1
|
Bhutani B, Sharma V, Ganguly NK, Rana R. Unravelling the modified T cell receptor through Gen-Next CAR T cell therapy in Glioblastoma: Current status and future challenges. Biomed Pharmacother 2025; 186:117987. [PMID: 40117901 DOI: 10.1016/j.biopha.2025.117987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 03/05/2025] [Accepted: 03/10/2025] [Indexed: 03/23/2025] Open
Abstract
PURPOSE Despite current technological advancements in the treatment of glioma, immediate alleviation of symptoms can be catered by therapeutic modalities, including surgery, chemotherapy, and combinatorial radiotherapy that exploit aberrations of glioma. Additionally, a small number of target antigens, their heterogeneity, and immune evasion are the potential reasons for developing targeted therapies. This oncologic milestone has catalyzed interest in developing immunotherapies against Glioblastoma to improve overall survival and cure patients with high-grade glioma. The next-gen CAR-T Cell therapy is one of the effective immunotherapeutic strategies in which autologous T cells have been modified to express receptors against GBM and it modulates cytotoxicity. METHODS In this review article, we examine preclinical and clinical outcomes, and limitations as well as present cutting-edge techniques to improve the function of CAR-T cell therapy and explore the possibility of combination therapy. FINDINGS To date, several CAR T-cell therapies are being evaluated in clinical trials for GBM and other brain malignancies and multiple preclinical studies have demonstrated encouraging outcomes. IMPLICATIONS CAR-T cell therapy represents a promising therapeutic paradigm in the treatment of solid tumors but a few limitations include, the blood-brain barrier (BBB), antigen escape, tumor microenvironment (TME), tumor heterogeneity, and its plasticity that suppresses immune responses weakens the ability of this therapy. Additional investigation is required that can accurately identify the targets and reflect the similar architecture of glioblastoma, thus optimizing the efficiency of CAR-T cell therapy; allowing for the selection of patients most likely to benefit from immuno-based treatments.
Collapse
Affiliation(s)
- Bhavya Bhutani
- Department of Biotechnology and Research, Sir Ganga Ram Hospital, New Delhi 110060, India
| | - Vyoma Sharma
- Department of Biotechnology and Research, Sir Ganga Ram Hospital, New Delhi 110060, India
| | - Nirmal Kumar Ganguly
- Department of Biotechnology and Research, Sir Ganga Ram Hospital, New Delhi 110060, India
| | - Rashmi Rana
- Department of Biotechnology and Research, Sir Ganga Ram Hospital, New Delhi 110060, India.
| |
Collapse
|
2
|
Roex G, Gordon KS, Lion E, Birnbaum ME, Anguille S. Expanding the CAR toolbox with high throughput screening strategies for CAR domain exploration: a comprehensive review. J Immunother Cancer 2025; 13:e010658. [PMID: 40210240 PMCID: PMC11987143 DOI: 10.1136/jitc-2024-010658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 03/06/2025] [Indexed: 04/12/2025] Open
Abstract
Chimeric antigen receptor (CAR)-T-cell therapy has been highly successful in the treatment of B-cell hematological malignancies. CARs are modular synthetic molecules that can redirect immune cells towards target cells with antibody-like specificity. Despite their modularity, CARs used in the clinic are currently composed of a limited set of domains, mostly derived from IgG, CD8α, 4-1BB, CD28 and CD3ζ. The current low throughput CAR screening workflows are labor-intensive and time-consuming, and lie at the basis of the limited toolbox of CAR building blocks available. High throughput screening methods facilitate simultaneous investigation of hundreds of thousands of CAR domain combinations, allowing discovery of novel domains and increasing our understanding of how they behave in the context of a CAR. Here we review the growing body of reports that employ these high throughput screening and computational methods to advance CAR design. We summarize and highlight the important differences between the different studies and discuss their limitations and future considerations for further improvements. In conclusion, while still in its infancy, high throughput screening of CARs has the capacity to vastly expand the CAR domain toolbox and improve our understanding of CAR design. This knowledge could be foundational for translating CAR therapy beyond hematological malignancies and push the frontiers in personalized medicine.
Collapse
Affiliation(s)
- Gils Roex
- Laboratory of Experimental Hematology, Vaccine and Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Wilrijk, Belgium
| | - Khloe S Gordon
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Singapore-MIT Alliance for Research and Technology Centre, Singapore
| | - Eva Lion
- Laboratory of Experimental Hematology, Vaccine and Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Wilrijk, Belgium
- Center for Cell Therapy and Regenerative Medicine, University Hospital Antwerp, Edegem, Belgium
| | - Michael E Birnbaum
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Singapore-MIT Alliance for Research and Technology Centre, Singapore
- Ragon Institute of Mass General MIT and Harvard, Cambridge, Massachusetts, USA
| | - Sébastien Anguille
- Laboratory of Experimental Hematology, Vaccine and Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Wilrijk, Belgium
- Center for Cell Therapy and Regenerative Medicine, University Hospital Antwerp, Edegem, Belgium
- Division of Hematology, University Hospital Antwerp, Edegem, Belgium
| |
Collapse
|
3
|
Afeyan AB, Wu CJ, Oliveira G. Rapid parallel reconstruction and specificity screening of hundreds of T cell receptors. Nat Protoc 2025; 20:539-586. [PMID: 39516267 PMCID: PMC11896752 DOI: 10.1038/s41596-024-01061-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 08/06/2024] [Indexed: 11/16/2024]
Abstract
The ability to screen the reactivity of T cell receptors (TCRs) is essential to understanding how antigen-specific T cells drive productive or dysfunctional immune responses during infections, cancer and autoimmune diseases. Methods to profile large numbers of TCRs are critical for characterizing immune responses sustained by diverse T cell clones. Here we provide a medium-throughput approach to reconstruct dozens to hundreds of TCRs in parallel, which can be simultaneously screened against primary human tissues and broad curated panels of antigenic targets. Using Gibson assembly and miniaturized lentiviral transduction, individual TCRs are rapidly cloned and expressed in T cells; before screening, TCR cell lines undergo combinatorial labeling with dilutions of three fluorescent dyes, which allows retrieval of the identity of individual T cell effectors when they are organized and tested in pools using flow cytometry. Upon incubation with target cells, we measure the upregulation of CD137 on T cells as a readout of TCR activation. This approach is scalable and simultaneously captures the reactivity of pooled TCR cell lines, whose activation can be deconvoluted in real time, thus providing a path for screening the reactivity of dozens of TCRs against broad panels of synthetic antigens or against cellular targets, such as human tumor cells. We applied this pipeline to systematically deconvolute the antitumoral and antiviral reactivity and antigenic specificity of TCRs from human tumor-infiltrating lymphocytes. This protocol takes ~2 months, from experimental design to data analysis, and requires standard expertise in cloning, cell culture and flow cytometry.
Collapse
Affiliation(s)
- Alexander B Afeyan
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Catherine J Wu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA.
| | - Giacomo Oliveira
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
4
|
Butler SE, Ackerman ME. Challenges and future perspectives for high-throughput chimeric antigen receptor T cell discovery. Curr Opin Biotechnol 2024; 90:103216. [PMID: 39437676 PMCID: PMC11627592 DOI: 10.1016/j.copbio.2024.103216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 08/09/2024] [Accepted: 09/23/2024] [Indexed: 10/25/2024]
Abstract
Novel chimeric antigen receptor (CAR) T cell designs are being developed to overcome challenges with tumor recognition, trafficking, on-target but off-tumor binding, cytotoxicity, persistence, and immune suppression within the tumor microenvironment. Whereas traditional CAR engineering is an iterative, hypothesis-driven process in which novel designs are rationally constructed and tested for in vivo efficacy, drawing from the fields of small-molecule and protein-based therapeutic discovery, we consider how high-throughput, functional screening technologies are beginning to be applied for the development of promising CAR candidates. We review how the development of high-throughput screening methods has the potential to streamline the CAR discovery process, ultimately improving efficiency and clinical efficacy.
Collapse
Affiliation(s)
- Savannah E Butler
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Margaret E Ackerman
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA; Thayer School of Engineering, Dartmouth College, Hanover, NH, USA.
| |
Collapse
|
5
|
Liu Z, Lei W, Wang H, Liu X, Fu R. Challenges and strategies associated with CAR-T cell therapy in blood malignancies. Exp Hematol Oncol 2024; 13:22. [PMID: 38402232 PMCID: PMC10893672 DOI: 10.1186/s40164-024-00490-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 02/19/2024] [Indexed: 02/26/2024] Open
Abstract
Cellular immunotherapy, particularly CAR-T cells, has shown potential in the improvement of outcomes in patients with refractory and recurrent malignancies of the blood. However, achieving sustainable long-term complete remission for blood cancer remains a challenge, with resistance and relapse being expected outcomes for many patients. Although many studies have attempted to clarify the mechanisms of CAR-T cell therapy failure, the mechanism remains unclear. In this article, we discuss and describe the current state of knowledge regarding these factors, which include elements that influence the CAR-T cell, cancer cells as a whole, and the microenvironment surrounding the tumor. In addition, we propose prospective approaches to overcome these obstacles in an effort to decrease recurrence rates and extend patient survival subsequent to CAR-T cell therapy.
Collapse
Affiliation(s)
- Zhaoyun Liu
- Department of Hematology, Tianjin Medical University General Hospital, 154 Anshan Street, Heping District, Tianjin, 300052, PR China.
- Tianjin Key Laboratory of Bone Marrow Failure and Malignant Hemopoietic Clone46Control, Tianjin, 300052, P. R. China.
| | - Wenhui Lei
- Department of Hematology, Tianjin Medical University General Hospital, 154 Anshan Street, Heping District, Tianjin, 300052, PR China
- Tianjin Key Laboratory of Bone Marrow Failure and Malignant Hemopoietic Clone46Control, Tianjin, 300052, P. R. China
- Department of Nephrology, Lishui Municipal Central Hospital, Lishui, Zhejiang, 323000, People's Republic of China
| | - Hao Wang
- Department of Hematology, Tianjin Medical University General Hospital, 154 Anshan Street, Heping District, Tianjin, 300052, PR China
- Tianjin Key Laboratory of Bone Marrow Failure and Malignant Hemopoietic Clone46Control, Tianjin, 300052, P. R. China
| | - Xiaohan Liu
- Department of Hematology, Tianjin Medical University General Hospital, 154 Anshan Street, Heping District, Tianjin, 300052, PR China
- Tianjin Key Laboratory of Bone Marrow Failure and Malignant Hemopoietic Clone46Control, Tianjin, 300052, P. R. China
| | - Rong Fu
- Department of Hematology, Tianjin Medical University General Hospital, 154 Anshan Street, Heping District, Tianjin, 300052, PR China.
- Tianjin Key Laboratory of Bone Marrow Failure and Malignant Hemopoietic Clone46Control, Tianjin, 300052, P. R. China.
| |
Collapse
|
6
|
Rios X, Pardias O, Morales MA, Bhattacharya P, Chen Y, Guo L, Zhang C, Di Pierro EJ, Tian G, Barragan GA, Sumazin P, Metelitsa LS. Refining chimeric antigen receptors via barcoded protein domain combination pooled screening. Mol Ther 2023; 31:3210-3224. [PMID: 37705245 PMCID: PMC10638030 DOI: 10.1016/j.ymthe.2023.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 09/06/2023] [Accepted: 09/08/2023] [Indexed: 09/15/2023] Open
Abstract
Chimeric antigen receptor (CAR)-T cells represent a promising frontier in cancer immunotherapy. However, the current process for developing new CAR constructs is time consuming and inefficient. To address this challenge and expedite the evaluation and comparison of full-length CAR designs, we have devised a novel cloning strategy. This strategy involves the sequential assembly of individual CAR domains using blunt ligation, with each domain being assigned a unique DNA barcode. Applying this method, we successfully generated 360 CAR constructs that specifically target clinically validated tumor antigens CD19 and GD2. By quantifying changes in barcode frequencies through next-generation sequencing, we characterize CARs that best mediate proliferation and expansion of transduced T cells. The screening revealed a crucial role for the hinge domain in CAR functionality, with CD8a and IgG4 hinges having opposite effects in the surface expression, cytokine production, and antitumor activity in CD19- versus GD2-based CARs. Importantly, we discovered two novel CD19-CAR architectures containing the IgG4 hinge domain that mediate superior in vivo antitumor activity compared with the construct used in Kymriah, a U.S. Food and Drug Administration (FDA)-approved therapy. This novel screening approach represents a major advance in CAR engineering, enabling accelerated development of cell-based cancer immunotherapies.
Collapse
Affiliation(s)
- Xavier Rios
- Center for Advanced Innate Cell Therapy, Texas Children's Cancer Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA; Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, USA
| | - Osmay Pardias
- Center for Advanced Innate Cell Therapy, Texas Children's Cancer Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Marc A Morales
- Center for Advanced Innate Cell Therapy, Texas Children's Cancer Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Pradyot Bhattacharya
- Center for Advanced Innate Cell Therapy, Texas Children's Cancer Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Yibin Chen
- Center for Advanced Innate Cell Therapy, Texas Children's Cancer Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Linjie Guo
- Center for Advanced Innate Cell Therapy, Texas Children's Cancer Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Chunchao Zhang
- Center for Advanced Innate Cell Therapy, Texas Children's Cancer Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Erica J Di Pierro
- Center for Advanced Innate Cell Therapy, Texas Children's Cancer Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Gengwen Tian
- Center for Advanced Innate Cell Therapy, Texas Children's Cancer Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA; Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, USA
| | - Gabriel A Barragan
- Center for Advanced Innate Cell Therapy, Texas Children's Cancer Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA; Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, USA
| | - Pavel Sumazin
- Texas Children's Cancer Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Leonid S Metelitsa
- Center for Advanced Innate Cell Therapy, Texas Children's Cancer Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA; Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, USA; Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
7
|
Castellanos-Rueda R, Di Roberto RB, Bieberich F, Schlatter FS, Palianina D, Nguyen OTP, Kapetanovic E, Läubli H, Hierlemann A, Khanna N, Reddy ST. speedingCARs: accelerating the engineering of CAR T cells by signaling domain shuffling and single-cell sequencing. Nat Commun 2022; 13:6555. [PMID: 36323661 PMCID: PMC9630321 DOI: 10.1038/s41467-022-34141-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 10/14/2022] [Indexed: 11/05/2022] Open
Abstract
Chimeric antigen receptors (CARs) consist of an antigen-binding region fused to intracellular signaling domains, enabling customized T cell responses against targets. Despite their major role in T cell activation, effector function and persistence, only a small set of immune signaling domains have been explored. Here we present speedingCARs, an integrated method for engineering CAR T cells via signaling domain shuffling and pooled functional screening. Leveraging the inherent modularity of natural signaling domains, we generate a library of 180 unique CAR variants genomically integrated into primary human T cells by CRISPR-Cas9. In vitro tumor cell co-culture, followed by single-cell RNA sequencing (scRNA-seq) and single-cell CAR sequencing (scCAR-seq), enables high-throughput screening for identifying several variants with tumor killing properties and T cell phenotypes markedly different from standard CARs. Mapping of the CAR scRNA-seq data onto that of tumor infiltrating lymphocytes further helps guide the selection of variants. These results thus help expand the CAR signaling domain combination space, and supports speedingCARs as a tool for the engineering of CARs for potential therapeutic development.
Collapse
Affiliation(s)
- Rocío Castellanos-Rueda
- Department of Biosystems Science and Engineering, ETH Zürich, 4058, Basel, Switzerland
- Life Science Zurich Graduate School, ETH Zürich, University of Zurich, 8057, Zürich, Switzerland
| | - Raphaël B Di Roberto
- Department of Biosystems Science and Engineering, ETH Zürich, 4058, Basel, Switzerland
| | - Florian Bieberich
- Department of Biosystems Science and Engineering, ETH Zürich, 4058, Basel, Switzerland
- Life Science Zurich Graduate School, ETH Zürich, University of Zurich, 8057, Zürich, Switzerland
| | - Fabrice S Schlatter
- Department of Biosystems Science and Engineering, ETH Zürich, 4058, Basel, Switzerland
| | - Darya Palianina
- Department of Biomedicine, University of Basel, 4031, Basel, Switzerland
| | - Oanh T P Nguyen
- Department of Biosystems Science and Engineering, ETH Zürich, 4058, Basel, Switzerland
| | - Edo Kapetanovic
- Department of Biosystems Science and Engineering, ETH Zürich, 4058, Basel, Switzerland
| | - Heinz Läubli
- Department of Biomedicine, University of Basel, 4031, Basel, Switzerland
| | - Andreas Hierlemann
- Department of Biosystems Science and Engineering, ETH Zürich, 4058, Basel, Switzerland
| | - Nina Khanna
- Department of Biomedicine, University of Basel, 4031, Basel, Switzerland
| | - Sai T Reddy
- Department of Biosystems Science and Engineering, ETH Zürich, 4058, Basel, Switzerland.
| |
Collapse
|
8
|
Gordon KS, Kyung T, Perez CR, Holec PV, Ramos A, Zhang AQ, Agarwal Y, Liu Y, Koch CE, Starchenko A, Joughin BA, Lauffenburger DA, Irvine DJ, Hemann MT, Birnbaum ME. Screening for CD19-specific chimaeric antigen receptors with enhanced signalling via a barcoded library of intracellular domains. Nat Biomed Eng 2022; 6:855-866. [PMID: 35710755 PMCID: PMC9389442 DOI: 10.1038/s41551-022-00896-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 05/03/2022] [Indexed: 02/06/2023]
Abstract
The immunostimulatory intracellular domains (ICDs) of chimaeric antigen receptors (CARs) are essential for converting antigen recognition into antitumoural function. Although there are many possible combinations of ICDs, almost all current CARs rely on combinations of CD3𝛇, CD28 and 4-1BB. Here we show that a barcoded library of 700,000 unique CD19-specific CARs with diverse ICDs cloned into lentiviral vectors and transduced into Jurkat T cells can be screened at high throughput via cell sorting and next-generation sequencing to optimize CAR signalling for antitumoural functions. By using this screening approach, we identified CARs with new ICD combinations that, compared with clinically available CARs, endowed human primary T cells with comparable tumour control in mice and with improved proliferation, persistence, exhaustion and cytotoxicity after tumour rechallenge in vitro. The screening strategy can be adapted to other disease models, cell types and selection conditions, and could be used to improve adoptive cell therapies and to expand their utility to new disease indications.
Collapse
Affiliation(s)
- Khloe S Gordon
- Koch Institute for Integrative Cancer Research, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Singapore-MIT Alliance for Research and Technology Centre, Singapore, Singapore
| | - Taeyoon Kyung
- Koch Institute for Integrative Cancer Research, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Caleb R Perez
- Koch Institute for Integrative Cancer Research, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Patrick V Holec
- Koch Institute for Integrative Cancer Research, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Azucena Ramos
- Koch Institute for Integrative Cancer Research, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Angela Q Zhang
- Koch Institute for Integrative Cancer Research, Cambridge, MA, USA
- Department of Health, Science, and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Yash Agarwal
- Koch Institute for Integrative Cancer Research, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Yunpeng Liu
- Koch Institute for Integrative Cancer Research, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Catherine E Koch
- Koch Institute for Integrative Cancer Research, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Alina Starchenko
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Brian A Joughin
- Koch Institute for Integrative Cancer Research, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Douglas A Lauffenburger
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Ragon Institute of MIT, MGH and Harvard, Cambridge, MA, USA
| | - Darrell J Irvine
- Koch Institute for Integrative Cancer Research, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Ragon Institute of MIT, MGH and Harvard, Cambridge, MA, USA
| | - Michael T Hemann
- Koch Institute for Integrative Cancer Research, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Michael E Birnbaum
- Koch Institute for Integrative Cancer Research, Cambridge, MA, USA.
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Singapore-MIT Alliance for Research and Technology Centre, Singapore, Singapore.
- Ragon Institute of MIT, MGH and Harvard, Cambridge, MA, USA.
| |
Collapse
|
9
|
Pan K, Farrukh H, Chittepu VCSR, Xu H, Pan CX, Zhu Z. CAR race to cancer immunotherapy: from CAR T, CAR NK to CAR macrophage therapy. J Exp Clin Cancer Res 2022; 41:119. [PMID: 35361234 PMCID: PMC8969382 DOI: 10.1186/s13046-022-02327-z] [Citation(s) in RCA: 361] [Impact Index Per Article: 120.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 12/11/2021] [Indexed: 12/13/2022] Open
Abstract
Adoptive cell therapy with chimeric antigen receptor (CAR) immunotherapy has made tremendous progress with five CAR T therapies approved by the US Food and Drug Administration for hematological malignancies. However, CAR immunotherapy in solid tumors lags significantly behind. Some of the major hurdles for CAR immunotherapy in solid tumors include CAR T cell manufacturing, lack of tumor-specific antigens, inefficient CAR T cell trafficking and infiltration into tumor sites, immunosuppressive tumor microenvironment (TME), therapy-associated toxicity, and antigen escape. CAR Natural Killer (NK) cells have several advantages over CAR T cells as the NK cells can be manufactured from pre-existing cell lines or allogeneic NK cells with unmatched major histocompatibility complex (MHC); can kill cancer cells through both CAR-dependent and CAR-independent pathways; and have less toxicity, especially cytokine-release syndrome and neurotoxicity. At least one clinical trial showed the efficacy and tolerability of CAR NK cell therapy. Macrophages can efficiently infiltrate into tumors, are major immune regulators and abundantly present in TME. The immunosuppressive M2 macrophages are at least as efficient as the proinflammatory M1 macrophages in phagocytosis of target cells; and M2 macrophages can be induced to differentiate to the M1 phenotype. Consequently, there is significant interest in developing CAR macrophages for cancer immunotherapy to overcome some major hurdles associated with CAR T/NK therapy, especially in solid tumors. Nevertheless, both CAR NK and CAR macrophages have their own limitations. This comprehensive review article will discuss the current status and the major hurdles associated with CAR T and CAR NK therapy, followed by the structure and cutting-edge research of developing CAR macrophages as cancer-specific phagocytes, antigen presenters, immunostimulators, and TME modifiers.
Collapse
Affiliation(s)
- Kevin Pan
- Vanderbilt University, 2201 West End Ave, Nashville, TN, 37235, USA
| | - Hizra Farrukh
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Huihong Xu
- Boston University, Boston, MA, USA.,VA Boston Healthcare System, West Roxbury, MA, USA
| | - Chong-Xian Pan
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA. .,VA Boston Healthcare System, West Roxbury, MA, USA. .,Harvard Medical School, 1400 VFW Parkway Building 3, Room 2B-110, West Roxbury, MA, 02132, USA.
| | - Zheng Zhu
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA. .,Harvard Medical School, 1400 VFW Parkway Building 3, Room 2B-110, West Roxbury, MA, 02132, USA.
| |
Collapse
|
10
|
Genetic Modification of T Cells for the Immunotherapy of Cancer. Vaccines (Basel) 2022; 10:vaccines10030457. [PMID: 35335089 PMCID: PMC8949949 DOI: 10.3390/vaccines10030457] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/05/2022] [Accepted: 03/11/2022] [Indexed: 02/01/2023] Open
Abstract
Immunotherapy is a beneficial treatment approach for multiple cancers, however, current therapies are effective only in a small subset of patients. Adoptive cell transfer (ACT) is a facet of immunotherapy where T cells targeting the tumor cells are transferred to the patient with several primary forms, utilizing unmodified or modified T cells: tumor-infiltrating lymphocytes (TIL), genetically modified T cell receptor transduced T cells, and chimeric antigen receptor (CAR) transduced T cells. Many clinical trials are underway investigating the efficacy and safety of these different subsets of ACT, as well as trials that combine one of these subsets with another type of immunotherapy. The main challenges existing with ACT are improving clinical responses and decreasing adverse events. Current research focuses on identifying novel tumor targeting T cell receptors, improving safety and efficacy, and investigating ACT in combination with other immunotherapies.
Collapse
|
11
|
The Implementation of TNFRSF Co-Stimulatory Domains in CAR-T Cells for Optimal Functional Activity. Cancers (Basel) 2022; 14:cancers14020299. [PMID: 35053463 PMCID: PMC8773791 DOI: 10.3390/cancers14020299] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/04/2022] [Accepted: 01/05/2022] [Indexed: 01/31/2023] Open
Abstract
The Tumor Necrosis Factor Receptor Superfamily (TNFRSF) is a large and important immunoregulatory family that provides crucial co-stimulatory signals to many if not all immune effector cells. Each co-stimulatory TNFRSF member has a distinct expression profile and a unique functional impact on various types of cells and at different stages of the immune response. Correspondingly, exploiting TNFRSF-mediated signaling for cancer immunotherapy has been a major field of interest, with various therapeutic TNFRSF-exploiting anti-cancer approaches such as 4-1BB and CD27 agonistic antibodies being evaluated (pre)clinically. A further application of TNFRSF signaling is the incorporation of the intracellular co-stimulatory domain of a TNFRSF into so-called Chimeric Antigen Receptor (CAR) constructs for CAR-T cell therapy, the most prominent example of which is the 4-1BB co-stimulatory domain included in the clinically approved product Kymriah. In fact, CAR-T cell function can be clearly influenced by the unique co-stimulatory features of members of the TNFRSF. Here, we review a select group of TNFRSF members (4-1BB, OX40, CD27, CD40, HVEM, and GITR) that have gained prominence as co-stimulatory domains in CAR-T cell therapy and illustrate the unique features that each confers to CAR-T cells.
Collapse
|
12
|
DAP10 Predicted the Outcome of Pediatric B-Cell Acute Lymphoblastic Leukemia and Was Associated with the T-Cell Exhaustion. JOURNAL OF ONCOLOGY 2021; 2021:4824868. [PMID: 34868314 PMCID: PMC8639274 DOI: 10.1155/2021/4824868] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 10/27/2021] [Indexed: 01/30/2023]
Abstract
B-cell acute lymphoblastic leukemia is the most common malignant tumor in children. About 10–15% of patients will relapse with a 5-year OS of 57.5% for the past 20 years. As tumor microenvironment plays an important role in the disease process, many types of immunotherapy are approached. New immunotherapies including CAR-T cells have been developed for refractory B-ALL treatment. However, CAR-T treatment faces several problems, including loss of the target antigen and in vivo T-cell persistence. Here, we analyzed the tumor microenvironment of pediatric B-ALL patients in TARGET database. Using Cox analysis and PPI network, we finally sorted out the DAP10 gene. We found that DAP10 was hardly expressed in leukemic B cells. DAP10 was downregulated in B-ALL compared with normal individuals, and low expression level of DAP10 predicted poor survival. Furthermore, we found the tumor microenvironment was different in DAP10 high and low expression children. The CD8+ T cells might be hard to activate and more likely to suffer from exhaustion in DAP10 lowly expressed children. In conclusion, our results showed that DAP10 was a well biomarker to indicate the prognosis and tumor microenvironment in pediatric B-ALL. The treatment strategy of immunotherapy for the leukemic children with DAP10 lowly expressed should be adjusted if needed.
Collapse
|
13
|
Xiao BF, Zhang JT, Zhu YG, Cui XR, Lu ZM, Yu BT, Wu N. Chimeric Antigen Receptor T-Cell Therapy in Lung Cancer: Potential and Challenges. Front Immunol 2021; 12:782775. [PMID: 34790207 PMCID: PMC8591168 DOI: 10.3389/fimmu.2021.782775] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 10/13/2021] [Indexed: 12/21/2022] Open
Abstract
Chimeric antigen receptor T (CAR-T) cell therapy has exhibited a substantial clinical response in hematological malignancies, including B-cell leukemia, lymphoma, and multiple myeloma. Therefore, the feasibility of using CAR-T cells to treat solid tumors is actively evaluated. Currently, multiple basic research projects and clinical trials are being conducted to treat lung cancer with CAR-T cell therapy. Although numerous advances in CAR-T cell therapy have been made in hematological tumors, the technology still entails considerable challenges in treating lung cancer, such as on−target, of−tumor toxicity, paucity of tumor-specific antigen targets, T cell exhaustion in the tumor microenvironment, and low infiltration level of immune cells into solid tumor niches, which are even more complicated than their application in hematological tumors. Thus, progress in the scientific understanding of tumor immunology and improvements in the manufacture of cell products are advancing the clinical translation of these important cellular immunotherapies. This review focused on the latest research progress of CAR-T cell therapy in lung cancer treatment and for the first time, demonstrated the underlying challenges and future engineering strategies for the clinical application of CAR-T cell therapy against lung cancer.
Collapse
Affiliation(s)
- Bu-Fan Xiao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Thoracic Surgery II, Peking University Cancer Hospital & Institute, Beijing, China
| | - Jing-Tao Zhang
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yu-Ge Zhu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Thoracic Surgery II, Peking University Cancer Hospital & Institute, Beijing, China
| | - Xin-Run Cui
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Thoracic Surgery II, Peking University Cancer Hospital & Institute, Beijing, China
| | - Zhe-Ming Lu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Biochemistry and Molecular Biology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Ben-Tong Yu
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Nan Wu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Thoracic Surgery II, Peking University Cancer Hospital & Institute, Beijing, China
| |
Collapse
|
14
|
Hosseini M, Habibi Z, Hosseini N, Abdoli S, Rezaei N. Preclinical studies of chimeric antigen receptor-modified natural killer cells in cancer immunotherapy: a review. Expert Opin Biol Ther 2021; 22:349-366. [PMID: 34541989 DOI: 10.1080/14712598.2021.1983539] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
INTRODUCTION As one of the most efficacious methods of cancer immunotherapy, chimeric antigen receptor-modified immune cells have recently drawn enormous attention. After the great success achieved with CAR-T-cells in cancer treatment both in preclinical setting and in the clinic, other types of immune cells, including natural killer (NK)-cells and macrophages, have been evaluated for their anti-cancer effects along with their potential superiority against CAR-T-cells, especially in terms of safety. First introduced by Tran et al. almost 26 years ago, CAR-NK-cells are now being considered as efficient immunotherapeutic modalities in various types of cancers, not only in preclinical setting but also in numerous phase I and II clinical studies. AREAS COVERED In this review, we aim to provide a comprehensive survey of the preclinical studies on CAR-NK-cells' development, with an evolutional approach on CAR structures and their associated signaling moieties. Current NK-cell sources and modes of gene transfer are also reviewed. EXPERT OPINION CAR-NK-cells have appeared as safe and effective immunotherapeutic tools in preclinical settings; however, designing CAR structures with an eye on their specific biology, along with choosing the optimal cell source and gene transfer method require further investigation to support clinical studies.
Collapse
Affiliation(s)
- Mina Hosseini
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,Department of Pharmaceutical Biotechnology, School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Habibi
- School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Narges Hosseini
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Sina Abdoli
- School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Nima Rezaei
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,Research Center for Immunodeficiencies (RCID), Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
15
|
Harrison AJ, Du X, von Scheidt B, Kershaw MH, Slaney CY. Enhancing co-stimulation of CAR T cells to improve treatment outcomes in solid cancers. IMMUNOTHERAPY ADVANCES 2021; 1:ltab016. [PMID: 35919743 PMCID: PMC9327106 DOI: 10.1093/immadv/ltab016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/22/2021] [Accepted: 07/30/2021] [Indexed: 11/12/2022] Open
Abstract
Co-stimulation is a fundamental component of T cell biology and plays a key role in determining the quality of T cell proliferation, differentiation, and memory formation. T cell-based immunotherapies, such as chimeric antigen receptor (CAR) T cell immunotherapy, are no exception. Solid tumours have largely been refractory to CAR T cell therapy owing to an immunosuppressive microenvironment which limits CAR T cell persistence and effector function. In order to eradicate solid cancers, increasingly sophisticated strategies are being developed to deliver these vital co-stimulatory signals to CAR T cells, often specifically within the tumour microenvironment. These include designing novel co-stimulatory domains within the CAR or other synthetic receptors, arming CAR T cells with cytokines or using CAR T cells in combination with agonist antibodies. This review discusses the evolving role of co-stimulation in CAR T cell therapies and the strategies employed to target co-stimulatory pathways in CAR T cells, with a view to improve responses in solid tumours.
Collapse
Affiliation(s)
- Aaron J Harrison
- Cancer Immunology Program, Peter MacCallum Cancer Center, Melbourne, Victoria, Australia
| | - Xin Du
- Cancer Immunology Program, Peter MacCallum Cancer Center, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, Australia
| | - Bianca von Scheidt
- Cancer Immunology Program, Peter MacCallum Cancer Center, Melbourne, Victoria, Australia
| | - Michael H Kershaw
- Cancer Immunology Program, Peter MacCallum Cancer Center, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, Australia
| | - Clare Y Slaney
- Cancer Immunology Program, Peter MacCallum Cancer Center, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
16
|
Sugawara S, Manickam C, Reeves K. TRIGGERED: could refocused cell signaling be key to natural killer cell-based HIV immunotherapeutics? AIDS 2021; 35:165-176. [PMID: 33116071 PMCID: PMC7775286 DOI: 10.1097/qad.0000000000002743] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Natural killer (NK) cells are one of the critical innate immune effector cells that directly kill tumors and virus-infected cells, and modulate other immune cells including dendritic cells, CD4+ and CD8+ T cells. Signals from activating and inhibitory surface receptors orchestrate the regulatory and cytotoxic functions of NK cells. Although a number of surface receptors are involved, multiple signaling molecules are shared so that NK cell responses are synergistically regulated. Many pathogens and tumors evade NK cell responses by targeting NK cell signaling. Particularly in HIV/simian immunodeficiency virus (SIV) infection, the NK cell repertoire is diminished by changes in subsets of NK cells, expression of activating and inhibitory receptors, and intracellular signaling molecules. However, in-depth studies on intracellular signaling in NK cells in HIV/SIV infections remain limited. Checkpoint blockade and chimeric antigen receptor (CAR)-NK cells have demonstrated enhanced NK cell activities against tumors and viral infections. In addition, targeting intracellular signaling molecules by small molecules could also improve NK cell responses towards HIV/SIV infection in vivo. Therefore, further understanding of NK cell signaling including identification of key signaling molecules is crucial to maximize the efficacy of NK cell-based treatments. Herein, we review the current state of the literature and outline potential future avenues where optimized NK cells could be utilized in HIV-1 cure strategies and other immunotherapeutics in PLWH.
Collapse
Affiliation(s)
- Sho Sugawara
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Cordelia Manickam
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Keith Reeves
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Ragon Institute of Massachusetts General Hospital, MIT, and Harvard, Cambridge, MA
| |
Collapse
|
17
|
Zhao H, Wang Y, Yin ETS, Zhao K, Hu Y, Huang H. A giant step forward: chimeric antigen receptor T-cell therapy for lymphoma. Front Med 2020; 14:711-725. [DOI: 10.1007/s11684-020-0808-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 06/03/2020] [Indexed: 12/17/2022]
Abstract
AbstractThe combination of the immunotherapy (i.e., the use of monoclonal antibodies) and the conventional chemotherapy increases the long-term survival of patients with lymphoma. However, for patients with relapsed or treatment-resistant lymphoma, a novel treatment approach is urgently needed. Chimeric antigen receptor T (CAR-T) cells were introduced as a treatment for these patients. Based on recent clinical data, approximately 50% of patients with relapsed or refractory B-cell lymphoma achieved complete remission after receiving the CD19 CAR-T cell therapy. Moreover, clinical data revealed that some patients remained in remission for more than two years after the CAR-T cell therapy. Other than the CD19-targeted CAR-T, the novel target antigens, such as CD20, CD22, CD30, and CD37, which were greatly expressed on lymphoma cells, were studied under preclinical and clinical evaluations for use in the treatment of lymphoma. Nonetheless, the CAR-T therapy was usually associated with potentially lethal adverse effects, such as the cytokine release syndrome and the neurotoxicity. Therefore, optimizing the structure of CAR, creating new drugs, and combining CAR-T cell therapy with stem cell transplantation are potential solutions to increase the effectiveness of treatment and reduce the toxicity in patients with lymphoma after the CAR-T cell therapy.
Collapse
|
18
|
Zhang B, Napoleon JV, Liu X, Luo Q, Srinivasarao M, Low PS. Sensitive manipulation of CAR T cell activity using a chimeric endocytosing receptor. J Immunother Cancer 2020; 8:jitc-2020-000756. [PMID: 33127654 PMCID: PMC7604868 DOI: 10.1136/jitc-2020-000756] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/18/2020] [Indexed: 01/22/2023] Open
Abstract
Background Most adoptive cell therapies (ACTs) suffer from an inability to control the therapeutic cell’s behavior following its transplantation into a patient. Thus, efforts to inhibit, activate, differentiate or terminate an ACT after patient reinfusion can be futile, because the required drug adversely affects other cells in the patient. Methods We describe here a two domain fusion receptor composed of a ligand-binding domain linked to a recycling domain that allows constitutive internalization and trafficking of the fusion receptor back to the cell surface. Because the ligand-binding domain is designed to bind a ligand not normally present in humans, any drug conjugated to this ligand will bind and endocytose selectively into the ACT. Results In two embodiments of our strategy, we fuse the chronically endocytosing domain of human folate receptor alpha to either a murine scFv that binds fluorescein or human FK506 binding protein that binds FK506, thereby creating a fusion receptor composed of largely human components. We then create the ligand-targeted drug by conjugating any desired drug to either fluorescein or FK506, thereby generating a ligand-drug conjugate with ~10-9 M affinity for its fusion receptor. Using these tools, we demonstrate that CAR T cell activities can be sensitively tuned down or turned off in vitro as well as tightly controlled following their reinfusion into tumor-bearing mice. Conclusions We suggest this ‘chimeric endocytosing receptor’ can be exploited to manipulate not only CAR T cells but other ACTs following their reinfusion into patients. With efforts to develop ACTs to treat diseases including diabetes, heart failure, osteoarthritis, cancer and sickle cell anemia accelerating, we argue an ability to manipulate ACT activities postinfusion will be important.
Collapse
Affiliation(s)
- Boning Zhang
- Chemistry, Purdue University System, West Lafayette, Indiana, USA
| | | | - Xin Liu
- Chemistry, Purdue University System, West Lafayette, Indiana, USA
| | - Qian Luo
- Chemistry, Purdue University System, West Lafayette, Indiana, USA
| | | | - Philip S Low
- Chemistry, Purdue University System, West Lafayette, Indiana, USA
| |
Collapse
|
19
|
Raes L, Stremersch S, Fraire JC, Brans T, Goetgeluk G, De Munter S, Van Hoecke L, Verbeke R, Van Hoeck J, Xiong R, Saelens X, Vandekerckhove B, De Smedt S, Raemdonck K, Braeckmans K. Intracellular Delivery of mRNA in Adherent and Suspension Cells by Vapor Nanobubble Photoporation. NANO-MICRO LETTERS 2020; 12:185. [PMID: 34138203 PMCID: PMC7770675 DOI: 10.1007/s40820-020-00523-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 08/22/2020] [Indexed: 05/23/2023]
Abstract
Efficient and safe cell engineering by transfection of nucleic acids remains one of the long-standing hurdles for fundamental biomedical research and many new therapeutic applications, such as CAR T cell-based therapies. mRNA has recently gained increasing attention as a more safe and versatile alternative tool over viral- or DNA transposon-based approaches for the generation of adoptive T cells. However, limitations associated with existing nonviral mRNA delivery approaches hamper progress on genetic engineering of these hard-to-transfect immune cells. In this study, we demonstrate that gold nanoparticle-mediated vapor nanobubble (VNB) photoporation is a promising upcoming physical transfection method capable of delivering mRNA in both adherent and suspension cells. Initial transfection experiments on HeLa cells showed the importance of transfection buffer and cargo concentration, while the technology was furthermore shown to be effective for mRNA delivery in Jurkat T cells with transfection efficiencies up to 45%. Importantly, compared to electroporation, which is the reference technology for nonviral transfection of T cells, a fivefold increase in the number of transfected viable Jurkat T cells was observed. Altogether, our results point toward the use of VNB photoporation as a more gentle and efficient technology for intracellular mRNA delivery in adherent and suspension cells, with promising potential for the future engineering of cells in therapeutic and fundamental research applications.
Collapse
Affiliation(s)
- Laurens Raes
- Laboratory of General Biochemistry & Physical Pharmacy, Ghent University, 9000, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), 9000, Ghent, Belgium
| | - Stephan Stremersch
- Laboratory of General Biochemistry & Physical Pharmacy, Ghent University, 9000, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), 9000, Ghent, Belgium
| | - Juan C Fraire
- Laboratory of General Biochemistry & Physical Pharmacy, Ghent University, 9000, Ghent, Belgium
| | - Toon Brans
- Laboratory of General Biochemistry & Physical Pharmacy, Ghent University, 9000, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), 9000, Ghent, Belgium
| | - Glenn Goetgeluk
- Cancer Research Institute Ghent (CRIG), 9000, Ghent, Belgium
- Department of Diagnostic Sciences, Ghent University, 9000, Ghent, Belgium
| | - Stijn De Munter
- Cancer Research Institute Ghent (CRIG), 9000, Ghent, Belgium
- Department of Diagnostic Sciences, Ghent University, 9000, Ghent, Belgium
| | - Lien Van Hoecke
- Cancer Research Institute Ghent (CRIG), 9000, Ghent, Belgium
- VIB-UGent Center for Medical Biotechnology, 9052, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, 9000, Ghent, Belgium
| | - Rein Verbeke
- Laboratory of General Biochemistry & Physical Pharmacy, Ghent University, 9000, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), 9000, Ghent, Belgium
| | - Jelter Van Hoeck
- Laboratory of General Biochemistry & Physical Pharmacy, Ghent University, 9000, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), 9000, Ghent, Belgium
| | - Ranhua Xiong
- Laboratory of General Biochemistry & Physical Pharmacy, Ghent University, 9000, Ghent, Belgium
| | - Xavier Saelens
- VIB-UGent Center for Medical Biotechnology, 9052, Ghent, Belgium
- Department of Biochemistry and Microbiology, Ghent University, 9000, Ghent, Belgium
| | - Bart Vandekerckhove
- Cancer Research Institute Ghent (CRIG), 9000, Ghent, Belgium
- Department of Diagnostic Sciences, Ghent University, 9000, Ghent, Belgium
| | - Stefaan De Smedt
- Laboratory of General Biochemistry & Physical Pharmacy, Ghent University, 9000, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), 9000, Ghent, Belgium
| | - Koen Raemdonck
- Laboratory of General Biochemistry & Physical Pharmacy, Ghent University, 9000, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), 9000, Ghent, Belgium
| | - Kevin Braeckmans
- Laboratory of General Biochemistry & Physical Pharmacy, Ghent University, 9000, Ghent, Belgium.
- Cancer Research Institute Ghent (CRIG), 9000, Ghent, Belgium.
| |
Collapse
|
20
|
Harris E, Elmer JJ. Optimization of electroporation and other non-viral gene delivery strategies for T cells. Biotechnol Prog 2020; 37:e3066. [PMID: 32808434 DOI: 10.1002/btpr.3066] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 08/11/2020] [Accepted: 08/13/2020] [Indexed: 12/21/2022]
Abstract
CAR-T therapy is a particularly effective treatment for some types of cancer that uses retroviruses to deliver the gene for a chimeric antigen receptor (CAR) to a patient's T cells ex vivo. The CAR enables the T cells to bind and eradicate cells with a specific surface marker (e.g., CD19+ B cells) after they are transfused back into the patient. This treatment was proven to be particularly effective in treating non-Hodgkin's lymphoma (NHL) and acute lymphoblastic leukemia (ALL), but the current CAR-T cell manufacturing process has a few significant drawbacks. For example, while lentiviral and gammaretroviral transduction are both relatively effective, the process of producing viral vectors is time-consuming and costly. Additionally, patients must undergo follow up appointments for several years to monitor them for any unanticipated side effects associated with the virus. Therefore, several studies have endeavored to find alternative non-viral gene delivery methods that are less expensive, more precise, simple, and safe. This review focuses on the current state of the most promising non-viral gene delivery techniques, including electroporation and transfection with cationic polymers or lipids.
Collapse
Affiliation(s)
- Emily Harris
- Villanova University, Department of Chemical & Biological Engineering, Villanova, Pennsylvania, USA
| | - Jacob J Elmer
- Villanova University, Department of Chemical & Biological Engineering, Villanova, Pennsylvania, USA
| |
Collapse
|
21
|
Lai J, Mardiana S, House IG, Sek K, Henderson MA, Giuffrida L, Chen AXY, Todd KL, Petley EV, Chan JD, Carrington EM, Lew AM, Solomon BJ, Trapani JA, Kedzierska K, Evrard M, Vervoort SJ, Waithman J, Darcy PK, Beavis PA. Adoptive cellular therapy with T cells expressing the dendritic cell growth factor Flt3L drives epitope spreading and antitumor immunity. Nat Immunol 2020; 21:914-926. [PMID: 32424363 DOI: 10.1038/s41590-020-0676-7] [Citation(s) in RCA: 148] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 03/31/2020] [Indexed: 12/21/2022]
Abstract
Adoptive cell therapies using genetically engineered T cell receptor or chimeric antigen receptor T cells are emerging forms of immunotherapy that redirect T cells to specifically target cancer. However, tumor antigen heterogeneity remains a key challenge limiting their efficacy against solid cancers. Here, we engineered T cells to secrete the dendritic cell (DC) growth factor Fms-like tyrosine kinase 3 ligand (Flt3L). Flt3L-secreting T cells expanded intratumoral conventional type 1 DCs and substantially increased host DC and T cell activation when combined with immune agonists poly (I:C) and anti-4-1BB. Importantly, combination therapy led to enhanced inhibition of tumor growth and the induction of epitope spreading towards antigens beyond those recognized by adoptively transferred T cells in solid tumor models of T cell receptor and chimeric antigen receptor T cell therapy. Our data suggest that augmenting endogenous DCs is a promising strategy to overcome the clinical problem of antigen-negative tumor escape following adoptive cell therapy.
Collapse
Affiliation(s)
- Junyun Lai
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, Australia
| | - Sherly Mardiana
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, Australia
| | - Imran G House
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, Australia
| | - Kevin Sek
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, Australia
| | - Melissa A Henderson
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, Australia
| | - Lauren Giuffrida
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, Australia
| | - Amanda X Y Chen
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, Australia
| | - Kirsten L Todd
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, Australia
| | - Emma V Petley
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, Australia
| | - Jack D Chan
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, Australia
| | - Emma M Carrington
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia
| | - Andrew M Lew
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia
| | - Benjamin J Solomon
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, Australia
| | - Joseph A Trapani
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, Australia
| | - Katherine Kedzierska
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Maximilien Evrard
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Stephin J Vervoort
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, Australia
| | - Jason Waithman
- Telethon Kids Institute, University of Western Australia, Perth, Western Australia, Australia
| | - Phillip K Darcy
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia. .,Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, Australia. .,Department of Pathology, University of Melbourne, Parkville, Victoria, Australia. .,Department of Immunology, Monash University, Clayton, Victoria, Australia.
| | - Paul A Beavis
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia. .,Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, Australia.
| |
Collapse
|
22
|
Sievers NM, Dörrie J, Schaft N. CARs: Beyond T Cells and T Cell-Derived Signaling Domains. Int J Mol Sci 2020; 21:E3525. [PMID: 32429316 PMCID: PMC7279007 DOI: 10.3390/ijms21103525] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/08/2020] [Accepted: 05/13/2020] [Indexed: 02/06/2023] Open
Abstract
When optimizing chimeric antigen receptor (CAR) therapy in terms of efficacy, safety, and broadening its application to new malignancies, there are two main clusters of topics to be addressed: the CAR design and the choice of transfected cells. The former focuses on the CAR construct itself. The utilized transmembrane and intracellular domains determine the signaling pathways induced by antigen binding and thereby the cell-specific effector functions triggered. The main part of this review summarizes our understanding of common signaling domains employed in CARs, their interactions among another, and their effects on different cell types. It will, moreover, highlight several less common extracellular and intracellular domains that might permit unique new opportunities. Different antibody-based extracellular antigen-binding domains have been pursued and optimized to strike a balance between specificity, affinity, and toxicity, but these have been reviewed elsewhere. The second cluster of topics is about the cellular vessels expressing the CAR. It is essential to understand the specific attributes of each cell type influencing anti-tumor efficacy, persistence, and safety, and how CAR cells crosstalk with each other and bystander cells. The first part of this review focuses on the progress achieved in adopting different leukocytes for CAR therapy.
Collapse
Affiliation(s)
- Nico M. Sievers
- Department of Dermatology, Universtitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Hartmannstraße 14, 91052 Erlangen, Germany; (N.M.S.); (J.D.)
- Comprehensive Cancer Center Erlangen European Metropolitan Area of Nuremberg (CCC ER-EMN), Östliche Stadtmauerstraße 30, 91054 Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Ulmenweg 18, 91054 Erlangen, Germany
| | - Jan Dörrie
- Department of Dermatology, Universtitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Hartmannstraße 14, 91052 Erlangen, Germany; (N.M.S.); (J.D.)
- Comprehensive Cancer Center Erlangen European Metropolitan Area of Nuremberg (CCC ER-EMN), Östliche Stadtmauerstraße 30, 91054 Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Ulmenweg 18, 91054 Erlangen, Germany
| | - Niels Schaft
- Department of Dermatology, Universtitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Hartmannstraße 14, 91052 Erlangen, Germany; (N.M.S.); (J.D.)
- Comprehensive Cancer Center Erlangen European Metropolitan Area of Nuremberg (CCC ER-EMN), Östliche Stadtmauerstraße 30, 91054 Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Ulmenweg 18, 91054 Erlangen, Germany
| |
Collapse
|
23
|
Bloemberg D, Nguyen T, MacLean S, Zafer A, Gadoury C, Gurnani K, Chattopadhyay A, Ash J, Lippens J, Harcus D, Pagé M, Fortin A, Pon RA, Gilbert R, Marcil A, Weeratna RD, McComb S. A High-Throughput Method for Characterizing Novel Chimeric Antigen Receptors in Jurkat Cells. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2020; 16:238-254. [PMID: 32083149 PMCID: PMC7021643 DOI: 10.1016/j.omtm.2020.01.012] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 01/27/2020] [Indexed: 01/18/2023]
Abstract
Chimeric antigen receptor (CAR) development involves extensive empirical characterization of antigen-binding domain (ABD)/CAR constructs for clinical suitability. Here, we present a cost-efficient and rapid method for evaluating CARs in human Jurkat T cells. Using a modular CAR plasmid, a highly efficient ABD cloning strategy, plasmid electroporation, short-term co-culture, and flow-cytometric detection of CD69, this assay (referred to as CAR-J) evaluates sensitivity and specificity for ABDs. Assessing 16 novel anti-CD22 single-chain variable fragments derived from mouse monoclonal antibodies, CAR-J stratified constructs by response magnitude to CD22-expressing target cells. We also characterized 5 novel anti-EGFRvIII CARs for preclinical development, identifying candidates with varying tonic and target-specific activation characteristics. When evaluated in primary human T cells, tonic/auto-activating (without target cells) EGFRvIII-CARs induced target-independent proliferation, differentiation toward an effector phenotype, elevated activity against EGFRvIII-negative cells, and progressive loss of target-specific response upon in vitro re-challenge. These EGFRvIII CAR-T cells also showed anti-tumor activity in xenografted mice. In summary, CAR-J represents a straightforward method for high-throughput assessment of CAR constructs as genuine cell-associated antigen receptors that is particularly useful for generating large specificity datasets as well as potential downstream CAR optimization.
Collapse
Affiliation(s)
- Darin Bloemberg
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, ON K1A 0R6, Canada
| | - Tina Nguyen
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, ON K1A 0R6, Canada
| | - Susanne MacLean
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, ON K1A 0R6, Canada
| | - Ahmed Zafer
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, ON K1A 0R6, Canada
| | - Christine Gadoury
- Human Health Therapeutics Research Centre, National Research Council Canada, Montréal, QC H4P 2R2, Canada
| | - Komal Gurnani
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, ON K1A 0R6, Canada
| | - Anindita Chattopadhyay
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, ON K1A 0R6, Canada
| | - Josée Ash
- Human Health Therapeutics Research Centre, National Research Council Canada, Montréal, QC H4P 2R2, Canada
| | - Julie Lippens
- Human Health Therapeutics Research Centre, National Research Council Canada, Montréal, QC H4P 2R2, Canada
| | - Doreen Harcus
- Human Health Therapeutics Research Centre, National Research Council Canada, Montréal, QC H4P 2R2, Canada
| | - Martine Pagé
- Human Health Therapeutics Research Centre, National Research Council Canada, Montréal, QC H4P 2R2, Canada
| | - Annie Fortin
- Human Health Therapeutics Research Centre, National Research Council Canada, Montréal, QC H4P 2R2, Canada
| | - Robert A Pon
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, ON K1A 0R6, Canada
| | - Rénald Gilbert
- Human Health Therapeutics Research Centre, National Research Council Canada, Montréal, QC H4P 2R2, Canada.,Department of Bioengineering, McGill University, Montréal, QC H3A 0E9, Canada
| | - Anne Marcil
- Human Health Therapeutics Research Centre, National Research Council Canada, Montréal, QC H4P 2R2, Canada
| | - Risini D Weeratna
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, ON K1A 0R6, Canada
| | - Scott McComb
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, ON K1A 0R6, Canada.,Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| |
Collapse
|
24
|
Engineering strategies to overcome the current roadblocks in CAR T cell therapy. Nat Rev Clin Oncol 2019; 17:147-167. [PMID: 31848460 PMCID: PMC7223338 DOI: 10.1038/s41571-019-0297-y] [Citation(s) in RCA: 908] [Impact Index Per Article: 151.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/24/2019] [Indexed: 12/15/2022]
Abstract
T cells genetically engineered to express chimeric antigen receptors (CARs) have proven — and impressive — therapeutic activity in patients with certain subtypes of B cell leukaemia or lymphoma, with promising efficacy also demonstrated in patients with multiple myeloma. Nevertheless, various barriers restrict the efficacy and/or prevent the widespread use of CAR T cell therapies in these patients as well as in those with other cancers, particularly solid tumours. Key challenges relating to CAR T cells include severe toxicities, restricted trafficking to, infiltration into and activation within tumours, suboptimal persistence in vivo, antigen escape and heterogeneity, and manufacturing issues. The evolution of CAR designs beyond the conventional structures will be necessary to address these limitations and to expand the use of CAR T cells to a wider range of malignancies. Investigators are addressing the current obstacles with a wide range of engineering strategies in order to improve the safety, efficacy and applicability of this therapeutic modality. In this Review, we discuss the innovative designs of novel CAR T cell products that are being developed to increase and expand the clinical benefits of these treatments in patients with diverse cancers. Chimeric antigen receptor (CAR) T cell therapy, the first approved therapeutic approach with a genetic engineering component, holds substantial promise in the treatment of a range of cancers but is nevertheless limited by various challenges, including toxicities, intrinsic and acquired resistance mechanisms, and manufacturing issues. In this Review, the authors describe the innovative approaches to the engineering of CAR T cell products that are providing solutions to these challenges and therefore have the potential to considerably improve the safety and effectiveness of treatment. Chimeric antigen receptor (CAR) T cells have induced remarkable responses in patients with certain haematological malignancies, yet various barriers restrict the efficacy and/or prevent the widespread use of this treatment. Investigators are addressing these challenges with engineering strategies designed to improve the safety, efficacy and applicability of CAR T cell therapy. CARs have modular components, and therefore the optimal molecular design of the CAR can be achieved through many variations of the constituent protein domains. Toxicities currently associated with CAR T cell therapy can be mitigated using engineering strategies to make CAR T cells safer and that potentially broaden the range of tumour-associated antigens that can be targeted by overcoming on-target, off-tumour toxicities. CAR T cell efficacy can be enhanced by using engineering strategies to address the various challenges relating to the unique biology of diverse haematological and solid malignancies. Strategies to address the manufacturing challenges can lead to an improved CAR T cell product for all patients.
Collapse
|
25
|
Zabel M, Tauber PA, Pickl WF. The making and function of CAR cells. Immunol Lett 2019; 212:53-69. [PMID: 31181279 PMCID: PMC7058416 DOI: 10.1016/j.imlet.2019.06.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 05/24/2019] [Accepted: 06/06/2019] [Indexed: 12/28/2022]
Abstract
Genetically engineered T cells expressing chimeric antigen receptors (CAR) present a new treatment option for patients with cancer. Recent clinical trials of B cell leukemia have demonstrated a response rate of up to 90%. However, CAR cell therapy is frequently accompanied by severe side effects such as cytokine release syndrome and the development of target cell resistance. Consequently, further optimization of CARs to obtain greater long-term efficacy and increased safety is urgently needed. Here we high-light the various efforts of adjusting the intracellular signaling domains of CARs to these major requirements to eventually obtain high-level target cell cytotoxicity paralleled by the establishment of longevity of the CAR expressing cell types to guarantee for extended tumor surveillance over prolonged periods of time. We are convinced that it will be crucial to identify the molecular pathways and signaling requirements utilized by such ‘efficient CARs’ in order to provide a rational basis for their further hypothesis-based improvement. Furthermore, we here discuss timely attempts of how to: i) control ‘on-tumor off-target’ effects; ii) introduce Signal 3 (cytokine responsiveness of CAR cells) as an important building-block into the CAR concept; iii) most efficiently eliminate CAR cells once full remission has been obtained. We also argue that universal systems for the variable and pharmacokinetically-controlled attachment of extracellular ligand recognition domains of choice along with the establishment of ‘off-the-shelf’ cell preparations with suitability for all patients in need of a highly-potent cellular therapy may become future mainstays of CAR cell therapy. Such therapies would have the attraction to work independent of the patients’ histo-compatibility make-up and the availability of functionally intact patient’s cells. Finally, we summarize the evidence that CAR cells may obtain a prominent place in the treatment of non-malignant and auto-reactive T and B lymphocyte expansions in the near future, e.g., for the alleviation of autoimmune diseases and allergies. After the introduction of red blood cell transfusions, which were made possible by the landmark discoveries of the ABO blood groups by Karl Landsteiner, and the establishment of bone marrow transplantation by E. Donnall Thomas to exchange the entire hematopoietic system of a patient suffering from leukemia, the introduction of patient-tailored cytotoxic cellular populations to eradicate malignant cell populations in vivo pioneered by Carl H. June, represents the third major and broadly applicable milestone in the development of human cellular therapies within the rapidly developing field of applied biomedical research of the last one hundred years.
Collapse
Affiliation(s)
- Maja Zabel
- Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Peter A Tauber
- Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Winfried F Pickl
- Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
26
|
Zenere G, Olwenyi OA, Byrareddy SN, Braun SE. Optimizing intracellular signaling domains for CAR NK cells in HIV immunotherapy: a comprehensive review. Drug Discov Today 2019; 24:983-991. [PMID: 30771481 PMCID: PMC7065919 DOI: 10.1016/j.drudis.2019.02.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 01/16/2019] [Accepted: 02/07/2019] [Indexed: 12/18/2022]
Abstract
Natural killer (NK) cells are innate immune lymphocytes with a key role in host defense against HIV infection. Recent advances in chimeric antigen receptors (CARs) have made NK cells a prime target for expressing recombinant receptors capable of redirecting NK cytotoxic functions towards HIV-infected cells. In this review, we discuss the role of NK cells in HIV and the mechanisms of actions of HIV-targeting CAR strategies. Furthermore, we also review NK cells signal transduction and its application to CAR NK cell strategies to develop new combinations of CAR intracellular domains and to improve CAR NK signaling and cytotoxic functions.
Collapse
Affiliation(s)
- Giorgio Zenere
- Division of Immunology, Tulane National Primate Research Center, Tulane University School of Medicine, Covington, LA 70433, USA
| | - Omalla Allan Olwenyi
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA
| | - Siddappa N Byrareddy
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA; Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA; Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA; Department of Cell Biology and Genetics, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA
| | - Stephen E Braun
- Division of Immunology, Tulane National Primate Research Center, Tulane University School of Medicine, Covington, LA 70433, USA; Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA 70112, USA.
| |
Collapse
|
27
|
Kulemzin SV, Matvienko DA, Sabirov AH, Sokratyan AM, Chernikova DS, Belovezhets TN, Chikaev AN, Taranin AV, Gorchakov AA. Design and analysis of stably integrated reporters for inducible transgene expression in human T cells and CAR NK-cell lines. BMC Med Genomics 2019; 12:44. [PMID: 30871576 PMCID: PMC6417161 DOI: 10.1186/s12920-019-0489-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Background Cytotoxic activity of T- and NK-cells can be efficiently retargeted against cancer cells using chimeric antigen receptors (CARs) and rTCRs. In the context of solid cancers, use of armored CAR T- and NK cells secreting additional anti-cancer molecules such as cytokines, chemokines, antibodies, BiTEs, inverted cytokine receptors, and checkpoint inhibitors, appears particularly promising, as this may help overcome immunosuppressive tumor microenvironment, attract bystander immune cells, and boost CAR T/NK-cell persistence. Placing the expression of such molecules under the transcriptional control downstream of CAR-mediated T/NK-cell activation offers the advantage of targeted delivery, high local concentration, and reduced toxicity. Several canonic DNA sequences that are known to function as activation-inducible promoters in human T and B cells have been described to date and typically encompass the multimers of NFkB and NFAT binding sites. However, relatively little is known about the DNA sequences that may function as activation-driven switches in the context of NK cells. We set out to compare the functionality of several activation-inducible promoters in primary human T cells, as well as in NK cell lines NK-92 and YT. Methods Lentiviral constructs were engineered to express two fluorescent reporters: mCherry under 4xNFAT, 2xNFkB, 5xNFkB, 10xNFkB, 30xNFkB promoters, as well as two variants of the CD69 promoter, and copGFP under the strong constitutive promoter of the human EF1a gene. Pseudotyped lentiviral particles obtained using these constructs were transduced into primary human T cells and NK-92 and YT cell lines expressing a CAR specific for PSMA. The transgenic cells obtained were activated by CD3/CD28 beads (T cells) or via a CAR (CAR-NK cell lines). Promoter activity before and after activation was assayed using FACS analysis. Results In T cells, the CD69 promoter encompassing CNS1 and CNS2 regions displayed the highest signal/noise ratio. Intriguingly, in the context of CAR-YT cell line neither of the seven promoters tested displayed acceptable activation profile. In CAR-NK-92 cells, the largest fold activation (which was modest) was achieved with the 10xNFkB and 30xNFkB promoters, however its expression was clearly leaky in “resting” non-activated cells. Conclusions Unlike in T cells, the robust activation-driven inducible expression of genetic cassettes in NK cells requires unbiased genome-wide identification of promoter sequences. Electronic supplementary material The online version of this article (10.1186/s12920-019-0489-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sergey V Kulemzin
- Institute of Molecular and Cellular Biology SB RAS, Novosibirsk, Russia
| | - Daria A Matvienko
- Institute of Molecular and Cellular Biology SB RAS, Novosibirsk, Russia.,Novosibirsk State University, Novosibirsk, Russia
| | - Artur H Sabirov
- Institute of Molecular and Cellular Biology SB RAS, Novosibirsk, Russia.,Novosibirsk State University, Novosibirsk, Russia
| | - Arpine M Sokratyan
- Institute of Molecular and Cellular Biology SB RAS, Novosibirsk, Russia.,Novosibirsk State University, Novosibirsk, Russia
| | - Daria S Chernikova
- Institute of Molecular and Cellular Biology SB RAS, Novosibirsk, Russia.,Novosibirsk State University, Novosibirsk, Russia
| | - Tatyana N Belovezhets
- Institute of Molecular and Cellular Biology SB RAS, Novosibirsk, Russia.,Novosibirsk State University, Novosibirsk, Russia
| | - Anton N Chikaev
- Institute of Molecular and Cellular Biology SB RAS, Novosibirsk, Russia
| | - Aleksandr V Taranin
- Institute of Molecular and Cellular Biology SB RAS, Novosibirsk, Russia.,Novosibirsk State University, Novosibirsk, Russia
| | - Andrey A Gorchakov
- Institute of Molecular and Cellular Biology SB RAS, Novosibirsk, Russia. .,Novosibirsk State University, Novosibirsk, Russia.
| |
Collapse
|
28
|
Ramello MC, Benzaïd I, Kuenzi BM, Lienlaf-Moreno M, Kandell WM, Santiago DN, Pabón-Saldaña M, Darville L, Fang B, Rix U, Yoder S, Berglund A, Koomen JM, Haura EB, Abate-Daga D. An immunoproteomic approach to characterize the CAR interactome and signalosome. Sci Signal 2019; 12:12/568/eaap9777. [PMID: 30755478 DOI: 10.1126/scisignal.aap9777] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Adoptive transfer of T cells that express a chimeric antigen receptor (CAR) is an approved immunotherapy that may be curative for some hematological cancers. To better understand the therapeutic mechanism of action, we systematically analyzed CAR signaling in human primary T cells by mass spectrometry. When we compared the interactomes and the signaling pathways activated by distinct CAR-T cells that shared the same antigen-binding domain but differed in their intracellular domains and their in vivo antitumor efficacy, we found that only second-generation CARs induced the expression of a constitutively phosphorylated form of CD3ζ that resembled the endogenous species. This phenomenon was independent of the choice of costimulatory domains, or the hinge/transmembrane region. Rather, it was dependent on the size of the intracellular domains. Moreover, the second-generation design was also associated with stronger phosphorylation of downstream secondary messengers, as evidenced by global phosphoproteome analysis. These results suggest that second-generation CARs can activate additional sources of CD3ζ signaling, and this may contribute to more intense signaling and superior antitumor efficacy that they display compared to third-generation CARs. Moreover, our results provide a deeper understanding of how CARs interact physically and/or functionally with endogenous T cell molecules, which will inform the development of novel optimized immune receptors.
Collapse
Affiliation(s)
- Maria C Ramello
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Ismahène Benzaïd
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Brent M Kuenzi
- Department of Drug Discovery, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA.,Cancer Biology Ph.D. Program, University of South Florida, Tampa, FL 33620, USA
| | - Maritza Lienlaf-Moreno
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Wendy M Kandell
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA.,Cancer Biology Ph.D. Program, University of South Florida, Tampa, FL 33620, USA
| | - Daniel N Santiago
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA.,Department of Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Mibel Pabón-Saldaña
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA.,Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Lancia Darville
- Proteomics Core Facility, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Bin Fang
- Proteomics Core Facility, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Uwe Rix
- Department of Drug Discovery, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Sean Yoder
- Molecular Genomics Core Facility, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Anders Berglund
- Department of Bioinformatics and Biostatistics, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - John M Koomen
- Proteomics Core Facility, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA.,Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Eric B Haura
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Daniel Abate-Daga
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA. .,Department of Cutaneous Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA.,Department of Oncological Sciences, University of South Florida, Tampa, FL 33612, USA
| |
Collapse
|
29
|
Hassani M, Hajari Taheri F, Sharifzadeh Z, Arashkia A, Hadjati J, van Weerden WM, Modarressi MH, Abolhassani M. Construction of a chimeric antigen receptor bearing a nanobody against prostate a specific membrane antigen in prostate cancer. J Cell Biochem 2019; 120:10787-10795. [PMID: 30672018 DOI: 10.1002/jcb.28370] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 12/06/2018] [Indexed: 12/22/2022]
Abstract
Adoptive transfer of T cells expressing chimeric antigen receptors (CARs) is considered to be a novel anticancer therapy. To date, in most cases, single-chain variable fragments (scFvs) of murine origin have been used in CARs. However, this structure has limitations relating to the potential immunogenicity of mouse antigens in humans and the relatively large size of scFvs. For the first time, we used camelid nanobody (VHH) to construct CAR T cells against prostate specific membrane antigen (PSMA). The nanobody against PSMA (NBP) was used to show the feasibility of CAR T cells against prostate cancer cells. T cells were transfected, and then the surface expression of the CAR T cells was confirmed. Then, the functions of VHH-CAR T cell were evaluated upon coculture with prostate cancer cells. At the end, the cytotoxicity potential of NBPII-CAR in T cells was approximated by determining the cell surface expression of CD107a after encountering PSMA. Our data show the specificity of VHH-CAR T cells against PSMA+ cells (LNCaP), not only by increasing the interleukin 2 (IL-2) cytokine (about 400 pg/mL), but also the expression of CD69 by almost 38%. In addition, VHH-CAR T cells were proliferated by nearly 60% when cocultured with LNCaP, as compared with PSMA negative prostate cancer cell (DU-145), which led to the upregulation of CD107a in T cells upto 31%. These results clearly show the possibility of using VHH-based CAR T cells for targeted immunotherapy, which may be developed to target virtually any tumor-associated antigen for adoptive T-cell immunotherapy of solid tumors.
Collapse
Affiliation(s)
- Mahmoud Hassani
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Zahra Sharifzadeh
- Department of Immunology, Hybridoma Lab, Pasteur Institute of Iran, Tehran, Iran
| | - Arash Arashkia
- Department of Virology, Pasteur Institute of Iran, Tehran, Iran
| | - Jamshid Hadjati
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Mohammad Hossein Modarressi
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohsen Abolhassani
- Department of Immunology, Hybridoma Lab, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
30
|
Oldham RAA, Medin JA. Practical considerations for chimeric antigen receptor design and delivery. Expert Opin Biol Ther 2017; 17:961-978. [DOI: 10.1080/14712598.2017.1339687] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Robyn A. A. Oldham
- Department of Pediatrics, The Medical College of Wisconsin, Milwaukee, USA
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Jeffrey A. Medin
- Department of Pediatrics, The Medical College of Wisconsin, Milwaukee, USA
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
- Department of Biochemistry, The Medical College of Wisconsin, Milwaukee, USA
- The Institute of Medical Sciences, University of Toronto, Toronto, Canada
| |
Collapse
|
31
|
Kulemzin SV, Chikaev NA, Volkova OY, Kuznetsova VV, Taranin AV, Gorchakov AA. Modular lentiviral vector system for chimeric antigen receptor design optimization. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2017. [DOI: 10.1134/s1068162017020091] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
32
|
Lohmueller J, Finn OJ. Current modalities in cancer immunotherapy: Immunomodulatory antibodies, CARs and vaccines. Pharmacol Ther 2017; 178:31-47. [PMID: 28322974 DOI: 10.1016/j.pharmthera.2017.03.008] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Successes of immune checkpoint inhibitors (ICIs) and chimeric antigen receptor (CAR) T cell therapy in curing patients with otherwise lethal cancers have validated immunotherapy as a treatment for cancer and have inspired excitement for its broader potential. Most promising is the ability of each approach to eliminate bulky and advanced-stage cancers and to achieve durable cures. Despite this success, to date only a subset of cancer patients and a limited number of cancer types respond to these therapies. A major goal now is to expand the types of cancer and number of patients who can be successfully treated. To this end a multitude of immunotherapies are being tested clinically in new combinations, and many new immunomodulatory antibodies and CARs are in development. A third major immunotherapeutic approach with renewed interest is cancer vaccines. While over 20years of therapeutic cancer vaccine trials have met with limited success, these studies have laid the groundwork for the use of therapeutic vaccines in combination with other immunotherapies or alone as prophylactic cancer vaccines. Prophylactic vaccines are now poised to revolutionize cancer prevention as they have done for the prevention of infectious diseases. In this review we examine three major cancer immunotherapy modalities: immunomodulatory antibodies, CAR T cell therapy and vaccines. For each we describe the current state of the art and outline major challenges and research directions forward.
Collapse
Affiliation(s)
- Jason Lohmueller
- University of Pittsburgh School of Medicine, Department of Immunology, Pittsburgh, PA, USA
| | - Olivera J Finn
- University of Pittsburgh School of Medicine, Department of Immunology, Pittsburgh, PA, USA.
| |
Collapse
|
33
|
Kulemzin SV, Kuznetsova VV, Mamonkin M, Taranin AV, Gorchakov AA. Engineering Chimeric Antigen Receptors. Acta Naturae 2017; 9:6-14. [PMID: 28461969 PMCID: PMC5406655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Chimeric antigen receptors (CARs) are recombinant protein molecules that redirect cytotoxic lymphocytes toward malignant and other target cells. The high feasibility of manufacturing CAR-modified lymphocytes for the therapy of cancer has spurred the development and optimization of new CAR T cells directed against a broad range of target antigens. In this review, we describe the main structural and functional elements constituting a CAR, discuss the roles of these elements in modulating the anti-tumor activity of CAR T cells, and highlight alternative approaches to CAR engineering.
Collapse
Affiliation(s)
- S. V. Kulemzin
- Institute of Molecular and Cellular Biology, SB RAS, Lavrentiev Ave. 8/2, Novosibirsk, 630090, Russia
| | - V. V. Kuznetsova
- Institute of Molecular and Cellular Biology, SB RAS, Lavrentiev Ave. 8/2, Novosibirsk, 630090, Russia
| | - M. Mamonkin
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children’s Hospital and Houston Methodist Hospital, Houston, TX, USA
| | - A. V. Taranin
- Institute of Molecular and Cellular Biology, SB RAS, Lavrentiev Ave. 8/2, Novosibirsk, 630090, Russia ,Novosibirsk State University, Pirogova str. 2, Novosibirsk, 630090, Russia
| | - A. A. Gorchakov
- Institute of Molecular and Cellular Biology, SB RAS, Lavrentiev Ave. 8/2, Novosibirsk, 630090, Russia ,Novosibirsk State University, Pirogova str. 2, Novosibirsk, 630090, Russia
| |
Collapse
|
34
|
CAR T-cell therapy of solid tumors. Immunol Cell Biol 2016; 95:356-363. [PMID: 28003642 DOI: 10.1038/icb.2016.128] [Citation(s) in RCA: 136] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 12/18/2016] [Accepted: 12/19/2016] [Indexed: 12/14/2022]
Abstract
The potential for immunotherapy as a treatment option for cancer is clear from remarkable responses of some leukemia patients to adoptive cell transfer using autologous T cells genetically modified to express chimeric antigen receptors (CARs). However, the vast majority of cancers, in particular the more common solid cancers, such as those of the breast, colon and lung, fail to respond significantly to infusions of CAR T cells. Solid cancers present some formidable barriers to adoptive cell transfer, including suppression of T-cell function and inhibition of T-cell localization. In this review, we discuss the current state of CAR T-cell therapy in solid cancers, the variety of concepts being investigated to overcome these barriers as well as approaches aimed at increasing the specificity and safety of adoptive cell transfer.
Collapse
|
35
|
Song DG, Ye Q, Poussin M, Liu L, Figini M, Powell DJ. A fully human chimeric antigen receptor with potent activity against cancer cells but reduced risk for off-tumor toxicity. Oncotarget 2016; 6:21533-46. [PMID: 26101914 PMCID: PMC4673284 DOI: 10.18632/oncotarget.4071] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 06/08/2015] [Indexed: 12/20/2022] Open
Abstract
Chimeric antigen receptors (CARs) can redirect T cells against antigen-expressing tumors in an HLA-independent manner. To date, various CARs have been constructed using mouse single chain antibody variable fragments (scFvs) of high affinity that are immunogenic in humans and have the potential to mediate “on-target” toxicity. Here, we developed and evaluated a fully human CAR comprised of the human C4 folate receptor-alpha (αFR)-specific scFv coupled to intracellular T cell signaling domains. Human T cells transduced to express the C4 CAR specifically secreted proinflammatory cytokine and exerted cytolytic functions when cultured with αFR-expressing tumors in vitro. Adoptive transfer of C4 CAR T cells mediated the regression of large, established human ovarian cancer in a xenogeneic mouse model. Relative to a murine MOv19 scFv-based αFR CAR, C4 CAR T cells mediated comparable cytotoxic tumor activity in vitro and in vivo but had lower affinity for αFR protein and exhibited reduced recognition of normal cells expressing low levels of αFR. Thus, T cells expressing a fully human CAR of intermediate affinity can efficiently kill antigen-expressing tumors in vitro and in vivo and may overcome issues of transgene immunogenicity and “on-target off-tumor” toxicity that plague trials utilizing CARs containing mouse-derived, high affinity scFvs.
Collapse
Affiliation(s)
- De-Gang Song
- Ovarian Cancer Research Center, Department of Obstetrics and Gynecology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Qunrui Ye
- Ovarian Cancer Research Center, Department of Obstetrics and Gynecology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Mathilde Poussin
- Ovarian Cancer Research Center, Department of Obstetrics and Gynecology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Lin Liu
- Ovarian Cancer Research Center, Department of Obstetrics and Gynecology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Mariangela Figini
- Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Daniel J Powell
- Ovarian Cancer Research Center, Department of Obstetrics and Gynecology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Department of Pathology and Laboratory Medicine, Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
36
|
CAR models: next-generation CAR modifications for enhanced T-cell function. Mol Ther Oncolytics 2016; 3:16014. [PMID: 27231717 PMCID: PMC4871190 DOI: 10.1038/mto.2016.14] [Citation(s) in RCA: 113] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 04/04/2016] [Accepted: 04/06/2016] [Indexed: 12/18/2022] Open
Abstract
T cells genetically targeted with a chimeric antigen receptor (CAR) to B-cell malignancies have demonstrated tremendous clinical outcomes. With the proof in principle for CAR T cells as a therapy for B-cell malignancies being established, current and future research is being focused on adapting CAR technology to other cancers, as well as enhancing its efficacy and/or safety. The modular nature of the CAR, extracellular antigen-binding domain fused to a transmembrane domain and intracellular T-cell signaling domains, allows for optimization by replacement of the various components. These modifications are creating a whole new class of therapeutic CARs. In this review, we discuss the recent major advances in CAR design and how these modifications will impact its clinical application.
Collapse
|
37
|
Whilding LM, Maher J. CAR T-cell immunotherapy: The path from the by-road to the freeway? Mol Oncol 2015; 9:1994-2018. [PMID: 26563646 PMCID: PMC5528729 DOI: 10.1016/j.molonc.2015.10.012] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 10/13/2015] [Accepted: 10/14/2015] [Indexed: 12/13/2022] Open
Abstract
Chimeric antigen receptors are genetically encoded artificial fusion molecules that can re-program the specificity of peripheral blood polyclonal T-cells against a selected cell surface target. Unparallelled clinical efficacy has recently been demonstrated using this approach to treat patients with refractory B-cell malignancy. However, the approach is technically challenging and can elicit severe toxicity in patients. Moreover, solid tumours have largely proven refractory to this approach. In this review, we describe the important structural features of CARs and how this may influence function. Emerging clinical experience is summarized in both solid tumours and haematological malignancies. Finally, we consider the particular challenges imposed by solid tumours to the successful development of CAR T-cell immunotherapy, together with a number of innovative strategies that have been developed in an effort to reverse the balance in favour of therapeutic benefit.
Collapse
Affiliation(s)
- Lynsey M Whilding
- King's College London, King's Health Partners Integrated Cancer Centre, Department of Research Oncology, Guy's Hospital Campus, Great Maze Pond, London SE1 9RT, UK.
| | - John Maher
- King's College London, King's Health Partners Integrated Cancer Centre, Department of Research Oncology, Guy's Hospital Campus, Great Maze Pond, London SE1 9RT, UK; Department of Immunology, Barnet Hospital, Royal Free London NHS Foundation Trust, Barnet, Hertfordshire, EN5 3DJ, UK; Department of Clinical Immunology and Allergy, King's College Hospital NHS Foundation Trust, Denmark Hill, London SE5 9RS, UK
| |
Collapse
|
38
|
Heiblig M, Elhamri M, Michallet M, Thomas X. Adoptive immunotherapy for acute leukemia: New insights in chimeric antigen receptors. World J Stem Cells 2015; 7:1022-1038. [PMID: 26328018 PMCID: PMC4550626 DOI: 10.4252/wjsc.v7.i7.1022] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 12/28/2014] [Accepted: 06/19/2015] [Indexed: 02/06/2023] Open
Abstract
Relapses remain a major concern in acute leukemia. It is well known that leukemia stem cells (LSCs) hide in hematopoietic niches and escape to the immune system surveillance through the outgrowth of poorly immunogenic tumor-cell variants and the suppression of the active immune response. Despite the introduction of new reagents and new therapeutic approaches, no treatment strategies have been able to definitively eradicate LSCs. However, recent adoptive immunotherapy in cancer is expected to revolutionize our way to fight against this disease, by redirecting the immune system in order to eliminate relapse issues. Initially described at the onset of the 90’s, chimeric antigen receptors (CARs) are recombinant receptors transferred in various T cell subsets, providing specific antigens binding in a non-major histocompatibility complex restricted manner, and effective on a large variety of human leukocyte antigen-divers cell populations. Once transferred, engineered T cells act like an expanding “living drug” specifically targeting the tumor-associated antigen, and ensure long-term anti-tumor memory. Over the last decades, substantial improvements have been made in CARs design. CAR T cells have finally reached the clinical practice and first clinical trials have shown promising results. In acute lymphoblastic leukemia, high rate of complete and prolonged clinical responses have been observed after anti-CD19 CAR T cell therapy, with specific but manageable adverse events. In this review, our goal was to describe CAR structures and functions, and to summarize recent data regarding pre-clinical studies and clinical trials in acute leukemia.
Collapse
|
39
|
Chakravarti D, Wong WW. Synthetic biology in cell-based cancer immunotherapy. Trends Biotechnol 2015; 33:449-61. [PMID: 26088008 DOI: 10.1016/j.tibtech.2015.05.001] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 04/30/2015] [Accepted: 05/06/2015] [Indexed: 12/19/2022]
Abstract
The adoptive transfer of genetically engineered T cells with cancer-targeting receptors has shown tremendous promise for eradicating tumors in clinical trials. This form of cellular immunotherapy presents a unique opportunity to incorporate advanced systems and synthetic biology approaches to create cancer therapeutics with novel functions. We first review the development of synthetic receptors, switches, and circuits to control the location, duration, and strength of T cell activity against tumors. In addition, we discuss the cellular engineering and genome editing of host cells (or the chassis) to improve the efficacy of cell-based cancer therapeutics, and to reduce the time and cost of manufacturing.
Collapse
Affiliation(s)
- Deboki Chakravarti
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - Wilson W Wong
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA.
| |
Collapse
|
40
|
Universal artificial antigen presenting cells to selectively propagate T cells expressing chimeric antigen receptor independent of specificity. J Immunother 2014; 37:204-13. [PMID: 24714354 DOI: 10.1097/cji.0000000000000032] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
T cells genetically modified to stably express immunoreceptors are being assessed for therapeutic potential in clinical trials. T cells expressing a chimeric antigen receptor (CAR) are endowed with a new specificity to target tumor-associated antigen (TAA) independent of major histocompatibility complex. Our approach to nonviral gene transfer in T cells uses ex vivo numeric expansion of CAR T cells on irradiated artificial antigen presenting cells (aAPC) bearing the targeted TAA. The requirement for aAPC to express a desired TAA limits the human application of CARs with multiple specificities when selective expansion through coculture with feeder cells is sought. As an alternative to expressing individual TAAs on aAPC, we expressed 1 ligand that could activate CAR T cells for sustained proliferation independent of specificity. We expressed a CAR ligand (designated CARL) that binds the conserved IgG4 extracellular domain of CAR and demonstrated that CARL aAPC propagate CAR T cells of multiple specificities. CARL avoids technical issues and costs associated with deploying clinical-grade aAPC for each TAA targeted by a given CAR. Using CARL enables 1 aAPC to numerically expand all CAR T cells containing the IgG4 domain, and simplifies expansion, testing, and clinical translation of CAR T cells of any specificity.
Collapse
|
41
|
|
42
|
Cheadle EJ, Gornall H, Baldan V, Hanson V, Hawkins RE, Gilham DE. CAR T cells: driving the road from the laboratory to the clinic. Immunol Rev 2013; 257:91-106. [DOI: 10.1111/imr.12126] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Eleanor J. Cheadle
- Clinical and Experimental Immunotherapy Group; Department of Medical Oncology; Institute of Cancer Sciences; The University of Manchester; Manchester Academic Healthcare Science Centre; Manchester UK
- Targeted Therapy Group; Institute of Cancer Sciences; The University of Manchester; Manchester Academic Healthcare Science Centre; Manchester UK
| | - Hannah Gornall
- Clinical and Experimental Immunotherapy Group; Department of Medical Oncology; Institute of Cancer Sciences; The University of Manchester; Manchester Academic Healthcare Science Centre; Manchester UK
| | - Vania Baldan
- Clinical and Experimental Immunotherapy Group; Department of Medical Oncology; Institute of Cancer Sciences; The University of Manchester; Manchester Academic Healthcare Science Centre; Manchester UK
| | - Vivien Hanson
- Transplantation Laboratory; Oxford University Hospitals NHS Foundation Trust; Oxford UK
| | - Robert E. Hawkins
- Clinical and Experimental Immunotherapy Group; Department of Medical Oncology; Institute of Cancer Sciences; The University of Manchester; Manchester Academic Healthcare Science Centre; Manchester UK
| | - David E. Gilham
- Clinical and Experimental Immunotherapy Group; Department of Medical Oncology; Institute of Cancer Sciences; The University of Manchester; Manchester Academic Healthcare Science Centre; Manchester UK
| |
Collapse
|
43
|
Gilham DE, Cheadle EJ. Targeting T cells to tumor: exploiting the chimeric antibody receptor. Immunotherapy 2013; 5:927-9. [PMID: 23998728 DOI: 10.2217/imt.13.92] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Adoptive therapy using gene-modified T cells to express chimeric antigen receptors (CARs) is gaining pace in the clinic, particularly in hematological malignancies. Translation into treatment of solid tumors has been slower, not least because of the lack of truly tumor-specific target antigens. Alonso-Camino et al. describe experiments that further develop the concept of using the therapeutic entity (in this case, the CAR T cell) to screen for functional binding of tumor target cells. This article highlights the potential for the approach, but also underlies some of the key hurdles that remain to be overcome in order to produce a functional antibody-based screening approach that is able to identify novel tumor antigens that can be recognized by CAR T cells.
Collapse
Affiliation(s)
- David E Gilham
- Clinical & Experimental Immunotherapy Group, Department of Medical Oncology, The University of Manchester, Manchester Academic Healthcare Science Centre, Paterson Institute for Cancer Research, Wilmslow Road, Withington, Manchester, M20 4BX, UK.
| | | |
Collapse
|
44
|
Abstract
T cells have the capacity to eradicate diseased cells, but tumours present considerable challenges that render T cells ineffectual. Cancer cells often make themselves almost 'invisible' to the immune system, and they sculpt a microenvironment that suppresses T cell activity, survival and migration. Genetic engineering of T cells can be used therapeutically to overcome these challenges. T cells can be taken from the blood of cancer patients and then modified with genes encoding receptors that recognize cancer-specific antigens. Additional genes can be used to enable resistance to immunosuppression, to extend survival and to facilitate the penetration of engineered T cells into tumours. Using genetic modification, highly active, self-propagating 'slayers' of cancer cells can be generated.
Collapse
Affiliation(s)
- Michael H Kershaw
- Cancer Immunology Research Program, Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria 3010, Australia. michael.kershaw@ petermac.org
| | | | | |
Collapse
|