstrated that MSCs and MSCs-CM could promote proliferation and migration of cholangiocarcinoma cells through targeting the Wnt/β-catenin signaling pathway. hUC-MSCs or MSCs-CM stimulated Wnt activity by promoting the nuclear translocation of β-catenin, and up-regulated Wnt target genes MMPs family, cyclin D1 and c-Myc. Together, our studies highlight a critical role for MSCs on cancer metastasis and indicate MSCs promote metastatic growth and chemoresistance of cholangiocarcinoma cells via activation of Wnt/β-catenin signaling.
Collapse
Affiliation(s)
- Weiwei Wang
- Cancer Research Center, Medical College of Xiamen University, Xiamen 361102, China
| | - Wei Zhong
- Cancer Research Center, Medical College of Xiamen University, Xiamen 361102, China
| | - Jiahui Yuan
- Cancer Research Center, Medical College of Xiamen University, Xiamen 361102, China
| | - Congcong Yan
- Cancer Research Center, Medical College of Xiamen University, Xiamen 361102, China
| | - Shaoping Hu
- Cancer Research Center, Medical College of Xiamen University, Xiamen 361102, China
| | - Yinping Tong
- Cancer Research Center, Medical College of Xiamen University, Xiamen 361102, China
| | - Yubin Mao
- Department of Basic Medicine, Medical College of Xiamen University, Xiamen 361102, China
| | - Tianhui Hu
- Cancer Research Center, Medical College of Xiamen University, Xiamen 361102, China
| | - Bing Zhang
- Department of Basic Medicine, Medical College of Xiamen University, Xiamen 361102, China
| | - Gang Song
- Cancer Research Center, Medical College of Xiamen University, Xiamen 361102, China
| |
Collapse
|
37
|
Zhang B, Liu N, Shi H, Wu H, Gao Y, He H, Gu B, Liu H. High glucose microenvironments inhibit the proliferation and migration of bone mesenchymal stem cells by activating GSK3β. J Bone Miner Metab 2016; 34:140-50. [PMID: 25840567 DOI: 10.1007/s00774-015-0662-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Accepted: 02/01/2015] [Indexed: 12/18/2022]
Abstract
Diabetes mellitus involves metabolic changes that can impair bone repair. Bone mesenchymal stem cells (BMSCs) play an important role in bone regeneration. However, the bone regeneration ability of BMSCs is inhibited in high glucose microenvironments. It can be speculated that this effect is due to changes in BMSCs' proliferation and migration ability, because the recruitment of factors with an adequate number of MSCs and the microenvironment around the site of bone injury are required for effective bone repair. Recent genetic evidence has shown that the Cyclin D1 and the CXC receptor 4 (CXCR-4) play important roles in the proliferation and migration of BMSCs. In this study we determined the specific role of glycogen synthase kinase-3β (GSK3β) in the proliferation and migration of BMSCs in high glucose microenvironments. The proliferation and migration ability of BMSCs were suppressed under high glucose conditions. We showed that high glucose activates GSK3β but suppresses CXCR-4, β-catenin, LEF-1, and cyclin D1. Inhibition of GSK3β by LiCl led to increased levels of β-catenin, LEF-1, cyclin D1, and CXCR-4 expression. Our data indicate that GSK3β plays an important role in regulating the proliferation and migration of BMSCs by inhibiting cyclin D1 and CXCR-4 under high glucose conditions.
Collapse
Affiliation(s)
- Bo Zhang
- Stomatology Department, General Hospital of Chinese PLA, 28 FuXing Road, Beijing, 100853, China
| | - Na Liu
- Stomatology Department, General Hospital of Chinese PLA, 28 FuXing Road, Beijing, 100853, China
| | - Haigang Shi
- Technical Institute of Physics and Chemistry of CAS, Beijing, China
| | - Hao Wu
- Stomatology Department, General Hospital of Chinese PLA, 28 FuXing Road, Beijing, 100853, China
| | - Yuxuan Gao
- Stomatology Department, General Hospital of Chinese PLA, 28 FuXing Road, Beijing, 100853, China
| | - Huixia He
- Stomatology Department, General Hospital of Chinese PLA, 28 FuXing Road, Beijing, 100853, China
| | - Bin Gu
- Stomatology Department, General Hospital of Chinese PLA, 28 FuXing Road, Beijing, 100853, China.
| | - Hongchen Liu
- Stomatology Department, General Hospital of Chinese PLA, 28 FuXing Road, Beijing, 100853, China.
| |
Collapse
|
38
|
Lin HD, Fong CY, Biswas A, Choolani M, Bongso A. Human Umbilical Cord Wharton's Jelly Stem Cell Conditioned Medium Induces Tumoricidal Effects on Lymphoma Cells Through Hydrogen Peroxide Mediation. J Cell Biochem 2016; 117:2045-55. [PMID: 27392313 DOI: 10.1002/jcb.25501] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 01/26/2016] [Indexed: 12/26/2022]
Abstract
Several groups have reported that human umbilical cord Wharton's jelly stem cells (hWJSCs) possess unique tumoricidal properties against many cancers. However, the exact mechanisms as to how hWJSCs inhibit tumor growth are not known. Recent evidence suggests that exposure of cancer cells to high hydrogen peroxide (H2 O2 ) levels from H2 O2 -releasing drugs causes their death. We therefore explored whether the tumoricidal effect of hWJSCs on lymphoma cells was mediated via H2 O2 . We first exposed lymphoma cells to six different molecular weight cut-off (MWCO) concentrates of hWJSC-conditioned medium (hWJSC-CM) (3, 5, 10, 30, 50, 100 kDa) for 48 h. Since, the 3 kDa-MWCO concentrate showed the greatest cell inhibition we then investigated whether the tumoricidal effect of the specific 3 kDa-MWCO concentrate on two different lymphoma cell lines (Ramos and Toledo) was mediated via accumulation of H2 O2 . We used a battery of assays (MTT, propidium iodide, mitochondria membrane potential, apoptosis, cell cycle, oxidative stress enzymes, hydrogen peroxide, mitochondrial superoxide, hydroxyl radical, peroxynitrile anion, and lipid peroxidation) to test this mechanism. The hWJSC-CM-3 kDa MWCO concentrate significantly decreased cell viability and mitochondrial membrane potential and increased cell death and apoptosis in both lymphoma cell lines. There were significant increases in superoxide dismutase with concomitant decreases in glutathione peroxidase, catalase, and thioredoxin peroxidase activities. H2 O2 levels, mitochondrial superoxide, hydroxyl radical, peroxynitrile anion, and lipid peroxidation were also significantly increased in both lymphoma cell lines. The results suggested that the hWJSC-CM-3 kDa MWCO concentrate regulates cellular H2 O2 leading to a tumoricidal effect and may thus be a promising anti-lymphoma agent. J. Cell. Biochem. 117: 2045-2055, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Hao Daniel Lin
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, 119228, Singapore
| | - Chui-Yee Fong
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, 119228, Singapore
| | - Arijit Biswas
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, 119228, Singapore
| | - Mahesh Choolani
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, 119228, Singapore
| | - Ariff Bongso
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, 119228, Singapore
| |
Collapse
|
39
|
Shi L, Fei X, Wang Z, You Y. PI3K inhibitor combined with miR-125b inhibitor sensitize TMZ-induced anti-glioma stem cancer effects through inactivation of Wnt/β-catenin signaling pathway. In Vitro Cell Dev Biol Anim 2015; 51:1047-55. [DOI: 10.1007/s11626-015-9931-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 06/12/2015] [Indexed: 12/21/2022]
|
40
|
Subramanian A, Fong CY, Biswas A, Bongso A. Comparative Characterization of Cells from the Various Compartments of the Human Umbilical Cord Shows that the Wharton's Jelly Compartment Provides the Best Source of Clinically Utilizable Mesenchymal Stem Cells. PLoS One 2015; 10:e0127992. [PMID: 26061052 PMCID: PMC4464659 DOI: 10.1371/journal.pone.0127992] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 03/19/2015] [Indexed: 02/06/2023] Open
Abstract
The human umbilical cord (UC) is an attractive source of mesenchymal stem cells (MSCs) with unique advantages over other MSC sources. They have been isolated from different compartments of the UC but there has been no rigorous comparison to identify the compartment with the best clinical utility. We compared the histology, fresh and cultured cell numbers, morphology, proliferation, viability, stemness characteristics and differentiation potential of cells from the amnion (AM), subamnion (SA), perivascular (PV), Wharton’s jelly (WJ) and mixed cord (MC) of five UCs. The WJ occupied the largest area in the UC from which 4.61 ± 0.57 x 106 /cm fresh cells could be isolated without culture compared to AM, SA, PV and MC that required culture. The WJ and PV had significantly lesser CD40+ non-stem cell contaminants (26-27%) compared to SA, AM and MC (51-70%). Cells from all compartments were proliferative, expressed the typical MSC-CD, HLA, and ESC markers, telomerase, had normal karyotypes and differentiated into adipocyte, chondrocyte and osteocyte lineages. The cells from WJ showed significantly greater CD24+ and CD108+ numbers and fluorescence intensities that discriminate between MSCs and non-stem cell mesenchymal cells, were negative for the fibroblast-specific and activating-proteins (FSP, FAP) and showed greater osteogenic and chondrogenic differentiation potential compared to AM, SA, PV and MC. Cells from the WJ offer the best clinical utility as (i) they have less non-stem cell contaminants (ii) can be generated in large numbers with minimal culture avoiding changes in phenotype, (iii) their derivation is quick and easy to standardize, (iv) they are rich in stemness characteristics and (v) have high differentiation potential. Our results show that when isolating MSCs from the UC, the WJ should be the preferred compartment, and a standardized method of derivation must be used so as to make meaningful comparisons of data between research groups.
Collapse
Affiliation(s)
- Arjunan Subramanian
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, Kent Ridge, Singapore, 119228, Singapore
| | - Chui-Yee Fong
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, Kent Ridge, Singapore, 119228, Singapore
| | - Arijit Biswas
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, Kent Ridge, Singapore, 119228, Singapore
| | - Ariff Bongso
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, Kent Ridge, Singapore, 119228, Singapore
- * E-mail:
| |
Collapse
|
41
|
Lin HD, Fong CY, Biswas A, Choolani M, Bongso A. Human Wharton's jelly stem cells, its conditioned medium and cell-free lysate inhibit the growth of human lymphoma cells. Stem Cell Rev Rep 2015; 10:573-86. [PMID: 24789672 DOI: 10.1007/s12015-014-9514-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Several groups have reported that primitive mesenchymal stem cells from the gelatinous matrix of the Wharton's jelly of the human umbilical cord (hWJSCs) possess tumoricidal properties and inhibit the growth of solid tumours such as human mammary carcinoma, ovarian carcinoma and osteosarcoma. This unique characteristic led to the hypothesis that hWJSCs serve as a natural defence against migrating cancer cells from mother to fetus thus explaining why tumorigenesis in the fetus is rare. However, it is not known whether non-solid malignant hematopoietic cells are also inhibited by hWJSCs and what the exact tumoricidal mechanisms are. We therefore evaluated the influence of hWJSCs and its extracts on Burkitt's lymphoma cells. Cell proliferation (BrdU and Ki67+), viability (MTT) and cell death (Annexin V-Propidium iodide and live/dead) assays showed significant inhibition of lymphoma cell growth after 48 h exposure to hWJSCs or its extracts compared to controls. Increased cell death was observed at sub-G1 and S and decreased proliferation at G2/M phases of the mitotic cycle. Superoxide dismutase and hydrogen peroxide activity were significantly increased and glutathione peroxidase significantly decreased in treated lymphoma cells. Time lapse imaging and confocal z-stack images showed yellow fluorescent in situ hybridization (FISH) signals of lymphoma cell Y chromosomes within the cytoplasm of female red labelled hWJSCs. We hypothesize that the growth of lymphoma cells is inhibited by the molecules secreted by hWJSCs that use oxidative stress pathways to induce cell death followed by engulfment of the apoptotic remains of the lymphoma cells by the hWJSCs.
Collapse
Affiliation(s)
- Hao Daniel Lin
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, Kent Ridge, Singapore, Singapore, 119228
| | | | | | | | | |
Collapse
|
42
|
Meleshina AV, Cherkasova EI, Shirmanova MV, Klementieva NV, Kiseleva EV, Snopova LВ, Prodanets NN, Zagaynova EV. Influence of mesenchymal stem cells on metastasis development in mice in vivo. Stem Cell Res Ther 2015; 6:15. [PMID: 25888992 PMCID: PMC4415299 DOI: 10.1186/s13287-015-0003-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 02/03/2015] [Accepted: 02/03/2015] [Indexed: 02/10/2023] Open
Abstract
INTRODUCTION In recent years, mesenchymal stem cells (MSCs) have been demonstrated to play an important role in carcinogenesis. However, the effect of MSCs on tumor and metastasis development and the mechanisms underlying the interaction of cancer and stem cells are not completely understood. This study investigated the effect of MSCs on breast cancer metastasis formation by using the methods of in vivo fluorescence and luminescence imaging. METHODS MSCs were isolated from bone marrow of normal donors, characterized, and genetically labeled with luciferase (luc2). The effects of MSCs on MDA-MB-231 cancer cell proliferation were evaluated in conditioned medium from MSCs. To generate lung metastases, MDA-MB-231 cells stably expressing red fluorescent protein Turbo FP650 were injected intravenously into nude mice. On day 10 after the cancer cell injection, mice were injected via the tail vein with MSCs-luc2 cells (the MET+MSCs group). Animals that received the injection of MDA-MB-231-Turbo FP650 alone (the MET group) and no injections (the intact control group) served as controls. Fluorescence and bioluminescence imaging was performed for monitoring of the metastasis formation and MSC distribution in the recipient's body. RESULTS We found that the proliferative activity of the cancer cells in the presence of MSC conditioned medium was lower than that of the cells grown in conventional culture medium. The metastasis formation in the MET+MSCs group was delayed in time as compared with the MET group. Macroscopic and histological examination of isolated lungs 8 weeks after cancer cell injection showed that the total number of metastases in animals of the MET+MSCs group was significantly lower. Using bioluminescence imaging in vivo, we found that MSCs-luc2 cells survived in the host animal for at least 7 weeks and re-migrated to the lung 6 to 7 weeks after injection. Immunohistochemical analysis revealed the presence of MSCs-luc2 in metastases and lung tissue. CONCLUSIONS Long-term in vivo bioluminescence imaging of intravenously injected MSCs-luc2 cells showed distribution of MSCs to the lungs and abdominal organs within the first 2 to 3 weeks and re-migration to the lungs in weeks 6 to 7. It was found that MSCs reduced the proliferative activity of cancer cells in vitro and lung metastasis formation in mice.
Collapse
Affiliation(s)
- Aleksandra V Meleshina
- Nizhny Novgorod State Medical Academy, Minin and Pozharsky Square, 10/1, Nizhny, Novgorod, 603005, Russia. .,Nizhny Novgorod State University, Gagarin Avenue, 23, Nizhny, Novgorod, 603950, Russia.
| | - Elena I Cherkasova
- Nizhny Novgorod State Medical Academy, Minin and Pozharsky Square, 10/1, Nizhny, Novgorod, 603005, Russia. .,Nizhny Novgorod State University, Gagarin Avenue, 23, Nizhny, Novgorod, 603950, Russia.
| | - Marina V Shirmanova
- Nizhny Novgorod State Medical Academy, Minin and Pozharsky Square, 10/1, Nizhny, Novgorod, 603005, Russia.
| | - Natalia V Klementieva
- Nizhny Novgorod State Medical Academy, Minin and Pozharsky Square, 10/1, Nizhny, Novgorod, 603005, Russia.
| | - Ekaterina V Kiseleva
- Koltzov Institute of Developmental Biology of Russian Academy of Science, Vavilova st., 26, Moscow, 119334, Russia.
| | - Ludmila В Snopova
- Nizhny Novgorod State Medical Academy, Minin and Pozharsky Square, 10/1, Nizhny, Novgorod, 603005, Russia.
| | - Natalia N Prodanets
- Nizhny Novgorod State Medical Academy, Minin and Pozharsky Square, 10/1, Nizhny, Novgorod, 603005, Russia.
| | - Elena V Zagaynova
- Nizhny Novgorod State Medical Academy, Minin and Pozharsky Square, 10/1, Nizhny, Novgorod, 603005, Russia. .,Nizhny Novgorod State University, Gagarin Avenue, 23, Nizhny, Novgorod, 603950, Russia.
| |
Collapse
|
43
|
Hu K, Gu Y, Lou L, Liu L, Hu Y, Wang B, Luo Y, Shi J, Yu X, Huang H. Galectin-3 mediates bone marrow microenvironment-induced drug resistance in acute leukemia cells via Wnt/β-catenin signaling pathway. J Hematol Oncol 2015; 8:1. [PMID: 25622682 PMCID: PMC4332970 DOI: 10.1186/s13045-014-0099-8] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 12/22/2014] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Acute leukemia is currently the major cause of death in hematological malignancies. Despite the rapid development of new therapies, minimal residual disease (MRD) continues to occur and leads to poor outcomes. The leukemia niche in the bone marrow microenvironment (BMM) is thought to be responsible for such MRD development, which can lead to leukemia drug resistance and disease relapse. Consequently further investigation into the way in which the leukemia niche interacts with acute leukemia cells (ALCs) and development of strategies to block the underlying process are expected to improve disease prognosis. Recent studies indicated that galectin-3 (gal-3) might play a pivotal role in this process. Thus we aimed to elucidate the exact role played by gal-3 in this process and clarify its mechanism of action. METHODS We used human bone marrow-derived mesenchymal stromal cells (hBM-MSCs) to mimic the leukemia BMM in vitro, and investigated their effects on drug resistance of ALCs and the possible mechanisms involved, with particular emphasis on the role of gal-3. RESULTS In our study, we demonstrated that hBM-MSCs induced gal-3 up-regulation, promoting β-catenin stabilization and thus activating the Wnt/β-catenin signaling pathway in ALCs, which is critical in cytotoxic drug resistance of leukemia. This effect could be reversed by addition of gal-3 short hairpin RNA (shRNA). We also found that up-regulation of gal-3 promoted Akt and glycogen synthase kinase (GSK)-3β phosphorylation, thought to constitute a cross-bridge between gal-3 and Wnt signaling. CONCLUSIONS Our results suggest that gal-3, a key factor mediating BMM-induced drug resistance, could be a novel therapeutic target in acute leukemia.
Collapse
Affiliation(s)
- Kaimin Hu
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China. .,Cancer Institute, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China.
| | - Yanjun Gu
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China. .,Department of Surgical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China.
| | - Lixia Lou
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China.
| | - Lizhen Liu
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China.
| | - Yongxian Hu
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China.
| | - Binsheng Wang
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China.
| | - Yi Luo
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China.
| | - Jimin Shi
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China.
| | - Xiaohong Yu
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China.
| | - He Huang
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China.
| |
Collapse
|
44
|
Haga H, Yan IK, Takahashi K, Wood J, Zubair A, Patel T. Tumour cell-derived extracellular vesicles interact with mesenchymal stem cells to modulate the microenvironment and enhance cholangiocarcinoma growth. J Extracell Vesicles 2015; 4:24900. [PMID: 25557794 PMCID: PMC4283029 DOI: 10.3402/jev.v4.24900] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2014] [Revised: 10/31/2014] [Accepted: 11/28/2014] [Indexed: 12/15/2022] Open
Abstract
The contributions of mesenchymal stem cells (MSCs) to tumour growth and stroma formation are poorly understood. Tumour cells can transfer genetic information and modulate cell signalling in other cells through the release of extracellular vesicles (EVs). We examined the contribution of EV-mediated inter-cellular signalling between bone marrow MSCs and tumour cells in human cholangiocarcinoma, highly desmoplastic cancers that are characterized by tumour cells closely intertwined within a dense fibrous stroma. Exposure of MSCs to tumour cell–derived EVs enhanced MSC migratory capability and expression of alpha-smooth muscle actin mRNA, in addition to mRNA expression and release of CXCL-1, CCL2 and IL-6. Conditioned media from MSCs exposed to tumour cell–derived EVs increased STAT-3 phosphorylation and proliferation in tumour cells. These effects were completely blocked by anti-IL-6R antibody. In conclusion, tumour cell–derived EVs can contribute to the generation of tumour stroma through fibroblastic differentiation of MSCs, and can also selectively modulate the cellular release of soluble factors such as IL-6 by MSCs that can, in turn, alter tumour cell proliferation. Thus, malignant cells can “educate” MSCs to induce local microenvironmental changes that enhance tumour cell growth.
Collapse
Affiliation(s)
- Hiroaki Haga
- Department of Cancer Biology, Mayo Clinic Jacksonville, FL, USA
| | - Irene K Yan
- Department of Cancer Biology, Mayo Clinic Jacksonville, FL, USA
| | - Kenji Takahashi
- Department of Cancer Biology, Mayo Clinic Jacksonville, FL, USA
| | - Joseph Wood
- Department of Cancer Biology, Mayo Clinic Jacksonville, FL, USA
| | - Abba Zubair
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Jacksonville, FL, USA
| | - Tushar Patel
- Department of Cancer Biology, Mayo Clinic Jacksonville, FL, USA; Department of Transplantation, Mayo Clinic Jacksonville, FL, USA;
| |
Collapse
|
45
|
Xia B, Tian C, Guo S, Zhang L, Zhao D, Qu F, Zhao W, Wang Y, Wu X, Da W, Wei S, Zhang Y. c-Myc plays part in drug resistance mediated by bone marrow stromal cells in acute myeloid leukemia. Leuk Res 2014; 39:92-9. [PMID: 25443862 DOI: 10.1016/j.leukres.2014.11.004] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Revised: 10/26/2014] [Accepted: 11/09/2014] [Indexed: 12/18/2022]
Abstract
Acute myeloid leukemia (AML) is a malignant and aggressive disease not sensitive to chemotherapy. The dynamic interaction between AML cells and bone marrow (BM) microenvironment plays a critical role in response of this disease to chemotherapy. It is reported that mesenchymal stromal cells (MSC) are essential component of bone marrow microenvironment which affects the survival of AML cells. The aim of our research is to elucidate the mechanism of drug resistance of AML cells associated with MSC. We found that adhesion of AML cell lines U937, KG1a and primary AML cells to MSC inhibited cytotoxic drug-induced apoptosis. Western blot showed that c-Myc of AML cells cocultured with stroma was up-regulated. Treatment with 10058-F4, a small molecule inhibitor of MYC-MAX heterodimerization, or c-Myc siRNA significantly induced apoptosis. Western blot analysis further showed that inhibition of c-Myc induced expression of caspases-3, cleavage of PARP and reduced expression of Bcl-2, Bcl-xL and vascular endothelial growth factor (VEGF). Thus, we conclude that MSCs protected leukemia cells from apoptosis, at least in part, through c-Myc dependent mechanisms, and that c-Myc contributed to microenvironment-mediated drug resistance in AML. In summary, we declared that c-Myc is a potential therapeutic target for overcoming drug resistance in AML.
Collapse
Affiliation(s)
- Bing Xia
- Department of Hematology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
| | - Chen Tian
- Department of Hematology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
| | - Shanqi Guo
- Department of Hematology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
| | - Le Zhang
- Department of Hematology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
| | - Dandan Zhao
- Department of Hematology, First Affiliated Hospital of Chinese People's Liberation Army General Hospital, Beijing, China
| | - Fulian Qu
- Department of Hematology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
| | - Weipeng Zhao
- Department of Hematology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
| | - Yafei Wang
- Department of Hematology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
| | - Xiaoxiong Wu
- Department of Hematology, First Affiliated Hospital of Chinese People's Liberation Army General Hospital, Beijing, China
| | - Wanming Da
- Department of Hematology, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Sheng Wei
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, USA
| | - Yizhuo Zhang
- Department of Hematology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key laboratory of Cancer Prevention and Therapy, Tianjin 300060, China.
| |
Collapse
|
46
|
Mariappan MM, Prasad S, D'Silva K, Cedillo E, Sataranatarajan K, Barnes JL, Choudhury GG, Kasinath BS. Activation of glycogen synthase kinase 3β ameliorates diabetes-induced kidney injury. J Biol Chem 2014; 289:35363-75. [PMID: 25339176 DOI: 10.1074/jbc.m114.587840] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Increase in protein synthesis contributes to kidney hypertrophy and matrix protein accumulation in diabetes. We have previously shown that high glucose-induced matrix protein synthesis is associated with inactivation of glycogen synthase kinase 3β (GSK3β) in renal cells and in the kidneys of diabetic mice. We tested whether activation of GSK3β by sodium nitroprusside (SNP) mitigates kidney injury in diabetes. Studies in kidney-proximal tubular epithelial cells showed that SNP abrogated high glucose-induced laminin increment by stimulating GSK3β and inhibiting Akt, mTORC1, and events in mRNA translation regulated by mTORC1 and ERK. NONOate, an NO donor, also activated GSK3β, indicating that NO may mediate SNP stimulation of GSK3β. SNP administered for 3 weeks to mice with streptozotocin-induced type 1 diabetes ameliorated kidney hypertrophy, accumulation of matrix proteins, and albuminuria without changing blood glucose levels. Signaling studies showed that diabetes caused inactivation of GSK3β by activation of Src, Pyk2, Akt, and ERK; GSK3β inhibition activated mTORC1 and downstream events in mRNA translation in the kidney cortex. These reactions were abrogated by SNP. We conclude that activation of GSK3β by SNP ameliorates kidney injury induced by diabetes.
Collapse
Affiliation(s)
- Meenalakshmi M Mariappan
- From the Department of Medicine, University of Texas Health Science Center, San Antonio, Texas 78245 and Medical Service, South Texas Veterans Health Care System, San Antonio, Texas 78229
| | - Sanjay Prasad
- From the Department of Medicine, University of Texas Health Science Center, San Antonio, Texas 78245 and
| | - Kristin D'Silva
- From the Department of Medicine, University of Texas Health Science Center, San Antonio, Texas 78245 and
| | - Esteban Cedillo
- From the Department of Medicine, University of Texas Health Science Center, San Antonio, Texas 78245 and
| | | | - Jeffrey L Barnes
- From the Department of Medicine, University of Texas Health Science Center, San Antonio, Texas 78245 and
| | - Goutam Ghosh Choudhury
- From the Department of Medicine, University of Texas Health Science Center, San Antonio, Texas 78245 and Medical Service, South Texas Veterans Health Care System, San Antonio, Texas 78229 the Geriatric Research, Education, and Clinical Center and
| | - Balakuntalam S Kasinath
- From the Department of Medicine, University of Texas Health Science Center, San Antonio, Texas 78245 and Medical Service, South Texas Veterans Health Care System, San Antonio, Texas 78229
| |
Collapse
|
47
|
Zhao Q, Li T, Qi J, Liu J, Qin C. The miR-545/374a cluster encoded in the Ftx lncRNA is overexpressed in HBV-related hepatocellular carcinoma and promotes tumorigenesis and tumor progression. PLoS One 2014; 9:e109782. [PMID: 25299640 PMCID: PMC4192320 DOI: 10.1371/journal.pone.0109782] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 09/02/2014] [Indexed: 12/12/2022] Open
Abstract
Hepatitis B virus (HBV) infection is a major risk factor for hepatocellular carcinoma (HCC). Previous studies have shown several long noncoding RNAs (lncRNAs) play various roles in HCC progression, but no research has focused on the expression pattern of microRNA clusters encoded in lncRNAs. The Ftx gene encodes a lncRNA which harbors 2 clusters of microRNAs in its introns, the miR-374b/421 cluster and the miR-545/374a cluster. To date, no research has focused on the role of the miR-545/374a and miR-374b/421 clusters in HBV-related HCC. In this study, 66 pairs of HBV-related HCC tissue and matched non-cancerous liver tissue specimens were analyzed for the expression of the Ftx microRNA clusters. Our results showed that the miR-545/374a cluster was upregulated in HBV-HCC tissue and significantly correlated with prognosis-related clinical features, including histological grade, metastasis and tumor capsule. Transfection studies with microRNA mimics and inhibitors revealed that miR-545/374a expression promoted in vitro cell proliferation, cell migration and invasion. The wild-type HBV-genome-containing plasmid or full-length HBx protein encoding plasmid was transfected into the Bel-7402 cell line and observed for their influence on miR-545/374a expression. We found that transfection of the HBV genome or HBx alone resulted in an increase in miR-545/374a expression. Next, by monitoring the expression of sera miR-545/374a before and after surgical tumor excision, we found serum miR-545/374a was tumor-derived and exhibited a sharp decrease 25 days after tumor excision. We also examined the gender-based difference in miR-545/374a expression among HCC patients and utilized microRNA target prediction software to find the targets of miR-545/374a. One of these targets, namely estrogen-related receptor gamma (ESRRG) was inversely correlated with miR-545 expression. In conclusion, the overexpression of miR-545/374a cluster located in the Ftx lncRNA is partially responsible for a poor prognosis, and monitoring sera levels of miR-545/374a may be a useful diagnostic marker for HCC.
Collapse
MESH Headings
- Carcinoma, Hepatocellular/etiology
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/surgery
- Carcinoma, Hepatocellular/virology
- Cell Line, Tumor
- Cell Movement
- Cell Proliferation
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/metabolism
- Cell Transformation, Neoplastic/pathology
- Disease Progression
- Female
- Gene Expression Regulation, Neoplastic
- Hepatitis B/complications
- Hepatitis B/genetics
- Hepatitis B/surgery
- Hepatitis B/virology
- Hepatitis B virus/genetics
- Hepatitis B virus/pathogenicity
- Humans
- Liver Neoplasms/etiology
- Liver Neoplasms/genetics
- Liver Neoplasms/surgery
- Liver Neoplasms/virology
- Male
- MicroRNAs/blood
- MicroRNAs/genetics
- Middle Aged
- Prognosis
- RNA, Long Noncoding/blood
- RNA, Long Noncoding/genetics
- Receptors, Estrogen/genetics
- Receptors, Estrogen/metabolism
- Signal Transduction
- Trans-Activators/genetics
- Trans-Activators/metabolism
- Transfection
- Viral Regulatory and Accessory Proteins
Collapse
Affiliation(s)
- Qi Zhao
- Department of Gastroenterology, Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Tao Li
- Department of Infectious Diseases, Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Jianni Qi
- Central Laboratory, Shandong Provincial Hospital affiliated to Shandong University, Jinan, China
| | - Juan Liu
- Department of Gastroenterology, Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Chengyong Qin
- Department of Gastroenterology, Provincial Hospital Affiliated to Shandong University, Jinan, China
- * E-mail:
| |
Collapse
|
48
|
El Omar R, Beroud J, Stoltz JF, Menu P, Velot E, Decot V. Umbilical cord mesenchymal stem cells: the new gold standard for mesenchymal stem cell-based therapies? TISSUE ENGINEERING PART B-REVIEWS 2014; 20:523-44. [PMID: 24552279 DOI: 10.1089/ten.teb.2013.0664] [Citation(s) in RCA: 220] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Due to their self-renewal capacity, multilineage differentiation potential, paracrine effects, and immunosuppressive properties, mesenchymal stromal cells (MSCs) are an attractive and promising tool for regenerative medicine. MSCs can be isolated from various tissues but despite their common immunophenotypic characteristics and functional properties, source-dependent differences in MSCs properties have recently emerged and lead to different clinical applications. Considered for a long time as a medical waste, umbilical cord appears these days as a promising source of MSCs. Several reports have shown that umbilical cord-derived MSCs are more primitive, proliferative, and immunosuppressive than their adult counterparts. In this review, we aim at synthesizing the differences between umbilical cord MSCs and MSCs from other sources (bone marrow, adipose tissue, periodontal ligament, dental pulp,…) with regard to their proliferation capacity, proteic and transcriptomic profiles, and their secretome involved in their regenerative, homing, and immunomodulatory capacities. Although umbilical cord MSCs are until now not particularly used as an MSC source in clinical practice, accumulating evidence shows that they may have a therapeutic advantage to treat several diseases, especially autoimmune and neurodegenerative diseases.
Collapse
Affiliation(s)
- Reine El Omar
- 1 CNRS UMR UL 7365 , Bâtiment Biopôle, Faculté de médecine, Vandœuvre-lès-Nancy, France
| | | | | | | | | | | |
Collapse
|
49
|
Fong CY, Biswas A, Subramanian A, Srinivasan A, Choolani M, Bongso A. Human Keloid Cell Characterization and Inhibition of Growth with Human Wharton's Jelly Stem Cell Extracts. J Cell Biochem 2014; 115:826-38. [DOI: 10.1002/jcb.24724] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2013] [Accepted: 11/18/2013] [Indexed: 12/14/2022]
Affiliation(s)
- Chui-Yee Fong
- Department of Obstetrics and Gynaecology; Yong Loo Lin School of Medicine; National University Health System; National University of Singapore; Kent Ridge Singapore 119228 Singapore
| | - Arijit Biswas
- Department of Obstetrics and Gynaecology; Yong Loo Lin School of Medicine; National University Health System; National University of Singapore; Kent Ridge Singapore 119228 Singapore
| | - Arjunan Subramanian
- Department of Obstetrics and Gynaecology; Yong Loo Lin School of Medicine; National University Health System; National University of Singapore; Kent Ridge Singapore 119228 Singapore
| | - Akshaya Srinivasan
- Department of Obstetrics and Gynaecology; Yong Loo Lin School of Medicine; National University Health System; National University of Singapore; Kent Ridge Singapore 119228 Singapore
| | - Mahesh Choolani
- Department of Obstetrics and Gynaecology; Yong Loo Lin School of Medicine; National University Health System; National University of Singapore; Kent Ridge Singapore 119228 Singapore
| | - Ariff Bongso
- Department of Obstetrics and Gynaecology; Yong Loo Lin School of Medicine; National University Health System; National University of Singapore; Kent Ridge Singapore 119228 Singapore
| |
Collapse
|
50
|
Huh MI, Kim MS, Kim HK, Lim JO. Effect of conditioned media collected from human amniotic fluid-derived stem cells (hAFSCs) on skin regeneration and photo-aging. Tissue Eng Regen Med 2014. [DOI: 10.1007/s13770-014-0412-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|