1
|
Liu G, Zhang J, Zhang H, Cheng Q, Zhang X, Liu J, Luo Y, Zhong L, Yang Z, Zhang Y, Ou Z, Yan Z, Zhang W, Peng K, Liu H, Xu J. Association between functional alterations and specific transcriptional expression patterns in craniocervical dystonia. Parkinsonism Relat Disord 2025; 133:107315. [PMID: 39921933 DOI: 10.1016/j.parkreldis.2025.107315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 01/28/2025] [Accepted: 01/31/2025] [Indexed: 02/10/2025]
Abstract
PURPOSE Craniocervical dystonia (CCD) is a large-scale network disorder that involves functional changes in multiple brain regions. However, the association between these functional changes and the underlying molecular mechanisms has not been explored. OBJECTIVE We aimed to characterize the molecular changes associated with the imaging-defined functional architecture of the brain in CCD. METHODS Resting-state functional magnetic resonance imaging (rs-fMRI) data were obtained from 146 patients with CCD and 137 healthy controls (HCs). Differences in the amplitude of low-frequency fluctuations (ALFF), fractional ALFF (fALFF), and regional homogeneity (ReHo) were compared between groups. Transcriptomic data were obtained from the Allen Human Brain Atlas to identify the gene expression patterns underlying the affected functional architecture in CCD using partial least squares regression. RESULTS Compared to HCs, patients with CCD showed common functional alterations, mainly in the left middle occipital gyrus, right middle occipital gyrus, right calcarine, right precentral gyrus, and left postcentral gyrus. These functional alteration patterns were positively associated with 1763 genes (including five risk genes for dystonia) enriched for synaptic signaling, regulation of trans-synaptic signaling, and neuronal systems, while they were negatively associated with 2318 genes (including eight risk genes for dystonia), which were enriched for monoatomic cation transport, DNA damage response and neurodevelopment. CONCLUSIONS Our study reveals a genetic pathological mechanism explaining CCD-related brain functional changes.
Collapse
Affiliation(s)
- Gang Liu
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou, China
| | - Jiana Zhang
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou, China
| | - Haoran Zhang
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Qinxiu Cheng
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Xiaodong Zhang
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Jun Liu
- Department of Medical Imaging, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Yuhan Luo
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou, China
| | - Linchang Zhong
- Department of Medical Imaging, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Zhengkun Yang
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou, China
| | - Yue Zhang
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou, China
| | - Zilin Ou
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou, China
| | - Zhicong Yan
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou, China
| | - Weixi Zhang
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou, China
| | - Kangqiang Peng
- Department of Medical Imaging, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Huiming Liu
- Department of Medical Imaging, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.
| | - Jinping Xu
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| |
Collapse
|
2
|
Ma H, Zhou YL, Wang WJ, Chen G, Zhang CH, Lu YC, Wang W. Facial Symmetry Enhancement and Brain Network Modifications in Facial Palsy Patients after Botulinum Toxin Type A Treatment. Plast Reconstr Surg 2025; 155:586e-596e. [PMID: 39212730 DOI: 10.1097/prs.0000000000011689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
BACKGROUND Facial palsy, often resulting from trauma or iatrogenic treatments, leads to significant aesthetic and functional impairment. Surgical interventions, such as masseteric-to-facial nerve transfer combined with static suspension, are frequently recommended to restore facial nerve function and symmetry. METHODS This study examined the impact of botulinum toxin type A (BoNT-A) treatment on the unaffected side with regard to facial symmetry and brain connectivity in patients with severe oral commissure droop from facial nerve damage. Patients were divided into 2 groups: 1 group received BoNT-A injections on the unaffected side, and the other did not. RESULTS The authors' findings revealed that BoNT-A treatment not only improved facial symmetry but also induced significant modifications in brain functional network connectivity. These modifications extended beyond the sensorimotor network, involving high-level cognitive processes, and exhibited a significant correlation with the degree of facial asymmetry. CONCLUSIONS These results provide valuable insights into the mechanisms underlying the positive effects of BoNT-A intervention on motor recovery and brain plasticity in facial palsy patients. Furthermore, the study emphasizes the importance of a multidisciplinary approach to facial palsy rehabilitation. Understanding these intricate interactions between facial symmetry restoration and brain network adaptations may pave the way for more effective treatments and improved quality of life for individuals dealing with facial palsy. CLINICAL QUESTION/LEVEL OF EVIDENCE Therapeutic, II.
Collapse
Affiliation(s)
- Hao Ma
- From the Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital
| | - Yu-Lu Zhou
- From the Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital
- Department of Plastic Surgery, The First Affiliated Hospital of Nanchang University
| | - Wen-Jin Wang
- From the Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital
| | - Gang Chen
- From the Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital
| | - Chen-Hao Zhang
- Wound Healing Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine
| | - Ye-Chen Lu
- From the Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital
- Department of Plastic Surgery, The First Affiliated Hospital of Nanchang University
| | - Wei Wang
- Wound Healing Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine
- Department of Plastic Surgery, The First Affiliated Hospital of Nanchang University
| |
Collapse
|
3
|
Filip P, Lasica A, Kiakou D, Mueller K, Keller J, Urgošík D, Novák D, Jech R. Sweet spot for resting-state functional MRI effect of deep brain stimulation in dystonia lies in the lower pallidal area. Neuroimage Clin 2025; 45:103750. [PMID: 39986202 PMCID: PMC11889665 DOI: 10.1016/j.nicl.2025.103750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 01/20/2025] [Accepted: 02/04/2025] [Indexed: 02/24/2025]
Abstract
INTRODUCTION Deep brain stimulation (DBS) of the internal globus pallidus (GPi) is a well-established, effective treatment for dystonia. Substantial variability of therapeutic success has been the one of the drivers of an ongoing debate about proper stimulation site and settings, with several indications of the notional sweet spot pointing to the lower GPi or even subpallidal area. METHODS The presented patient-blinded, random-order study with cross-sectional verification against healthy controls enrolled 17 GPi DBS idiopathic, cervical or generalised dystonia patients to compare the effect of the stimulation in the upper and lower GPi area, with the focus on sensorimotor network connectivity and local activity measured using functional magnetic resonance. RESULTS Stimulation brought both these parameters to levels closer to the state detected in healthy controls. This effect was much more pronounced during the stimulation in the lower GPi area or beneath it than in slightly higher positions, with stimulation-related changes detected by both metrics of interest in the sensorimotor cortex, striatum, thalamus and cerebellum. CONCLUSIONS All in all, this study not only replicated the results of previous studies on GPi DBS as a modality restoring sensorimotor network connectivity and local activity in dystonia towards the levels in healthy population, but also showed that lower GPi area or even subpallidal structures, be it white matter or even small, but essential nodes in the zona incerta as nucleus basalis of Meynert, are important regions to consider when programming DBS in dystonia patients.
Collapse
Affiliation(s)
- Pavel Filip
- Department of Neurology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Kateřinská 30, 120 00 Prague, Czech Republic; Center for Magnetic Resonance Research (CMRR), University of Minnesota, Minneapolis, MN, USA; Department of Cybernetics, Czech Technical University in Prague, Prague, Czech Republic
| | - Andrej Lasica
- Department of Neurology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Kateřinská 30, 120 00 Prague, Czech Republic
| | - Dimitra Kiakou
- Department of Neurology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Kateřinská 30, 120 00 Prague, Czech Republic; Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Karsten Mueller
- Department of Neurology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Kateřinská 30, 120 00 Prague, Czech Republic; Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Jiří Keller
- Department of Radiology, Na Homolce Hospital, Prague, Czech Republic; Third Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
| | - Dušan Urgošík
- Department of stereotactic and radiation neurosurgery, Nemocnice Na Homolce, Prague, Czech Republic
| | - Daniel Novák
- Department of Cybernetics, Czech Technical University in Prague, Prague, Czech Republic
| | - Robert Jech
- Department of Neurology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Kateřinská 30, 120 00 Prague, Czech Republic.
| |
Collapse
|
4
|
Kragelund FS, Spiliotis K, Heerdegen M, Sellmann T, Bathel H, Lüttig A, Richter A, Starke J, Köhling R, Franz D. Network-wide effects of pallidal deep brain stimulation normalised abnormal cerebellar cortical activity in the dystonic animal model. Neurobiol Dis 2025; 205:106779. [PMID: 39725240 DOI: 10.1016/j.nbd.2024.106779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 12/10/2024] [Accepted: 12/21/2024] [Indexed: 12/28/2024] Open
Abstract
BACKGROUND Deep brain stimulation (DBS) targeting globus pallidus internus (GPi) is a recognised therapy for drug-refractory dystonia. However, the mechanisms underlying this effect are not fully understood. This study explores how pallidal DBS alters spatiotemporal pattern formation of neuronal dynamics within the cerebellar cortex in a dystonic animal model, the dtsz hamster. METHODS We conducted in vitro analysis using a high-density microelectrode array (HD-MEA) in the cerebellar cortex. For investigating the spatiotemporal pattern, mean firing rates (MFR), interspike intervals (ISI), spike amplitudes, and cerebellar connectivity among healthy control hamsters, dystonic dtsz hamsters, DBS- and sham-DBS-treated dtsz hamsters were analysed. A nonlinear data-driven method characterised the low-dimensional representation of the patterns in MEA data. RESULTS Our HD-MEA recordings revealed reduced MFR and spike amplitudes in the dtsz hamsters compared to healthy controls. Pallidal DBS induced network-wide effects, normalising MFR, spike amplitudes, and connectivity measures in hamsters, thereby countervailing these electrophysiological abnormalities. Additionally, network analysis showed neural activity patterns organised into communities, with higher connectivity in both healthy and DBS groups compared to dtsz. CONCLUSIONS These findings suggest that pallidal DBS exerts some of its therapeutic effects on dystonia by normalising neuronal activity within the cerebellar cortex. Our findings of reduced MFR and spike amplitudes in the dtsz hamsters could be a hint of a decrease in neuronal fibres and synaptic plasticity. Treatment with pallidal DBS led to cerebellar cortical activity similar to healthy controls, displaying the network-wide impact of local stimulation.
Collapse
Affiliation(s)
| | | | - Marco Heerdegen
- Oscar Langendorff Institute of Physiology, University Medical Centre Rostock, Rostock, Germany
| | - Tina Sellmann
- Oscar Langendorff Institute of Physiology, University Medical Centre Rostock, Rostock, Germany
| | - Henning Bathel
- Institute of General Electrical Engineering, University of Rostock, Rostock, Germany
| | - Anika Lüttig
- nstitute for Pharmacology, Pharmacy and Toxicology, University of Leipzig, Leipzig, Germany
| | - Angelika Richter
- nstitute for Pharmacology, Pharmacy and Toxicology, University of Leipzig, Leipzig, Germany
| | - Jens Starke
- Institute of Mathematics, University of Rostock, Rostock, Germany
| | - Rüdiger Köhling
- Oscar Langendorff Institute of Physiology, University Medical Centre Rostock, Rostock, Germany
| | - Denise Franz
- Oscar Langendorff Institute of Physiology, University Medical Centre Rostock, Rostock, Germany.
| |
Collapse
|
5
|
Kumar R, Singh BR. Botulinum Toxin: A Comprehensive Review of Its Molecular Architecture and Mechanistic Action. Int J Mol Sci 2025; 26:777. [PMID: 39859491 PMCID: PMC11766063 DOI: 10.3390/ijms26020777] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 01/06/2025] [Accepted: 01/14/2025] [Indexed: 01/27/2025] Open
Abstract
Botulinum toxin (BoNT), the most potent substance known to humans, likely evolved not to kill but to serve other biological purposes. While its use in cosmetic applications is well known, its medical utility has become increasingly significant due to the intricacies of its structure and function. The toxin's structural complexity enables it to target specific cellular processes with remarkable precision, making it an invaluable tool in both basic and applied biomedical research. BoNT's potency stems from its unique structural features, which include domains responsible for receptor recognition, membrane binding, internalization, and enzymatic cleavage. This division of labor within the toxin's structure allows it to specifically recognize and interact with synaptic proteins, leading to precise cleavage at targeted sites within neurons. The toxin's mechanism of action involves a multi-step process: recognition, binding, and catalysis, ultimately blocking neurotransmitter release by cleaving proteins like SNAP-25, VAMP, and syntaxin. This disruption in synaptic vesicle fusion causes paralysis, typically in peripheral neurons. However, emerging evidence suggests that BoNT also affects the central nervous system (CNS), influencing presynaptic functions and distant neuronal systems. The evolutionary history of BoNT reveals that its neurotoxic properties likely provided a selective advantage in certain ecological contexts. Interestingly, the very features that make BoNT a potent toxin also enable its therapeutic applications, offering precision in treating neurological disorders like dystonia, spasticity, and chronic pain. In this review, we highlight the toxin's structural, functional, and evolutionary aspects, explore its clinical uses, and identify key research gaps, such as BoNT's central effects and its long-term cellular impact. A clear understanding of these aspects could facilitate the representation of BoNT as a unique scientific paradigm for studying neuronal processes and developing targeted therapeutic strategies.
Collapse
Affiliation(s)
- Raj Kumar
- Botulinum Research Center, Institute of Advanced Sciences, Dartmouth, MA 02747, USA;
| | | |
Collapse
|
6
|
Butenko K, Neudorfer C, Dembek TA, Hollunder B, Meyer GM, Li N, Oxenford S, Bahners BH, Al-Fatly B, Lofredi R, Gordon EM, Dosenbach NUF, Ganos C, Hallett M, Jinnah HA, Starr PA, Ostrem JL, Wu Y, Zhang C, Fox MD, Horn A. Engaging dystonia networks with subthalamic stimulation. Proc Natl Acad Sci U S A 2025; 122:e2417617122. [PMID: 39773021 PMCID: PMC11745339 DOI: 10.1073/pnas.2417617122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 12/02/2024] [Indexed: 01/11/2025] Open
Abstract
Deep brain stimulation is an efficacious treatment for dystonia. While the internal pallidum serves as the primary target, recently, stimulation of the subthalamic nucleus (STN) has been investigated. However, optimal targeting within this structure and its surroundings have not been studied in depth. Indeed, historical targets that have been used for surgical treatment of dystonia are directly adjacent to the STN. Further, multiple types of dystonia exist, and outcomes are variable, suggesting that not all types would profit maximally from the same target. Therefore, a thorough investigation of neural substrates underlying stimulation effects on dystonia signs and symptoms is warranted. Here, we analyze a multicenter cohort of isolated dystonia patients with subthalamic implantations (N = 58) and relate their stimulation sites to improvements of appendicular and cervical symptoms as well as blepharospasm. Stimulation of the ventral oral posterior nucleus of thalamus and surrounding regions were associated with improvements in cervical dystonia, while stimulation of the dorsolateral STN was associated with improvements in limb dystonia and blepharospasm. This dissociation was matched by structural connectivity analysis, where the cerebellothalamic, corticospinal, and pallidosubthalamic tracts were associated with improvements of cervical dystonia, while hyperdirect and subthalamopallidal pathways with alleviation of limb dystonia and blepharospasm. On the level of functional networks, improvements of limb dystonia were associated with connectivity to the corresponding somatotopic regions in the primary motor cortex, while alleviation of cervical dystonia to the cingulo-opercular network. These findings shed light on the pathophysiology of dystonia and may guide DBS targeting and programming in the future.
Collapse
Affiliation(s)
- Konstantin Butenko
- Center for Brain Circuit Therapeutics, Department of Neurology, Brigham & Women’s Hospital, Harvard Medical School, Boston, MA02115
| | - Clemens Neudorfer
- Center for Brain Circuit Therapeutics, Department of Neurology, Brigham & Women’s Hospital, Harvard Medical School, Boston, MA02115
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA02114
| | - Till A. Dembek
- Department of Neurology, Faculty of Medicine, University of Cologne, Cologne50937, Germany
| | - Barbara Hollunder
- Movement Disorders and Neuromodulation Unit, Department of Neurology, Charité—Universitätsmedizin Berlin, Berlin10117, Germany
- Einstein Center for Neurosciences Berlin, Charité—Universitätsmedizin Berlin, Berlin10117, Germany
- Berlin School of Mind and Brain, Humboldt—Universität zu Berlin, Berlin10117, Germany
| | - Garance M. Meyer
- Center for Brain Circuit Therapeutics, Department of Neurology, Brigham & Women’s Hospital, Harvard Medical School, Boston, MA02115
| | - Ningfei Li
- Movement Disorders and Neuromodulation Unit, Department of Neurology, Charité—Universitätsmedizin Berlin, Berlin10117, Germany
| | - Simón Oxenford
- Movement Disorders and Neuromodulation Unit, Department of Neurology, Charité—Universitätsmedizin Berlin, Berlin10117, Germany
| | - Bahne H. Bahners
- Center for Brain Circuit Therapeutics, Department of Neurology, Brigham & Women’s Hospital, Harvard Medical School, Boston, MA02115
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf40225, Germany
- Department of Neurology, Center for Movement Disorders and Neuromodulation, Medical Faculty University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf40225, Germany
| | - Bassam Al-Fatly
- Movement Disorders and Neuromodulation Unit, Department of Neurology, Charité—Universitätsmedizin Berlin, Berlin10117, Germany
| | - Roxanne Lofredi
- Movement Disorders and Neuromodulation Unit, Department of Neurology, Charité—Universitätsmedizin Berlin, Berlin10117, Germany
| | - Evan M. Gordon
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO63110
| | - Nico U. F. Dosenbach
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO63110
- Department of Neurology, Washington University School of Medicine, St. Louis, MO63108
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO63130
| | - Christos Ganos
- Movement Disorder Clinic, Edmond J. Safra Program in Parkinson’s Disease, Division of Neurology, University of Toronto, Toronto Western Hospital, Toronto, ONM5T 2S6, Canada
| | - Mark Hallett
- Human Motor Control Section, Medical Neurology Branch, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD20892
| | | | - Philip A. Starr
- Department of Neurological Surgery, University of California, San Francisco, CA94143
| | - Jill L. Ostrem
- Movement Disorders and Neuromodulation Centre, Department of Neurology, University of California, San Francisco, CA94143
| | - Yiwen Wu
- Department of Neurology & Institute of Neurology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai200025, China
| | - ChenCheng Zhang
- Department of Neurosurgery, Rujin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai200025, China
| | - Michael D. Fox
- Center for Brain Circuit Therapeutics, Department of Neurology, Brigham & Women’s Hospital, Harvard Medical School, Boston, MA02115
| | - Andreas Horn
- Center for Brain Circuit Therapeutics, Department of Neurology, Brigham & Women’s Hospital, Harvard Medical School, Boston, MA02115
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA02114
- Movement Disorders and Neuromodulation Unit, Department of Neurology, Charité—Universitätsmedizin Berlin, Berlin10117, Germany
- Einstein Center for Neurosciences Berlin, Charité—Universitätsmedizin Berlin, Berlin10117, Germany
| |
Collapse
|
7
|
Gilman Kuric T, Popovic Z, Matosa S, Sadikov A, Groznik V, Georgiev D, Gerbasi A, Kragujevic J, Mirosevic Zubonja T, Krivdic Dupan Z, Guljas S, Kuric I, Juric S, Palic Kramaric R, Tomic S. Memory-Guided Saccades and Non-Motor Symptoms Improve after Botulinum Toxin Therapy in Cervical Dystonia. J Clin Med 2024; 13:5708. [PMID: 39407768 PMCID: PMC11477116 DOI: 10.3390/jcm13195708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/15/2024] [Accepted: 09/22/2024] [Indexed: 10/20/2024] Open
Abstract
Background/Objectives: Cervical dystonia (CD) is a condition characterized by involuntary activity of cervical muscles, which is often accompanied by various non-motor symptoms. Recent studies indicate impaired saccadic eye movements in CD. Local administration of botulinum toxin type A (BoNT/A), which causes temporary paralysis of the injected muscle, is the first-line treatment of focal dystonia, including CD. To our knowledge, concurrent observation of the effect of BoNT/A on smooth eye movements, voluntary saccades, memory-guided saccades, and antisaccades in CD has not yet been explored. The aim of this study was to assess the effect of BoNT/A on eye movements and non-motor symptoms in patients with CD, which, when altered, could imply a central effect of BoNT/A. Methods: Thirty patients with CD performed smooth pursuit, prosaccadic expression, memory-guided saccades, and antisaccade tasks; eye movements were recorded by an eye tracker. Motor and non-motor symptoms, including depression, anxiety, pain, disability, and cognitive changes prior to and after BoNT/A administration, were also evaluated. Results: The number of correct onward counts (p < 0.001), overall correct memory-guided saccades count (p = 0.005), motor symptoms (p = 0.001), and non-motor symptoms, i.e., anxiety (p = 0.04), depression (p = 0.02), and cognition (p < 0.001) markedly improved after BoNT/A administration. Conclusions: Memory-guided saccades, depression, and anxiety improve after BoNT/A in CD.
Collapse
Affiliation(s)
- Tihana Gilman Kuric
- Department of Neurology, Osijek University Hospital Center, 31000 Osijek, Croatia; (Z.P.); (S.M.); (J.K.); (T.M.Z.); (S.J.); (R.P.K.); (S.T.)
- Faculty of Medicine in Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia; (Z.K.D.); (S.G.); (I.K.)
| | - Zvonimir Popovic
- Department of Neurology, Osijek University Hospital Center, 31000 Osijek, Croatia; (Z.P.); (S.M.); (J.K.); (T.M.Z.); (S.J.); (R.P.K.); (S.T.)
- Faculty of Medicine in Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia; (Z.K.D.); (S.G.); (I.K.)
| | - Sara Matosa
- Department of Neurology, Osijek University Hospital Center, 31000 Osijek, Croatia; (Z.P.); (S.M.); (J.K.); (T.M.Z.); (S.J.); (R.P.K.); (S.T.)
- Faculty of Medicine in Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia; (Z.K.D.); (S.G.); (I.K.)
| | - Aleksander Sadikov
- Faculty of Computer and Information Science, University of Ljubljana, 1000 Ljubljana, Slovenia; (A.S.)
| | - Vida Groznik
- Faculty of Computer and Information Science, University of Ljubljana, 1000 Ljubljana, Slovenia; (A.S.)
| | - Dejan Georgiev
- Department of Neurology, Ljubljana University Medical Centre, 1000 Ljubljana, Slovenia;
| | - Alessia Gerbasi
- Department of Electrical, Computer and Biomedical Engineering, University of Pavia, 27100 Pavia, Italy;
| | - Jagoda Kragujevic
- Department of Neurology, Osijek University Hospital Center, 31000 Osijek, Croatia; (Z.P.); (S.M.); (J.K.); (T.M.Z.); (S.J.); (R.P.K.); (S.T.)
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Tea Mirosevic Zubonja
- Department of Neurology, Osijek University Hospital Center, 31000 Osijek, Croatia; (Z.P.); (S.M.); (J.K.); (T.M.Z.); (S.J.); (R.P.K.); (S.T.)
| | - Zdravka Krivdic Dupan
- Faculty of Medicine in Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia; (Z.K.D.); (S.G.); (I.K.)
- Department of Diagnostic and Interventional Radiology, Osijek University Hospital Center, 31000 Osijek, Croatia
| | - Silva Guljas
- Faculty of Medicine in Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia; (Z.K.D.); (S.G.); (I.K.)
- Department of Diagnostic and Interventional Radiology, Osijek University Hospital Center, 31000 Osijek, Croatia
| | - Igor Kuric
- Faculty of Medicine in Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia; (Z.K.D.); (S.G.); (I.K.)
| | - Stjepan Juric
- Department of Neurology, Osijek University Hospital Center, 31000 Osijek, Croatia; (Z.P.); (S.M.); (J.K.); (T.M.Z.); (S.J.); (R.P.K.); (S.T.)
- Faculty of Medicine in Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia; (Z.K.D.); (S.G.); (I.K.)
| | - Ruzica Palic Kramaric
- Department of Neurology, Osijek University Hospital Center, 31000 Osijek, Croatia; (Z.P.); (S.M.); (J.K.); (T.M.Z.); (S.J.); (R.P.K.); (S.T.)
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Svetlana Tomic
- Department of Neurology, Osijek University Hospital Center, 31000 Osijek, Croatia; (Z.P.); (S.M.); (J.K.); (T.M.Z.); (S.J.); (R.P.K.); (S.T.)
- Faculty of Medicine in Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia; (Z.K.D.); (S.G.); (I.K.)
| |
Collapse
|
8
|
Sarasso E, Emedoli D, Gardoni A, Zenere L, Canu E, Basaia S, Doretti A, Ticozzi N, Iannaccone S, Amadio S, Del Carro U, Filippi M, Agosta F. Cervical motion alterations and brain functional connectivity in cervical dystonia. Parkinsonism Relat Disord 2024; 120:106015. [PMID: 38325256 DOI: 10.1016/j.parkreldis.2024.106015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/10/2024] [Accepted: 01/26/2024] [Indexed: 02/09/2024]
Abstract
INTRODUCTION Evaluating the neural correlates of sensorimotor control deficits in cervical dystonia (CD) is fundamental to plan the best treatment. This study aims to assess kinematic and resting-state functional connectivity (RS-FC) characteristics in CD patients relative to healthy controls. METHODS Seventeen CD patients and 14 age-/sex-matched healthy controls were recruited. Electromagnetic sensors were used to evaluate dystonic pattern, mean/maximal cervical movement amplitude and joint position error with eyes open and closed, and movement quality during target reaching with the head. RS-fMRI was acquired to compare the FC of brain sensorimotor regions between patients and controls. In patients, correlations between motion analysis and FC data were assessed. RESULTS CD patients relative to controls showed reduced mean and maximal cervical range of motion (RoM) in rotation both towards and against dystonia pattern and reduced total RoM in rotation both with eyes open and closed. They had less severe dystonia pattern with eyes open vs eyes closed. CD patients showed an altered movement quality and sensorimotor control during target reaching and a higher joint position error. Compared to controls, CD patients showed reduced FC between supplementary motor area (SMA), occipital and cerebellar areas, which correlated with lower cervical RoM in rotation both with eyes open and closed and with worse movement quality during target reaching. CONCLUSIONS FC alterations between SMA and occipital and cerebellar areas may represent the neural basis of cervical sensorimotor control deficits in CD patients. Electromagnetic sensors and RS-fMRI might be promising tools to monitor CD and assess the efficacy of rehabilitative interventions.
Collapse
Affiliation(s)
- Elisabetta Sarasso
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy; Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics and Maternal Child Health, University of Genoa, Genoa, Italy
| | - Daniele Emedoli
- Department of Rehabilitation and Functional Recovery, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Andrea Gardoni
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Lucia Zenere
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Elisa Canu
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Silvia Basaia
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Alberto Doretti
- Department of Neurology, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Nicola Ticozzi
- Department of Neurology, IRCCS Istituto Auxologico Italiano, Milan, Italy; Department of Pathophysiology and Transplantation, "Dino Ferrari" Center, Università degli Studi di Milano, Milan, Italy
| | - Sandro Iannaccone
- Department of Rehabilitation and Functional Recovery, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Stefano Amadio
- Neurophysiology Service, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Ubaldo Del Carro
- Neurophysiology Service, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Massimo Filippi
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy; Neurophysiology Service, IRCCS San Raffaele Scientific Institute, Milan, Italy; Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy; Neurorehabilitation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Federica Agosta
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy; Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.
| |
Collapse
|
9
|
Schulze J, Sinke C, Neumann I, Wollmer MA, Kruger THC. Effects of glabellar botulinum toxin injections on resting-state functional connectivity in borderline personality disorder. Eur Arch Psychiatry Clin Neurosci 2024; 274:97-107. [PMID: 36991143 DOI: 10.1007/s00406-023-01563-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 01/23/2023] [Indexed: 03/31/2023]
Abstract
Meta-analyses suggest a sustained alleviation of depressive symptoms through glabellar botulinum toxin (BTX) injections. This can be explained by the disruption of facial feedback loops, which may moderate and reinforce the experience of negative emotions. Borderline personality disorder (BPD) is characterized by excessive negative emotions. Here, a seed-based resting-state functional connectivity (rsFC) analysis following BTX (N = 24) or acupuncture (ACU, N = 21) treatment in BPD is presented on areas related to the motor system and emotion processing. RsFC in BPD using a seed-based approach was analyzed. MRI data were measured before and 4 weeks after treatment. Based on previous research, the rsFC focus was on limbic and motor areas as well as the salience and default mode network. Clinically, after 4 weeks both groups showed a reduction of borderline symptoms. However, the anterior cingulate cortex (ACC) and the face area in the primary motor cortex (M1) displayed aberrant rsFC after BTX compared to ACU treatment. The M1 showed higher rsFC to the ACC after BTX treatment compared to ACU treatment. In addition, the ACC displayed an increased connectivity to the M1 as well as a decrease to the right cerebellum. This study shows first evidence for BTX-specific effects in the motor face region and the ACC. The observed effects of BTX on rsFC to areas are related to motor behavior. Since symptom improvement did not differ between the two groups, a BTX-specific effect seems plausible rather than a general therapeutic effect.
Collapse
Affiliation(s)
- Jara Schulze
- Division of Clinical Psychology and Sexual Medicine, Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Christopher Sinke
- Division of Clinical Psychology and Sexual Medicine, Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Insa Neumann
- Asklepios Campus Hamburg, Medical Faculty, Semmelweis University, Asklepios Clinic North - Ochsenzoll, Langenhorner Chaussee 560, 22419, Hamburg, Germany
- Asklepios Clinic North - Ochsenzoll, Clinic for Geriatric Psychiatry, Hamburg, Germany
| | - M Axel Wollmer
- Asklepios Campus Hamburg, Medical Faculty, Semmelweis University, Asklepios Clinic North - Ochsenzoll, Langenhorner Chaussee 560, 22419, Hamburg, Germany
- Asklepios Clinic North - Ochsenzoll, Clinic for Geriatric Psychiatry, Hamburg, Germany
| | - Tillmann H C Kruger
- Division of Clinical Psychology and Sexual Medicine, Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.
- Center for Systems Neuroscience, Bünteweg 2, 30559, Hanover, Germany.
| |
Collapse
|
10
|
Wagle Shukla A. Basis of movement control in dystonia and why botulinum toxin should influence it? Toxicon 2024; 237:107251. [PMID: 37574115 DOI: 10.1016/j.toxicon.2023.107251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/31/2023] [Accepted: 08/10/2023] [Indexed: 08/15/2023]
Abstract
Dystonia is a network disorder involving multiple brain regions, such as the motor cortex, sensory cortex, basal ganglia, and cerebellum. Botulinum toxin (BoNT) is the first-line therapy for treating focal dystonia and is a potent molecule that blocks the release of acetylcholine at the peripheral neuromuscular junction. However, the clinical benefits of BoNT are not solely related to peripheral muscle relaxation or modulation of afferent input from the muscle spindle. An increasing body of evidence, albeit in smaller cohorts, has shown that BoNT leads to distant modulation of the pathological brain substrates implicated in dystonia. A single treatment session of BoNT has been observed to reduce excessive motor excitability and improve sensory processing. Furthermore, owing to plasticity effects that are induced by botulinum, neural reorganization of pathological networks occurs, presumably leading to defective motor programs of dystonia replaced with normal movement patterns. However, longitudinal studies investigating the effects of multiple treatment sessions in large, well-characterized homogenous cohorts of dystonia will provide further compelling evidence supporting central botulinum mechanisms.
Collapse
Affiliation(s)
- Aparna Wagle Shukla
- Department of Neurology, Fixel Institute for Neurological Diseases, University of Florida, 3009 Williston Road, Gainesville, 32608, Florida, United States.
| |
Collapse
|
11
|
Burke T, Holleran L, Mothersill D, Lyons J, O'Rourke N, Gleeson C, Cannon DM, McKernan DP, Morris DW, Kelly JP, Hallahan B, McDonald C, Donohoe G. Bilateral anterior corona radiata microstructure organisation relates to impaired social cognition in schizophrenia. Schizophr Res 2023; 262:87-94. [PMID: 37931564 DOI: 10.1016/j.schres.2023.10.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 09/25/2023] [Accepted: 10/28/2023] [Indexed: 11/08/2023]
Abstract
OBJECTIVE The Corona Radiata (CR) is a large white matter tract in the brain comprising of the anterior CR (aCR), superior CR (sCR), and posterior CR (pCR), which have associations with cognition, self-regulation, and, in schizophrenia, positive symptom severity. This study tested the hypothesis that the microstructural organisation of the aCR, as measured by Fractional Anisotropy (FA) using Diffusion Tensor Imaging (DTI), would relate to poorer social cognitive outcomes and higher positive symptom severity for people with schizophrenia, when compared to healthy participants. We further hypothesised that increased positive symptoms would relate to poorer social cognitive outcomes. METHODS Data were derived from n = 178 healthy participants (41 % females; 36.11 ± 12.36 years) and 58 people with schizophrenia (30 % females; 42.4 ± 11.1 years). The Positive and Negative Symptom Severity Scale measured clinical symptom severity. Social Cognition was measured using the Reading the Mind in the Eyes Test (RMET) Total Score, as well as the Positive, Neutral, and Negative stimuli valence. The ENIGMA-DTI protocol tract-based spatial statistics (TBSS) was used. RESULTS There was a significant difference in FA for the CR, in individuals with schizophrenia compared to healthy participants. On stratification, both the aCR and pCR were significantly different between groups, with patients showing reduced white matter tract microstructural organisation. Significant negative correlations were observed between positive symptomatology and reduced microstructural organisation of the aCR. Performance for RMET negative valence items was significantly correlated bilaterally with the aCR, but not the sCR or pCR, and no relationship to positive symptoms was observed. CONCLUSIONS These data highlight specific and significant microstructural white-matter differences for people with schizophrenia, which relates to positive clinical symptomology and poorer performance on social cognition stimuli. While reduced FA is associated with higher positive symptomatology in schizophrenia, this study shows the specific associated with anterior frontal white matter tracts and reduced social cognitive performance. The aCR may have a specific role to play in frontal-disconnection syndromes, psychosis, and social cognitive profile within schizophrenia, though further research requires more sensitive, specific, and detailed consideration of social cognition outcomes.
Collapse
Affiliation(s)
- Tom Burke
- School of Psychology, University of Galway, Galway, Ireland; Center for Neuroimaging Cognition and Genomics, University of Galway, Galway, Ireland
| | - Laurena Holleran
- School of Psychology, University of Galway, Galway, Ireland; Center for Neuroimaging Cognition and Genomics, University of Galway, Galway, Ireland
| | - David Mothersill
- School of Psychology, University of Galway, Galway, Ireland; Center for Neuroimaging Cognition and Genomics, University of Galway, Galway, Ireland; Psychology Department, School of Business, National College of, Ireland
| | - James Lyons
- School of Psychology, University of Galway, Galway, Ireland; Center for Neuroimaging Cognition and Genomics, University of Galway, Galway, Ireland
| | - Nathan O'Rourke
- School of Psychology, University of Galway, Galway, Ireland; Center for Neuroimaging Cognition and Genomics, University of Galway, Galway, Ireland
| | - Christina Gleeson
- School of Psychology, University of Galway, Galway, Ireland; Center for Neuroimaging Cognition and Genomics, University of Galway, Galway, Ireland
| | - Dara M Cannon
- Center for Neuroimaging Cognition and Genomics, University of Galway, Galway, Ireland; Clinical Neuroimaging Laboratory, Galway Neuroscience Centre, College of Medicine Nursing and Health Sciences, University of Galway, Galway, Ireland
| | - Declan P McKernan
- Pharmacology & Therapeutics and Galway Neuroscience Centre, National University of Ireland Galway, H91 W5P7 Galway, Ireland
| | - Derek W Morris
- Center for Neuroimaging Cognition and Genomics, University of Galway, Galway, Ireland
| | - John P Kelly
- Pharmacology & Therapeutics and Galway Neuroscience Centre, National University of Ireland Galway, H91 W5P7 Galway, Ireland
| | - Brian Hallahan
- Center for Neuroimaging Cognition and Genomics, University of Galway, Galway, Ireland; Department of Psychiatry, Clinical Science Institute, National University of Ireland Galway, H91 TK33 Galway, Ireland
| | - Colm McDonald
- Center for Neuroimaging Cognition and Genomics, University of Galway, Galway, Ireland; Department of Psychiatry, Clinical Science Institute, National University of Ireland Galway, H91 TK33 Galway, Ireland
| | - Gary Donohoe
- School of Psychology, University of Galway, Galway, Ireland; Center for Neuroimaging Cognition and Genomics, University of Galway, Galway, Ireland.
| |
Collapse
|
12
|
Ehrlich SK, Battistella G, Simonyan K. Temporal Signature of Task-Specificity in Isolated Focal Laryngeal Dystonia. Mov Disord 2023; 38:1925-1935. [PMID: 37489600 PMCID: PMC10615685 DOI: 10.1002/mds.29557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 06/06/2023] [Accepted: 06/28/2023] [Indexed: 07/26/2023] Open
Abstract
BACKGROUND AND OBJECTIVE Laryngeal dystonia (LD) is focal task-specific dystonia, predominantly affecting speech but not whispering or emotional vocalizations. Prior neuroimaging studies identified brain regions forming a dystonic neural network and contributing to LD pathophysiology. However, the underlying temporal dynamics of these alterations and their contribution to the task-specificity of LD remain largely unknown. The objective of the study was to identify the temporal-spatial signature of altered cortical oscillations associated with LD pathophysiology. METHODS We used high-density 128-electrode electroencephalography (EEG) recordings during symptomatic speaking and two asymptomatic tasks, whispering and writing, in 24 LD patients and 22 healthy individuals to investigate the spectral dynamics, spatial localization, and interregional effective connectivity of aberrant cortical oscillations within the dystonic neural network, as well as their relationship with LD symptomatology. RESULTS Symptomatic speaking in LD patients was characterized by significantly increased gamma synchronization in the middle/superior frontal gyri, primary somatosensory cortex, and superior parietal lobule, establishing the altered prefrontal-parietal loop. Hyperfunctional connectivity from the left middle frontal gyrus to the right superior parietal lobule was significantly correlated with the age of onset and the duration of LD symptoms. Asymptomatic whisper in LD patients had not no statistically significant changes in any frequency band, whereas asymptomatic writing was characterized by significantly decreased synchronization of beta-band power localized in the right superior frontal gyrus. CONCLUSION Task-specific oscillatory activity of prefrontal-parietal circuitry is likely one of the underlying mechanisms of aberrant heteromodal integration of information processing and transfer within the neural network leading to dystonic motor output. © 2023 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Stefan K. Ehrlich
- Department of Otolaryngology - Head & Neck Surgery, Harvard Medical School and Massachusetts Eye and Ear, 243 Charles Street, Boston, MA 02114, USA
| | - Giovanni Battistella
- Department of Otolaryngology - Head & Neck Surgery, Harvard Medical School and Massachusetts Eye and Ear, 243 Charles Street, Boston, MA 02114, USA
| | - Kristina Simonyan
- Department of Otolaryngology - Head & Neck Surgery, Harvard Medical School and Massachusetts Eye and Ear, 243 Charles Street, Boston, MA 02114, USA
- Department of Neurology - Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114, USA
| |
Collapse
|
13
|
Bergwell H, Trevarrow MP, Heinrichs-Graham E, Reelfs A, Ott LR, Penhale SH, Wilson TW, Kurz MJ. Aberrant age-related alterations in spontaneous cortical activity in participants with cerebral palsy. Front Neurol 2023; 14:1163964. [PMID: 37521295 PMCID: PMC10374009 DOI: 10.3389/fneur.2023.1163964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 06/22/2023] [Indexed: 08/01/2023] Open
Abstract
Introduction Cerebral Palsy (CP) is the most common neurodevelopmental motor disability, resulting in life-long sensory, perception and motor impairments. Moreover, these impairments appear to drastically worsen as the population with CP transitions from adolescents to adulthood, although the underlying neurophysiological mechanisms remain poorly understood. Methods We began to address this knowledge gap by utilizing magnetoencephalographic (MEG) brain imaging to study how the amplitude of spontaneous cortical activity (i.e., resting state) is altered during this transition period in a cohort of 38 individuals with spastic diplegic CP (Age range = 9.80-47.50 years, 20 females) and 67 neurotypical controls (NT) (Age range = 9.08-49.40 years, Females = 27). MEG data from a five-minute eyes closed resting-state paradigm were source imaged, and the power within the delta (2-4 Hz), theta (5-7 Hz), alpha (8-12 Hz), beta (15-29 Hz), and gamma (30-59 Hz) frequency bands were computed. Results For both groups, the delta and theta spontaneous power decreased in the bilateral temporoparietal and superior parietal regions with age, while alpha, beta, and gamma band spontaneous power increased in temporoparietal, frontoparietal and premotor regions with age. We also found a significant group x age interaction, such that participants with CP demonstrated significantly less age-related increases in the spontaneous beta activity in the bilateral sensorimotor cortices compared to NT controls. Discussion Overall, these results demonstrate that the spontaneous neural activity in individuals with CP has an altered trajectory when transitioning from adolescents to adulthood. We suggest that these differences in spontaneous cortical activity may play a critical role in the aberrant motor actions seen in this patient group, and may provide a neurophysiological marker for assessing the effectiveness of current treatment strategies that are directed at improving the mobility and sensorimotor impairments seen in individuals with CP.
Collapse
Affiliation(s)
- Hannah Bergwell
- Institute for Human Neuroscience, Boys Town National Research Hospital, Omaha, NE, United States
| | - Michael P. Trevarrow
- Institute for Human Neuroscience, Boys Town National Research Hospital, Omaha, NE, United States
| | - Elizabeth Heinrichs-Graham
- Institute for Human Neuroscience, Boys Town National Research Hospital, Omaha, NE, United States
- Department of Pharmacology & Neuroscience, Creighton University, Omaha, NE, United States
| | - Anna Reelfs
- Institute for Human Neuroscience, Boys Town National Research Hospital, Omaha, NE, United States
| | - Lauren R. Ott
- Institute for Human Neuroscience, Boys Town National Research Hospital, Omaha, NE, United States
| | - Samantha H. Penhale
- Institute for Human Neuroscience, Boys Town National Research Hospital, Omaha, NE, United States
| | - Tony W. Wilson
- Institute for Human Neuroscience, Boys Town National Research Hospital, Omaha, NE, United States
- Department of Pharmacology & Neuroscience, Creighton University, Omaha, NE, United States
| | - Max J. Kurz
- Institute for Human Neuroscience, Boys Town National Research Hospital, Omaha, NE, United States
- Department of Pharmacology & Neuroscience, Creighton University, Omaha, NE, United States
| |
Collapse
|
14
|
Abstract
Studies in the 1920s found that botulinum neurotoxin type A (BoNT/A) inhibited the activity of motor and parasympathetic nerve endings, confirmed several decades later to be due to decreased acetylcholine release. The 1970s were marked by studies of cellular mechanisms aided by use of neutralizing antibodies as pharmacologic tools: BoNT/A disappeared from accessibility to neutralizing antibodies within minutes, although it took several hours for onset of muscle weakness. The multi-step mechanism was experimentally confirmed and is now recognized to consist broadly of binding to nerve terminals, internalization, and lysis or cleavage of a protein (SNAP-25: synaptosomal associated protein-25 kDa) that is part of the SNARE (Soluble NSF Attachment protein REceptor) complex needed for synaptic vesicle docking and fusion. Clinical use of the BoNT/A product onabotulinumtoxinA was based on its ability to reduce muscle contractions via inhibition of acetylcholine from motor terminals. Sensory mechanisms of onabotulinumtoxinA have now been identified, supporting its successful treatment of chronic migraine and urgency in overactive bladder. Exploration into migraine mechanisms led to anatomical studies documenting pain fibers that send axons through sutures of the skull to outside the head-a potential route by which extracranial injections could affect intracranial processes. Several clinical studies have also identified benefits of onabotulinumtoxinA in major depression, which have been attributed to central responses induced by feedback from facial muscle and skin movement. Overall, the history of BoNT/A is distinguished by basic science studies that stimulated clinical use and, conversely, clinical observations that spurred basic research into novel mechanisms of action.
Collapse
Affiliation(s)
- Mitchell F Brin
- Allergan/AbbVie, Irvine, CA, USA
- University of California, Irvine, CA, USA
| | - Rami Burstein
- Departments of Anesthesia and Neuroscience, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
15
|
Belvisi D, Leodori G, Costanzo M, Conte A, Berardelli A. How does botulinum toxin really work? INTERNATIONAL REVIEW OF NEUROBIOLOGY 2023; 169:441-479. [PMID: 37482400 DOI: 10.1016/bs.irn.2023.05.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
Over the past 30 years, Botulinum toxin (BoNT) has emerged as an effective and safe therapeutic tool for a number of neurological conditions, including dystonia. To date, the exact mechanism of action of BoNT in dystonia is not fully understood. Although it is well known that BoNT mainly acts on the neuromuscular junction, a growing body of evidence suggests that the therapeutic effect of BoNT in dystonia may also depend on its ability to modulate peripheral sensory feedback from muscle spindles. Animal models also suggest a retrograde and anterograde BoNT transportation from the site of injection to central nervous system structures. In humans, however, BoNT central effects seem to depend on the modulation of afferent input rather than on BoNT transportation. In this chapter, we aimed to report and discuss research evidence providing information on the possible mechanisms of action of BoNT in relation to treatment of dystonia.
Collapse
Affiliation(s)
- Daniele Belvisi
- Department of Human Neurosciences, Sapienza, University of Rome, Viale dell' Università 30, Rome, Italy; IRCCS Neuromed, via Atinense 18, Pozzilli, IS, Italy
| | - Giorgio Leodori
- Department of Human Neurosciences, Sapienza, University of Rome, Viale dell' Università 30, Rome, Italy; IRCCS Neuromed, via Atinense 18, Pozzilli, IS, Italy
| | | | - Antonella Conte
- Department of Human Neurosciences, Sapienza, University of Rome, Viale dell' Università 30, Rome, Italy; IRCCS Neuromed, via Atinense 18, Pozzilli, IS, Italy
| | - Alfredo Berardelli
- Department of Human Neurosciences, Sapienza, University of Rome, Viale dell' Università 30, Rome, Italy; IRCCS Neuromed, via Atinense 18, Pozzilli, IS, Italy.
| |
Collapse
|
16
|
Zito GA, Tarrano C, Ouarab S, Jegatheesan P, Ekmen A, Béranger B, Valabregue R, Hubsch C, Sangla S, Bonnet C, Delorme C, Méneret A, Degos B, Bouquet F, Apoil Brissard M, Vidailhet M, Hasboun D, Worbe Y, Roze E, Gallea C. Fixel-Based Analysis Reveals Whole-Brain White Matter Abnormalities in Cervical Dystonia. Mov Disord 2023. [PMID: 37148555 DOI: 10.1002/mds.29425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/04/2023] [Accepted: 04/12/2023] [Indexed: 05/08/2023] Open
Abstract
BACKGROUND Cervical dystonia (CD) is a form of isolated focal dystonia typically associated to abnormal head, neck, and shoulder movements and postures. The complexity of the clinical presentation limits the investigation of its pathophysiological mechanisms, and the neural networks associated to specific motor manifestations are still the object of debate. OBJECTIVES We investigated the morphometric properties of white matter fibers in CD and explored the networks associated with motor symptoms, while regressing out nonmotor scores. METHODS Nineteen patients affected by CD and 21 healthy controls underwent diffusion-weighted magnetic resonance imaging. We performed fixel-based analysis, a novel method evaluating fiber orientation within specific fiber bundles, and compared fiber morphometric properties between groups. Moreover, we correlated fiber morphometry with the severity of motor symptoms in patients. RESULTS Compared to controls, patients exhibited decreased white matter fibers in the right striatum. Motor symptom severity negatively correlated with white matter fibers passing through inferior parietal areas and the head representation area of the motor cortex. CONCLUSIONS Abnormal white matter integrity at the basal ganglia level may affect several functional networks involved, for instance, in motor preparation and execution, visuomotor coordination, and multimodal integration. This may result in progressive maladaptive plasticity, culminating in overt symptoms of dystonia. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
| | - Clément Tarrano
- Movement Investigation and Therapeutics Team, Paris Brain Institute, Sorbonne University, Inserm U1127, CNRS UMR7225, Paris, France
- Department of Neurology, Assistance Publique-Hôpitaux de Paris, Pitié-Salpêtrière Hospital, Paris, France
| | - Salim Ouarab
- Movement Investigation and Therapeutics Team, Paris Brain Institute, Sorbonne University, Inserm U1127, CNRS UMR7225, Paris, France
| | - Prasanthi Jegatheesan
- Movement Investigation and Therapeutics Team, Paris Brain Institute, Sorbonne University, Inserm U1127, CNRS UMR7225, Paris, France
| | - Asya Ekmen
- Movement Investigation and Therapeutics Team, Paris Brain Institute, Sorbonne University, Inserm U1127, CNRS UMR7225, Paris, France
| | - Benoît Béranger
- Center for NeuroImaging Research (CENIR), Paris Brain Institute, Sorbonne University, Inserm U1127, CNRS UMR 7225, Paris, France
| | - Romain Valabregue
- Center for NeuroImaging Research (CENIR), Paris Brain Institute, Sorbonne University, Inserm U1127, CNRS UMR 7225, Paris, France
| | - Cécile Hubsch
- Movement Investigation and Therapeutics Team, Paris Brain Institute, Sorbonne University, Inserm U1127, CNRS UMR7225, Paris, France
| | - Sophie Sangla
- Movement Investigation and Therapeutics Team, Paris Brain Institute, Sorbonne University, Inserm U1127, CNRS UMR7225, Paris, France
| | - Cécilia Bonnet
- Movement Investigation and Therapeutics Team, Paris Brain Institute, Sorbonne University, Inserm U1127, CNRS UMR7225, Paris, France
| | - Cécile Delorme
- Movement Investigation and Therapeutics Team, Paris Brain Institute, Sorbonne University, Inserm U1127, CNRS UMR7225, Paris, France
| | - Aurélie Méneret
- Movement Investigation and Therapeutics Team, Paris Brain Institute, Sorbonne University, Inserm U1127, CNRS UMR7225, Paris, France
- DMU Neurosciences, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Bertrand Degos
- Movement Investigation and Therapeutics Team, Paris Brain Institute, Sorbonne University, Inserm U1127, CNRS UMR7225, Paris, France
- Neurology Unit, AP-HP, Avicenne University Hospital, Sorbonne Paris Nord, Bobigny, France
- Center for Interdisciplinary Research in Biology, Collège de France, CNRS UMR7241/INSERM U1050, Université PSL, Paris, France
| | - Floriane Bouquet
- Movement Investigation and Therapeutics Team, Paris Brain Institute, Sorbonne University, Inserm U1127, CNRS UMR7225, Paris, France
| | | | - Marie Vidailhet
- Movement Investigation and Therapeutics Team, Paris Brain Institute, Sorbonne University, Inserm U1127, CNRS UMR7225, Paris, France
- DMU Neurosciences, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Dominique Hasboun
- Movement Investigation and Therapeutics Team, Paris Brain Institute, Sorbonne University, Inserm U1127, CNRS UMR7225, Paris, France
- Department of Neurology, Assistance Publique-Hôpitaux de Paris, Pitié-Salpêtrière Hospital, Paris, France
| | - Yulia Worbe
- Movement Investigation and Therapeutics Team, Paris Brain Institute, Sorbonne University, Inserm U1127, CNRS UMR7225, Paris, France
- Department of Neurophysiology, Saint-Antoine Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Emmanuel Roze
- Movement Investigation and Therapeutics Team, Paris Brain Institute, Sorbonne University, Inserm U1127, CNRS UMR7225, Paris, France
- DMU Neurosciences, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Cécile Gallea
- Movement Investigation and Therapeutics Team, Paris Brain Institute, Sorbonne University, Inserm U1127, CNRS UMR7225, Paris, France
| |
Collapse
|
17
|
Corp DT, Morrison-Ham J, Jinnah HA, Joutsa J. The functional anatomy of dystonia: Recent developments. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2023; 169:105-136. [PMID: 37482390 DOI: 10.1016/bs.irn.2023.04.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
While dystonia has traditionally been viewed as a disorder of the basal ganglia, the involvement of other key brain structures is now accepted. However, just what these structures are remains to be defined. Neuroimaging has been an especially valuable tool in dystonia, yet traditional cross-sectional designs have not been able to separate causal from compensatory brain activity. Therefore, this chapter discusses recent studies using causal brain lesions, and animal models, to converge upon the brain regions responsible for dystonia with increasing precision. This evidence strongly implicates the basal ganglia, thalamus, brainstem, cerebellum, and somatosensory cortex, yet shows that different types of dystonia involve different nodes of this brain network. Nearly all of these nodes fall within the recently identified two-way networks connecting the basal ganglia and cerebellum, suggesting dysfunction of these specific pathways. Localisation of the functional anatomy of dystonia has strong implications for targeted treatment options, such as deep brain stimulation, and non-invasive brain stimulation.
Collapse
Affiliation(s)
- Daniel T Corp
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Australia; Center for Brain Circuit Therapeutics, Brigham and Women's Hospital, Boston, MA, United States.
| | - Jordan Morrison-Ham
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Australia
| | - H A Jinnah
- Departments of Neurology, Human Genetics, and Pediatrics, Atlanta, GA, United States
| | - Juho Joutsa
- Center for Brain Circuit Therapeutics, Brigham and Women's Hospital, Boston, MA, United States; Turku Brain and Mind Center, Clinical Neurosciences, University of Turku, Turku, Finland; Turku PET Centre, Neurocenter, Turku University Hospital, Turku, Finland
| |
Collapse
|
18
|
Veverka T, Hok P, Trnečková M, Otruba P, Zapletalová J, Tüdös Z, Lotze M, Kaňovský P, Hluštík P. Interhemispheric parietal cortex connectivity reflects improvement in post-stroke spasticity due to treatment with botulinum toxin-A. J Neurol Sci 2023; 446:120588. [PMID: 36827809 DOI: 10.1016/j.jns.2023.120588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 02/10/2023] [Accepted: 02/12/2023] [Indexed: 02/17/2023]
Abstract
In post-stroke spasticity (PSS), effective treatment with botulinum neurotoxin (BoNT) is associated with transient decrease in activation of the ipsilesional superior parietal lobule (SPL) and intraparietal sulcus (IPS). We hypothesized that this would be reflected in changes in resting-state functional connectivity (rsFC) of the SPL/IPS. Our aim was therefore to assess rsFC of the ipsilesional SPL/IPS in chronic stroke patients with hemiparesis both with and without PSS and to explore the relationship between SPL/IPS rsFC and PSS severity. To this end, fourteen chronic stroke patients with upper limb weakness and PSS (the PSS group) and 8 patients with comparable weakness but no PSS (the control group) underwent clinical evaluation and 3 fMRI examinations, at baseline (W0) and 4 and 11 weeks after BoNT (W4 and W11, respectively). Seed-based rsFC of the atlas-based SPL and IPS was evaluated using a group×time interaction analysis and a correlation analysis with PSS severity (modified Ashworth scale), integrity of the ipsilesional somatosensory afferent pathway (evoked potential N20 latency), and age. In the PSS group, transient improvement in PSS was associated with increase in rsFC between the ipsilesional IPS and the contralesional SPL at W4. The interhemispheric connectivity was negatively correlated with PSS severity at baseline and with PSS improvement at W4. We propose adaptation of the internal forward model as the putative underlying mechanism and discuss its possible association with increased limb use, diminished spastic dystonia, or improved motor performance, as well as its potential contribution to the clinical effects of BoNT.
Collapse
Affiliation(s)
- Tomáš Veverka
- Department of Neurology, Faculty of Medicine and Dentistry, Palacký University Olomouc and University Hospital Olomouc, I. P. Pavlova 185/6, 779 00 Olomouc, Czechia.
| | - Pavel Hok
- Department of Neurology, Faculty of Medicine and Dentistry, Palacký University Olomouc and University Hospital Olomouc, I. P. Pavlova 185/6, 779 00 Olomouc, Czechia; Functional Imaging Unit, Institute of Diagnostic Radiology and Neuroradiology, University Medicine Greifswald, Walther-Rathenau-Str. 46, 17475 Greifswald, Germany.
| | - Markéta Trnečková
- Department of Computer Science, Faculty of Science, Palacký University Olomouc, 17. listopadu 1192/12 779 00 Olomouc, Olomouc, Czechia
| | - Pavel Otruba
- Department of Neurology, Faculty of Medicine and Dentistry, Palacký University Olomouc and University Hospital Olomouc, I. P. Pavlova 185/6, 779 00 Olomouc, Czechia.
| | - Jana Zapletalová
- Department of Biophysics, Biometry and Statistics, Faculty of Medicine and Dentistry, Palacký University Olomouc and University Hospital Olomouc, I. P. Pavlova 185/6, 779 00 Olomouc, Czechia.
| | - Zbyněk Tüdös
- Department of Radiology, Faculty of Medicine and Dentistry, Palacký University Olomouc and University Hospital Olomouc, I. P. Pavlova 185/6, 779 00 Olomouc, Czechia.
| | - Martin Lotze
- Functional Imaging Unit, Institute of Diagnostic Radiology and Neuroradiology, University Medicine Greifswald, Walther-Rathenau-Str. 46, 17475 Greifswald, Germany.
| | - Petr Kaňovský
- Department of Neurology, Faculty of Medicine and Dentistry, Palacký University Olomouc and University Hospital Olomouc, I. P. Pavlova 185/6, 779 00 Olomouc, Czechia.
| | - Petr Hluštík
- Department of Neurology, Faculty of Medicine and Dentistry, Palacký University Olomouc and University Hospital Olomouc, I. P. Pavlova 185/6, 779 00 Olomouc, Czechia.
| |
Collapse
|
19
|
Battistella G, Simonyan K. Clinical Implications of Dystonia as a Neural Network Disorder. ADVANCES IN NEUROBIOLOGY 2023; 31:223-240. [PMID: 37338705 DOI: 10.1007/978-3-031-26220-3_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
Isolated dystonia is a neurological disorder of diverse etiology, multifactorial pathophysiology, and wide spectrum of clinical presentations. We review the recent neuroimaging advances that led to the conceptualization of dystonia as a neural network disorder and discuss how current knowledge is shaping the identification of biomarkers of dystonia and the development of novel pharmacological therapies.
Collapse
Affiliation(s)
- Giovanni Battistella
- Department of Otolaryngology - Head and Neck Surgery, Massachusetts Eye and Ear and Harvard Medical School, Boston, MA, USA
| | - Kristina Simonyan
- Department of Otolaryngology - Head and Neck Surgery, Massachusetts Eye and Ear and Harvard Medical School, Boston, MA, USA.
- Department of Neurology, Massachusetts General Hospital, and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
20
|
Marapin RS, van der Horn HJ, van der Stouwe AMM, Dalenberg JR, de Jong BM, Tijssen MAJ. Altered brain connectivity in hyperkinetic movement disorders: A review of resting-state fMRI. Neuroimage Clin 2022; 37:103302. [PMID: 36669351 PMCID: PMC9868884 DOI: 10.1016/j.nicl.2022.103302] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 12/21/2022] [Accepted: 12/22/2022] [Indexed: 12/25/2022]
Abstract
BACKGROUND Hyperkinetic movement disorders (HMD) manifest as abnormal and uncontrollable movements. Despite reported involvement of several neural circuits, exact connectivity profiles remain elusive. OBJECTIVES Providing a comprehensive literature review of resting-state brain connectivity alterations using resting-state fMRI (rs-fMRI). We additionally discuss alterations from the perspective of brain networks, as well as correlations between connectivity and clinical measures. METHODS A systematic review was performed according to PRISMA guidelines and searching PubMed until October 2022. Rs-fMRI studies addressing ataxia, chorea, dystonia, myoclonus, tics, tremor, and functional movement disorders (FMD) were included. The standardized mean difference was used to summarize findings per region in the Automated Anatomical Labeling atlas for each phenotype. Furthermore, the activation likelihood estimation meta-analytic method was used to analyze convergence of significant between-group differences per phenotype. Finally, we conducted hierarchical cluster analysis to provide additional insights into commonalities and differences across HMD phenotypes. RESULTS Most articles concerned tremor (51), followed by dystonia (46), tics (19), chorea (12), myoclonus (11), FMD (11), and ataxia (8). Altered resting-state connectivity was found in several brain regions: in ataxia mainly cerebellar areas; for chorea, the caudate nucleus; for dystonia, sensorimotor and basal ganglia regions; for myoclonus, the thalamus and cingulate cortex; in tics, the basal ganglia, cerebellum, insula, and frontal cortex; for tremor, the cerebello-thalamo-cortical circuit; finally, in FMD, frontal, parietal, and cerebellar regions. Both decreased and increased connectivity were found for all HMD. Significant spatial convergence was found for dystonia, FMD, myoclonus, and tremor. Correlations between clinical measures and resting-state connectivity were frequently described. CONCLUSION Key brain regions contributing to functional connectivity changes across HMD often overlap. Possible increases and decreases of functional connections of a specific region emphasize that HMD should be viewed as a network disorder. Despite the complex interplay of physiological and methodological factors, this review serves to gain insight in brain connectivity profiles across HMD phenotypes.
Collapse
Affiliation(s)
- Ramesh S Marapin
- University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, the Netherlands; Expertise Center Movement Disorders Groningen, University Medical Center Groningen (UMCG), Groningen, the Netherlands
| | - Harm J van der Horn
- University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, the Netherlands
| | - A M Madelein van der Stouwe
- University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, the Netherlands; Expertise Center Movement Disorders Groningen, University Medical Center Groningen (UMCG), Groningen, the Netherlands
| | - Jelle R Dalenberg
- University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, the Netherlands; Expertise Center Movement Disorders Groningen, University Medical Center Groningen (UMCG), Groningen, the Netherlands
| | - Bauke M de Jong
- University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, the Netherlands
| | - Marina A J Tijssen
- University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, the Netherlands; Expertise Center Movement Disorders Groningen, University Medical Center Groningen (UMCG), Groningen, the Netherlands.
| |
Collapse
|
21
|
O'Flynn LC, Simonyan K. Short- and Long-term Central Action of Botulinum Neurotoxin Treatment in Laryngeal Dystonia. Neurology 2022; 99:e1178-e1190. [PMID: 35764404 PMCID: PMC9536744 DOI: 10.1212/wnl.0000000000200850] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 04/28/2022] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND AND OBJECTIVES Laryngeal dystonia (LD) is isolated task-specific focal dystonia selectively impairing speech production. The first choice of LD treatment is botulinum neurotoxin (BoNT) injections into the affected laryngeal muscles. However, whether BoNT has a lasting therapeutic effect on disorder pathophysiology is unknown. We investigated short-term and long-term effects of BoNT treatment on brain function in patients with LD. METHODS A total of 161 participants were included in the functional MRI study. Statistical analyses examined central BoNT effects in patients with LD who were stratified based on the effectiveness and duration of treatment. RESULTS Patients with LD who were treated and benefited from BoNT injections had reduced activity in the left precuneus compared with BoNT-naive and treatment nonbenefiting patients. In addition, BoNT-treated patients with adductor LD had decreased activity in the right thalamus, whereas BoNT-treated abductor patients with LD had reduced activity in the left inferior frontal cortex. No statistically significant differences in brain activity were found between patients with shorter (1-5 years) and longer (13-28 years) treatment durations. However, patients with intermediate treatment duration of 6-12 years showed reduced activity in the right cerebellum compared with patients with both shorter and longer treatment durations and reduced activity in the right prefrontal cortex compared with patients with shorter treatment duration. DISCUSSION Our findings suggest that the left precuneus is the site of short-term BoNT central action in patients with LD, whereas the prefrontal-cerebellar axis is engaged in the BoNT response in patients with intermediate treatment duration of 6-12 years. Involvement of these structures points to indirect action of BoNT treatment on the dystonic sensorimotor network through modulation of motor sequence planning and coordination.
Collapse
Affiliation(s)
- Lena C O'Flynn
- From the Department of Otolaryngology-Head and Neck Surgery (L.C.O., K.S.), Massachusetts Eye and Ear and Harvard Medical School; Program in Speech Hearing Bioscience and Technology (L.C.O., K.S.), Harvard University; and Department of Neurology (K.S.), Massachusetts General Hospital, Boston
| | - Kristina Simonyan
- From the Department of Otolaryngology-Head and Neck Surgery (L.C.O., K.S.), Massachusetts Eye and Ear and Harvard Medical School; Program in Speech Hearing Bioscience and Technology (L.C.O., K.S.), Harvard University; and Department of Neurology (K.S.), Massachusetts General Hospital, Boston.
| |
Collapse
|
22
|
Restoration of functional network state towards more physiological condition as the correlate of clinical effects of pallidal deep brain stimulation in dystonia. Brain Stimul 2022; 15:1269-1278. [PMID: 36096443 DOI: 10.1016/j.brs.2022.08.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 08/07/2022] [Accepted: 08/31/2022] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Deep brain stimulation of the internal globus pallidus (GPi DBS) is an invasive therapeutic modality intended to retune abnormal central nervous system patterns and relieve the patient of dystonic or other motor symptoms. OBJECTIVES The aim of the presented research was to determine the neuroanatomical signature of GPi DBS modulation and its association with the clinical outcome. METHODS This open-label fixed-order study with cross-sectional validation against healthy controls analysed the resting-state functional MRI activity changes induced by GPi DBS in 18 dystonia patients of heterogeneous aetiology, focusing on both global (full brain) and local connectivity (local signal homogeneity). RESULTS Compared to the switched-off state, the activation of GPi DBS led to the restoration of global subcortical connectivity patterns (in both putamina, diencephalon and brainstem) towards those of healthy controls, with positive direct correlation over large-scale cortico-basal ganglia-thalamo-cortical and cerebellar networks with the clinical improvement. Nonetheless, on average, GPi DBS also seemed to bring local connectivity both in the cortical and subcortical regions farther away from the state detected in healthy controls. Interestingly, its correlation with clinical outcome showed that in better DBS responders, local connectivity defied this effect and approached healthy controls. CONCLUSIONS All in all, the extent of restoration of both these main metrics of interest towards the levels found in healthy controls clearly correlated with the clinical improvement, indicating that the restoration of network state towards more physiological condition may be a precondition for successful GPi DBS outcome in dystonia.
Collapse
|
23
|
Huang X, Zhang M, Li B, Shang H, Yang J. Structural and functional brain abnormalities in idiopathic cervical dystonia: A multimodal meta-analysis. Parkinsonism Relat Disord 2022; 103:153-165. [DOI: 10.1016/j.parkreldis.2022.08.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 08/11/2022] [Accepted: 08/23/2022] [Indexed: 11/15/2022]
|
24
|
Sussman BL, Wyckoff SN, Heim J, Wilfong AA, Adelson PD, Kruer MC, Gonzalez MJ, Boerwinkle VL. Is Resting State Functional MRI Effective Connectivity in Movement Disorders Helpful? A Focused Review Across Lifespan and Disease. Front Neurol 2022; 13:847834. [PMID: 35493815 PMCID: PMC9046695 DOI: 10.3389/fneur.2022.847834] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 03/23/2022] [Indexed: 11/20/2022] Open
Abstract
In the evolving modern era of neuromodulation for movement disorders in adults and children, much progress has been made recently characterizing the human motor network (MN) with potentially important treatment implications. Herein is a focused review of relevant resting state fMRI functional and effective connectivity of the human motor network across the lifespan in health and disease. The goal is to examine how the transition from functional connectivity to dynamic effective connectivity may be especially informative of network-targeted movement disorder therapies, with hopeful implications for children.
Collapse
Affiliation(s)
- Bethany L. Sussman
- Division of Neuroscience, Barrow Neurological Institute at Phoenix Children's Hospital, Phoenix, AZ, United States
- *Correspondence: Bethany L. Sussman
| | - Sarah N. Wyckoff
- Division of Neuroscience, Barrow Neurological Institute at Phoenix Children's Hospital, Phoenix, AZ, United States
- Department of Research, Phoenix Children's Hospital, Phoenix, AZ, United States
| | - Jennifer Heim
- Division of Pediatric Neurology, Barrow Neurological Institute at Phoenix Children's Hospital, Phoenix, AZ, United States
| | - Angus A. Wilfong
- Division of Pediatric Neurology, Barrow Neurological Institute at Phoenix Children's Hospital, Phoenix, AZ, United States
| | - P. David Adelson
- Division of Pediatric Neurosurgery, Barrow Neurological Institute at Phoenix Children's Hospital, Phoenix, AZ, United States
| | - Michael C. Kruer
- Division of Pediatric Neurology, Barrow Neurological Institute at Phoenix Children's Hospital, Phoenix, AZ, United States
- Departments of Child Health, Neurology, Genetics and Cellular & Molecular Medicine, University of Arizona College of Medicine – Phoenix, Phoenix, AZ, United States
| | | | - Varina L. Boerwinkle
- Division of Pediatric Neurology, Barrow Neurological Institute at Phoenix Children's Hospital, Phoenix, AZ, United States
| |
Collapse
|
25
|
Giannì C, Pasqua G, Ferrazzano G, Tommasin S, De Bartolo MI, Petsas N, Belvisi D, Conte A, Berardelli A, Pantano P. Focal Dystonia: Functional Connectivity Changes in Cerebellar-Basal Ganglia-Cortical Circuit and Preserved Global Functional Architecture. Neurology 2022; 98:e1499-e1509. [PMID: 35169015 DOI: 10.1212/wnl.0000000000200022] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 01/03/2022] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND AND OBJECTIVES Neuroimaging studies suggest that changes in the cerebellar-basal ganglia-thalamo-cortical sensorimotor circuit are a pathophysiologic feature of focal dystonia. However, it remains unclear whether structural and functional alterations vary in different forms of focal dystonia. Thus, in patients with cervical dystonia (CD) and blepharospasm (BSP), we aimed to investigate structural damage and resting-state functional alterations using whole-brain and seed-based approaches to test the hypothesis of possible functional connectivity (FC) alterations in specific circuits, including the cerebellum, basal ganglia, and cerebral cortex, in the context of preserved global FC. METHODS In this cross-sectional study, we applied a multimodal 3T MRI protocol, including 3-dimensional T1-weighted images to extract brain volumes and cortical thickness, and fMRI at rest to study FC of the dentate nucleus and globus pallidus with a seed-based approach and whole-brain FC with a graph theory approach. RESULTS This study included 33 patients (17 with CD [14 female] age 55.7 ± 10.1 years, 16 with BSP [11 female] age 62.9 ± 8.8 years) and 16 age- and sex-matched healthy controls (HC) (7 female) 54.3 ± 14.3 years if age. Patients with CD, patients with BSP, and HC did not differ in terms of cortical or subcortical volume. Compared to HC, both patients with CD and patients with BSP had a loss of dentate FC anticorrelation with the sensorimotor cortex. Patients with CD and those with BSP showed increased pallidal FC with the cerebellum, supplementary motor area, and prefrontal cortices with respect to HC. Increased dentate FC with the cerebellum and thalamus and increased pallidal FC with the bilateral thalamus, sensorimotor and temporo-occipital cortices, and right putamen were present in patients with CD but not patients with BSP compared to HC. Measures of global FC, that is, global efficiency and small-worldness, did not differ between patients and HC. DISCUSSION Both patients with CD and those with BSP showed altered dentate and pallidal FC with regions belonging to the integrated cerebellar-basal ganglia-thalamo-cortical sensorimotor circuit, supporting the concept that focal dystonia is a disorder of specific networks and not merely a result of basal ganglia alterations in the context of a preserved whole-brain functional architecture. Differences in functional interplay among specific brain structures may distinguish CD and BSP.
Collapse
Affiliation(s)
- Costanza Giannì
- From the IRCCS Neuromed (C.G., M.I.D.B., N.P., D.B., A.C., A.B., P.P.), Pozzilli (IS); and Department of Human Neurosciences (C.G., G.P., G.F., S.T., D.B., A.C., A.B., P.P.), Sapienza University, Rome, Italy
| | - Gabriele Pasqua
- From the IRCCS Neuromed (C.G., M.I.D.B., N.P., D.B., A.C., A.B., P.P.), Pozzilli (IS); and Department of Human Neurosciences (C.G., G.P., G.F., S.T., D.B., A.C., A.B., P.P.), Sapienza University, Rome, Italy
| | - Gina Ferrazzano
- From the IRCCS Neuromed (C.G., M.I.D.B., N.P., D.B., A.C., A.B., P.P.), Pozzilli (IS); and Department of Human Neurosciences (C.G., G.P., G.F., S.T., D.B., A.C., A.B., P.P.), Sapienza University, Rome, Italy
| | - Silvia Tommasin
- From the IRCCS Neuromed (C.G., M.I.D.B., N.P., D.B., A.C., A.B., P.P.), Pozzilli (IS); and Department of Human Neurosciences (C.G., G.P., G.F., S.T., D.B., A.C., A.B., P.P.), Sapienza University, Rome, Italy
| | - Maria Ilenia De Bartolo
- From the IRCCS Neuromed (C.G., M.I.D.B., N.P., D.B., A.C., A.B., P.P.), Pozzilli (IS); and Department of Human Neurosciences (C.G., G.P., G.F., S.T., D.B., A.C., A.B., P.P.), Sapienza University, Rome, Italy
| | - Nikolaos Petsas
- From the IRCCS Neuromed (C.G., M.I.D.B., N.P., D.B., A.C., A.B., P.P.), Pozzilli (IS); and Department of Human Neurosciences (C.G., G.P., G.F., S.T., D.B., A.C., A.B., P.P.), Sapienza University, Rome, Italy
| | - Daniele Belvisi
- From the IRCCS Neuromed (C.G., M.I.D.B., N.P., D.B., A.C., A.B., P.P.), Pozzilli (IS); and Department of Human Neurosciences (C.G., G.P., G.F., S.T., D.B., A.C., A.B., P.P.), Sapienza University, Rome, Italy
| | - Antonella Conte
- From the IRCCS Neuromed (C.G., M.I.D.B., N.P., D.B., A.C., A.B., P.P.), Pozzilli (IS); and Department of Human Neurosciences (C.G., G.P., G.F., S.T., D.B., A.C., A.B., P.P.), Sapienza University, Rome, Italy
| | - Alfredo Berardelli
- From the IRCCS Neuromed (C.G., M.I.D.B., N.P., D.B., A.C., A.B., P.P.), Pozzilli (IS); and Department of Human Neurosciences (C.G., G.P., G.F., S.T., D.B., A.C., A.B., P.P.), Sapienza University, Rome, Italy
| | - Patrizia Pantano
- From the IRCCS Neuromed (C.G., M.I.D.B., N.P., D.B., A.C., A.B., P.P.), Pozzilli (IS); and Department of Human Neurosciences (C.G., G.P., G.F., S.T., D.B., A.C., A.B., P.P.), Sapienza University, Rome, Italy
| |
Collapse
|
26
|
Hou Y, Zhang L, Wei Q, Ou R, Yang J, Gong Q, Shang H. Impaired Topographic Organization in Patients With Idiopathic Blepharospasm. Front Neurol 2022; 12:708634. [PMID: 35095707 PMCID: PMC8791229 DOI: 10.3389/fneur.2021.708634] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 12/13/2021] [Indexed: 02/05/2023] Open
Abstract
Background: Idiopathic blepharospasm (BSP) is a common adult-onset focal dystonia. Neuroimaging technology can be used to visualize functional and microstructural changes of the whole brain. Method: We used resting-state functional MRI (rs-fMRI) and graph theoretical analysis to explore the functional connectome in patients with BSP. Altogether 20 patients with BSP and 20 age- and gender-matched healthy controls (HCs) were included in the study. Measures of network topology were calculated, such as small-world parameters (clustering coefficient [C p], the shortest path length [L p]), network efficiency parameters (global efficiency [E glob], local efficiency [E loc]), and the nodal parameter (nodal efficiency [E nod]). In addition, the least absolute shrinkage and selection operator (LASSO) regression was adopted to determine the most critical imaging features, and the classification model using critical imaging features was constructed. Results: Compared with HCs, the BSP group showed significantly decreased E loc. Imaging features of nodal centrality (E nod) were entered into the LASSO method, and the classification model was constructed with nine imaging nodes. The area under the curve (AUC) was 0.995 (95% CI: 0.973-1.000), and the sensitivity and specificity were 95% and 100%, respectively. Specifically, four imaging nodes within the sensorimotor network (SMN), cerebellum, and default mode network (DMN) held the prominent information. Compared with HCs, the BSP group showed significantly increased E nod in the postcentral region within the SMN, decreased E nod in the precentral region within the SMN, increased E nod in the medial cerebellum, and increased E nod in the precuneus within the DMN. Conclusion: The network model in BSP showed reduced local connectivity. Baseline connectomic measures derived from rs-fMRI data may be capable of identifying patients with BSP, and regions from the SMN, cerebellum, and DMN may provide key insights into the underlying pathophysiology of BSP.
Collapse
Affiliation(s)
- Yanbing Hou
- Laboratory of Neurodegenerative Disorders, Department of Neurology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Lingyu Zhang
- Laboratory of Neurodegenerative Disorders, Department of Neurology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Qianqian Wei
- Laboratory of Neurodegenerative Disorders, Department of Neurology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Ruwei Ou
- Laboratory of Neurodegenerative Disorders, Department of Neurology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Jing Yang
- Laboratory of Neurodegenerative Disorders, Department of Neurology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Qiyong Gong
- Department of Radiology, Huaxi MR Research Center (HMRRC), West China Hospital, Sichuan University, Chengdu, China
| | - Huifang Shang
- Laboratory of Neurodegenerative Disorders, Department of Neurology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
27
|
Huang X, Lin J, Shang H, Yang J. Voxel-based meta-analysis of gray matter abnormalities in idiopathic dystonia. J Neurol 2022; 269:2862-2873. [PMID: 35013788 DOI: 10.1007/s00415-022-10961-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 01/03/2022] [Accepted: 01/04/2022] [Indexed: 02/05/2023]
Abstract
BACKGROUND Neuroimaging studies have reported gray matter changes in patients with idiopathic dystonia but with considerable variations. Here, we aimed to investigate the convergence of dystonia-related gray matter changes across studies. METHODS The whole brain voxel-based morphometry studies comparing idiopathic dystonia and healthy controls were systematically searched in the PubMed, Web of Science and Embase. Meta-analysis of gray matter changes was performed using the anisotropic effect size-based signed differential mapping. RESULTS Twenty-eight studies comparing 701 idiopathic dystonia patients and 712 healthy controls were included in the meta-analysis. Compared to healthy controls, idiopathic dystonia patients showed increased gray matter in bilateral precentral and postcentral gyri, bilateral putamen and pallidum, right insula, and left supramarginal gyrus, while decreased gray matter in bilateral temporal poles, bilateral supplementary motor areas, right angular gyrus, inferior parietal gyrus and precuneus, left insula and inferior frontal gyrus. These findings remained robust in the jackknife sensitivity analysis, and no significant heterogeneity was detected. Subgroup analyses of different phenotypes of dystonia were performed to further confirm the above findings. CONCLUSION The meta-analysis showed that consistent widespread gray matter abnormalities were shared in different subtypes of idiopathic dystonia and were not restricted to the corticostriatal circuits.
Collapse
Affiliation(s)
- Xiang Huang
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Junyu Lin
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Huifang Shang
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jing Yang
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
28
|
Luo Y, Guo Y, Zhong L, Liu Y, Dang C, Wang Y, Zeng J, Zhang W, Peng K, Liu G. Abnormal dynamic brain activity and functional connectivity of primary motor cortex in blepharospasm. Eur J Neurol 2021; 29:1035-1043. [PMID: 34962021 DOI: 10.1111/ene.15233] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 11/19/2021] [Accepted: 12/17/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND Accumulating evidence indicates that dynamic amplitude of low-frequency fluctuations (dALFF) or functional connectivity (dFC) can provide complementary information, distinct from static ALFF (sALFF) or FC (sFC), in detecting brain functional abnormalities in brain diseases. We aimed to examine whether dALFF and dFC can offer valuable information for the detection of functional brain abnormalities in patients with blepharospasm. METHODS We collected resting-state functional magnetic resonance imaging data from 46 patients each of blepharospasm, hemifacial spasm (HFS), and healthy controls (HCs). We examined inter-group differences in sALFF and dALFF to investigate abnormal regional brain activity in patients with blepharospasm. Based on the dALFF results, we conducted seed-based sFC and dFC analyses to identify static and dynamic connectivity changes in brain networks centered on areas showing abnormal temporal variability of local brain activity in patients with blepharospasm. RESULTS Compared with HCs, patients with blepharospasm displayed different brain functional change patterns characterized by increased sALFF in the left primary motor cortex (PMC) but increased dALFF variance in the right PMC. However, differences were not found between patients with HFS and HCs. Additionally, patients with blepharospasm exhibited decreased dFC strength, but no change in sFC, between right PMC and ipsilateral cerebellum compared with HCs; these findings were replicated when patients with blepharospasm were compared to those with HFS. CONCLUSIONS Our findings highlight that dALFF and dFC are complementary to sALFF and sFC and can provide valuable information for detecting brain functional abnormalities in blepharospasm. Blepharospasm may be a network disorder involving the cortico-ponto-cerebello-thalamo-cortical circuit.
Collapse
Affiliation(s)
- Yuhan Luo
- Department of Neurology, The First Affiliated Hospital, Sun Yat-Sen University, Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical, Department and Key Discipline of Neurology, No. 58, Zhongshan Road 2, Guangzhou, China
| | - Yaomin Guo
- Department of Neurology, The First Affiliated Hospital, Sun Yat-Sen University, Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical, Department and Key Discipline of Neurology, No. 58, Zhongshan Road 2, Guangzhou, China
| | - Linchang Zhong
- Department of Medical Imaging, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Ying Liu
- Department of Neurology, The First Affiliated Hospital, Sun Yat-Sen University, Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical, Department and Key Discipline of Neurology, No. 58, Zhongshan Road 2, Guangzhou, China
| | - Chao Dang
- Department of Neurology, The First Affiliated Hospital, Sun Yat-Sen University, Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical, Department and Key Discipline of Neurology, No. 58, Zhongshan Road 2, Guangzhou, China
| | - Ying Wang
- Department of Neurology, The First Affiliated Hospital, Sun Yat-Sen University, Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical, Department and Key Discipline of Neurology, No. 58, Zhongshan Road 2, Guangzhou, China
| | - Jinsheng Zeng
- Department of Neurology, The First Affiliated Hospital, Sun Yat-Sen University, Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical, Department and Key Discipline of Neurology, No. 58, Zhongshan Road 2, Guangzhou, China
| | - Weixi Zhang
- Department of Neurology, The First Affiliated Hospital, Sun Yat-Sen University, Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical, Department and Key Discipline of Neurology, No. 58, Zhongshan Road 2, Guangzhou, China
| | - Kangqiang Peng
- Department of Medical Imaging, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Gang Liu
- Department of Neurology, The First Affiliated Hospital, Sun Yat-Sen University, Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical, Department and Key Discipline of Neurology, No. 58, Zhongshan Road 2, Guangzhou, China.,Guangdong-HongKong, Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangzhou, China
| |
Collapse
|
29
|
Wei S, Chen X, Xiao Y, Jiang W, Yin Q, Lu C, Yang L, Wei J, Liu Y, Li W, Tang J, Guo W, Luo S. Abnormal Network Homogeneity in the Right Superior Medial Frontal Gyrus in Cervical Dystonia. Front Neurol 2021; 12:729068. [PMID: 34803879 PMCID: PMC8602349 DOI: 10.3389/fneur.2021.729068] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 10/04/2021] [Indexed: 11/25/2022] Open
Abstract
Background: Increasing evidence from modern neuroimaging has confirmed that cervical dystonia (CD) is caused by network abnormalities. Specific brain networks are known to be crucial in patients suffering from CD. However, changes in network homogeneity (NH) in CD patients have not been characterized. Therefore, the purpose of this study was to investigate the NH of patients with CD. Methods: An automated NH method was used to analyze resting-state functional magnetic resonance (fMRI) data from 19 patients with CD and 21 gender- and age-matched healthy controls (HC). Correlation analysis were conducted between NH, illness duration and symptom severity measured by the Tsui scale. Results: Compared with the HC group, CD patients showed a lower NH in the right superior medial frontal gyrus. No significant correlations were found between abnormal NH values and illness duration or symptom severity. Conclusion: Our findings suggest the existence of abnormal NH in the default mode network (DMN) of CD patients, and thereby highlight the importance of the DMN in the pathophysiology of CD.
Collapse
Affiliation(s)
- Shubao Wei
- Department of Rehabilitation Medicine, Jiangbin Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Xiuqiong Chen
- Department of Rehabilitation Medicine, Jiangbin Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Yousheng Xiao
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Wenyan Jiang
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Qiong Yin
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Chunhui Lu
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Lu Yang
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jing Wei
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yang Liu
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Wenmei Li
- Department of Radiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jingqun Tang
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Wenbin Guo
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Shuguang Luo
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
30
|
Luvisetto S. Botulinum Neurotoxins in Central Nervous System: An Overview from Animal Models to Human Therapy. Toxins (Basel) 2021; 13:toxins13110751. [PMID: 34822535 PMCID: PMC8622321 DOI: 10.3390/toxins13110751] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/13/2021] [Accepted: 10/20/2021] [Indexed: 01/04/2023] Open
Abstract
Botulinum neurotoxins (BoNTs) are potent inhibitors of synaptic vesicle fusion and transmitter release. The natural target of BoNTs is the peripheral neuromuscular junction (NMJ) where, by blocking the release of acetylcholine (ACh), they functionally denervate muscles and alter muscle tone. This leads them to be an excellent drug for the therapy of muscle hyperactivity disorders, such as dystonia, spasticity, and many other movement disorders. BoNTs are also effective in inhibiting both the release of ACh at sites other than NMJ and the release of neurotransmitters other than ACh. Furthermore, much evidence shows that BoNTs can act not only on the peripheral nervous system (PNS), but also on the central nervous system (CNS). Under this view, central changes may result either from sensory input from the PNS, from retrograde transport of BoNTs, or from direct injection of BoNTs into the CNS. The aim of this review is to give an update on available data, both from animal models or human studies, which suggest or confirm central alterations induced by peripheral or central BoNTs treatment. The data will be discussed with particular attention to the possible therapeutic applications to pathological conditions and degenerative diseases of the CNS.
Collapse
Affiliation(s)
- Siro Luvisetto
- National Research Council of Italy-CNR, Institute of Biochemistry and Cell Biology (IBBC), Via Ercole Ramarini 32, Monterotondo Scalo, 00015 Roma, Italy
| |
Collapse
|
31
|
Rosales RL, Cuffe L, Regnault B, Trosch RM. Pain in cervical dystonia: mechanisms, assessment and treatment. Expert Rev Neurother 2021; 21:1125-1134. [PMID: 34569398 DOI: 10.1080/14737175.2021.1984230] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
INTRODUCTION In patients with cervical dystonia (CD), pain is a major contributor to disability and social isolation and is often the main reason patients seek treatment. Surveys evaluating patient perceptions of their CD symptoms consistently highlight pain as a troublesome and disabling feature of their condition with significant impact on daily life and work. AREAS COVERED In this article, the authors review the epidemiology, assessment, possible mechanisms and treatment of pain in CD, including a meta-analysis of randomized controlled trial data with abobotulinumtoxinA. EXPERT OPINION Mechanisms of pain in CD may be muscle-based and non-muscle based. Accumulating evidence suggests that non-muscle-based mechanisms (such as abnormal transmission and processing of nociceptive stimuli, dysfunction of descending pain inhibitory pathways as well as structural and network changes in the basal ganglia, cortex and other areas) may also contribute to pain in CD alongside prolonged muscle contraction. Chemodenervation with botulinum toxin is considered the first-line treatment for CD. Treatment with botulinum toxin is usually effective, but optimization of the injection parameters should include consideration of pain as a core symptom in addition to the motor problems.
Collapse
Affiliation(s)
- Raymond L Rosales
- Dept. of Neurology and Psychiatry, the Neuroscience Institute, University of Santo Tomas Hospital, Manila, Philippines.,The Institute for Neurosciences, St. Luke's Medical Center, Quezon City, Philippines
| | | | | | - Richard M Trosch
- The Parkinson's and Movement Disorders Center, Farmington Hills, MI, USA
| |
Collapse
|
32
|
Costanzo M, Belvisi D, Berardelli I, Maraone A, Baione V, Ferrazzano G, Cutrona C, Leodori G, Pasquini M, Conte A, Fabbrini G, Defazio G, Berardelli A. Effect of Botulinum Toxin on Non-Motor Symptoms in Cervical Dystonia. Toxins (Basel) 2021; 13:647. [PMID: 34564651 PMCID: PMC8472845 DOI: 10.3390/toxins13090647] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/07/2021] [Accepted: 09/09/2021] [Indexed: 11/16/2022] Open
Abstract
Patients with cervical dystonia (CD) may display non-motor symptoms, including psychiatric disturbances, pain, and sleep disorders. Intramuscular injection of botulinum toxin type A (BoNT-A) is the most efficacious treatment for motor symptoms in CD, but little is known about its effects on non-motor manifestations. The aim of the present study was to longitudinally assess BoNT-A's effects on CD non-motor symptoms and to investigate the relationship between BoNT-A-induced motor and non-motor changes. Forty-five patients with CD participated in the study. Patients underwent a clinical assessment that included the administration of standardized clinical scales assessing dystonic symptoms, psychiatric disturbances, pain, sleep disturbances, and disability. Clinical assessment was performed before and one and three months after BoNT-A injection. BoNT-A induced a significant improvement in dystonic symptoms, as well as in psychiatric disturbances, pain, and disability. Conversely, sleep disorders were unaffected by BoNT-A treatment. Motor and non-motor BoNT-A-induced changes showed a similar time course, but motor improvement did not correlate with non-motor changes after BoNT-A. Non-motor symptom changes after BoNT-A treatment are a complex phenomenon and are at least partially independent from motor symptom improvement.
Collapse
Affiliation(s)
- Matteo Costanzo
- Department of Human Neurosciences, Sapienza University of Rome, Viale dell’Università 30, 00185 Rome, Italy; (M.C.); (D.B.); (A.M.); (V.B.); (G.F.); (C.C.); (G.L.); (M.P.); (A.C.); (G.F.)
| | - Daniele Belvisi
- Department of Human Neurosciences, Sapienza University of Rome, Viale dell’Università 30, 00185 Rome, Italy; (M.C.); (D.B.); (A.M.); (V.B.); (G.F.); (C.C.); (G.L.); (M.P.); (A.C.); (G.F.)
- IRCSS Neuromed, Via Atinense 18, 86077 Pozzilli, Italy
| | - Isabella Berardelli
- Department of Neurosciences, Mental Health and Sensory Organs, Faculty of Medicine and Psychology, Suicide Prevention Centre, Sant’Andrea Hospital, Sapienza University of Rome, Via di Grottarossa 1035-1039, 00185 Rome, Italy;
| | - Annalisa Maraone
- Department of Human Neurosciences, Sapienza University of Rome, Viale dell’Università 30, 00185 Rome, Italy; (M.C.); (D.B.); (A.M.); (V.B.); (G.F.); (C.C.); (G.L.); (M.P.); (A.C.); (G.F.)
| | - Viola Baione
- Department of Human Neurosciences, Sapienza University of Rome, Viale dell’Università 30, 00185 Rome, Italy; (M.C.); (D.B.); (A.M.); (V.B.); (G.F.); (C.C.); (G.L.); (M.P.); (A.C.); (G.F.)
| | - Gina Ferrazzano
- Department of Human Neurosciences, Sapienza University of Rome, Viale dell’Università 30, 00185 Rome, Italy; (M.C.); (D.B.); (A.M.); (V.B.); (G.F.); (C.C.); (G.L.); (M.P.); (A.C.); (G.F.)
| | - Carolina Cutrona
- Department of Human Neurosciences, Sapienza University of Rome, Viale dell’Università 30, 00185 Rome, Italy; (M.C.); (D.B.); (A.M.); (V.B.); (G.F.); (C.C.); (G.L.); (M.P.); (A.C.); (G.F.)
| | - Giorgio Leodori
- Department of Human Neurosciences, Sapienza University of Rome, Viale dell’Università 30, 00185 Rome, Italy; (M.C.); (D.B.); (A.M.); (V.B.); (G.F.); (C.C.); (G.L.); (M.P.); (A.C.); (G.F.)
- IRCSS Neuromed, Via Atinense 18, 86077 Pozzilli, Italy
| | - Massimo Pasquini
- Department of Human Neurosciences, Sapienza University of Rome, Viale dell’Università 30, 00185 Rome, Italy; (M.C.); (D.B.); (A.M.); (V.B.); (G.F.); (C.C.); (G.L.); (M.P.); (A.C.); (G.F.)
| | - Antonella Conte
- Department of Human Neurosciences, Sapienza University of Rome, Viale dell’Università 30, 00185 Rome, Italy; (M.C.); (D.B.); (A.M.); (V.B.); (G.F.); (C.C.); (G.L.); (M.P.); (A.C.); (G.F.)
- IRCSS Neuromed, Via Atinense 18, 86077 Pozzilli, Italy
| | - Giovanni Fabbrini
- Department of Human Neurosciences, Sapienza University of Rome, Viale dell’Università 30, 00185 Rome, Italy; (M.C.); (D.B.); (A.M.); (V.B.); (G.F.); (C.C.); (G.L.); (M.P.); (A.C.); (G.F.)
- IRCSS Neuromed, Via Atinense 18, 86077 Pozzilli, Italy
| | - Giovanni Defazio
- Department of Medical Sciences and Public Health, University of Cagliari, SS 554 Bivio Sestu, 09042 Monserrato, Italy;
| | - Alfredo Berardelli
- Department of Human Neurosciences, Sapienza University of Rome, Viale dell’Università 30, 00185 Rome, Italy; (M.C.); (D.B.); (A.M.); (V.B.); (G.F.); (C.C.); (G.L.); (M.P.); (A.C.); (G.F.)
- IRCSS Neuromed, Via Atinense 18, 86077 Pozzilli, Italy
| |
Collapse
|
33
|
Ma LY, Wang ZJ, Ma HZ, Feng T. Hyper- and hypo-connectivity in sensorimotor network of drug-naïve patients with cervical dystonia. Parkinsonism Relat Disord 2021; 90:15-20. [PMID: 34340003 DOI: 10.1016/j.parkreldis.2021.07.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 05/30/2021] [Accepted: 07/20/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND Cervical dystonia (CD) is the most common form of focal dystonia with involuntary movements and postures of the head. The pathogenesis and neural mechanisms underlying CD have not been fully elucidated. METHODS Twenty-seven newly drug-naïve patients with CD and 21 healthy controls (HCs) were recruited with clinical assessment and resting-state functional magnetic resonance imaging (rs-fMRI) scanning. Severity of CD was measured by Toronto Western Spasmodic Torticollis Rating Scale (TWSTRS) and Tsui scores. Whole-brain voxel-wise intrinsic connectivity (IC) and seed-based functional connectivity (FC) analyses were performed for detection of changes in the CD group relative to HCs, controlling for age, gender, and global time series correlation, followed by correlation analyses of IC, seed-based FC and clinically relevant features, respectively. RESULTS In comparison with HCs, CD patients showed significantly increased IC measurement in the anterior part of the left supramarginal gyrus and extended to the inferior left postcentral gyrus (AL-SMG/IL-PCG). With this cluster as a seed, decreased FC was found in the right precentral and postcentral gyrus. Moreover, the regional IC value in the AL-SMG/IL-PCG was significantly positively correlated with TWSTRS-1 (severity) score, and significantly negatively correlated with the associated seed-based FC strength. CONCLUSIONS Our results showed signs of both hyper- and hypo-connectivity in bilateral regions of the sensorimotor network related to CD. The imbalance of functional connectivity (both hyper- and hypo-) may hint both overloading and disrupted somatosensory or sensorimotor integration dysfunction within the sensorimotor network underlying the pathophysiology of CD, thus providing a network target for future therapies.
Collapse
Affiliation(s)
- Ling-Yan Ma
- Center for Movement Disorders, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Zhi-Jiang Wang
- Peking University Sixth Hospital (Institute of Mental Health), Beijing, China; NHC Key Laboratory of Mental Health, Ministry of Health (Peking University), Beijing, China; National Clinical Research Center for Mental Health Disorders (Peking University Sixth Hospital), Beijing, China
| | - Hui-Zi Ma
- Center for Movement Disorders, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Tao Feng
- Center for Movement Disorders, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; China National Clinical Research Center for Neurological Diseases, Beijing, China; Parkinson's Disease Center, Beijing Institute for Brain Disorders, Beijing, China.
| |
Collapse
|
34
|
Hok P, Hvizdošová L, Otruba P, Kaiserová M, Trnečková M, Tüdös Z, Hluštík P, Kaňovský P, Nevrlý M. Botulinum toxin injection changes resting state cerebellar connectivity in cervical dystonia. Sci Rep 2021; 11:8322. [PMID: 33859210 PMCID: PMC8050264 DOI: 10.1038/s41598-021-87088-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 03/19/2021] [Indexed: 11/30/2022] Open
Abstract
In cervical dystonia, functional MRI (fMRI) evidence indicates changes in several resting state networks, which revert in part following the botulinum neurotoxin A (BoNT) therapy. Recently, the involvement of the cerebellum in dystonia has gained attention. The aim of our study was to compare connectivity between cerebellar subdivisions and the rest of the brain before and after BoNT treatment. Seventeen patients with cervical dystonia indicated for treatment with BoNT were enrolled (14 female, aged 50.2 ± 8.5 years, range 38-63 years). Clinical and fMRI examinations were carried out before and 4 weeks after BoNT injection. Clinical severity was evaluated using TWSTRS. Functional MRI data were acquired on a 1.5 T scanner during 8 min rest. Seed-based functional connectivity analysis was performed using data extracted from atlas-defined cerebellar areas in both datasets. Clinical scores demonstrated satisfactory BoNT effect. After treatment, connectivity decreased between the vermis lobule VIIIa and the left dorsal mesial frontal cortex. Positive correlations between the connectivity differences and the clinical improvement were detected for the right lobule VI, right crus II, vermis VIIIb and the right lobule IX. Our data provide evidence for modulation of cerebello-cortical connectivity resulting from successful treatment by botulinum neurotoxin.
Collapse
Affiliation(s)
- Pavel Hok
- Department of Neurology, University Hospital Olomouc, I. P. Pavlova 6, 77900, Olomouc, Czech Republic
- Department of Neurology, Faculty of Medicine and Dentistry of Palacký University Olomouc, Olomouc, Czech Republic
| | - Lenka Hvizdošová
- Department of Neurology, University Hospital Olomouc, I. P. Pavlova 6, 77900, Olomouc, Czech Republic
- Department of Neurology, Faculty of Medicine and Dentistry of Palacký University Olomouc, Olomouc, Czech Republic
| | - Pavel Otruba
- Department of Neurology, University Hospital Olomouc, I. P. Pavlova 6, 77900, Olomouc, Czech Republic
- Department of Neurology, Faculty of Medicine and Dentistry of Palacký University Olomouc, Olomouc, Czech Republic
| | - Michaela Kaiserová
- Department of Neurology, University Hospital Olomouc, I. P. Pavlova 6, 77900, Olomouc, Czech Republic
| | - Markéta Trnečková
- Department of Neurology, University Hospital Olomouc, I. P. Pavlova 6, 77900, Olomouc, Czech Republic
- Department of Computer Science, Faculty of Science of Palacký University Olomouc, Olomouc, Czech Republic
| | - Zbyněk Tüdös
- Department of Radiology, University Hospital Olomouc, Olomouc, Czech Republic
- Department of Radiology, Faculty of Medicine and Dentistry of Palacký University Olomouc, Olomouc, Czech Republic
| | - Petr Hluštík
- Department of Neurology, University Hospital Olomouc, I. P. Pavlova 6, 77900, Olomouc, Czech Republic
- Department of Neurology, Faculty of Medicine and Dentistry of Palacký University Olomouc, Olomouc, Czech Republic
| | - Petr Kaňovský
- Department of Neurology, University Hospital Olomouc, I. P. Pavlova 6, 77900, Olomouc, Czech Republic
- Department of Neurology, Faculty of Medicine and Dentistry of Palacký University Olomouc, Olomouc, Czech Republic
| | - Martin Nevrlý
- Department of Neurology, University Hospital Olomouc, I. P. Pavlova 6, 77900, Olomouc, Czech Republic.
- Department of Neurology, Faculty of Medicine and Dentistry of Palacký University Olomouc, Olomouc, Czech Republic.
| |
Collapse
|
35
|
Hok P, Veverka T, Hluštík P, Nevrlý M, Kaňovský P. The Central Effects of Botulinum Toxin in Dystonia and Spasticity. Toxins (Basel) 2021; 13:155. [PMID: 33671128 PMCID: PMC7922085 DOI: 10.3390/toxins13020155] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 02/02/2021] [Accepted: 02/11/2021] [Indexed: 12/05/2022] Open
Abstract
In dystonic and spastic movement disorders, however different in their pathophysiological mechanisms, a similar impairment of sensorimotor control with special emphasis on afferentation is assumed. Peripheral intervention on afferent inputs evokes plastic changes within the central sensorimotor system. Intramuscular application of botulinum toxin type A (BoNT-A) is a standard evidence-based treatment for both conditions. Apart from its peripheral action on muscle spindles, a growing body of evidence suggests that BoNT-A effects could also be mediated by changes at the central level including cerebral cortex. We review recent studies employing electrophysiology and neuroimaging to investigate how intramuscular application of BoNT-A influences cortical reorganization. Based on such data, BoNT-A becomes gradually accepted as a promising tool to correct the maladaptive plastic changes within the sensorimotor cortex. In summary, electrophysiology and especially neuroimaging studies with BoNT-A further our understanding of pathophysiology underlying dystonic and spastic movement disorders and may consequently help develop novel treatment strategies based on neural plasticity.
Collapse
Affiliation(s)
| | - Tomáš Veverka
- Department of Neurology, Faculty of Medicine and Dentistry, University Hospital Olomouc, Palacký University Olomouc, 779 00 Olomouc, Czech Republic; (P.H.); (P.H.); (M.N.); (P.K.)
| | | | | | | |
Collapse
|
36
|
Kaňovský P, Rosales R, Otruba P, Nevrlý M, Hvizdošová L, Opavský R, Kaiserová M, Hok P, Menšíková K, Hluštík P, Bareš M. Contemporary clinical neurophysiology applications in dystonia. J Neural Transm (Vienna) 2021; 128:509-519. [PMID: 33591454 DOI: 10.1007/s00702-021-02310-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 01/18/2021] [Indexed: 12/25/2022]
Abstract
The complex phenomenological understanding of dystonia has transcended from the clinics to genetics, imaging and neurophysiology. One way in which electrophysiology will impact into the clinics are cases wherein a dystonic clinical presentation may not be typical or a "forme fruste" of the disorder. Indeed, the physiological imprints of dystonia are present regardless of its clinical manifestation. Underpinnings in the understanding of dystonia span from the peripheral, segmental and suprasegmental levels to the cortex, and various electrophysiological tests have been applied in the course of time to elucidate the origin of dystonia pathophysiology. While loss of inhibition remains to be the key finding in this regard, intricacies and variabilities exist, thus leading to a notion that perhaps dystonia should best be gleaned as network disorder. Interestingly, the complex process has now spanned towards the understanding in terms of networks related to the cerebellar circuitry and the neuroplasticity. What is evolving towards a better and cohesive view will be neurophysiology attributes combined with structural dynamic imaging. Such a sound approach will significantly lead to better therapeutic modalities in the future.
Collapse
Affiliation(s)
- Petr Kaňovský
- Department of Neurology, Faculty of Medicine and Dentistry, University Hospital, Palacky University, I. P. Pavlova 6, 775 20, Olomouc, Czech Republic.
| | - Raymond Rosales
- Department of Neurology, Faculty of Medicine and Dentistry, University Hospital, Palacky University, I. P. Pavlova 6, 775 20, Olomouc, Czech Republic.,Department of Neurology and Psychiatry, The Neuroscience Institute, University of Santo Tomás Hospital, Manila, Philippines
| | - Pavel Otruba
- Department of Neurology, Faculty of Medicine and Dentistry, University Hospital, Palacky University, I. P. Pavlova 6, 775 20, Olomouc, Czech Republic
| | - Martin Nevrlý
- Department of Neurology, Faculty of Medicine and Dentistry, University Hospital, Palacky University, I. P. Pavlova 6, 775 20, Olomouc, Czech Republic
| | - Lenka Hvizdošová
- Department of Neurology, Faculty of Medicine and Dentistry, University Hospital, Palacky University, I. P. Pavlova 6, 775 20, Olomouc, Czech Republic
| | - Robert Opavský
- Department of Neurology, Faculty of Medicine and Dentistry, University Hospital, Palacky University, I. P. Pavlova 6, 775 20, Olomouc, Czech Republic
| | - Michaela Kaiserová
- Department of Neurology, Faculty of Medicine and Dentistry, University Hospital, Palacky University, I. P. Pavlova 6, 775 20, Olomouc, Czech Republic
| | - Pavel Hok
- Department of Neurology, Faculty of Medicine and Dentistry, University Hospital, Palacky University, I. P. Pavlova 6, 775 20, Olomouc, Czech Republic
| | - Kateřina Menšíková
- Department of Neurology, Faculty of Medicine and Dentistry, University Hospital, Palacky University, I. P. Pavlova 6, 775 20, Olomouc, Czech Republic
| | - Petr Hluštík
- Department of Neurology, Faculty of Medicine and Dentistry, University Hospital, Palacky University, I. P. Pavlova 6, 775 20, Olomouc, Czech Republic
| | - Martin Bareš
- 1st Department of Neurology, Masaryk University Medical School and St. Anne University Hospital, Brno, Czech Republic
| |
Collapse
|
37
|
Wei S, Lu C, Chen X, Yang L, Wei J, Jiang W, Liu Y, Li HH, Qin Y, Lei Y, Qin C, Hu C, Luo S. Abnormal regional homogeneity and its relationship with symptom severity in cervical dystonia: a rest state fMRI study. BMC Neurol 2021; 21:55. [PMID: 33546628 PMCID: PMC7863325 DOI: 10.1186/s12883-021-02079-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 01/26/2021] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Although several brain networks play important roles in cervical dystonia (CD) patients, regional homogeneity (ReHo) changes in CD patients have not been clarified. We investigated to explore ReHo in CD patients at rest and analyzed its correlations with symptom severity as measured by Tsui scale. METHODS A total of 19 CD patients and 21 gender-, age-, and education-matched healthy controls underwent fMRI scans at rest state. Data were analyzed by ReHo method. RESULTS Patients showed increased ReHo in the right cerebellum crus I and decreased ReHo in the right superior medial prefrontal cortex (MPFC). Moreover, the right precentral gyrus, right insula, and bilateral middle cingulate gyrus also showed increased ReHo values. A significantly positive correlation was observed between ReHo value in the right cerebellum crus I and symptom severity (p < 0.05). CONCLUSIONS Our investigation suggested abnormal ReHo existed in brain regions of the "pain matrix" and salience network (the right insula and bilateral middle cingulate gyrus), the motor network (the right precentral gyrus), the cerebellum and MPFC and further highlighted the significance of these networks in the pathology of CD.
Collapse
Affiliation(s)
- Shubao Wei
- Department of Rehabilitation Medicine, Jiangbin Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530021, Guangxi, China
| | - Chunhui Lu
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Xiuqiong Chen
- Department of Rehabilitation Medicine, Jiangbin Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530021, Guangxi, China
| | - Lu Yang
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Jing Wei
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Wenyan Jiang
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Yang Liu
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Hui Hui Li
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Yuhong Qin
- Department of Radiology, the First Affiliated Hospital, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Yiwu Lei
- Department of Radiology, the First Affiliated Hospital, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Chao Qin
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Caiyou Hu
- Department of Rehabilitation Medicine, Jiangbin Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530021, Guangxi, China.
| | - Shuguang Luo
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China.
| |
Collapse
|
38
|
Feng L, Yin D, Wang X, Xu Y, Xiang Y, Teng F, Pan Y, Zhang X, Su J, Wang Z, Jin L. Brain connectivity abnormalities and treatment-induced restorations in patients with cervical dystonia. Eur J Neurol 2021; 28:1537-1547. [PMID: 33350546 DOI: 10.1111/ene.14695] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 12/18/2020] [Accepted: 12/18/2020] [Indexed: 12/31/2022]
Abstract
BACKGROUND The relationship between brain abnormalities and phenotypic characteristics in cervical dystonia (CD) patients has not been fully established, and little is known about the neuroplastic changes induced by botulinum toxin type A (BoNT-A) treatment. METHODS Ninety-two CD patients presenting with rotational torticollis and 45 healthy controls from our database were retrospectively screened. After clinical assessment, the 92 patients underwent baseline magnetic resonance imaging (MRI) followed by a single-dose injection of BoNT-A. Four weeks later, 76 out of the 92 patients were re-evaluated with the Tsui scale for dystonia severity, and 33 out of 76 patients completed post-treatment MRI scanning. Data-driven global brain connectivity and regional homogeneity in tandem with seed-based connectivity analyses were used to examine the functional abnormalities in CD and longitudinal circuit alterations that scaled with clinical response to BoNT-A. Multiple regression models were employed for the prediction analysis of treatment efficacy. RESULTS Cervical dystonia patients exhibited elevated baseline connectivity of the right postcentral gyrus with the left dorsomedial prefrontal cortex and right caudate nucleus, which was associated with their symptom severity. BoNT-A reduced excessive functional connectivity between the sensorimotor cortex and right superior frontal gyrus, which was significantly correlated with changes in Tsui score. Moreover, pre-treatment regional homogeneity of the left middle frontal gyrus was linearly related to varied response to treatment. CONCLUSIONS Our findings unravel dissociable connectivity of the sensorimotor cortex underlying the pathology of CD and central effects of BoNT-A therapy. Furthermore, baseline regional homogeneity with the left middle frontal gyrus may represent a potential evidence-based marker of patient stratification for BoNT-A therapy in CD.
Collapse
Affiliation(s)
- Liang Feng
- Neurotoxin Research Center of Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Neurology, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Dazhi Yin
- Key Laboratory of Brain Functional Genomics (MOE and STCSM), Institute of Cognitive Neuroscience, School of Psychology and Cognitive Science, East China Normal University, Shanghai, China.,Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Xiangbin Wang
- Department of Radiology, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yifei Xu
- Neurotoxin Research Center of Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Neurology, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yongsheng Xiang
- Department of Radiology, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Fei Teng
- Neurotoxin Research Center of Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Neurology, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yougui Pan
- Neurotoxin Research Center of Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Neurology, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xiaolong Zhang
- Neurotoxin Research Center of Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Neurology, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Junhui Su
- Neurotoxin Research Center of Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Neurology, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zheng Wang
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Lingjing Jin
- Neurotoxin Research Center of Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Neurology, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
39
|
Anandan C, Jankovic J. Botulinum Toxin in Movement Disorders: An Update. Toxins (Basel) 2021; 13:42. [PMID: 33430071 PMCID: PMC7827923 DOI: 10.3390/toxins13010042] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/30/2020] [Accepted: 01/05/2021] [Indexed: 12/17/2022] Open
Abstract
Since its initial approval in 1989 by the US Food and Drug Administration for the treatment of blepharospasm and other facial spasms, botulinum toxin (BoNT) has evolved into a therapeutic modality for a variety of neurological and non-neurological disorders. With respect to neurologic movement disorders, BoNT has been reported to be effective for the treatment of dystonia, bruxism, tremors, tics, myoclonus, restless legs syndrome, tardive dyskinesia, and a variety of symptoms associated with Parkinson's disease. More recently, research with BoNT has expanded beyond its use as a powerful muscle relaxant and a peripherally active drug to its potential central nervous system applications in the treatment of neurodegenerative disorders. Although BoNT is the most potent biologic toxin, when it is administered by knowledgeable and experienced clinicians, it is one of the safest therapeutic agents in clinical use. The primary aim of this article is to provide an update on recent advances in BoNT research with a focus on novel applications in the treatment of movement disorders. This comprehensive review of the literature provides a critical review of evidence-based clinical trials and highlights recent innovative pilot studies.
Collapse
Affiliation(s)
| | - Joseph Jankovic
- Parkinson’s Disease Center and Movement Disorders Clinic, Department of Neurology, Baylor College of Medicine, Houston, TX 77030, USA;
| |
Collapse
|
40
|
Voxel-Wise Brain-Wide Functional Connectivity Abnormalities in Patients with Primary Blepharospasm at Rest. Neural Plast 2021; 2021:6611703. [PMID: 33505457 PMCID: PMC7808842 DOI: 10.1155/2021/6611703] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/22/2020] [Accepted: 12/24/2020] [Indexed: 12/12/2022] Open
Abstract
Background Primary blepharospasm (BSP) is one of the most common focal dystonia and its pathophysiological mechanism remains unclear. An unbiased method was used in patients with BSP at rest to observe voxel-wise brain-wide functional connectivity (FC) changes. Method A total of 48 subjects, including 24 untreated patients with BSP and 24 healthy controls, were recruited to undergo functional magnetic resonance imaging (fMRI). The method of global-brain FC (GFC) was adopted to analyze the resting-state fMRI data. We designed the support vector machine (SVM) method to determine whether GFC abnormalities could be utilized to distinguish the patients from the controls. Results Relative to healthy controls, patients with BSP showed significantly decreased GFC in the bilateral superior medial prefrontal cortex/anterior cingulate cortex (MPFC/ACC) and increased GFC in the right postcentral gyrus/precentral gyrus/paracentral lobule, right superior frontal gyrus (SFG), and left paracentral lobule/supplement motor area (SMA), which were included in the default mode network (DMN) and sensorimotor network. SVM analysis showed that increased GFC values in the right postcentral gyrus/precentral gyrus/paracentral lobule could discriminate patients from controls with optimal accuracy, specificity, and sensitivity of 83.33%, 83.33%, and 83.33%, respectively. Conclusion This study suggested that abnormal GFC in the brain areas associated with sensorimotor network and DMN might underlie the pathophysiology of BSP, which provided a new perspective to understand BSP. GFC in the right postcentral gyrus/precentral gyrus/paracentral lobule might be utilized as a latent biomarker to differentiate patients with BSP from controls.
Collapse
|
41
|
A microstructural neural network biomarker for dystonia diagnosis identified by a DystoniaNet deep learning platform. Proc Natl Acad Sci U S A 2020; 117:26398-26405. [PMID: 33004625 PMCID: PMC7586425 DOI: 10.1073/pnas.2009165117] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
This research identified a microstructural neural network biomarker for objective and accurate diagnosis of isolated dystonia based on the disorder pathophysiology using an advanced deep learning algorithm, DystoniaNet, and raw structural brain images of large cohorts of patients with isolated focal dystonia and healthy controls. DystoniaNet significantly outperformed shallow machine-learning pipelines and substantially exceeded the current agreement rates between clinicians, reaching an overall accuracy of 98.8% in diagnosing different forms of isolated focal dystonia. These results suggest that DystoniaNet could serve as an objective, robust, and generalizable algorithmic platform of dystonia diagnosis for enhanced clinical decision-making. Implementation of the identified biomarker for objective and accurate diagnosis of dystonia may be transformative for clinical management of this disorder. Isolated dystonia is a neurological disorder of heterogeneous pathophysiology, which causes involuntary muscle contractions leading to abnormal movements and postures. Its diagnosis is remarkably challenging due to the absence of a biomarker or gold standard diagnostic test. This leads to a low agreement between clinicians, with up to 50% of cases being misdiagnosed and diagnostic delays extending up to 10.1 y. We developed a deep learning algorithmic platform, DystoniaNet, to automatically identify and validate a microstructural neural network biomarker for dystonia diagnosis from raw structural brain MRIs of 612 subjects, including 392 patients with three different forms of isolated focal dystonia and 220 healthy controls. DystoniaNet identified clusters in corpus callosum, anterior and posterior thalamic radiations, inferior fronto-occipital fasciculus, and inferior temporal and superior orbital gyri as the biomarker components. These regions are known to contribute to abnormal interhemispheric information transfer, heteromodal sensorimotor processing, and executive control of motor commands in dystonia pathophysiology. The DystoniaNet-based biomarker showed an overall accuracy of 98.8% in diagnosing dystonia, with a referral of 3.5% of cases due to diagnostic uncertainty. The diagnostic decision by DystoniaNet was computed in 0.36 s per subject. DystoniaNet significantly outperformed shallow machine-learning algorithms in benchmark comparisons, showing nearly a 20% increase in its diagnostic performance. Importantly, the microstructural neural network biomarker and its DystoniaNet platform showed substantial improvement over the current 34% agreement on dystonia diagnosis between clinicians. The translational potential of this biomarker is in its highly accurate, interpretable, and generalizable performance for enhanced clinical decision-making.
Collapse
|
42
|
Norris SA, Morris AE, Campbell MC, Karimi M, Adeyemo B, Paniello RC, Snyder AZ, Petersen SE, Mink JW, Perlmutter JS. Regional, not global, functional connectivity contributes to isolated focal dystonia. Neurology 2020; 95:e2246-e2258. [PMID: 32913023 DOI: 10.1212/wnl.0000000000010791] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 05/13/2020] [Indexed: 12/31/2022] Open
Abstract
OBJECTIVE To test the hypothesis that there is shared regional or global functional connectivity dysfunction in a large cohort of patients with isolated focal dystonia affecting different body regions compared to control participants. In this case-control study, we obtained resting-state MRI scans (three or four 7.3-minute runs) with eyes closed in participants with focal dystonia (cranial [17], cervical [13], laryngeal [18], or limb [10]) and age- and sex-matched controls. METHODS Rigorous preprocessing for all analyses was performed to minimize effect of head motion during scan acquisition (dystonia n = 58, control n = 47 analyzed). We assessed regional functional connectivity by computing a seed-correlation map between putamen, pallidum, and sensorimotor cortex and all brain voxels. We assessed significant group differences on a cluster-wise basis. In a separate analysis, we applied 300 seed regions across the cortex, cerebellum, basal ganglia, and thalamus to comprehensively sample the whole brain. We obtained participant whole-brain correlation matrices by computing the correlation between seed average time courses for each seed pair. Weighted object-oriented data analysis assessed group-level whole-brain differences. RESULTS Participants with focal dystonia had decreased functional connectivity at the regional level, within the striatum and between lateral primary sensorimotor cortex and ventral intraparietal area, whereas whole-brain correlation matrices did not differ between focal dystonia and control groups. Rigorous quality control measures eliminated spurious large-scale functional connectivity differences between groups. CONCLUSION Regional functional connectivity differences, not global network level dysfunction, contributes to common pathophysiologic mechanisms in isolated focal dystonia. Rigorous quality control eliminated spurious large-scale network differences between patients with focal dystonia and control participants.
Collapse
Affiliation(s)
- Scott A Norris
- From the Departments of Neurology (S.A.N., M.C.C., M.K., A.B., A.Z.S., S.E.P., J.S.P.), Radiology (S.A.N., M.C.C., A.Z.S., S.E.P., J.S.P.), Otolaryngology (R.C.P.), Neuroscience (S.E.P., J.S.P.), Psychology (S.E.P.), Physical Therapy (J.S.P.), and Occupational Therapy (J.S.P.), Washington University School of Medicine, St. Louis, MO; University of Rochester Medical Scientist Training Program and Neurosciences Graduate Program (A.E.M.); and Departments of Neurology, Neuroscience, and Pediatrics (J.W.M.), University of Rochester, NY.
| | - Aimee E Morris
- From the Departments of Neurology (S.A.N., M.C.C., M.K., A.B., A.Z.S., S.E.P., J.S.P.), Radiology (S.A.N., M.C.C., A.Z.S., S.E.P., J.S.P.), Otolaryngology (R.C.P.), Neuroscience (S.E.P., J.S.P.), Psychology (S.E.P.), Physical Therapy (J.S.P.), and Occupational Therapy (J.S.P.), Washington University School of Medicine, St. Louis, MO; University of Rochester Medical Scientist Training Program and Neurosciences Graduate Program (A.E.M.); and Departments of Neurology, Neuroscience, and Pediatrics (J.W.M.), University of Rochester, NY
| | - Meghan C Campbell
- From the Departments of Neurology (S.A.N., M.C.C., M.K., A.B., A.Z.S., S.E.P., J.S.P.), Radiology (S.A.N., M.C.C., A.Z.S., S.E.P., J.S.P.), Otolaryngology (R.C.P.), Neuroscience (S.E.P., J.S.P.), Psychology (S.E.P.), Physical Therapy (J.S.P.), and Occupational Therapy (J.S.P.), Washington University School of Medicine, St. Louis, MO; University of Rochester Medical Scientist Training Program and Neurosciences Graduate Program (A.E.M.); and Departments of Neurology, Neuroscience, and Pediatrics (J.W.M.), University of Rochester, NY
| | - Morvarid Karimi
- From the Departments of Neurology (S.A.N., M.C.C., M.K., A.B., A.Z.S., S.E.P., J.S.P.), Radiology (S.A.N., M.C.C., A.Z.S., S.E.P., J.S.P.), Otolaryngology (R.C.P.), Neuroscience (S.E.P., J.S.P.), Psychology (S.E.P.), Physical Therapy (J.S.P.), and Occupational Therapy (J.S.P.), Washington University School of Medicine, St. Louis, MO; University of Rochester Medical Scientist Training Program and Neurosciences Graduate Program (A.E.M.); and Departments of Neurology, Neuroscience, and Pediatrics (J.W.M.), University of Rochester, NY
| | - Babatunde Adeyemo
- From the Departments of Neurology (S.A.N., M.C.C., M.K., A.B., A.Z.S., S.E.P., J.S.P.), Radiology (S.A.N., M.C.C., A.Z.S., S.E.P., J.S.P.), Otolaryngology (R.C.P.), Neuroscience (S.E.P., J.S.P.), Psychology (S.E.P.), Physical Therapy (J.S.P.), and Occupational Therapy (J.S.P.), Washington University School of Medicine, St. Louis, MO; University of Rochester Medical Scientist Training Program and Neurosciences Graduate Program (A.E.M.); and Departments of Neurology, Neuroscience, and Pediatrics (J.W.M.), University of Rochester, NY
| | - Randal C Paniello
- From the Departments of Neurology (S.A.N., M.C.C., M.K., A.B., A.Z.S., S.E.P., J.S.P.), Radiology (S.A.N., M.C.C., A.Z.S., S.E.P., J.S.P.), Otolaryngology (R.C.P.), Neuroscience (S.E.P., J.S.P.), Psychology (S.E.P.), Physical Therapy (J.S.P.), and Occupational Therapy (J.S.P.), Washington University School of Medicine, St. Louis, MO; University of Rochester Medical Scientist Training Program and Neurosciences Graduate Program (A.E.M.); and Departments of Neurology, Neuroscience, and Pediatrics (J.W.M.), University of Rochester, NY
| | - Abraham Z Snyder
- From the Departments of Neurology (S.A.N., M.C.C., M.K., A.B., A.Z.S., S.E.P., J.S.P.), Radiology (S.A.N., M.C.C., A.Z.S., S.E.P., J.S.P.), Otolaryngology (R.C.P.), Neuroscience (S.E.P., J.S.P.), Psychology (S.E.P.), Physical Therapy (J.S.P.), and Occupational Therapy (J.S.P.), Washington University School of Medicine, St. Louis, MO; University of Rochester Medical Scientist Training Program and Neurosciences Graduate Program (A.E.M.); and Departments of Neurology, Neuroscience, and Pediatrics (J.W.M.), University of Rochester, NY
| | - Steven E Petersen
- From the Departments of Neurology (S.A.N., M.C.C., M.K., A.B., A.Z.S., S.E.P., J.S.P.), Radiology (S.A.N., M.C.C., A.Z.S., S.E.P., J.S.P.), Otolaryngology (R.C.P.), Neuroscience (S.E.P., J.S.P.), Psychology (S.E.P.), Physical Therapy (J.S.P.), and Occupational Therapy (J.S.P.), Washington University School of Medicine, St. Louis, MO; University of Rochester Medical Scientist Training Program and Neurosciences Graduate Program (A.E.M.); and Departments of Neurology, Neuroscience, and Pediatrics (J.W.M.), University of Rochester, NY
| | - Jonathan W Mink
- From the Departments of Neurology (S.A.N., M.C.C., M.K., A.B., A.Z.S., S.E.P., J.S.P.), Radiology (S.A.N., M.C.C., A.Z.S., S.E.P., J.S.P.), Otolaryngology (R.C.P.), Neuroscience (S.E.P., J.S.P.), Psychology (S.E.P.), Physical Therapy (J.S.P.), and Occupational Therapy (J.S.P.), Washington University School of Medicine, St. Louis, MO; University of Rochester Medical Scientist Training Program and Neurosciences Graduate Program (A.E.M.); and Departments of Neurology, Neuroscience, and Pediatrics (J.W.M.), University of Rochester, NY
| | - Joel S Perlmutter
- From the Departments of Neurology (S.A.N., M.C.C., M.K., A.B., A.Z.S., S.E.P., J.S.P.), Radiology (S.A.N., M.C.C., A.Z.S., S.E.P., J.S.P.), Otolaryngology (R.C.P.), Neuroscience (S.E.P., J.S.P.), Psychology (S.E.P.), Physical Therapy (J.S.P.), and Occupational Therapy (J.S.P.), Washington University School of Medicine, St. Louis, MO; University of Rochester Medical Scientist Training Program and Neurosciences Graduate Program (A.E.M.); and Departments of Neurology, Neuroscience, and Pediatrics (J.W.M.), University of Rochester, NY
| |
Collapse
|
43
|
Glickman A, Nguyen P, Shelton E, Peterson DA, Berman BD. Basal ganglia and cerebellar circuits have distinct roles in blepharospasm. Parkinsonism Relat Disord 2020; 78:158-164. [PMID: 32891945 DOI: 10.1016/j.parkreldis.2020.06.034] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 06/02/2020] [Accepted: 06/29/2020] [Indexed: 10/23/2022]
Abstract
INTRODUCTION To identify areas of brain activity associated with involuntary muscle contractions in patients with blepharospasm using functional MRI. METHODS 15 patients with blepharospasm underwent 8-min resting state scans with spontaneous orbicularis oculi muscle contractions simultaneously recorded using MRI-compatible surface electromyography. Spasm severity and spasm onset/offset were modeled using the amplitude of the electromyography signal (EMG-Amp) and its first temporal derivative (EMG-Onset), respectively, and included in a multiple regression functional MRI analysis using SPM12. Primary outcome was within-group blood-oxygen-level dependent activations that co-varied with EMG-Amp and EMG-Onset following correction for multiple comparisons for an overall cluster corrected p < 0.05. Secondary analyses included testing for correlations between imaging findings and symptom severity, as measured by clinical dystonia rating scales, using an uncorrected voxel-level threshold of p < 0.001. RESULTS Imaging data from one subject were excluded due to excessive movement. EMG-Amp co-activated within the left sensorimotor cortex and cerebellum, as well as right lingual gyrus and superior temporal gyrus. EMG-Onset co-activated within the left posterior putamen/pallidum and a frontal eye field region in the left superior frontal gyrus. Symptom severity and EMG-Amp significantly co-varied in a small cluster within the left cerebellum. CONCLUSION Our preliminary findings here suggest that cerebello-cortical circuits in blepharospasm could drive the intensity of eyelid spasms while basal ganglia circuits are associated with the triggering of spasms. This supports the network model for dystonia and identifies specific areas of involvement consistent with known brain regions responsible for control of movement.
Collapse
Affiliation(s)
- Amanda Glickman
- School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Phuong Nguyen
- School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Erika Shelton
- Department of Neurology, University of Colorado, Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - David A Peterson
- Institute of Neural Computation, University of California San Diego, Computational Neurobiology Laboratory, Salk Institute of Biological Studies, La Jolla, CA, 92037, USA
| | - Brian D Berman
- Department of Neurology, University of Colorado, Anschutz Medical Campus, Aurora, CO, 80045, USA.
| |
Collapse
|
44
|
De Bartolo MI, Manzo N, Ferrazzano G, Baione V, Belvisi D, Fabbrini G, Berardelli A, Conte A. Botulinum Toxin Effects on Sensorimotor Integration in Focal Dystonias. Toxins (Basel) 2020; 12:toxins12050277. [PMID: 32344856 PMCID: PMC7290883 DOI: 10.3390/toxins12050277] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 04/22/2020] [Accepted: 04/23/2020] [Indexed: 12/04/2022] Open
Abstract
(1) Background: In dystonia, the somatosensory temporal discrimination threshold (STDT) is abnormally increased at rest and higher and longer-lasting during movement execution in comparison with healthy subjects (HS), suggesting an abnormal sensorimotor integration. These abnormalities are thought to depend on abnormal proprioceptive input coming from dystonic muscles. Since Botulinum toxin-A (BT-A) reduces proprioceptive input in the injected muscles, our study investigated the effects of BT-A on STDT tested at rest and during voluntary movement execution in patients with focal dystonia. (2) Methods: We enrolled 35 patients with focal dystonia: 14 patients with cervical dystonia (CD), 11 patients with blepharospasm (BSP), and 10 patients with focal hand dystonia (FHD); and 12 age-matched HS. STDT tested by delivering paired stimuli was measured in all subjects at rest and during index finger abductions. (3) Results: Patients with dystonia had higher STDT values at rest and during movement execution than HS. While BT-A did not modify STDT at rest, it reduced the abnormal values of STDT during movement in CD and FHD patients, but not in BSP patients. (4) Conclusions: BT-A improved abnormal sensorimotor integration in CD and FHD, most likely by decreasing the overflow of proprioceptive signaling from muscle dystonic activity to the thalamus.
Collapse
Affiliation(s)
- Maria Ilenia De Bartolo
- IRCCS NEUROMED, Via Atinense, 18, 86077 Pozzilli (IS), Italy; (M.I.D.B.); (N.M.); (D.B.); (G.F.); (A.C.)
| | - Nicoletta Manzo
- IRCCS NEUROMED, Via Atinense, 18, 86077 Pozzilli (IS), Italy; (M.I.D.B.); (N.M.); (D.B.); (G.F.); (A.C.)
| | - Gina Ferrazzano
- Department of Human Neuroscience, Sapienza University of Rome, 00185 Rome, Italy; (G.F.); (V.B.)
| | - Viola Baione
- Department of Human Neuroscience, Sapienza University of Rome, 00185 Rome, Italy; (G.F.); (V.B.)
| | - Daniele Belvisi
- IRCCS NEUROMED, Via Atinense, 18, 86077 Pozzilli (IS), Italy; (M.I.D.B.); (N.M.); (D.B.); (G.F.); (A.C.)
| | - Giovanni Fabbrini
- IRCCS NEUROMED, Via Atinense, 18, 86077 Pozzilli (IS), Italy; (M.I.D.B.); (N.M.); (D.B.); (G.F.); (A.C.)
- Department of Human Neuroscience, Sapienza University of Rome, 00185 Rome, Italy; (G.F.); (V.B.)
| | - Alfredo Berardelli
- IRCCS NEUROMED, Via Atinense, 18, 86077 Pozzilli (IS), Italy; (M.I.D.B.); (N.M.); (D.B.); (G.F.); (A.C.)
- Department of Human Neuroscience, Sapienza University of Rome, 00185 Rome, Italy; (G.F.); (V.B.)
- Correspondence:
| | - Antonella Conte
- IRCCS NEUROMED, Via Atinense, 18, 86077 Pozzilli (IS), Italy; (M.I.D.B.); (N.M.); (D.B.); (G.F.); (A.C.)
- Department of Human Neuroscience, Sapienza University of Rome, 00185 Rome, Italy; (G.F.); (V.B.)
| |
Collapse
|
45
|
Berman BD, Groth CL, Shelton E, Sillau SH, Sutton B, Legget KT, Tregellas JR. Hemodynamic responses are abnormal in isolated cervical dystonia. J Neurosci Res 2020; 98:692-703. [PMID: 31692015 PMCID: PMC7015799 DOI: 10.1002/jnr.24547] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 10/10/2019] [Accepted: 10/10/2019] [Indexed: 01/04/2023]
Abstract
Neuroimaging studies using functional magnetic resonance imaging (fMRI), which measures brain activity by detecting the changes in blood oxygenation levels, are advancing our understanding of the pathophysiology of dystonia. Neurobiological disturbances in dystonia, however, may affect neurovascular coupling and impact the interpretability of fMRI studies. We evaluated here whether the hemodynamic response patterns during a behaviorally matched motor task are altered in isolated cervical dystonia (CD). Twenty-five CD patients and 25 healthy controls (HCs) underwent fMRI scanning during a paced finger tapping task (nondystonic task in patients). Imaging data were analyzed using a constrained principal component analysis-a statistical method that combines regression analysis and principal component analysis and enables the extraction of task-related functional networks and determination of the spatial and temporal hemodynamic response patterns associated with the task performance. Data from three patients and two controls were removed due to excessive movement. No significant differences in demographics or motor performance were observed. Three task-associated functional brain networks were identified. During task performance, reduced hemodynamic responses were seen in a sensorimotor network and in a network that included key nodes of the default mode, executive control and visual networks. During rest, reductions in hemodynamic responses were seen in the cognitive/visual network. Lower hemodynamic responses within the primary sensorimotor network in patients were correlated with the increased dystonia severity. Pathophysiological disturbances in isolated CD, such as alterations in inhibitory signaling and dopaminergic neurotransmission, may impact neurovascular coupling. Not accounting for hemodynamic response differences in fMRI studies of dystonia could lead to inaccurate results and interpretations.
Collapse
Affiliation(s)
- Brian D. Berman
- Department of Neurology, University of Colorado School of Medicine, Aurora, CO
- Department of Psychiatry, University of Colorado School of Medicine, Aurora, CO
- Neurology Section, Denver VA Medical Center, Aurora, CO, USA
| | - Christopher L. Groth
- Department of Neurology, University of Colorado School of Medicine, Aurora, CO
- Department of Neurology, University of Iowa Hospitals and Clinics, Iowa City, IA
| | - Erica Shelton
- Department of Neurology, University of Colorado School of Medicine, Aurora, CO
| | - Stefan H. Sillau
- Department of Neurology, University of Colorado School of Medicine, Aurora, CO
| | - Brianne Sutton
- Department of Psychiatry, University of Colorado School of Medicine, Aurora, CO
| | - Kristina T. Legget
- Department of Psychiatry, University of Colorado School of Medicine, Aurora, CO
| | - Jason R. Tregellas
- Department of Psychiatry, University of Colorado School of Medicine, Aurora, CO
- Research Service, Denver VA Medical Center, Aurora, CO USA
| |
Collapse
|
46
|
DeSimone JC, Archer DB, Vaillancourt DE, Wagle Shukla A. Network-level connectivity is a critical feature distinguishing dystonic tremor and essential tremor. Brain 2020; 142:1644-1659. [PMID: 30957839 DOI: 10.1093/brain/awz085] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 02/04/2019] [Accepted: 02/06/2019] [Indexed: 11/12/2022] Open
Abstract
Dystonia is a movement disorder characterized by involuntary muscle co-contractions that give rise to disabling movements and postures. A recent expert consensus labelled the incidence of tremor as a core feature of dystonia that can affect body regions both symptomatic and asymptomatic to dystonic features. We are only beginning to understand the neural network-level signatures that relate to clinical features of dystonic tremor. At the same time, clinical features of dystonic tremor can resemble that of essential tremor and present a diagnostic confound for clinicians. Here, we examined network-level functional activation and connectivity in patients with dystonic tremor and essential tremor. The dystonic tremor group included primarily cervical dystonia patients with dystonic head tremor and the majority had additional upper-limb tremor. The experimental paradigm included a precision grip-force task wherein online visual feedback related to force was manipulated across high and low spatial feedback levels. Prior work using this paradigm in essential tremor patients produced exacerbation of grip-force tremor and associated changes in functional activation. As such, we directly compared the effect of visual feedback on grip-force tremor and associated functional network-level activation and connectivity between dystonic tremor and essential tremor patient cohorts to better understand disease-specific mechanisms. Increased visual feedback similarly exacerbated force tremor during the grip-force task in dystonic tremor and essential tremor cohorts. Patients with dystonic tremor and essential tremor were characterized by distinct functional activation abnormalities in cortical regions but not in the cerebellum. We examined seed-based functional connectivity from the sensorimotor cortex, globus pallidus internus, ventral intermediate thalamic nucleus, and dentate nucleus, and observed abnormal functional connectivity networks in dystonic tremor and essential tremor groups relative to controls. However, the effects were far more widespread in the dystonic tremor group as changes in functional connectivity were revealed across cortical, subcortical, and cerebellar regions independent of the seed location. A unique pattern for dystonic tremor included widespread reductions in functional connectivity compared to essential tremor within higher-level cortical, basal ganglia, and cerebellar regions. Importantly, a receiver operating characteristic determined that functional connectivity z-scores were able to classify dystonic tremor and essential tremor with 89% area under the curve, whereas combining functional connectivity with force tremor yielded 94%. These findings point to network-level connectivity as an important feature that differs substantially between dystonic tremor and essential tremor and should be further explored in implementing appropriate diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Jesse C DeSimone
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA
| | - Derek B Archer
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA
| | - David E Vaillancourt
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA.,Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA.,Department of Neurology, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Aparna Wagle Shukla
- Department of Neurology, College of Medicine, University of Florida, Gainesville, FL, USA.,Fixel Center for Neurological Disease, College of Medicine, University of Florida, Gainesville, FL, USA
| |
Collapse
|
47
|
Lungu C, Ozelius L, Standaert D, Hallett M, Sieber BA, Swanson-Fisher C, Berman BD, Calakos N, Moore JC, Perlmutter JS, Pirio Richardson SE, Saunders-Pullman R, Scheinfeldt L, Sharma N, Sillitoe R, Simonyan K, Starr PA, Taylor A, Vitek J. Defining research priorities in dystonia. Neurology 2020; 94:526-537. [PMID: 32098856 DOI: 10.1212/wnl.0000000000009140] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 01/14/2020] [Indexed: 01/14/2023] Open
Abstract
OBJECTIVE Dystonia is a complex movement disorder. Research progress has been difficult, particularly in developing widely effective therapies. This is a review of the current state of knowledge, research gaps, and proposed research priorities. METHODS The NIH convened leaders in the field for a 2-day workshop. The participants addressed the natural history of the disease, the underlying etiology, the pathophysiology, relevant research technologies, research resources, and therapeutic approaches and attempted to prioritize dystonia research recommendations. RESULTS The heterogeneity of dystonia poses challenges to research and therapy development. Much can be learned from specific genetic subtypes, and the disorder can be conceptualized along clinical, etiology, and pathophysiology axes. Advances in research technology and pooled resources can accelerate progress. Although etiologically based therapies would be optimal, a focus on circuit abnormalities can provide a convergent common target for symptomatic therapies across dystonia subtypes. The discussions have been integrated into a comprehensive review of all aspects of dystonia. CONCLUSION Overall research priorities include the generation and integration of high-quality phenotypic and genotypic data, reproducing key features in cellular and animal models, both of basic cellular mechanisms and phenotypes, leveraging new research technologies, and targeting circuit-level dysfunction with therapeutic interventions. Collaboration is necessary both for collection of large data sets and integration of different research methods.
Collapse
Affiliation(s)
- Codrin Lungu
- From the Division of Clinical Research (C.L.), National Institute of Neurological Disorders and Stroke, National Institutes of Health; Harvard Medical School (L.O., N.S.), Massachusetts General Hospital, Boston, MA; University of Alabama, Birmingham (D.S.), Birmingham, AL; Medical Neurology Branch (M.H.), NINDS, NIH, Bethesda, MD; Division of Neuroscience (B.-A.S., C.S.-F.), NINDS, NIH, Bethesda, MD; Department of Neurology (B.D.B.), University of Colorado Denver, Aurora, CO; Duke University School of Medicine, Durham, NC; RUCDR/Infinite Biologics (J.C.M.), Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ; Washington University School of Medicine (J.S.P.), St Louis, MO; Department of Neurology (S.E.P.R.), University of New Mexico Health Sciences Center, Albuquerque, NM; Department of Neurology (R.S.-P.), Icahn School of Medicine at Mount Sinai, New York, NY; Coriell Institute for Medical Research (L.S.), Camden, NJ; Department of Neuroscience (R.S.), Baylor College of Medicine, Houston, TX; Harvard Medical School (K.S.), Department of Otolaryngology, Head and Neck Surgery, Massachusetts Eye and Ear Institute, Boston, MA; Department of Neurological Surgery (P.A.S.), University of California San Francisco, San Francisco, CA; Division of Extramural Activities (A.T.), NINDS, NIH, Rockville, MD; and Department of Neurology (J.V.), University of Minnesota, Minneapolis, MN.
| | - Laurie Ozelius
- From the Division of Clinical Research (C.L.), National Institute of Neurological Disorders and Stroke, National Institutes of Health; Harvard Medical School (L.O., N.S.), Massachusetts General Hospital, Boston, MA; University of Alabama, Birmingham (D.S.), Birmingham, AL; Medical Neurology Branch (M.H.), NINDS, NIH, Bethesda, MD; Division of Neuroscience (B.-A.S., C.S.-F.), NINDS, NIH, Bethesda, MD; Department of Neurology (B.D.B.), University of Colorado Denver, Aurora, CO; Duke University School of Medicine, Durham, NC; RUCDR/Infinite Biologics (J.C.M.), Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ; Washington University School of Medicine (J.S.P.), St Louis, MO; Department of Neurology (S.E.P.R.), University of New Mexico Health Sciences Center, Albuquerque, NM; Department of Neurology (R.S.-P.), Icahn School of Medicine at Mount Sinai, New York, NY; Coriell Institute for Medical Research (L.S.), Camden, NJ; Department of Neuroscience (R.S.), Baylor College of Medicine, Houston, TX; Harvard Medical School (K.S.), Department of Otolaryngology, Head and Neck Surgery, Massachusetts Eye and Ear Institute, Boston, MA; Department of Neurological Surgery (P.A.S.), University of California San Francisco, San Francisco, CA; Division of Extramural Activities (A.T.), NINDS, NIH, Rockville, MD; and Department of Neurology (J.V.), University of Minnesota, Minneapolis, MN
| | - David Standaert
- From the Division of Clinical Research (C.L.), National Institute of Neurological Disorders and Stroke, National Institutes of Health; Harvard Medical School (L.O., N.S.), Massachusetts General Hospital, Boston, MA; University of Alabama, Birmingham (D.S.), Birmingham, AL; Medical Neurology Branch (M.H.), NINDS, NIH, Bethesda, MD; Division of Neuroscience (B.-A.S., C.S.-F.), NINDS, NIH, Bethesda, MD; Department of Neurology (B.D.B.), University of Colorado Denver, Aurora, CO; Duke University School of Medicine, Durham, NC; RUCDR/Infinite Biologics (J.C.M.), Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ; Washington University School of Medicine (J.S.P.), St Louis, MO; Department of Neurology (S.E.P.R.), University of New Mexico Health Sciences Center, Albuquerque, NM; Department of Neurology (R.S.-P.), Icahn School of Medicine at Mount Sinai, New York, NY; Coriell Institute for Medical Research (L.S.), Camden, NJ; Department of Neuroscience (R.S.), Baylor College of Medicine, Houston, TX; Harvard Medical School (K.S.), Department of Otolaryngology, Head and Neck Surgery, Massachusetts Eye and Ear Institute, Boston, MA; Department of Neurological Surgery (P.A.S.), University of California San Francisco, San Francisco, CA; Division of Extramural Activities (A.T.), NINDS, NIH, Rockville, MD; and Department of Neurology (J.V.), University of Minnesota, Minneapolis, MN
| | - Mark Hallett
- From the Division of Clinical Research (C.L.), National Institute of Neurological Disorders and Stroke, National Institutes of Health; Harvard Medical School (L.O., N.S.), Massachusetts General Hospital, Boston, MA; University of Alabama, Birmingham (D.S.), Birmingham, AL; Medical Neurology Branch (M.H.), NINDS, NIH, Bethesda, MD; Division of Neuroscience (B.-A.S., C.S.-F.), NINDS, NIH, Bethesda, MD; Department of Neurology (B.D.B.), University of Colorado Denver, Aurora, CO; Duke University School of Medicine, Durham, NC; RUCDR/Infinite Biologics (J.C.M.), Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ; Washington University School of Medicine (J.S.P.), St Louis, MO; Department of Neurology (S.E.P.R.), University of New Mexico Health Sciences Center, Albuquerque, NM; Department of Neurology (R.S.-P.), Icahn School of Medicine at Mount Sinai, New York, NY; Coriell Institute for Medical Research (L.S.), Camden, NJ; Department of Neuroscience (R.S.), Baylor College of Medicine, Houston, TX; Harvard Medical School (K.S.), Department of Otolaryngology, Head and Neck Surgery, Massachusetts Eye and Ear Institute, Boston, MA; Department of Neurological Surgery (P.A.S.), University of California San Francisco, San Francisco, CA; Division of Extramural Activities (A.T.), NINDS, NIH, Rockville, MD; and Department of Neurology (J.V.), University of Minnesota, Minneapolis, MN
| | - Beth-Anne Sieber
- From the Division of Clinical Research (C.L.), National Institute of Neurological Disorders and Stroke, National Institutes of Health; Harvard Medical School (L.O., N.S.), Massachusetts General Hospital, Boston, MA; University of Alabama, Birmingham (D.S.), Birmingham, AL; Medical Neurology Branch (M.H.), NINDS, NIH, Bethesda, MD; Division of Neuroscience (B.-A.S., C.S.-F.), NINDS, NIH, Bethesda, MD; Department of Neurology (B.D.B.), University of Colorado Denver, Aurora, CO; Duke University School of Medicine, Durham, NC; RUCDR/Infinite Biologics (J.C.M.), Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ; Washington University School of Medicine (J.S.P.), St Louis, MO; Department of Neurology (S.E.P.R.), University of New Mexico Health Sciences Center, Albuquerque, NM; Department of Neurology (R.S.-P.), Icahn School of Medicine at Mount Sinai, New York, NY; Coriell Institute for Medical Research (L.S.), Camden, NJ; Department of Neuroscience (R.S.), Baylor College of Medicine, Houston, TX; Harvard Medical School (K.S.), Department of Otolaryngology, Head and Neck Surgery, Massachusetts Eye and Ear Institute, Boston, MA; Department of Neurological Surgery (P.A.S.), University of California San Francisco, San Francisco, CA; Division of Extramural Activities (A.T.), NINDS, NIH, Rockville, MD; and Department of Neurology (J.V.), University of Minnesota, Minneapolis, MN
| | - Christine Swanson-Fisher
- From the Division of Clinical Research (C.L.), National Institute of Neurological Disorders and Stroke, National Institutes of Health; Harvard Medical School (L.O., N.S.), Massachusetts General Hospital, Boston, MA; University of Alabama, Birmingham (D.S.), Birmingham, AL; Medical Neurology Branch (M.H.), NINDS, NIH, Bethesda, MD; Division of Neuroscience (B.-A.S., C.S.-F.), NINDS, NIH, Bethesda, MD; Department of Neurology (B.D.B.), University of Colorado Denver, Aurora, CO; Duke University School of Medicine, Durham, NC; RUCDR/Infinite Biologics (J.C.M.), Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ; Washington University School of Medicine (J.S.P.), St Louis, MO; Department of Neurology (S.E.P.R.), University of New Mexico Health Sciences Center, Albuquerque, NM; Department of Neurology (R.S.-P.), Icahn School of Medicine at Mount Sinai, New York, NY; Coriell Institute for Medical Research (L.S.), Camden, NJ; Department of Neuroscience (R.S.), Baylor College of Medicine, Houston, TX; Harvard Medical School (K.S.), Department of Otolaryngology, Head and Neck Surgery, Massachusetts Eye and Ear Institute, Boston, MA; Department of Neurological Surgery (P.A.S.), University of California San Francisco, San Francisco, CA; Division of Extramural Activities (A.T.), NINDS, NIH, Rockville, MD; and Department of Neurology (J.V.), University of Minnesota, Minneapolis, MN
| | - Brian D Berman
- From the Division of Clinical Research (C.L.), National Institute of Neurological Disorders and Stroke, National Institutes of Health; Harvard Medical School (L.O., N.S.), Massachusetts General Hospital, Boston, MA; University of Alabama, Birmingham (D.S.), Birmingham, AL; Medical Neurology Branch (M.H.), NINDS, NIH, Bethesda, MD; Division of Neuroscience (B.-A.S., C.S.-F.), NINDS, NIH, Bethesda, MD; Department of Neurology (B.D.B.), University of Colorado Denver, Aurora, CO; Duke University School of Medicine, Durham, NC; RUCDR/Infinite Biologics (J.C.M.), Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ; Washington University School of Medicine (J.S.P.), St Louis, MO; Department of Neurology (S.E.P.R.), University of New Mexico Health Sciences Center, Albuquerque, NM; Department of Neurology (R.S.-P.), Icahn School of Medicine at Mount Sinai, New York, NY; Coriell Institute for Medical Research (L.S.), Camden, NJ; Department of Neuroscience (R.S.), Baylor College of Medicine, Houston, TX; Harvard Medical School (K.S.), Department of Otolaryngology, Head and Neck Surgery, Massachusetts Eye and Ear Institute, Boston, MA; Department of Neurological Surgery (P.A.S.), University of California San Francisco, San Francisco, CA; Division of Extramural Activities (A.T.), NINDS, NIH, Rockville, MD; and Department of Neurology (J.V.), University of Minnesota, Minneapolis, MN
| | - Nicole Calakos
- From the Division of Clinical Research (C.L.), National Institute of Neurological Disorders and Stroke, National Institutes of Health; Harvard Medical School (L.O., N.S.), Massachusetts General Hospital, Boston, MA; University of Alabama, Birmingham (D.S.), Birmingham, AL; Medical Neurology Branch (M.H.), NINDS, NIH, Bethesda, MD; Division of Neuroscience (B.-A.S., C.S.-F.), NINDS, NIH, Bethesda, MD; Department of Neurology (B.D.B.), University of Colorado Denver, Aurora, CO; Duke University School of Medicine, Durham, NC; RUCDR/Infinite Biologics (J.C.M.), Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ; Washington University School of Medicine (J.S.P.), St Louis, MO; Department of Neurology (S.E.P.R.), University of New Mexico Health Sciences Center, Albuquerque, NM; Department of Neurology (R.S.-P.), Icahn School of Medicine at Mount Sinai, New York, NY; Coriell Institute for Medical Research (L.S.), Camden, NJ; Department of Neuroscience (R.S.), Baylor College of Medicine, Houston, TX; Harvard Medical School (K.S.), Department of Otolaryngology, Head and Neck Surgery, Massachusetts Eye and Ear Institute, Boston, MA; Department of Neurological Surgery (P.A.S.), University of California San Francisco, San Francisco, CA; Division of Extramural Activities (A.T.), NINDS, NIH, Rockville, MD; and Department of Neurology (J.V.), University of Minnesota, Minneapolis, MN
| | - Jennifer C Moore
- From the Division of Clinical Research (C.L.), National Institute of Neurological Disorders and Stroke, National Institutes of Health; Harvard Medical School (L.O., N.S.), Massachusetts General Hospital, Boston, MA; University of Alabama, Birmingham (D.S.), Birmingham, AL; Medical Neurology Branch (M.H.), NINDS, NIH, Bethesda, MD; Division of Neuroscience (B.-A.S., C.S.-F.), NINDS, NIH, Bethesda, MD; Department of Neurology (B.D.B.), University of Colorado Denver, Aurora, CO; Duke University School of Medicine, Durham, NC; RUCDR/Infinite Biologics (J.C.M.), Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ; Washington University School of Medicine (J.S.P.), St Louis, MO; Department of Neurology (S.E.P.R.), University of New Mexico Health Sciences Center, Albuquerque, NM; Department of Neurology (R.S.-P.), Icahn School of Medicine at Mount Sinai, New York, NY; Coriell Institute for Medical Research (L.S.), Camden, NJ; Department of Neuroscience (R.S.), Baylor College of Medicine, Houston, TX; Harvard Medical School (K.S.), Department of Otolaryngology, Head and Neck Surgery, Massachusetts Eye and Ear Institute, Boston, MA; Department of Neurological Surgery (P.A.S.), University of California San Francisco, San Francisco, CA; Division of Extramural Activities (A.T.), NINDS, NIH, Rockville, MD; and Department of Neurology (J.V.), University of Minnesota, Minneapolis, MN
| | - Joel S Perlmutter
- From the Division of Clinical Research (C.L.), National Institute of Neurological Disorders and Stroke, National Institutes of Health; Harvard Medical School (L.O., N.S.), Massachusetts General Hospital, Boston, MA; University of Alabama, Birmingham (D.S.), Birmingham, AL; Medical Neurology Branch (M.H.), NINDS, NIH, Bethesda, MD; Division of Neuroscience (B.-A.S., C.S.-F.), NINDS, NIH, Bethesda, MD; Department of Neurology (B.D.B.), University of Colorado Denver, Aurora, CO; Duke University School of Medicine, Durham, NC; RUCDR/Infinite Biologics (J.C.M.), Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ; Washington University School of Medicine (J.S.P.), St Louis, MO; Department of Neurology (S.E.P.R.), University of New Mexico Health Sciences Center, Albuquerque, NM; Department of Neurology (R.S.-P.), Icahn School of Medicine at Mount Sinai, New York, NY; Coriell Institute for Medical Research (L.S.), Camden, NJ; Department of Neuroscience (R.S.), Baylor College of Medicine, Houston, TX; Harvard Medical School (K.S.), Department of Otolaryngology, Head and Neck Surgery, Massachusetts Eye and Ear Institute, Boston, MA; Department of Neurological Surgery (P.A.S.), University of California San Francisco, San Francisco, CA; Division of Extramural Activities (A.T.), NINDS, NIH, Rockville, MD; and Department of Neurology (J.V.), University of Minnesota, Minneapolis, MN
| | - Sarah E Pirio Richardson
- From the Division of Clinical Research (C.L.), National Institute of Neurological Disorders and Stroke, National Institutes of Health; Harvard Medical School (L.O., N.S.), Massachusetts General Hospital, Boston, MA; University of Alabama, Birmingham (D.S.), Birmingham, AL; Medical Neurology Branch (M.H.), NINDS, NIH, Bethesda, MD; Division of Neuroscience (B.-A.S., C.S.-F.), NINDS, NIH, Bethesda, MD; Department of Neurology (B.D.B.), University of Colorado Denver, Aurora, CO; Duke University School of Medicine, Durham, NC; RUCDR/Infinite Biologics (J.C.M.), Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ; Washington University School of Medicine (J.S.P.), St Louis, MO; Department of Neurology (S.E.P.R.), University of New Mexico Health Sciences Center, Albuquerque, NM; Department of Neurology (R.S.-P.), Icahn School of Medicine at Mount Sinai, New York, NY; Coriell Institute for Medical Research (L.S.), Camden, NJ; Department of Neuroscience (R.S.), Baylor College of Medicine, Houston, TX; Harvard Medical School (K.S.), Department of Otolaryngology, Head and Neck Surgery, Massachusetts Eye and Ear Institute, Boston, MA; Department of Neurological Surgery (P.A.S.), University of California San Francisco, San Francisco, CA; Division of Extramural Activities (A.T.), NINDS, NIH, Rockville, MD; and Department of Neurology (J.V.), University of Minnesota, Minneapolis, MN
| | - Rachel Saunders-Pullman
- From the Division of Clinical Research (C.L.), National Institute of Neurological Disorders and Stroke, National Institutes of Health; Harvard Medical School (L.O., N.S.), Massachusetts General Hospital, Boston, MA; University of Alabama, Birmingham (D.S.), Birmingham, AL; Medical Neurology Branch (M.H.), NINDS, NIH, Bethesda, MD; Division of Neuroscience (B.-A.S., C.S.-F.), NINDS, NIH, Bethesda, MD; Department of Neurology (B.D.B.), University of Colorado Denver, Aurora, CO; Duke University School of Medicine, Durham, NC; RUCDR/Infinite Biologics (J.C.M.), Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ; Washington University School of Medicine (J.S.P.), St Louis, MO; Department of Neurology (S.E.P.R.), University of New Mexico Health Sciences Center, Albuquerque, NM; Department of Neurology (R.S.-P.), Icahn School of Medicine at Mount Sinai, New York, NY; Coriell Institute for Medical Research (L.S.), Camden, NJ; Department of Neuroscience (R.S.), Baylor College of Medicine, Houston, TX; Harvard Medical School (K.S.), Department of Otolaryngology, Head and Neck Surgery, Massachusetts Eye and Ear Institute, Boston, MA; Department of Neurological Surgery (P.A.S.), University of California San Francisco, San Francisco, CA; Division of Extramural Activities (A.T.), NINDS, NIH, Rockville, MD; and Department of Neurology (J.V.), University of Minnesota, Minneapolis, MN
| | - Laura Scheinfeldt
- From the Division of Clinical Research (C.L.), National Institute of Neurological Disorders and Stroke, National Institutes of Health; Harvard Medical School (L.O., N.S.), Massachusetts General Hospital, Boston, MA; University of Alabama, Birmingham (D.S.), Birmingham, AL; Medical Neurology Branch (M.H.), NINDS, NIH, Bethesda, MD; Division of Neuroscience (B.-A.S., C.S.-F.), NINDS, NIH, Bethesda, MD; Department of Neurology (B.D.B.), University of Colorado Denver, Aurora, CO; Duke University School of Medicine, Durham, NC; RUCDR/Infinite Biologics (J.C.M.), Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ; Washington University School of Medicine (J.S.P.), St Louis, MO; Department of Neurology (S.E.P.R.), University of New Mexico Health Sciences Center, Albuquerque, NM; Department of Neurology (R.S.-P.), Icahn School of Medicine at Mount Sinai, New York, NY; Coriell Institute for Medical Research (L.S.), Camden, NJ; Department of Neuroscience (R.S.), Baylor College of Medicine, Houston, TX; Harvard Medical School (K.S.), Department of Otolaryngology, Head and Neck Surgery, Massachusetts Eye and Ear Institute, Boston, MA; Department of Neurological Surgery (P.A.S.), University of California San Francisco, San Francisco, CA; Division of Extramural Activities (A.T.), NINDS, NIH, Rockville, MD; and Department of Neurology (J.V.), University of Minnesota, Minneapolis, MN
| | - Nutan Sharma
- From the Division of Clinical Research (C.L.), National Institute of Neurological Disorders and Stroke, National Institutes of Health; Harvard Medical School (L.O., N.S.), Massachusetts General Hospital, Boston, MA; University of Alabama, Birmingham (D.S.), Birmingham, AL; Medical Neurology Branch (M.H.), NINDS, NIH, Bethesda, MD; Division of Neuroscience (B.-A.S., C.S.-F.), NINDS, NIH, Bethesda, MD; Department of Neurology (B.D.B.), University of Colorado Denver, Aurora, CO; Duke University School of Medicine, Durham, NC; RUCDR/Infinite Biologics (J.C.M.), Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ; Washington University School of Medicine (J.S.P.), St Louis, MO; Department of Neurology (S.E.P.R.), University of New Mexico Health Sciences Center, Albuquerque, NM; Department of Neurology (R.S.-P.), Icahn School of Medicine at Mount Sinai, New York, NY; Coriell Institute for Medical Research (L.S.), Camden, NJ; Department of Neuroscience (R.S.), Baylor College of Medicine, Houston, TX; Harvard Medical School (K.S.), Department of Otolaryngology, Head and Neck Surgery, Massachusetts Eye and Ear Institute, Boston, MA; Department of Neurological Surgery (P.A.S.), University of California San Francisco, San Francisco, CA; Division of Extramural Activities (A.T.), NINDS, NIH, Rockville, MD; and Department of Neurology (J.V.), University of Minnesota, Minneapolis, MN
| | - Roy Sillitoe
- From the Division of Clinical Research (C.L.), National Institute of Neurological Disorders and Stroke, National Institutes of Health; Harvard Medical School (L.O., N.S.), Massachusetts General Hospital, Boston, MA; University of Alabama, Birmingham (D.S.), Birmingham, AL; Medical Neurology Branch (M.H.), NINDS, NIH, Bethesda, MD; Division of Neuroscience (B.-A.S., C.S.-F.), NINDS, NIH, Bethesda, MD; Department of Neurology (B.D.B.), University of Colorado Denver, Aurora, CO; Duke University School of Medicine, Durham, NC; RUCDR/Infinite Biologics (J.C.M.), Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ; Washington University School of Medicine (J.S.P.), St Louis, MO; Department of Neurology (S.E.P.R.), University of New Mexico Health Sciences Center, Albuquerque, NM; Department of Neurology (R.S.-P.), Icahn School of Medicine at Mount Sinai, New York, NY; Coriell Institute for Medical Research (L.S.), Camden, NJ; Department of Neuroscience (R.S.), Baylor College of Medicine, Houston, TX; Harvard Medical School (K.S.), Department of Otolaryngology, Head and Neck Surgery, Massachusetts Eye and Ear Institute, Boston, MA; Department of Neurological Surgery (P.A.S.), University of California San Francisco, San Francisco, CA; Division of Extramural Activities (A.T.), NINDS, NIH, Rockville, MD; and Department of Neurology (J.V.), University of Minnesota, Minneapolis, MN
| | - Kristina Simonyan
- From the Division of Clinical Research (C.L.), National Institute of Neurological Disorders and Stroke, National Institutes of Health; Harvard Medical School (L.O., N.S.), Massachusetts General Hospital, Boston, MA; University of Alabama, Birmingham (D.S.), Birmingham, AL; Medical Neurology Branch (M.H.), NINDS, NIH, Bethesda, MD; Division of Neuroscience (B.-A.S., C.S.-F.), NINDS, NIH, Bethesda, MD; Department of Neurology (B.D.B.), University of Colorado Denver, Aurora, CO; Duke University School of Medicine, Durham, NC; RUCDR/Infinite Biologics (J.C.M.), Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ; Washington University School of Medicine (J.S.P.), St Louis, MO; Department of Neurology (S.E.P.R.), University of New Mexico Health Sciences Center, Albuquerque, NM; Department of Neurology (R.S.-P.), Icahn School of Medicine at Mount Sinai, New York, NY; Coriell Institute for Medical Research (L.S.), Camden, NJ; Department of Neuroscience (R.S.), Baylor College of Medicine, Houston, TX; Harvard Medical School (K.S.), Department of Otolaryngology, Head and Neck Surgery, Massachusetts Eye and Ear Institute, Boston, MA; Department of Neurological Surgery (P.A.S.), University of California San Francisco, San Francisco, CA; Division of Extramural Activities (A.T.), NINDS, NIH, Rockville, MD; and Department of Neurology (J.V.), University of Minnesota, Minneapolis, MN
| | - Philip A Starr
- From the Division of Clinical Research (C.L.), National Institute of Neurological Disorders and Stroke, National Institutes of Health; Harvard Medical School (L.O., N.S.), Massachusetts General Hospital, Boston, MA; University of Alabama, Birmingham (D.S.), Birmingham, AL; Medical Neurology Branch (M.H.), NINDS, NIH, Bethesda, MD; Division of Neuroscience (B.-A.S., C.S.-F.), NINDS, NIH, Bethesda, MD; Department of Neurology (B.D.B.), University of Colorado Denver, Aurora, CO; Duke University School of Medicine, Durham, NC; RUCDR/Infinite Biologics (J.C.M.), Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ; Washington University School of Medicine (J.S.P.), St Louis, MO; Department of Neurology (S.E.P.R.), University of New Mexico Health Sciences Center, Albuquerque, NM; Department of Neurology (R.S.-P.), Icahn School of Medicine at Mount Sinai, New York, NY; Coriell Institute for Medical Research (L.S.), Camden, NJ; Department of Neuroscience (R.S.), Baylor College of Medicine, Houston, TX; Harvard Medical School (K.S.), Department of Otolaryngology, Head and Neck Surgery, Massachusetts Eye and Ear Institute, Boston, MA; Department of Neurological Surgery (P.A.S.), University of California San Francisco, San Francisco, CA; Division of Extramural Activities (A.T.), NINDS, NIH, Rockville, MD; and Department of Neurology (J.V.), University of Minnesota, Minneapolis, MN
| | - Anna Taylor
- From the Division of Clinical Research (C.L.), National Institute of Neurological Disorders and Stroke, National Institutes of Health; Harvard Medical School (L.O., N.S.), Massachusetts General Hospital, Boston, MA; University of Alabama, Birmingham (D.S.), Birmingham, AL; Medical Neurology Branch (M.H.), NINDS, NIH, Bethesda, MD; Division of Neuroscience (B.-A.S., C.S.-F.), NINDS, NIH, Bethesda, MD; Department of Neurology (B.D.B.), University of Colorado Denver, Aurora, CO; Duke University School of Medicine, Durham, NC; RUCDR/Infinite Biologics (J.C.M.), Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ; Washington University School of Medicine (J.S.P.), St Louis, MO; Department of Neurology (S.E.P.R.), University of New Mexico Health Sciences Center, Albuquerque, NM; Department of Neurology (R.S.-P.), Icahn School of Medicine at Mount Sinai, New York, NY; Coriell Institute for Medical Research (L.S.), Camden, NJ; Department of Neuroscience (R.S.), Baylor College of Medicine, Houston, TX; Harvard Medical School (K.S.), Department of Otolaryngology, Head and Neck Surgery, Massachusetts Eye and Ear Institute, Boston, MA; Department of Neurological Surgery (P.A.S.), University of California San Francisco, San Francisco, CA; Division of Extramural Activities (A.T.), NINDS, NIH, Rockville, MD; and Department of Neurology (J.V.), University of Minnesota, Minneapolis, MN
| | - Jerrold Vitek
- From the Division of Clinical Research (C.L.), National Institute of Neurological Disorders and Stroke, National Institutes of Health; Harvard Medical School (L.O., N.S.), Massachusetts General Hospital, Boston, MA; University of Alabama, Birmingham (D.S.), Birmingham, AL; Medical Neurology Branch (M.H.), NINDS, NIH, Bethesda, MD; Division of Neuroscience (B.-A.S., C.S.-F.), NINDS, NIH, Bethesda, MD; Department of Neurology (B.D.B.), University of Colorado Denver, Aurora, CO; Duke University School of Medicine, Durham, NC; RUCDR/Infinite Biologics (J.C.M.), Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ; Washington University School of Medicine (J.S.P.), St Louis, MO; Department of Neurology (S.E.P.R.), University of New Mexico Health Sciences Center, Albuquerque, NM; Department of Neurology (R.S.-P.), Icahn School of Medicine at Mount Sinai, New York, NY; Coriell Institute for Medical Research (L.S.), Camden, NJ; Department of Neuroscience (R.S.), Baylor College of Medicine, Houston, TX; Harvard Medical School (K.S.), Department of Otolaryngology, Head and Neck Surgery, Massachusetts Eye and Ear Institute, Boston, MA; Department of Neurological Surgery (P.A.S.), University of California San Francisco, San Francisco, CA; Division of Extramural Activities (A.T.), NINDS, NIH, Rockville, MD; and Department of Neurology (J.V.), University of Minnesota, Minneapolis, MN
| | | |
Collapse
|
48
|
Boonstra FMC, Evans A, Noffs G, Perera T, Jokubaitis V, Stankovich J, Vogel AP, Moffat BA, Butzkueven H, Kolbe SC, van der Walt A. OnabotulinumtoxinA treatment for MS-tremor modifies fMRI tremor response in central sensory-motor integration areas. Mult Scler Relat Disord 2020; 40:101984. [PMID: 32062446 DOI: 10.1016/j.msard.2020.101984] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 11/21/2019] [Accepted: 02/03/2020] [Indexed: 10/25/2022]
Abstract
BACKGROUND Treatment of tremor in MS is an unmet need. OnabotulinumtoxinA (BoNT-A) has shown promising results; however, little is known regarding its effects on the brain. The clinical presentation of tremor MS is shown to depend on subcortical neural damage and cortical neural plasticity. This study aimed to identify effects of onabotulinumtoxinA (BoNT-A) on brain activation in MS and upper-limb tremor using functional MRI. METHODS Forty-three MS participants with tremor were randomized to receive intramuscular injections of placebo (n = 22) or BoNT-A (n = 21). Tremor was quantified using the Bain score (0-10) for severity, handwriting and Archimedes drawing at baseline, 6 weeks and 12 weeks. Functional MRI activation within two previously identified clusters, ipsilateral inferior parietal cortex (IPL) and premotor/supplementary motor cortex (SMC) of compensatory activity, was measured at baseline and 6 weeks. RESULTS Treatment with BoNT-A resulted in improved handwriting tremor at 6 weeks (p = 0.049) and 12 weeks (p = 0.014), and tremor severity -0.79 (p = 0.007) at 12 weeks. Furthermore, the patients that received BoNT-A showed a reduction in activation within the IPL (p = 0.034), but not in the SMC. The change in IPL activation correlated with the reduction in tremor severity from baseline to 12 weeks (β = 0.608; p = 0.015) in the BoNT-A group. No tremor and fMRI changes were seen in the placebo treated group. CONCLUSION We have shown that reduction in MS-tremor severity after intramuscular injection with BoNT-A is associated with changes in brain activity in sensorimotor integration regions.
Collapse
Affiliation(s)
- Frederique M C Boonstra
- Department of Medicine and Radiology, University of Melbourne, Australia; Department of Neuroscience, Central Clinical School, Monash University, Australia.
| | - Andrew Evans
- Department of Neurology, Royal Melbourne Hospital, Australia; The Bionics Institute, Australia
| | - Gustavo Noffs
- Department of Neurology, Royal Melbourne Hospital, Australia; Centre for Neuroscience of Speech, University of Melbourne, Victoria, Australia
| | - Thushara Perera
- The Bionics Institute, Australia; Department of Medical Bionics, University of Melbourne, Australia
| | - Vilija Jokubaitis
- Department of Neuroscience, Central Clinical School, Monash University, Australia
| | - Jim Stankovich
- Department of Neuroscience, Central Clinical School, Monash University, Australia
| | - Adam P Vogel
- Centre for Neuroscience of Speech, University of Melbourne, Victoria, Australia; The Bionics Institute, Australia; Department of Neurodegeneration, Hertie Institute for Clinical Brain Research, University of Tübingen, Germany; Redenlab, Victoria, Australia
| | - Bradford A Moffat
- Department of Medicine and Radiology, University of Melbourne, Australia
| | - Helmut Butzkueven
- Department of Neuroscience, Central Clinical School, Monash University, Australia
| | - Scott C Kolbe
- Department of Medicine and Radiology, University of Melbourne, Australia; Department of Neuroscience, Central Clinical School, Monash University, Australia; Florey Institute of Neuroscience and Mental Health, Australia
| | - Anneke van der Walt
- Department of Neurology, Royal Melbourne Hospital, Australia; The Bionics Institute, Australia; Department of Neuroscience, Central Clinical School, Monash University, Australia
| |
Collapse
|
49
|
Assessment of hand functions in patients with idiopathic cervical dystonia. Hum Mov Sci 2020; 70:102581. [PMID: 31950896 DOI: 10.1016/j.humov.2020.102581] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 11/23/2019] [Accepted: 01/08/2020] [Indexed: 12/18/2022]
Abstract
Cervical dystonia (CD) is the most common form of focal dystonia characterized by involuntary contractions of the neck muscles, causing abnormal rotation of the head into specific directions. Studies report that idiopathic dystonia is a developmental disorder of the sensorimotor circuits, involving both the cortico-striatal and thalamo-cortical pathways. It is also suggested that enhanced cortical plasticity extends beyond the clinically affected region and may also be detected in the unaffected upper limbs of the patient with CD. In the present study, we aimed at exploring if patients with CD had hand motor dysfunctions. Forty patients with idiopathic CD and 40 healthy controls were included in this study. Dystonic symptoms were assessed by means of The Toronto Western Spasmodic Torticollis Rating Scale (TWSTRS). Stanford Health Assessment Questionnaire (HAQ) was used to assess functional status. Quality of life (QoL) was assessed by using the Medical Outcomes Study Short Form 36-Item Health Survey (SF 36). Grip strength was assessed by using hand dynamometers. Tip pinch, lateral pinch and chuck pinch of the hand were assessed by using a pinchmeter. Fingertip dexterity and hand coordination was assessed using Purdue Pegboard. Duruoz Hand Index (DHI) was used for the assessment of hand functions. There were no significant differences between the groups in grip and pinch strengths of hands and fingers. As to the fingertip dexterity, patients with CD had a mean Pin 1 and Pin 2 test score of 10.6 ± 2.8 and 10.8 ± 3.2 respectively and a mean assembling test score of 5.2 ± 2.0. These results were significantly worse than those of the healthy controls. As to the SF 36 sub-scores, there were significant differences between the groups in all SF 36 sub-scores (p < .001). This study indicates that patients with CD suffer a deteriorated fine motor coordination of hands without dystonic involvement of upper extremities. Furthermore, lower SF 36 scores in patients with CD suggest poorer health-related quality of life.
Collapse
|
50
|
Greuel A, Pauls KAM, Koy A, Südmeyer M, Schnitzler A, Timmermann L, Fink GR, Eggers C. Pallidal Deep Brain Stimulation Reduces Sensorimotor Cortex Activation in Focal/Segmental Dystonia. Mov Disord 2020; 35:629-639. [DOI: 10.1002/mds.27970] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 12/02/2019] [Accepted: 12/08/2019] [Indexed: 12/18/2022] Open
Affiliation(s)
- Andrea Greuel
- Department of Neurology University Hospital of Giessen and Marburg Marburg Germany
| | - K. Amande M. Pauls
- Department of Neurology Helsinki University Central Hospital Helsinki Finland
- Department of Clinical Neurosciences (Neurology) University of Helsinki Helsinki Finland
- BioMag Laboratory, Helsinki University Hospital Medical Imaging Center University of Helsinki and Helsinki University Hospital Helsinki Finland
| | - Anne Koy
- Department of Pediatrics Faculty of Medicine and University Hospital Cologne, University of Cologne Cologne Germany
| | - Martin Südmeyer
- Department of Neurology Ernst‐von‐Bergmann Klinikum Potsdam Germany
| | - Alfons Schnitzler
- Institute of Clinical Neuroscience and Medical Psychology, Department of Neurology, Medical Faculty Heinrich‐Heine‐University Düsseldorf Düsseldorf Germany
| | - Lars Timmermann
- Department of Neurology University Hospital of Giessen and Marburg Marburg Germany
- Center for Mind, Brain and Behavior Universities Marburg and Giessen Marburg Germany
| | - Gereon R. Fink
- Department of Neurology Faculty of Medicine and University Hospital Cologne, University of Cologne Cologne Germany
- Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM‐3) Research Center Jülich Jülich Germany
| | - Carsten Eggers
- Department of Neurology University Hospital of Giessen and Marburg Marburg Germany
- Center for Mind, Brain and Behavior Universities Marburg and Giessen Marburg Germany
| |
Collapse
|