1
|
Wang P, Shao W, Wang Y, Wang B, Lv X, Feng Y. Angiogenesis of Avascular Necrosis of the Femoral Head: A Classic Treatment Strategy. Biomedicines 2024; 12:2577. [PMID: 39595143 PMCID: PMC11591661 DOI: 10.3390/biomedicines12112577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/03/2024] [Accepted: 11/08/2024] [Indexed: 11/28/2024] Open
Abstract
Avascular necrosis of the femoral head (ANFH) is a type of osteonecrosis due to the cessation of blood supply, characterized by persistent local pain and collapse of the joint. The etiology of ANFH is multifaceted, and while its precise pathogenesis remains elusive, it is currently widely believed that the femoral head is highly dependent on the vascular system. A large number of studies have shown that vascular injury is the initial factor in the onset of ANFH. In this review, we briefly introduced the process of angiogenesis and the blood supply to the femoral head, with a focus on summarizing the existing research on promoting angiogenesis for the treatment of ANFH. We conclude that providing alternative pathways through angiogenesis to resolve the problem of the obstructed free flow of the blood is an important means of treating ANFH. Moreover, we also looked forward to the mechanism of endothelial metabolism, which has not yet been studied in femoral head necrosis models, providing potential strategies for more effective use of angiogenesis for the treatment of femoral head necrosis.
Collapse
Affiliation(s)
- Ping Wang
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (P.W.); (W.S.); (Y.W.); (X.L.)
| | - Wenkai Shao
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (P.W.); (W.S.); (Y.W.); (X.L.)
| | - Yuxi Wang
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (P.W.); (W.S.); (Y.W.); (X.L.)
| | - Bo Wang
- Department of Rehabilitation, Wuhan No. 1 Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China;
| | - Xiao Lv
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (P.W.); (W.S.); (Y.W.); (X.L.)
| | - Yong Feng
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (P.W.); (W.S.); (Y.W.); (X.L.)
| |
Collapse
|
2
|
Wu T, Zhou Y, Shi W, Guo S, Tian H, Li W, Wang Y, Li T. Translational horizons in stem cell therapy for osteonecrosis of the femoral head: a journey from basic research to clinical practice through bibliometric insights. J Transl Med 2024; 22:982. [PMID: 39478610 PMCID: PMC11523765 DOI: 10.1186/s12967-024-05784-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 10/19/2024] [Indexed: 11/03/2024] Open
Abstract
BACKGROUND Osteonecrosis of the femoral head (ONFH) significantly impacts young and middle-aged adults, with steroid use implicated in many cases. Traditional treatments have limited efficacy, prompting a shift towards innovative approaches, such as stem cell therapy, offering less invasive regenerative solutions. METHODS Using bibliometric analysis from 1997 to 2023, we identified 392 articles on stem cell therapy for ONFH from the Web of Science Core Collection and analysed them using VOSviewer and CiteSpace to identify key trends and research directions. RESULTS From 1997 to 2023, stem cell therapy for ONFH research expanded significantly, with 392 articles evidencing global collaboration, particularly from China, the United States and South Korea. The field is characterised by 158 core authors across 26 clusters and contributions from 417 institutions in 104 research clusters, with Shanghai Jiao Tong University as a notable leader. This research is disseminated through 23 journal clusters, emphasising interdisciplinary work, with Clinical Orthopaedics and Related Research among the most influential journals. Key findings include the identification of the most influential papers, highlighting advances, such as use of autologous mesenchymal stem cells (MSCs) and innovative delivery mechanisms. High-frequency keyword analysis further mapped the evolution of the field, from basic mechanisms to advanced therapies, underscoring a trend towards more targeted stem cell treatments for ONFH. CONCLUSION Stem cell therapy for ONFH has advanced significantly, showcasing a successful transition from basic research to clinical practice, particularly highlighted by developments in use of autologous MSCs and delivery methods. Future research will focus on refining therapies through exosome technology, targeted modulation of stress and inflammation and integration with surgical techniques, with the aim of tailored patient care and improved ONFH outcomes.
Collapse
Affiliation(s)
- Tingyu Wu
- Department of Joint Surgery, The Affiliated Hospital of Qingdao University, No. 59, Haier Road, Qingdao, 266003, China
| | - Yinxue Zhou
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Weipeng Shi
- Department of Joint Surgery, The Affiliated Hospital of Qingdao University, No. 59, Haier Road, Qingdao, 266003, China
| | - Sijia Guo
- Department of Joint Surgery, The Affiliated Hospital of Qingdao University, No. 59, Haier Road, Qingdao, 266003, China
| | - Hua Tian
- Department of Neurological Rehabilitation, Qingdao Special Servicemen Recuperation Center of PLA Navy, Qingdao, 266000, China
| | - Weiyan Li
- Department of Emergency Surgery and Joint Surgery, Qingdao Third People's Hospital, Qingdao, 266000, China
| | - Yingzhen Wang
- Department of Joint Surgery, The Affiliated Hospital of Qingdao University, No. 59, Haier Road, Qingdao, 266003, China
| | - Tao Li
- Department of Joint Surgery, The Affiliated Hospital of Qingdao University, No. 59, Haier Road, Qingdao, 266003, China.
| |
Collapse
|
3
|
Dong Q, Fei X, Zhang H, Zhu X, Ruan J. Effect of Dimethyloxalylglycine on Stem Cells Osteogenic Differentiation and Bone Tissue Regeneration-A Systematic Review. Int J Mol Sci 2024; 25:3879. [PMID: 38612687 PMCID: PMC11011423 DOI: 10.3390/ijms25073879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/20/2024] [Accepted: 03/26/2024] [Indexed: 04/14/2024] Open
Abstract
Dimethyloxalylglycine (DMOG) has been found to stimulate osteogenesis and angiogenesis of stem cells, promoting neo-angiogenesis in bone tissue regeneration. In this review, we conducted a comprehensive search of the literature to investigate the effects of DMOG on osteogenesis and bone regeneration. We screened the studies based on specific inclusion criteria and extracted relevant information from both in vitro and in vivo experiments. The risk of bias in animal studies was evaluated using the SYRCLE tool. Out of the 174 studies retrieved, 34 studies met the inclusion criteria (34 studies were analyzed in vitro and 20 studies were analyzed in vivo). The findings of the included studies revealed that DMOG stimulated stem cells' differentiation toward osteogenic, angiogenic, and chondrogenic lineages, leading to vascularized bone and cartilage regeneration. Addtionally, DMOG demonstrated therapeutic effects on bone loss caused by bone-related diseases. However, the culture environment in vitro is notably distinct from that in vivo, and the animal models used in vivo experiments differ significantly from humans. In summary, DMOG has the ability to enhance the osteogenic and angiogenic differentiation potential of stem cells, thereby improving bone regeneration in cases of bone defects. This highlights DMOG as a potential focus for research in the field of bone tissue regeneration engineering.
Collapse
Affiliation(s)
- Qiannan Dong
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi’an 710000, China
- Center of Oral Public Health, College of Stomatology, Xi’an Jiaotong University, Xi’an 710000, China
| | - Xiuzhi Fei
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi’an 710000, China
- Center of Oral Public Health, College of Stomatology, Xi’an Jiaotong University, Xi’an 710000, China
| | - Hengwei Zhang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi’an 710000, China
- Center of Oral Public Health, College of Stomatology, Xi’an Jiaotong University, Xi’an 710000, China
| | - Ximei Zhu
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi’an 710000, China
- Center of Oral Public Health, College of Stomatology, Xi’an Jiaotong University, Xi’an 710000, China
| | - Jianping Ruan
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi’an 710000, China
- Center of Oral Public Health, College of Stomatology, Xi’an Jiaotong University, Xi’an 710000, China
| |
Collapse
|
4
|
Zhang C, Ye W, Zhao M, Xia D, Fan Z. tRNA-derived small RNA changes in bone marrow stem cells under hypoxia and osteogenic conduction. J Oral Rehabil 2023; 50:1487-1497. [PMID: 37574812 DOI: 10.1111/joor.13566] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/04/2023] [Accepted: 08/01/2023] [Indexed: 08/15/2023]
Abstract
BACKGROUND Tissue engineering using bone mesenchymal stem cells (BMSCs) transplantation is a promising therapeutic for bone regeneration. However, the effect of bone regeneration remains unsatisfactory due to the BMSCs' functional abnormality influenced by hypoxia. In this study, we attempt to explore the mechanism of osteogenic differentiation of BMSCs under hypoxic conditions from the perspective of non-coding RNA regulation. METHODS The study employed BMSCs obtained from healthy donors and simulated hypoxia using CoCl2 stimulation. High-throughput sequencing technique was used to identify differential expression profiles of tRNA-derived small RNA (tsRNA) in three experimental groups: BMSCs-0d, BMSCs-7d and BMSCs-0d-CoCl2 . TargetScan and miRanda algorithms were used to determine tsRNA target genes, while Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analysis were employed for the prediction of biological functions. Real-time reverse transcriptase-polymerase chain reaction (Real-time RT-PCR) was carried out on four selected differentially expressed tsRNAs. RESULTS After the osteogenic induction and CoCl2 stimulated separately, there were 19 tsRNAs differentially expressed in BMSCs, including 14 upregulated and five downregulated. According to the analysis of biological information, these tsRNAs may regulate 311 potential target genes and mainly enrich the pathways such as metabolic pathways, Wnt signalling pathway, osteoclast differentiation, cellular senescence and mTOR signalling pathway. The results of Real-time RT-PCR for 3'tiRNA-41-GlnTTG-6, 3'tiRNA-42-LysTTT-8, 5'tiRNA-35-CysACA-1 and tRF3a-AsnGTT-9 were consistent with small RNA sequencing data. CONCLUSION We discovered the tsRNA that changes the process of osteogenesis and hypoxia, which provides new targets for promoting survival and regeneration functions after BMSCs transplantation.
Collapse
Affiliation(s)
- Chen Zhang
- Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
- Department of Dental Emergency, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
| | - Weilong Ye
- Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
| | - Mengyao Zhao
- Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
| | - Dengsheng Xia
- Department of Dental Emergency, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
| | - Zhipeng Fan
- Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
- Beijing Laboratory of Oral Health, Capital Medical University, Beijing, China
- Research Unit of Tooth Development and Regeneration, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
5
|
Singh M, Singh B, Sharma K, Kumar N, Mastana S, Singh P. A Molecular Troika of Angiogenesis, Coagulopathy and Endothelial Dysfunction in the Pathology of Avascular Necrosis of Femoral Head: A Comprehensive Review. Cells 2023; 12:2278. [PMID: 37759498 PMCID: PMC10528276 DOI: 10.3390/cells12182278] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/06/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
Avascular necrosis of the femoral head (ANFH) is a painful disorder characterized by the cessation of blood supply to the femoral head, leading to its death and subsequent joint collapse. Influenced by several risk factors, including corticosteroid use, excessive alcohol intake, hypercholesterolemia, smoking and some inflammatory disorders, along with cancer, its clinical consequences are thrombus formation due to underlying inflammation and endothelial dysfunction, which collaborates with coagulopathy and impaired angiogenesis. Nonetheless, angiogenesis resolves the obstructed free flow of the blood by providing alternative routes. Clinical manifestations of early stage of ANFH mimic cysts or lesions in subchondral bone, vasculitis and transient osteoporosis of the hip, rendering it difficult to diagnose, complex to understand and complicated to cure. To date, the treatment methods for ANFH are controversial as no foolproof curative strategy is available, and these depend upon different severity levels of the ANFH. From an in-depth understanding of the pathological determinants of ANFH, it is clear that impaired angiogenesis, coagulopathy and endothelial dysfunction contribute significantly. The present review has set two aims, firstly to examine the role and relevance of this molecular triad (impaired angiogenesis, coagulopathy and endothelial dysfunction) in ANFH pathology and secondly to propose some putative therapeutic strategies, delineating the fact that, for the better management of ANFH, a combined strategy to curtail this molecular triangle must be composed rather than focusing on individual contributions.
Collapse
Affiliation(s)
- Monica Singh
- Division of Molecular Genetics, Department of Human Genetics, Punjabi University, Patiala 147002, India; (M.S.)
| | - Baani Singh
- Division of Molecular Genetics, Department of Human Genetics, Punjabi University, Patiala 147002, India; (M.S.)
| | - Kirti Sharma
- Division of Molecular Genetics, Department of Human Genetics, Punjabi University, Patiala 147002, India; (M.S.)
| | - Nitin Kumar
- Division of Molecular Genetics, Department of Human Genetics, Punjabi University, Patiala 147002, India; (M.S.)
| | - Sarabjit Mastana
- Human Genomics Laboratory, School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough LE11 3TU, UK
| | - Puneetpal Singh
- Division of Molecular Genetics, Department of Human Genetics, Punjabi University, Patiala 147002, India; (M.S.)
| |
Collapse
|
6
|
Shams S, Stilhano RS, Silva EA. Harnessing EGLN1 Gene Editing to Amplify HIF-1α and Enhance Human Angiogenic Response. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.29.542734. [PMID: 37398294 PMCID: PMC10312464 DOI: 10.1101/2023.05.29.542734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Therapeutic angiogenesis has been the focus of hundreds of clinical trials but approval for human treatment remains elusive. Current strategies often rely on the upregulation of a single proangiogenic factor, which fails to recapitulate the complex response needed in hypoxic tissues. Hypoxic oxygen tensions dramatically decrease the activity of hypoxia inducible factor prolyl hydroxylase 2 (PHD2), the primary oxygen sensing portion of the hypoxia inducible factor 1 alpha (HIF-1α) proangiogenic master regulatory pathway. Repressing PHD2 activity increases intracellular levels of HIF-1α and impacts the expression of hundreds of downstream genes directly associated with angiogenesis, cell survival, and tissue homeostasis. This study explores activating the HIF-1α pathway through Sp Cas9 knockout of the PHD2 encoding gene EGLN1 as an innovative in situ therapeutic angiogenesis strategy for chronic vascular diseases. Our findings demonstrate that even low editing rates of EGLN1 lead to a strong proangiogenic response regarding proangiogenic gene transcription, protein production, and protein secretion. In addition, we show that secreted factors of EGLN1 edited cell cultures may enhance human endothelial cell neovascularization activity in the context of proliferation and motility. Altogether, this study reveals that EGLN1 gene editing shows promise as a potential therapeutic angiogenesis strategy.
Collapse
|
7
|
Shineh G, Patel K, Mobaraki M, Tayebi L. Functional Approaches in Promoting Vascularization and Angiogenesis in Bone Critical-Sized Defects via Delivery of Cells, Growth Factors, Drugs, and Particles. J Funct Biomater 2023; 14:99. [PMID: 36826899 PMCID: PMC9960138 DOI: 10.3390/jfb14020099] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 02/06/2023] [Accepted: 02/09/2023] [Indexed: 02/16/2023] Open
Abstract
Critical-sized bone defects, or CSDs, are defined as bone defects that cannot be regenerated by themselves and require surgical intervention via employing specific biomaterials and a certain regenerative strategy. Although a variety of approaches can be used to treat CSDs, poor angiogenesis and vascularization remain an obstacle in these methods. The complex biological healing of bone defects depends directly on the function of blood flow to provide sufficient oxygen and nutrients and the removal of waste products from the defect site. The absence of vascularization can lead to non-union and delayed-union defect development. To overcome this challenge, angiogenic agents can be delivered to the site of injury to stimulate vessel formation. This review begins by introducing the treatment methods for CSDs. The importance of vascularization in CSDs is subsequently highlighted. Delivering angiogenesis agents, including relevant growth factors, cells, drugs, particles, cell secretion substances, their combination, and co-delivery to CSDs are fully explored. Moreover, the effects of such agents on new bone formation, followed by vessel formation in defect areas, are evaluated.
Collapse
Affiliation(s)
- Ghazal Shineh
- School of Biomedical Engineering, University of Sydney, Sydney, NSW 2006, Australia
| | - Kishan Patel
- School of Dentistry, Marquette University, Milwaukee, WI 53207, USA
| | - Mohammadmahdi Mobaraki
- Biomaterial Group, Faculty of Biomedical Engineering, Amirkabir University of Technology, Tehran 15916-34311, Iran
| | - Lobat Tayebi
- School of Dentistry, Marquette University, Milwaukee, WI 53207, USA
| |
Collapse
|
8
|
Mahapatra C, Kumar P, Paul MK, Kumar A. Angiogenic stimulation strategies in bone tissue regeneration. Tissue Cell 2022; 79:101908. [DOI: 10.1016/j.tice.2022.101908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 03/24/2022] [Accepted: 08/22/2022] [Indexed: 11/28/2022]
|
9
|
Mastrolia I, Giorgini A, Murgia A, Loschi P, Petrachi T, Rasini V, Pinelli M, Pinto V, Lolli F, Chiavelli C, Grisendi G, Baschieri MC, Santis GD, Catani F, Dominici M, Veronesi E. Autologous Marrow Mesenchymal Stem Cell Driving Bone Regeneration in a Rabbit Model of Femoral Head Osteonecrosis. Pharmaceutics 2022; 14:pharmaceutics14102127. [PMID: 36297562 PMCID: PMC9610232 DOI: 10.3390/pharmaceutics14102127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/21/2022] [Accepted: 10/03/2022] [Indexed: 11/07/2022] Open
Abstract
Osteonecrosis of the femoral head (ONFH) is a progressive degenerative disease that ultimately requires a total hip replacement. Mesenchymal stromal/stem cells (MSCs), particularly the ones isolated from bone marrow (BM), could be promising tools to restore bone tissue in ONFH. Here, we established a rabbit model to mimic the pathogenic features of human ONFH and to challenge an autologous MSC-based treatment. ON has been originally induced by the synergic combination of surgery and steroid administration. Autologous BM-MSCs were then implanted in the FH, aiming to restore the damaged tissue. Histological analyses confirmed bone formation in the BM-MSC treated rabbit femurs but not in the controls. In addition, the model also allowed investigations on BM-MSCs isolated before (ON-BM-MSCs) and after (ON+BM-MSCs) ON induction to dissect the impact of ON damage on MSC behavior in an affected microenvironment, accounting for those clinical approaches foreseeing MSCs generally isolated from affected patients. BM-MSCs, isolated before and after ON induction, revealed similar growth rates, immunophenotypic profiles, and differentiation abilities regardless of the ON. Our data support the use of ON+BM-MSCs as a promising autologous therapeutic tool to treat ON, paving the way for a more consolidated use into the clinical settings.
Collapse
Affiliation(s)
- Ilenia Mastrolia
- Laboratory of Cellular Therapy, Division of Oncology, Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, 41124 Modena, Italy
- Correspondence:
| | - Andrea Giorgini
- Division of Orthopedics, Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena and Reggio Emilia, 41124 Modena, Italy
| | - Alba Murgia
- Technopole of Mirandola TPM, Mirandola, 41037 Modena, Italy
| | | | | | - Valeria Rasini
- Laboratory of Cellular Therapy, Division of Oncology, Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, 41124 Modena, Italy
| | - Massimo Pinelli
- Division of Plastic Surgery, Department of Medical and Surgical Sciences for Children & Adults, University-Hospital of Modena and Reggio Emilia, 41124 Modena, Italy
| | - Valentina Pinto
- Division of Plastic Surgery, Department of Medical and Surgical Sciences for Children & Adults, University-Hospital of Modena and Reggio Emilia, 41124 Modena, Italy
| | - Francesca Lolli
- Division of Plastic Surgery, Department of Medical and Surgical Sciences for Children & Adults, University-Hospital of Modena and Reggio Emilia, 41124 Modena, Italy
| | - Chiara Chiavelli
- Laboratory of Cellular Therapy, Division of Oncology, Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, 41124 Modena, Italy
| | - Giulia Grisendi
- Laboratory of Cellular Therapy, Division of Oncology, Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, 41124 Modena, Italy
| | - Maria Cristina Baschieri
- Laboratory of Cellular Therapy, Division of Oncology, Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, 41124 Modena, Italy
| | - Giorgio De Santis
- Division of Plastic Surgery, Department of Medical and Surgical Sciences for Children & Adults, University-Hospital of Modena and Reggio Emilia, 41124 Modena, Italy
| | - Fabio Catani
- Division of Orthopedics, Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena and Reggio Emilia, 41124 Modena, Italy
| | - Massimo Dominici
- Laboratory of Cellular Therapy, Division of Oncology, Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, 41124 Modena, Italy
- Technopole of Mirandola TPM, Mirandola, 41037 Modena, Italy
| | - Elena Veronesi
- Laboratory of Cellular Therapy, Division of Oncology, Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, 41124 Modena, Italy
- Technopole of Mirandola TPM, Mirandola, 41037 Modena, Italy
| |
Collapse
|
10
|
Tao J, Miao R, Liu G, Qiu X, Yang B, Tan X, Liu L, Long J, Tang W, Jing W. Spatiotemporal correlation between HIF-1α and bone regeneration. FASEB J 2022; 36:e22520. [PMID: 36065633 DOI: 10.1096/fj.202200329rr] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 08/04/2022] [Accepted: 08/15/2022] [Indexed: 12/20/2022]
Abstract
Hypoxia-inducible factors (HIFs) are core regulators of the hypoxia response. HIF signaling is activated in the local physiological and pathological hypoxic environment, acting on downstream target genes to synthesize the corresponding proteins and regulate the hypoxic stress response. HIFs belong to the hypoxia-activated transcription family and contain two heterodimeric transcription factors, HIF-α and HIF-β. Under hypoxia, the dimer formed by HIF-α binding to HIF-β translocates into the nucleus and binds to the hypoxia response element (HRE) to induce transcription of a series of genes. HIF-1α plays an important role in innate bone development and acquired bone regeneration. HIF-1α promotes bone regeneration mainly through the following two pathways: (1) By regulating angiogenesis-osteoblast coupling to promote bone regeneration; and (2) by inducing metabolic reprogramming in osteoblasts, promoting cellular anaerobic glycolysis, ensuring the energy supply of osteoblasts under hypoxic conditions, and further promoting bone regeneration and repair. This article reviews recent basic research on HIF-1α and its role in promoting osteogenesis, discusses the possible molecular mechanisms, introduces the hypoxia-independent role of HIF-1α and reviews the application prospects of HIF-1α in tissue engineering.
Collapse
Affiliation(s)
- Junming Tao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Rong Miao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Gang Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xiaoning Qiu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Baohua Yang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xinzhi Tan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Lei Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jie Long
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Wei Tang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Wei Jing
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
11
|
Zhang XX, Liang X, Li SR, Guo KJ, Li DF, Li TF. Bone Marrow Mesenchymal Stem Cells Overexpressing HIF-1α Prevented the Progression of Glucocorticoid-Induced Avascular Osteonecrosis of Femoral Heads in Mice. Cell Transplant 2022; 31:9636897221082687. [PMID: 35287482 PMCID: PMC8928352 DOI: 10.1177/09636897221082687] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Glucocorticoid (GC)-induced avascular osteonecrosis of femoral head (AOFH) is a devastating complication, and no cures are currently available for it. Previous studies have demonstrated that implantation of bone marrow mesenchymal stem cells (BMMSCs) may prevent the progression of pre-collapse AOFH. Based on previous observations, we hypothesized that GCs induce AOFH via the COX-2 (cyclooxygenase-2)-PGE-2 (prostaglandin E2)-HIF-1α (hypoxia-inducible factor-1α) axis, and that modification of BMMSCs may improve the efficacy of their implantation. BMMSCs isolated from wild-type (WT) mice were treated with dexamethasone (Dex) and the results showed that Dex repressed the expression of COX-2. Femoral head samples harvested from both WT and COX-2 knock-out (COX-2-/-) mice were subjected to micro-computed tomography and histological examinations. Compared with their WT littermates, COX-2-/- mice had larger trabecular separations, diminished microvasculature, and reduced HIF-1α expression in their femoral heads. In vitro angiogenesis assays with tube formation and fetal metatarsal sprouting demonstrated that Dex repressed angiogenesis and PGE-2 antagonized its effects. An AOFH model was successfully established in C57BL/6J mice. In vitro experiment showed that BMMSCs infected with Lentivirus encoding HIF-1α (Lenti-HIF-1α) resulted in a robust increase in the production of HIF-1α protein. Implantation of BMMSCs overexpressing HIF-1α into femoral heads of AOFH mice significantly reduced osteonecrotic areas and enhanced bone repair, thus largely preserving the structural integrity of femoral heads. Our studies provide strong rationales for early intervention with core decompression and implantation of modified BMMSCs for GC-induced AOFH, which may spare patients from expensive and difficult surgical procedures.
Collapse
Affiliation(s)
- Xin-Xin Zhang
- Department of Rheumatology, Zhengzhou University First Affiliated Hospital, Zhengzhou, China
| | - Xu Liang
- Department of Rheumatology, Zhengzhou University First Affiliated Hospital, Zhengzhou, China
| | - Sen-Rui Li
- Department of Rheumatology, Zhengzhou University First Affiliated Hospital, Zhengzhou, China
| | - Kuang-Jin Guo
- Department of Rheumatology, Zhengzhou University First Affiliated Hospital, Zhengzhou, China
| | - Dai-Feng Li
- Department of Orthopaedics, Zhengzhou University First Affiliated Hospital, Zhengzhou, China.,Department of Magnetic Resonance Imaging, Henan Key Laboratory of Functional Magnetic Resonance Imaging and Molecular Imaging, Zhengzhou University First Affiliated Hospital, Zhengzhou, China
| | - Tian-Fang Li
- Department of Rheumatology, Zhengzhou University First Affiliated Hospital, Zhengzhou, China
| |
Collapse
|
12
|
Jiang Y, Duan LJ, Fong GH. Oxygen-sensing mechanisms in development and tissue repair. Development 2021; 148:273632. [PMID: 34874450 DOI: 10.1242/dev.200030] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Under normoxia, hypoxia inducible factor (HIF) α subunits are hydroxylated by PHDs (prolyl hydroxylase domain proteins) and subsequently undergo polyubiquitylation and degradation. Normal embryogenesis occurs under hypoxia, which suppresses PHD activities and allows HIFα to stabilize and regulate development. In this Primer, we explain molecular mechanisms of the oxygen-sensing pathway, summarize HIF-regulated downstream events, discuss loss-of-function phenotypes primarily in mouse development, and highlight clinical relevance to angiogenesis and tissue repair.
Collapse
Affiliation(s)
- Yida Jiang
- Center for Vascular Biology, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Li-Juan Duan
- Center for Vascular Biology, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Guo-Hua Fong
- Center for Vascular Biology, University of Connecticut Health Center, Farmington, CT 06030, USA.,Department of Cell Biology, University of Connecticut Health Center, Farmington, CT 06030, USA
| |
Collapse
|
13
|
Li Y, Wang J, Ma Y, Du W, Feng K, Wang S. miR-101-loaded exosomes secreted by bone marrow mesenchymal stem cells requires the FBXW7/HIF1α/FOXP3 axis, facilitating osteogenic differentiation. J Cell Physiol 2021; 236:4258-4272. [PMID: 33438204 DOI: 10.1002/jcp.30027] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 08/12/2020] [Accepted: 08/16/2020] [Indexed: 12/20/2022]
Abstract
Exosomes derived from mesenchymal stem cells (MSCs) have emerged as significant mediators of intercellular communication, with studies highlighting their role in the transmission of biological signals between cells. Dominant microRNA (miRNA)-mediated translational repression of messenger RNAs has been extensively investigated in regard to its influence in orchestrating osteogenic differentiation. In the current study, we sought to ascertain the contributory role of miRNA-101 (miR-101) encapsulated in the process of bone marrow mesenchymal stem cell (BMSC)-derived exosomes in osteogenic differentiation. Exosomes were initially extracted from BMSCs at Days 0, 3, 12, and 21 of osteogenic differentiation by ultracentrifugation. Artificial modulation of miR-101 and FBXW7 (silencing and overexpression) were performed in the BMSCs to identify its effects on osteogenic factors, alkaline phosphatase activity, and osteogenic differentiation. Mechanistic exploration was performed to evaluate the binding affinity between miR-101 and FBXW7, the FBXW7-mediated HIF1α ubiquitination, and the HIF1α enrichment in the FOXP3 promoter region. Exosomes from MSCs in the late stage of osteogenic differentiation exhibited enhanced osteogenic differentiation. Upregulated miR-101 in MSC-derived exosomes was detected during osteogenic differentiation, while diminished levels of FBXW7 expression was noted. Importantly, miR-101 was found to specifically bind to the 3'-untranslated region of FBXW7. Meanwhile, data was obtained indicating that FBXW7 could ubiquitinate and degrade HIF1α to repress its upregulation during osteogenic differentiation. HIF1α bound to the promoter region of FOXP3 to facilitate osteogenic differentiation. Ultimately, the findings of the current study demonstrate that BMSC-derived exosomal miR-101 augments osteogenic differentiation in MSCs by inhibiting FBXW7 to regulate the HIF1α/FOXP3 axis.
Collapse
Affiliation(s)
- Yanhong Li
- Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Jing Wang
- Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Yanchao Ma
- Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Wenjia Du
- Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Kai Feng
- Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Shuanke Wang
- Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| |
Collapse
|
14
|
Jiang M, Liu L, Xiang X, Liang R, Qin X, Zhao J, Wei Q. An MSC bone-homing compound, Rab001, increases bone mass and reduces the incidence of osteonecrosis in a glucocorticoid-induced osteonecrosis mouse model. Clin Exp Pharmacol Physiol 2021; 48:770-781. [PMID: 33319413 DOI: 10.1111/1440-1681.13441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 11/18/2020] [Indexed: 11/30/2022]
Abstract
Currently, there are no effective medications to either prevent or slow the progression of atraumatic osteonecrosis (ON). The objective of this study is to determine the effects of bone-targeted delivery of mesenchymal stem cells on the prevalence of ON in a glucocorticoid (GC)-induced mouse model. Eight-week-old male BALB/c mice were randomized into groups that received placebo (PL), prednisolone (GC), or concurrent treatments with GC + mesenchymal stromal cells (MSCs), Rab001 or GC + Rab001 + MSCs. Human parathyroid hormone (hPTH) was used as a positive control for bone anabolism. Mice were killed after 30 days, and quantitative measurements of bone mass, bone strength, prevalent ON at the distal femoral epiphysis (DFE) were performed. Angiogenesis was accessed by RNA-Seq, the circulating angiogenic markers, as well as by immunohistochemical staining. We have showed that a novel agent, Rab001 that can noncovalently bind to mesenchymal stem cells (MSC) and direct them to the bone, prevents the incidence of glucocorticoid-induced osteonecrosis in the mouse. In contrast, PTH, a bone anabolic treatment, preserves bone mass but sustains higher ON incidence than Rab001+/- MSC-treated mice. The results of these experiments reveal that glucocorticoids increase the prevalence of ON, and agents that prevent loss of bone vascularity appear to prevent the development of ON. This intervention might be useful in patients with early stages of atraumatic ON.
Collapse
Affiliation(s)
- Min Jiang
- Guangxi Laide Kangshun Bio-pharmaceutical Technology Co., Ltd., Nanning, China
- Shanghai Key Laboratory for Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Shanghai Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Lixian Liu
- Yunnan Vocational and Technical College of Agriculture, Kunming, China
| | - Xuexiang Xiang
- Guangxi Laide Kangshun Bio-pharmaceutical Technology Co., Ltd., Nanning, China
| | - Runmin Liang
- Guangxi Laide Kangshun Bio-pharmaceutical Technology Co., Ltd., Nanning, China
| | - Xuelian Qin
- Guangxi Laide Kangshun Bio-pharmaceutical Technology Co., Ltd., Nanning, China
| | - Jinmin Zhao
- Department of Orthopaedics Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, China
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, Guangxi Medical University, Nanning, China
- Guangxi Key Laboratory of Regenerative Medicine, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, China
| | - Qingjun Wei
- Department of Orthopaedics Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, China
| |
Collapse
|
15
|
Mao Z, Liu G, Xiao GY, Zhao C, Zou YC. CircCDR1as Suppresses Bone Microvascular Endothelial Cell Activity and Angiogenesis Through Targeting miR-135b/ FIH-1 Axis. Orthop Surg 2021; 13:573-582. [PMID: 33619902 PMCID: PMC7957389 DOI: 10.1111/os.12883] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 10/07/2020] [Accepted: 10/26/2020] [Indexed: 11/30/2022] Open
Abstract
Objective The current study investigated the role of CircCDR1as on angiogenesis of bone microvascular endothelial cells (BMECs) isolated from non‐traumatic ONFH. Methods Forty corticosteroid‐induced ONFH patients received THA were enrolled in our study. Expressions of CircCDR1as, miR‐135b, and FIH‐1 were detected by qRT‐PCR in affected necrosis tissue and non‐affected normal tissue. Bone microvascular endothelial cells (BMEC) were isolated from six patients and treated with 0.1 mg/mL hydrocortisone to establish a GC‐damaged model of BMECs. Circ CDR1as plasmid and miR‐135b mimic were transfected into BMECs. BMEC proliferation was assessed using MTT assays. The migration ability of cells was detected by scratch‐wound assays. Matrigel assay was performed to detect angiogenesis in vitro. Western blot assay was used to detect HIF‐1α, VEGF, and FIH‐1 expressions. FISH, RNA pull down, RIP, and luciferase assay were carried out to determine the interaction of CircCDR1as, miR‐135b, and FIH‐1. Results CircCDR1as was upregulated(2.02 ± 0.30 vs. 1.00 ± 0.10,P < 0.001) whereas miR‐135b was downregulated (0.55 ± 0.12 vs. 1.00 ± 0.10,P < 0.001) in affected tissues than in non‐affected tissues. Expression of CircCDR1as and FIH‐1 were negatively associated with miR‐135b in affected tissues (CircCDR1as with miR‐135b: r = −0.506, P < 0.001; FIH‐1 with miR‐135b r = −0.510, P < 0.001). Total blood tubule density was increased when CircCDR1as was silenced compared with NC (P < 0.01 vs. NC). The number of migrated BMECs were significantly increased in CircCDR1as silencing group compared with NC group (P < 0.05 vs. NC). In addition, CircCDR1as plasmids transfection increased the protein expressions of FIH‐1 (P < 0.05 vs. NC) and reduced the HIF‐1α as well as VEGF expression compared with NC group (P < 0.05 vs. NC). FISH, RNA pull down, RIP, and luciferase assay identified that FIH‐1 was a target of miR‐135b and could be modulated by CircCDR1as. Conclusion CircCDR1as decreases angiogenesis and proliferation of BMECs by sponging miR‐135b and upregulate FIH‐1.
Collapse
Affiliation(s)
- Zheng Mao
- Department of Rehabilitation, The third Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Gang Liu
- Department of Rehabilitation, The third Affiliated Hospital, Southern Medical University, Guangzhou, China
| | | | - Chang Zhao
- Department of orthopedics, The Third affiliated hospital, Southern Medical University, Guangzhou, China
| | - Yu-Cong Zou
- Department of Rehabilitation, The third Affiliated Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
16
|
Fu L, Zhang L, Zhang X, Chen L, Cai Q, Yang X. Roles of oxygen level and hypoxia-inducible factor signaling pathway in cartilage, bone and osteochondral tissue engineering. Biomed Mater 2021; 16:022006. [PMID: 33440367 DOI: 10.1088/1748-605x/abdb73] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The repair and treatment of articular cartilage injury is a huge challenge of orthopedics. Currently, most of the clinical methods applied in treating cartilage injuries are mainly to relieve pains rather than to cure them, while the strategy of tissue engineering is highly expected to achieve the successful repair of osteochondral defects. Clear understandings of the physiological structures and mechanical properties of cartilage, bone and osteochondral tissues have been established, but the understanding of their physiological heterogeneity still needs further investigation. Apart from the gradients in the micromorphology and composition of cartilage-to-bone extracellular matrixes, an oxygen gradient also exists in natural osteochondral tissue. The response of hypoxia-inducible factor (HIF)-mediated cells to oxygen would affect the differentiation of stem cells and the maturation of osteochondral tissue. This article reviews the roles of oxygen level and HIF signaling pathway in the development of articular cartilage tissue, and their prospective applications in bone and cartilage tissue engineering. The strategies for regulating HIF signaling pathway and how these strategies finding their potential applications in the regeneration of integrated osteochondral tissue are also discussed.
Collapse
Affiliation(s)
- Lei Fu
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | | | | | | | | | | |
Collapse
|
17
|
Ying C, Wang R, Wang Z, Tao J, Yin W, Zhang J, Yi C, Qi X, Han D. BMSC-Exosomes Carry Mutant HIF-1α for Improving Angiogenesis and Osteogenesis in Critical-Sized Calvarial Defects. Front Bioeng Biotechnol 2020; 8:565561. [PMID: 33330411 PMCID: PMC7710518 DOI: 10.3389/fbioe.2020.565561] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 10/28/2020] [Indexed: 12/13/2022] Open
Abstract
Repair and reconstruction of critical-sized bone defects has always been a difficult task in orthopedics. Hypoxia inducible factor-1α (HIF-1α) plays an important role in bone defect repair, it has the dual function of promoting osteogenesis and vascular regeneration, but it is quickly degraded by the body under normoxic conditions. Previously we prepared mutant HIF-1α, which has been shown to efficiently maintain cellular expression under normoxic conditions. In this study, we evaluated for the first time the role of exosomes of rat bone marrow mesenchymal stem cell carry mutant HIF-1α (BMSC-Exos-HIF1α) in repairing critical-sized bone defects. Evaluation of the effects of BMSC-Exos-HIF1α on bone marrow mesenchymal stem cells (BMSCs) proliferation and osteogenic differentiation by cell proliferation assay, alkaline phosphatase activity assay, alizarin red staining, real-time quantitative polymerase chain reaction. BMSC-Exos-HIF1α was loaded onto the β-TCP stent implanted in the bone defect area using a rat cranial critical-sized bone defect model, and new bone formation and neovascularization were detected in vivo by micro-CT, fluorescence labeling analysis, Microfil perfusion, histology and immunohistochemical analysis. In vitro results showed that BMSC-Exos-HIF1α stimulated the proliferation of BMSCs and up-regulated the expression level of bone-related genes, which was superior to bone marrow MSC exosomes (BMSC-Exos). In vivo results showed that BMSC-Exos-HIF1α combined with β-TCP scaffold promoted new bone regeneration and neovascularization in the bone defect area, and the effect was better than that of BMSC-Exos combined with β-TCP scaffold. In this study, the results showed that BMSC-Exos-HIF1α stimulated the proliferation and osteogenic differentiation of BMSCs and that BMSC-Exos-HIF1α combined with β-TCP scaffolds could repair critical-sized bone defects by promoting new bone regeneration and neovascularization.
Collapse
Affiliation(s)
- Chenting Ying
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Rui Wang
- Department of Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhenlin Wang
- Department of Neurosurgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jie Tao
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenjing Yin
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Jieyuan Zhang
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Chengqing Yi
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xin Qi
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dan Han
- Department of Emergency Medicine and Intensive Care, Shanghai Songjiang Clinical Medical College of Nanjing Medical University, Shanghai, China
| |
Collapse
|
18
|
Goodman SB, Maruyama M. Inflammation, Bone Healing and Osteonecrosis: From Bedside to Bench. J Inflamm Res 2020; 13:913-923. [PMID: 33223846 PMCID: PMC7671464 DOI: 10.2147/jir.s281941] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 10/22/2020] [Indexed: 12/15/2022] Open
Abstract
Osteonecrosis of the epiphyseal and metaphyseal regions of major weight-bearing bones of the extremities is a condition that is associated with local death of bone cells and marrow in the afflicted compartment. Chronic inflammation is a prominent feature of osteonecrosis. If the persistent inflammation is not resolved, this process will result in progressive collapse and subsequent degenerative arthritis. In the pre-collapse stage of osteonecrosis, attempt at joint preservation rather than joint replacement in this younger population with osteonecrosis is a major clinical objective. In this regard, core decompression, with/without local injection of bone marrow aspirate concentrate (BMAC), is an accepted and evidence-based method to help arrest the progression and improve the outcome of early-stage osteonecrosis. However, some patients do not respond favorably to this treatment. Thus, it is prudent to consider strategies to mitigate chronic inflammation concurrent with addressing the deficiencies in osteogenesis and vasculogenesis in order to save the affected joint. Interestingly, the processes of inflammation, osteonecrosis, and bone healing are highly inter-related. Therefore, modulating the biological processes and crosstalk among cells of the innate immune system, the mesenchymal stem cell-osteoblast lineage and others are important to providing the local microenvironment for resolution of inflammation and subsequent repair. This review summarizes the clinical and biologic principles associated with osteonecrosis and provides potential cutting-end strategies for modulating chronic inflammation and facilitating osteogenesis and vasculogenesis using local interventions. Although these studies are still in the preclinical stages, it is hoped that safe, efficacious, and cost-effective interventions will be developed to save the host’s natural joint.
Collapse
Affiliation(s)
- Stuart B Goodman
- Departments of Orthopaedic Surgery, Stanford University, Stanford, CA, USA.,Departments of Bioengineering, Stanford University, Stanford, CA, USA
| | - Masahiro Maruyama
- Departments of Orthopaedic Surgery, Stanford University, Stanford, CA, USA
| |
Collapse
|
19
|
Yin BH, Chen HC, Zhang W, Li TZ, Gao QM, Liu JW. Effects of hypoxia environment on osteonecrosis of the femoral head in Sprague-Dawley rats. J Bone Miner Metab 2020; 38:780-793. [PMID: 32533328 DOI: 10.1007/s00774-020-01114-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Accepted: 05/11/2020] [Indexed: 12/19/2022]
Abstract
INTRODUCTION Osteonecrosis of the femoral head (ONFH) is a disease in which the blood supply of the femoral head is interrupted or damaged, resulting in joint dysfunction. Hypoxic environments increase the expression of EPO, VEGF, and HIF causes vascular proliferation and increases the blood supply. It also causes the organism to be in a state of hypercoagulability and increases thrombosis. Therefore, the purpose of this study was to explore the occurrence of ONFH after the use of glucocorticoids (GCs) under conditions of hypoxia tolerance for a long time. MATERIALS AND METHODS Sprague-Dawley rats were fed in a hypobaric hypoxic chamber at an altitude of 4000 m, the whole blood viscosity, and plasma viscosity were determined to analyze the blood flow and hemagglutination. Western blotting, polymerase chain reaction, and immunohistochemistry were used to detect EPO, VEGF, CD31, and osteogenesis related proteins. Femoral head angiography was used to examine the local blood supply and micro-CT scanning was used to detect the structure of the bone trabecula. RESULTS Under hypoxic environments, the expression of EPO and VEGF increased, which increased the local blood supply of the femoral head, but due to more severe thrombosis, the local blood supply of the femoral head decreased. CONCLUSIONS Hypoxic environments can aggravate ONFH in SD rats; this aggravation may be related to the hypercoagulable state of the blood. We suggest that long-term hypoxia should be regarded as one of the risk factors of ONFH and we need to conduct a more extensive epidemiological investigation on the occurrence of ONFH in hypoxic populations.
Collapse
Affiliation(s)
- Bo-Hao Yin
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, People's Republic of China
| | - Hong-Chi Chen
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, People's Republic of China
| | - Wei Zhang
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, People's Republic of China.
| | - Tan-Zhu Li
- Department of Orthopedic Surgery, Xigaze People's Hospital, 5 Shanghai Road, Xigazê, Tibet Autonomous Region, People's Republic of China
| | - Qiu-Ming Gao
- Department of Orthopedic Surgery, The 940th Hospital of Joint Logistics Support Force of PLA, Lanzhou, Gansu, People's Republic of China
| | - Jing-Wen Liu
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, People's Republic of China
| |
Collapse
|
20
|
Yu H, Liu P, Zhu D, Yin J, Yang Q, Huang Y, Chen Y, Zhang C, Gao Y. Chrysophanic acid shifts the differentiation tendency of BMSCs to prevent alcohol-induced osteonecrosis of the femoral head. Cell Prolif 2020; 53:e12871. [PMID: 32597546 PMCID: PMC7445404 DOI: 10.1111/cpr.12871] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 06/11/2020] [Accepted: 06/17/2020] [Indexed: 12/13/2022] Open
Abstract
Objectives Osteonecrosis of the femoral head (ONFH), largely caused by alcohol abuse, is a refractory bone disease characterized by the impaired capacity of osteogenic differentiation of bone mesenchymal stem cells (BMSCs), as well as the disordered adipocyte accumulation. Chrysophanic acid (CPA) is a natural anthraquinone which has lipid regulation and bone protection capacity. The aim of this study was to reveal the potential function of CPA and the underlying mechanisms for the alcohol‐induced ONFH. Materials and Methods The effects of alcohol and CPA on BMSCs were investigated by cell proliferation, induced differentiation assays and immunofluorescent staining. Meanwhile, the function of PI3K/AKT and AMPK pathway was investigated in the process of osteogenic and adipogenic differentiation, respectively. Furthermore, we established the rat model of alcohol‐induced ONFH to reveal the pharmacotherapeutic effect of CPA in vivo using radiographical and histopathological methods. Results In vitro, alcohol significantly inhibited the proliferation and osteogenic differentiation of BMSCs but stimulated the adipogenic differentiation. However, CPA could counteract the anti‐osteogenesis of alcohol partly via PI3K/AKT pathway and retard the promotion of alcohol‐induced adipogenesis via AMPK pathway. In vivo, radiographical and histopathological findings showed that CPA could alleviate alcohol‐induced ONFH and substantially restore the bone volume. Conclusions We demonstrated that CPA ameliorated alcohol‐induced ONFH possibly via regulating the differentiation tendency of BMSCs. Hence, CPA may become a beneficial herb extract to alleviate alcohol‐induced ONFH.
Collapse
Affiliation(s)
- Hongping Yu
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Pei Liu
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Daoyu Zhu
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Junhui Yin
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Qianhao Yang
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Yigang Huang
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Yixuan Chen
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Changqing Zhang
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Youshui Gao
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| |
Collapse
|
21
|
Jing X, Du T, Yang X, Zhang W, Wang G, Liu X, Li T, Jiang Z. Desferoxamine protects against glucocorticoid-induced osteonecrosis of the femoral head via activating HIF-1α expression. J Cell Physiol 2020; 235:9864-9875. [PMID: 32437020 DOI: 10.1002/jcp.29799] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 05/07/2020] [Indexed: 12/21/2022]
Abstract
Glucocorticoid-induced osteonecrosis of the femoral head (GIOFH) is one of the most common complications of glucocorticoid administration. By chelating Fe2+ , desferoxamine (DFO) was reported to be able to activate the HIF-1α/VEGF pathway and promote angiogenesis. In the present study, we examined whether DFO administration could promote angiogenesis and bone repair in GIOFH. GIOFH was induced in rats by methylprednisolone in combination with lipopolysaccharide. Bone repair was assessed by histologic analysis and microcomputed tomography (micro-CT). Vascularization was assessed by Microfil perfusion and micro-CT analysis. Immunohistochemical staining was performed to analyze the expression of HIF-1α, VEGF, and CD31. Our in vivo study revealed that DFO increased HIF-1α/VEGF expression and promoted angiogenesis and osteogenesis in GIOFH. Moreover, our in vitro study revealed that DFO restored dexamethone-induced HIF-1α downregulation and angiogenesis inhibition. Besides, our in vitro study also demonstrated that DFO could protect bone marrow-derived stem cells from dexamethone-induced apoptosis and mitochondrial dysfunction by promoting mitophagy and mitochondrial fission. In summary, our data provided useful information for the development of novel therapeutics for management of GIOFH.
Collapse
Affiliation(s)
- Xingzhi Jing
- Department of Spine Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Ting Du
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital Affiliated to Shandong University, Jinan, Shandong, China
| | - Xiaoxia Yang
- Department of Spine Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Weimin Zhang
- Department of Spine Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Guodong Wang
- Department of Spine Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Xiaoyang Liu
- Department of Spine Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Tao Li
- Department of Spine Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Zhensong Jiang
- Department of Spine Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| |
Collapse
|
22
|
Chen G, Wang Q, Li Z, Yang Q, Liu Y, Du Z, Zhang G, Song Y. Circular RNA CDR1as promotes adipogenic and suppresses osteogenic differentiation of BMSCs in steroid-induced osteonecrosis of the femoral head. Bone 2020; 133:115258. [PMID: 32018039 DOI: 10.1016/j.bone.2020.115258] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 01/31/2020] [Accepted: 01/31/2020] [Indexed: 12/13/2022]
Abstract
Steroid-induced osteonecrosis of the femoral head (SONFH) is a common debilitating orthopedic disease. The bone marrow mesenchymal stem cells (BMSCs) are a type of mesenchymal stem cells which play crucial roles in bone repair. The adipogenic/osteogenic differentiation disorder of BMSCs has been widely perceived contributing to SONFH. However, the regulatory mechanism of BMSCs differentiation disorder still remains unclear. Circular RNA (circRNA), a kind of stable ncRNA, plays important roles in regulating gene expression via various ways. To date, there are no studies to uncover the circRNA expression profile and screen out the key circRNAs playing crucial roles in adipogenic/osteogenic differentiation disorder of SONFH-BMSCs. In present study, we detected the circRNA expression profiles in SONFH-BMSCs for the first time. A total of 820 circRNAs were differentially expressed in SONFH-BMSCs, including 460 up- and 360 down-regulated circRNAs. Bioinformatics analysis indicates circRNA CDR1as, one up-regulated circRNA, may play crucial role in adipogenic/osteogenic differentiation disorder of SONFH-BMSCs via CDR1as-miR-7-5p-WNT5B axis. Knocking-down CDR1as resulted in increasing of osteogenic differentiation and decreasing of adipogenic differentiation of BMSCs, while over-expressing CDR1as resulted in decreasing of osteogenic differentiation and increasing of adipogenic differentiation of BMSCs. The miR-7-5p binding sites of CDR1as and WNT5B were verified by luciferase reporter gene assay. Our study may provide new insights into the molecular mechanisms of osteogenic/adipogenic differentiation disorder of SONFH-BMSCs and new biomarkers for the diagnosis and treatment of SONFH.
Collapse
Affiliation(s)
- Gaoyang Chen
- Department of Orthopedics, The Second Hospital of Jilin University, Ziqiang Street 218, Changchun, Jilin 130041, China; Research Centre of the Second Hospital of Jilin University, Ziqiang Street 218, Changchun, Jilin 130041, China; The Engineering Research Centre of Molecular Diagnosis and Cell Treatment for Metabolic Bone Diseases of Jilin Province, Ziqiang Street 218, Changchun, Jilin 130041, China.
| | - Qingyu Wang
- Department of Orthopedics, The Second Hospital of Jilin University, Ziqiang Street 218, Changchun, Jilin 130041, China; Research Centre of the Second Hospital of Jilin University, Ziqiang Street 218, Changchun, Jilin 130041, China; The Engineering Research Centre of Molecular Diagnosis and Cell Treatment for Metabolic Bone Diseases of Jilin Province, Ziqiang Street 218, Changchun, Jilin 130041, China
| | - Zhaoyan Li
- Department of Orthopedics, The Second Hospital of Jilin University, Ziqiang Street 218, Changchun, Jilin 130041, China; Research Centre of the Second Hospital of Jilin University, Ziqiang Street 218, Changchun, Jilin 130041, China; The Engineering Research Centre of Molecular Diagnosis and Cell Treatment for Metabolic Bone Diseases of Jilin Province, Ziqiang Street 218, Changchun, Jilin 130041, China
| | - Qiwei Yang
- Research Centre of the Second Hospital of Jilin University, Ziqiang Street 218, Changchun, Jilin 130041, China; The Engineering Research Centre of Molecular Diagnosis and Cell Treatment for Metabolic Bone Diseases of Jilin Province, Ziqiang Street 218, Changchun, Jilin 130041, China.
| | - Yuzhe Liu
- Department of Orthopedics, The Second Hospital of Jilin University, Ziqiang Street 218, Changchun, Jilin 130041, China; The Engineering Research Centre of Molecular Diagnosis and Cell Treatment for Metabolic Bone Diseases of Jilin Province, Ziqiang Street 218, Changchun, Jilin 130041, China.
| | - Zhenwu Du
- Department of Orthopedics, The Second Hospital of Jilin University, Ziqiang Street 218, Changchun, Jilin 130041, China; Research Centre of the Second Hospital of Jilin University, Ziqiang Street 218, Changchun, Jilin 130041, China; The Engineering Research Centre of Molecular Diagnosis and Cell Treatment for Metabolic Bone Diseases of Jilin Province, Ziqiang Street 218, Changchun, Jilin 130041, China
| | - Guizhen Zhang
- Department of Orthopedics, The Second Hospital of Jilin University, Ziqiang Street 218, Changchun, Jilin 130041, China; Research Centre of the Second Hospital of Jilin University, Ziqiang Street 218, Changchun, Jilin 130041, China; The Engineering Research Centre of Molecular Diagnosis and Cell Treatment for Metabolic Bone Diseases of Jilin Province, Ziqiang Street 218, Changchun, Jilin 130041, China
| | - Yang Song
- Department of Orthopedics, The Second Hospital of Jilin University, Ziqiang Street 218, Changchun, Jilin 130041, China; The Engineering Research Centre of Molecular Diagnosis and Cell Treatment for Metabolic Bone Diseases of Jilin Province, Ziqiang Street 218, Changchun, Jilin 130041, China.
| |
Collapse
|
23
|
Shu P, Sun DL, Shu ZX, Tian S, Pan Q, Wen CJ, Xi JY, Ye SN. Therapeutic Applications of Genes and Gene-Engineered Mesenchymal Stem Cells for Femoral Head Necrosis. Hum Gene Ther 2020; 31:286-296. [PMID: 32013585 DOI: 10.1089/hum.2019.306] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Osteonecrosis of the femoral head (ONFH) is a common and disabling joint disease. Although there is no clear consensus on the complex pathogenic mechanism of ONFH, trauma, abuse of glucocorticoids, and alcoholism are implicated in its etiology. The therapeutic strategies are still limited, and the clinical outcomes are not satisfactory. Mesenchymal stem cells (MSCs) have been shown to exert a positive impact on ONFH in preclinical experiments and clinical trials. The beneficial properties of MSCs are due, at least in part, to their ability to home to the injured tissue, secretion of paracrine signaling molecules, and multipotentiality. Nevertheless, the regenerative capacity of transplanted cells is impaired by the hostile environment of necrotic tissue in vivo, limiting their clinical efficacy. Recently, genetic engineering has been introduced as an attractive strategy to improve the regenerative properties of MSCs in the treatment of early-stage ONFH. This review summarizes the function of several genes used in the engineering of MSCs for the treatment of ONFH. Further, current challenges and future perspectives of genetic manipulation of MSCs are discussed. The notion of genetically engineered MSCs functioning as a "factory" that can produce a significant amount of multipotent and patient-specific therapeutic product is emphasized.
Collapse
Affiliation(s)
- Peng Shu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Deng Long Sun
- Department of Physiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; and
| | - Zi Xing Shu
- Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shuo Tian
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qi Pan
- Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Cen Jin Wen
- Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiao Ya Xi
- Department of Physiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; and
| | - Shu Nan Ye
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
24
|
Esmaeilzade B, Artimani T, Amiri I, Najafi R, Shahidi S, Sabec M, Farzadinia P, Zare M, Zahiri M, Soleimani Asl S. Dimethyloxalylglycine preconditioning enhances protective effects of bone marrow-derived mesenchymal stem cells in Aβ- induced Alzheimer disease. Physiol Behav 2019; 199:265-272. [PMID: 30500334 DOI: 10.1016/j.physbeh.2018.11.034] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 11/21/2018] [Accepted: 11/26/2018] [Indexed: 02/06/2023]
Abstract
Mesenchymal stem cell (MSC) transplantation therapy has been proposed as a promising approach for the treatment of neurodegenerative disease. Chemical and pharmacological preconditioning before transplantation could optimize the therapeutic properties of transplanted MSCs. In this study, we hypothesized that preconditioning treatment with a prolyl hydroxylase inhibitor, dimethyloxalylglycine (DMOG), will increase MSC efficacy and paracrine effects in an amyloid-β (Aβ)-injected Alzheimer rat model. MSCs were incubated in different concentrations of DMOG for 24 h. Cell viability, migration, and antioxidant capacity was assessed in DMOG-treated and non-treated MSCs before transplantation into Aβ-injected rats. In vitro analysis revealed that DMOG treatment increased cell viability, migration, and expression of CXCR4, CCR2, Nrf2, and HIF-1α in the MSCs. Our in vivo results show that DMOG preconditioning enhances a MSC-mediated rescue of learning and memory function in Aβ-injected rats. Furthermore, we found an increased level of BDNF and total antioxidant capacity in the hippocampus of Aβ-injected rats following transplantation of preconditioned relative to untreated MSCs. Our results suggest that preconditioning MSCs with DMOG before transplantation may enhance the efficacy of stem cell based therapy in neurodegenerative disease.
Collapse
Affiliation(s)
| | - Tayebe Artimani
- Endometrium and Endometriosis Research Centre, Hamadan University of Medical Sciences, Iran; Anatomy Department, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Iraj Amiri
- Endometrium and Endometriosis Research Centre, Hamadan University of Medical Sciences, Iran; Anatomy Department, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Rezvan Najafi
- Research Centre for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Siamak Shahidi
- Neurophysiology Research Centre, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Marie Sabec
- Institut Pasteur, Neurobiologie Intégrative des Systèmes Cholinergiques, Paris, France
| | - Parviz Farzadinia
- Department of Anatomy, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Mohammadali Zare
- Department of Anatomy, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Maria Zahiri
- Department of Anatomy, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Sara Soleimani Asl
- Endometrium and Endometriosis Research Centre, Hamadan University of Medical Sciences, Iran; Neurophysiology Research Centre, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
25
|
Wang A, Ren M, Wang J. The pathogenesis of steroid-induced osteonecrosis of the femoral head: A systematic review of the literature. Gene 2018; 671:103-109. [DOI: 10.1016/j.gene.2018.05.091] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 05/14/2018] [Accepted: 05/23/2018] [Indexed: 12/16/2022]
|
26
|
Zhun W, Donghai L, Zhouyuan Y, Haiyan Z, Pengde K. Efficiency of Cell Therapy to GC-Induced ONFH: BMSCs with Dkk-1 Interference Is Not Superior to Unmodified BMSCs. Stem Cells Int 2018; 2018:1340252. [PMID: 29951100 PMCID: PMC5987233 DOI: 10.1155/2018/1340252] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 03/08/2018] [Accepted: 04/05/2018] [Indexed: 02/05/2023] Open
Abstract
Glucocorticoid-induced osteonecrosis of the femoral head (ONFH) is a hip disorder, and it threatens patients who require megadose of steroid therapies. Nowadays, no valid therapies can reverse the development of GC-induced ONFH once it occurs. Stem cell therapy to GC-induced ONFH would be a promising choice. Although the pathogenesis of GC-induced ONFH is not yet fully clear, Dickkopf-1 (Dkk-1) upregulated by excessive GC use, which hinders the canonical Wnt pathway, could be an explanation. Thus, the aim of the present work lies in investigating the efficiency of the allograft bone marrow stem cells (BMSCs) with Dkk-1 interference in preventing the progression of the GC-induced ONFH. Lentivirus-meditated Dkk-1 RNAi was introduced into BMSCs which was exposed to dexamethasone (10-6 mol/L) in vitro. This interference blocked Dkk-1 overexpression by GC and afterwards prompted the transduction of Wnt/β-catenin in which the Runx2 and PPARγ were upregulated and downregulated, respectively. Thus, the osteogenesis was promoted while adipogenesis was inhibited. In vivo, GC-induced ONFH rats were treated by allotransplantation of BMSCs with Dkk-1 interference, and the progression of the disease was prevented. However, the effects were not significantly superior to treatment with nongenetically modified or normal BMSCs.
Collapse
Affiliation(s)
- Wei Zhun
- Department of Orthopaedics Surgery, West China Hospital, Sichuan University, No. 37 Wainan Guoxue Road, Chengdu, China
| | - Li Donghai
- Department of Orthopaedics Surgery, West China Hospital, Sichuan University, No. 37 Wainan Guoxue Road, Chengdu, China
| | - Yang Zhouyuan
- Department of Orthopaedics Surgery, West China Hospital, Sichuan University, No. 37 Wainan Guoxue Road, Chengdu, China
| | - Zhao Haiyan
- Department of Orthopaedics Surgery, West China Hospital, Sichuan University, No. 37 Wainan Guoxue Road, Chengdu, China
| | - Kang Pengde
- Department of Orthopaedics Surgery, West China Hospital, Sichuan University, No. 37 Wainan Guoxue Road, Chengdu, China
| |
Collapse
|
27
|
Li H, Liu D, Li C, Zhou S, Tian D, Xiao D, Zhang H, Gao F, Huang J. Exosomes secreted from mutant-HIF-1α-modified bone-marrow-derived mesenchymal stem cells attenuate early steroid-induced avascular necrosis of femoral head in rabbit. Cell Biol Int 2017; 41:1379-1390. [PMID: 28877384 DOI: 10.1002/cbin.10869] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 09/03/2017] [Indexed: 01/08/2023]
Abstract
Mesenchymal stem cells (MSCs)-derived exosomes exhibit protective effects on damaged or diseased tissues. Hypoxia-inducible factor 1α (HIF-1α) plays a critical role in bone development. However, HIF-1α is easily biodegradable under normoxic conditions. The bone-marrow-derived mesenchymal stem cells (BMSCs) were transfected with adenovirus carrying triple point-mutations (amino acids 402, 564, and 803) in the HIF-1α coding sequence (CDS). The mutant HIF-1α can efficiently express functional proteins under normoxic conditions. To date, no study has reported the role of exosomes secreted by mutant HIF-1α modified BMSCs in the recovery of the early steroid-induced avascular necrosis of femoral head (SANFH). In this study, we firstly analyzed exosomes derived from BMSCs modified by mutant (BMSC-ExosMU ) or wild-type HIF-1α (BMSC-ExosWT ). In vitro, we investigated the osteogenic differentiation capacity of BMSCs modified by BMSC-ExosMU or BMSC-ExosWT , and the angiogenesis effects of BMSC-ExosMU and BMSC-ExosWT on human umbilical vein endothelial cells (HUVECs). Besides, the healing of the femoral head was also assessed in vivo. We found that the potential of osteogenic differentiation of BMSCs treated with BMSC-ExosMU was higher than the wild-type group in vitro. In addition, BMSC-ExosMU stimulated the proliferation, migration, and tube formation of HUVECs in a dose-dependent manner. Compared with the BMSC-ExosWT or PBS control group, the injection of BMSC-ExosMU into the necrosis region markedly accelerated the bone regeneration and angiogenesis, which were indicated by the increased trabecular reconstruction and microvascular density. Taken together, our data suggest that BMSC-ExosMU facilitates the repair of SANFH by enhancing osteogenesis and angiogenesis.
Collapse
Affiliation(s)
- Haile Li
- Department of Orthopedics, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121001, P.R. China
| | - Danping Liu
- Department of Orthopedics, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121001, P.R. China
| | - Chen Li
- Biobank, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121001, P.R. China
| | - Shanjian Zhou
- Department of Orthopedics, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121001, P.R. China
| | - Dachuan Tian
- Department of Orthopedics, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121001, P.R. China
| | - Dawei Xiao
- Department of Orthopedics, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121001, P.R. China
| | - Huan Zhang
- Department of Orthopedics, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121001, P.R. China
| | - Feng Gao
- Department of Orthopedics, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121001, P.R. China
| | - Jianhua Huang
- The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121001, P.R. China
| |
Collapse
|
28
|
Kim J, Mirando AC, Popel AS, Green JJ. Gene delivery nanoparticles to modulate angiogenesis. Adv Drug Deliv Rev 2017; 119:20-43. [PMID: 27913120 PMCID: PMC5449271 DOI: 10.1016/j.addr.2016.11.003] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Revised: 10/01/2016] [Accepted: 11/24/2016] [Indexed: 01/19/2023]
Abstract
Angiogenesis is naturally balanced by many pro- and anti-angiogenic factors while an imbalance of these factors leads to aberrant angiogenesis, which is closely associated with many diseases. Gene therapy has become a promising strategy for the treatment of such a disordered state through the introduction of exogenous nucleic acids that express or silence the target agents, thereby engineering neovascularization in both directions. Numerous non-viral gene delivery nanoparticles have been investigated towards this goal, but their clinical translation has been hampered by issues associated with safety, delivery efficiency, and therapeutic effect. This review summarizes key factors targeted for therapeutic angiogenesis and anti-angiogenesis gene therapy, non-viral nanoparticle-mediated approaches to gene delivery, and recent gene therapy applications in pre-clinical and clinical trials for ischemia, tissue regeneration, cancer, and wet age-related macular degeneration. Enhanced nanoparticle design strategies are also proposed to further improve the efficacy of gene delivery nanoparticles to modulate angiogenesis.
Collapse
Affiliation(s)
- Jayoung Kim
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Translational Tissue Engineering Center and Institute for Nanobiotechnology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Adam C Mirando
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Oncology and the Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Aleksander S Popel
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Oncology and the Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Jordan J Green
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Translational Tissue Engineering Center and Institute for Nanobiotechnology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Oncology and the Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Departments of Ophthalmology, Neurosurgery, and Materials Science & Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA.
| |
Collapse
|
29
|
Chen YX, Zhu DY, Yin JH, Yin WJ, Zhang YL, Ding H, Yu XW, Mei J, Gao YS, Zhang CQ. The protective effect of PFTα on alcohol-induced osteonecrosis of the femoral head. Oncotarget 2017; 8:100691-100707. [PMID: 29246013 PMCID: PMC5725055 DOI: 10.18632/oncotarget.19160] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 06/29/2017] [Indexed: 12/11/2022] Open
Abstract
Epidemiologic studies have shown alcohol plays a pivotal role in the development of osteonecrosis of the femoral head (ONFH). The aim of this study was to explore the underlying mechanism of alcohol-induced ONFH and the protective effect of pifithrin-α (PFTα). In vitro, we found ethanol treatment significantly activated p53, suppressed Wnt/β-catenin signaling and inhibited osteogenic-related proteins. Furthermore, by separating the cytoplasmic and nuclear proteins, we found ethanol inhibited osteogenesis by impairing the accumulation of β-catenin in both the cytoplasm and nucleus in human bone mesenchymal stem cells (hBMSCs), which resulted from activating glycogen synthase kinase-3β (GSK-3β). Therefore, PFTα, a p53 inhibitor, was introduced in this study to block the ethanol-triggered activation of p53 in hBMSCs and alcohol-induced ONFH in a rat model. In vivo, we established alcohol-induced ONFH in rats and investigated the protective effect of PFTα. Hematoxylin & eosin (H&E) staining combined with TdT-mediated dUTP nick end labeling (TUNEL), cleaved caspase-3 immunohistochemical staining, and micro-CT images revealed substantial ONFH in the alcohol-administered rats, whereas significantly less osteonecrosis developed in the rats injected with PFTα. Osteogenic-related proteins, including osteocalcin, osteopontin and collagen I, were significantly decreased in the alcohol-administered rats, whereas these results were reversed in the PFTα-injected rats. Fluorochrome labeling similarly showed that alcohol significantly reduced the osteogenic activity in the rat femoral head, which was blocked by the injection of PFTα. In conclusion, PFTα had an antagonistic effect against the effects of ethanol on hBMSCs and could be a clinical strategy to prevent the development of alcohol-induced ONFH.
Collapse
Affiliation(s)
- Yi-Xuan Chen
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Dao-Yu Zhu
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Jun-Hui Yin
- Institute of Microsurgery on Extremities, Shanghai 200233, China
| | - Wen-Jing Yin
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Yue-Lei Zhang
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Hao Ding
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Xiao-Wei Yu
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Jiong Mei
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - You-Shui Gao
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Chang-Qing Zhang
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China.,Institute of Microsurgery on Extremities, Shanghai 200233, China
| |
Collapse
|
30
|
Zhu ZH, Song WQ, Zhang CQ, Yin JM. Dimethyloxaloylglycine increases bone repair capacity of adipose-derived stem cells in the treatment of osteonecrosis of the femoral head. Exp Ther Med 2016; 12:2843-2850. [PMID: 27882083 PMCID: PMC5103711 DOI: 10.3892/etm.2016.3698] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2015] [Accepted: 08/11/2016] [Indexed: 12/12/2022] Open
Abstract
Mesenchymal stem cells have been widely studied to promote local bone regeneration of osteonecrosis of the femoral head (ONFH). Previous studies observed that dimethyloxaloylglycine (DMOG) enhanced the angiogenic and osteogenic activity of mesenchymal stem cells by activating the expression of hypoxia inducible factor-1α (HIF-1α), thereby improving the bone repair capacity of mesenchymal stem cells. In the present study, it was investigated whether DMOG could increase the bone repair capacity of adipose-derived stem cells (ASCs) in the treatment of ONFH. Western blot analysis was performed to detect HIF-1α protein expression in ASCs treated with different concentrations of DMOG. The results showed DMOG enhanced HIF-1α expression in ASCs in a dose-dependent manner at least for 7 days. Furthermore, DMOG-treated ASCs were transplanted into the necrotic area of a rabbit model of ONFH to treat the disease. Four weeks later, micro-computed tomography (CT) quantitative analysis showed that 58.8±7.4% of the necrotic area was regenerated in the DMOG-treated ASCs transplantation group, 45.5±3.4% in normal ASCs transplantation group, 25.2±2.8% in only core decompression group and 10.6±2.6% in the untreated group. Histological analysis showed that transplantation of DMOG-treated ASCs clearly improved the bone regeneration of the necrotic area compared with the other three groups. Micro-CT and immunohistochemical analysis demonstrated the revasculation of the necrotic area were also increased significantly in the DMOG-treated ASC group compared with the control groups. Thus, it is hypothesized that DMOG could increase the bone repair capacity of ASCs through enhancing HIF-1α expression in the treatment of ONFH.
Collapse
Affiliation(s)
- Zhen-Hong Zhu
- Department of Orthopedic Surgery, Sixth People's Hospital Affiliated to Shanghai Jiao Tong University, Shanghai 200233, P.R. China
| | - Wen-Qi Song
- Department of Orthopedic Surgery, Sixth People's Hospital Affiliated to Shanghai Jiao Tong University, Shanghai 200233, P.R. China
| | - Chang-Qing Zhang
- Department of Orthopedic Surgery, Sixth People's Hospital Affiliated to Shanghai Jiao Tong University, Shanghai 200233, P.R. China
| | - Ji-Min Yin
- Department of Orthopedic Surgery, Sixth People's Hospital Affiliated to Shanghai Jiao Tong University, Shanghai 200233, P.R. China
| |
Collapse
|
31
|
Kim YD, Pofali P, Park TE, Singh B, Cho K, Maharjan S, Dandekar P, Jain R, Choi YJ, Arote R, Cho CS. Gene therapy for bone tissue engineering. Tissue Eng Regen Med 2016; 13:111-125. [PMID: 30603391 PMCID: PMC6170855 DOI: 10.1007/s13770-016-9063-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 09/24/2015] [Accepted: 09/29/2015] [Indexed: 02/06/2023] Open
Abstract
Gene therapy holds a great promise and has been extensively investigated to improve bone formation and regeneration therapies in bone tissue engineering. A variety of osteogenic genes can be delivered by combining different vectors (viral or non-viral), scaffolds and delivery methodologies. Ex vivo & in vivo gene enhanced tissue engineering approaches have led to successful osteogenic differentiation and bone formation. In this article, we review recent advances of gene therapy-based bone tissue engineering discussing strengths and weaknesses of various strategies as well as general overview of gene therapy.
Collapse
Affiliation(s)
- Young-Dong Kim
- Department of Molecular Genetics, School of Dentistry, Seoul National University, Seoul, Korea
| | - Prasad Pofali
- Department of Chemical Engineering, Institute of Chemical Technology, Mumbai, India
| | - Tae-Eun Park
- Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, Korea
| | - Bijay Singh
- Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, Korea
| | - Kihyun Cho
- Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, Korea
| | - Sushila Maharjan
- Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, Korea
| | - Prajakta Dandekar
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai, India
| | - Ratnesh Jain
- Department of Chemical Engineering, Institute of Chemical Technology, Mumbai, India
| | - Yun-Jaie Choi
- Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, Korea
| | - Rohidas Arote
- Department of Molecular Genetics, School of Dentistry, Seoul National University, Seoul, Korea
| | - Chong-Su Cho
- Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, Korea
| |
Collapse
|
32
|
Fotia C, Massa A, Boriani F, Baldini N, Granchi D. Prolonged exposure to hypoxic milieu improves the osteogenic potential of adipose derived stem cells. J Cell Biochem 2016; 116:1442-53. [PMID: 25648991 DOI: 10.1002/jcb.25106] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 01/27/2015] [Indexed: 12/20/2022]
Abstract
Mesenchymal stem cells (MSC) have been widely used in orthopedics for several applications. Conventionally, MSC are maintained under 21% O2 which does not reflect the real O2 tension in vivo. Recently, it was reported that different O2 conditions can give different cellular responses. Here, we investigated whether prolonged exposure to hypoxia affects the osteogenic differentiation of adipose-derived stem cells (ASC). ASC from six individuals were cultured under "low" (2-3%) or "air" (21%) oxygen tensions, either without or with osteogenic stimuli. The effect of the O2 tension was evaluated on cell proliferation, surface antigens, stemness and bone-related genes expression, alkaline phosphatase activity (ALP), mineralization activity, and release of osteogenic growth factors. Without differentiating stimuli, hypoxia favored ASC proliferation, reduced the number of CD184+ and CD34+ cells, and preserved the expression of NANOG and SOX2. The combination of hypoxia and osteogenic medium induced a high proliferation rate, a rapid and more pronounced mineralization activity, a higher expression of genes related to the MSC differentiation, a higher release of mitogenic growth factors (bFGF, PDGF-BB), and the decrease in TGF-β secretion, an inhibitor of the early stage of the osteoblast differentiation. We demonstrated that hypoxia acts dually, favoring ASC proliferation and the maintenance of the stemness in the absence of osteogenic stimuli, but inducing the differentiation in a bone-like microenvironment. In conclusion, prolonged cell culture in hypoxic microenvironment represents a proper method to modulate the stem cell function that may be used in several applications, for example, studies on bone pathophysiology or bone-tissue engineering.
Collapse
Affiliation(s)
- Caterina Fotia
- Laboratory for Orthopedic Pathophysiology and Regenerative Medicine, Rizzoli Orthopedic Institute, Bologna, Italy
| | - Annamaria Massa
- Laboratory for Orthopedic Pathophysiology and Regenerative Medicine, Rizzoli Orthopedic Institute, Bologna, Italy
| | - Filippo Boriani
- Laboratory for Orthopedic Pathophysiology and Regenerative Medicine, Rizzoli Orthopedic Institute, Bologna, Italy
| | - Nicola Baldini
- Laboratory for Orthopedic Pathophysiology and Regenerative Medicine, Rizzoli Orthopedic Institute, Bologna, Italy.,Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Donatella Granchi
- Laboratory for Orthopedic Pathophysiology and Regenerative Medicine, Rizzoli Orthopedic Institute, Bologna, Italy
| |
Collapse
|
33
|
Aghajanian P, Hall S, Wongworawat MD, Mohan S. The Roles and Mechanisms of Actions of Vitamin C in Bone: New Developments. J Bone Miner Res 2015; 30:1945-55. [PMID: 26358868 PMCID: PMC4833003 DOI: 10.1002/jbmr.2709] [Citation(s) in RCA: 113] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 09/03/2015] [Accepted: 09/08/2015] [Indexed: 12/25/2022]
Abstract
Vitamin C is an important antioxidant and cofactor that is involved in the regulation of development, function, and maintenance of several cell types in the body. Deficiencies in vitamin C can lead to conditions such as scurvy, which, among other ailments, causes gingivia, bone pain, and impaired wound healing. This review examines the functional importance of vitamin C as it relates to the development and maintenance of bone tissues. Analysis of several epidemiological studies and genetic mouse models regarding the effect of vitamin C shows a positive effect on bone health. Overall, vitamin C exerts a positive effect on trabecular bone formation by influencing expression of bone matrix genes in osteoblasts. Recent studies on the molecular pathway for vitamin C actions that include direct effects of vitamin C on transcriptional regulation of target genes by influencing the activity of transcription factors and by epigenetic modification of key genes involved in skeletal development and maintenance are discussed. With an understanding of mechanisms involved in the uptake and metabolism of vitamin C and knowledge of precise molecular pathways for vitamin C actions in bone cells, it is possible that novel therapeutic strategies can be developed or existing therapies can be modified for the treatment of osteoporotic fractures.
Collapse
Affiliation(s)
- Patrick Aghajanian
- Musculoskeletal Disease Center, Jerry L Pettis VA Medical Center, Loma Linda, CA 92357
| | - Susan Hall
- Musculoskeletal Disease Center, Jerry L Pettis VA Medical Center, Loma Linda, CA 92357
- Department of Medicine, Loma Linda University, Loma Linda, CA 92354
| | - Montri D. Wongworawat
- Musculoskeletal Disease Center, Jerry L Pettis VA Medical Center, Loma Linda, CA 92357
- Orthopedic Surgery, Loma Linda University, Loma Linda, CA 92354
| | - Subburaman Mohan
- Musculoskeletal Disease Center, Jerry L Pettis VA Medical Center, Loma Linda, CA 92357
- Department of Medicine, Loma Linda University, Loma Linda, CA 92354
- Orthopedic Surgery, Loma Linda University, Loma Linda, CA 92354
| |
Collapse
|
34
|
Mont MA, Cherian JJ, Sierra RJ, Jones LC, Lieberman JR. Nontraumatic Osteonecrosis of the Femoral Head: Where Do We Stand Today? A Ten-Year Update. J Bone Joint Surg Am 2015; 97:1604-27. [PMID: 26446969 DOI: 10.2106/jbjs.o.00071] [Citation(s) in RCA: 331] [Impact Index Per Article: 33.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
➤ Although multiple theories have been proposed, no one pathophysiologic mechanism has been identified as the etiology for the development of osteonecrosis of the femoral head. However, the basic mechanism involves impaired circulation to a specific area that ultimately becomes necrotic.➤ A variety of nonoperative treatment regimens have been evaluated for the treatment of precollapse disease, with varying success. Prospective, multicenter, randomized trials are needed to evaluate the efficacy of these regimens in altering the natural history of the disease.➤ Joint-preserving procedures are indicated in the treatment of precollapse disease, with several studies showing successful outcomes at mid-term and long-term follow-up.➤ Studies of total joint arthroplasty, once femoral head collapse is present, have described excellent outcomes at greater than ten years of follow-up, which is a major advance and has led to a paradigm shift in treating these patients.➤ The results of hemiresurfacing and total resurfacing arthroplasty have been suboptimal, and these procedures have restricted indications in patients with osteonecrosis of the femoral head.
Collapse
Affiliation(s)
- Michael A Mont
- Rubin Institute for Advanced Orthopedics, Center for Joint Preservation and Replacement, Sinai Hospital of Baltimore, 2401 West Belvedere Avenue, Baltimore, MD 21215. E-mail address for M.A. Mont:
| | - Jeffrey J Cherian
- Rubin Institute for Advanced Orthopedics, Center for Joint Preservation and Replacement, Sinai Hospital of Baltimore, 2401 West Belvedere Avenue, Baltimore, MD 21215. E-mail address for M.A. Mont:
| | - Rafael J Sierra
- Mayo Clinic, 200 First Street S.W., Gonda 14 South, Rochester, MN 55905
| | - Lynne C Jones
- Department of Orthopaedic Surgery, Johns Hopkins University, 601 North Caroline Street, JHOC 5245, Baltimore, MD 21287
| | - Jay R Lieberman
- Keck Medical Center of University of Southern California, 1520 San Pablo Street, Suite 2000, Los Angeles, CA 90033
| |
Collapse
|
35
|
Houdek MT, Wyles CC, Sierra RJ. Osteonecrosis of the femoral head: treatment with ancillary growth factors. Curr Rev Musculoskelet Med 2015; 8:233-9. [PMID: 25985987 PMCID: PMC4596200 DOI: 10.1007/s12178-015-9281-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Osteonecrosis (ON) of the femoral head, also known as avascular necrosis (AVN) of the femoral head, is a progressive disease that predominantly affects younger patients. During early stage of ON, decompression of the femoral head has been commonly used to improve pain. The decompression has been augmented with nonvascularized or vascularized bone grafts, mesenchymal stems cells, and growth factors. The use of adjuvant growth factors to supplement the core decompression has mainly been limited to animal models in an attempt to regenerate the necrotic lesion of ON. Factors utilized include bone morphogenetic proteins, vascular endothelial growth factors, hepatocyte growth factors, fibroblast growth factors, granulocyte colony-stimulating factors, and stem cells factors. In animal models, the use of these factors has been shown to increase bone formation and angiogenesis. Although promising, the use of these growth factors and cell-based therapies clinically remains limited.
Collapse
Affiliation(s)
- Matthew T. Houdek
- />Department of Orthopedic Surgery, Mayo Clinic, 200 First St. SW, Rochester, MN 55905 USA
| | - Cody C. Wyles
- />Mayo Clinic Medical School, 200 First St. SW, Rochester, MN 55909 USA
| | - Rafael J. Sierra
- />Department of Orthopedic Surgery, Mayo Clinic, 200 First St. SW, Rochester, MN 55905 USA
| |
Collapse
|
36
|
Beavers KR, Nelson CE, Duvall CL. MiRNA inhibition in tissue engineering and regenerative medicine. Adv Drug Deliv Rev 2015; 88:123-37. [PMID: 25553957 PMCID: PMC4485980 DOI: 10.1016/j.addr.2014.12.006] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Revised: 11/25/2014] [Accepted: 12/20/2014] [Indexed: 12/17/2022]
Abstract
MicroRNAs (miRNAs) are noncoding RNAs that provide an endogenous negative feedback mechanism for translation of messenger RNA (mRNA) into protein. Single miRNAs can regulate hundreds of mRNAs, enabling miRNAs to orchestrate robust biological responses by simultaneously impacting multiple gene networks. MiRNAs can act as master regulators of normal and pathological tissue development, homeostasis, and repair, which has motivated expanding efforts toward the development of technologies for therapeutically modulating miRNA activity for regenerative medicine and tissue engineering applications. This review highlights the tools currently available for miRNA inhibition and their recent therapeutic applications for improving tissue repair.
Collapse
Affiliation(s)
- Kelsey R Beavers
- Interdisciplinary Graduate Program in Materials Science, Vanderbilt University, Nashville, TN 37235, USA
| | | | - Craig L Duvall
- Interdisciplinary Graduate Program in Materials Science, Vanderbilt University, Nashville, TN 37235, USA; Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA.
| |
Collapse
|
37
|
Tian K, Qi M, Wang L, Li Z, Xu J, Li Y, Liu G, Wang B, Huard J, Li G. Two-stage therapeutic utility of ectopically formed bone tissue in skeletal muscle induced by adeno-associated virus containing bone morphogenetic protein-4 gene. J Orthop Surg Res 2015; 10:86. [PMID: 26024920 PMCID: PMC4451875 DOI: 10.1186/s13018-015-0229-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Accepted: 05/21/2015] [Indexed: 11/24/2022] Open
Abstract
Background The major disadvantage of using a stem cell-based bone morphogenetic protein-4 (BMP4) gene therapy for skull defect is the overgrowth of generated bone tissue in situ. In the present study, to overcome bony overgrowth of stem cell based-gene therapy, a new strategy of two-stage bone tissue engineering by an adeno-associated virus containing BMP4 gene (AAV-BMP4) gene therapy was used. Methods AAV-BMP4 was purposely implanted in the skeletal muscle of mice to generate ectopic bone tissues during the first stage. Next, the newly formed ectopic bone tissues were harvested and then transplanted to repair the mouse skull defect during the second stage. Results The results showed that skeletal muscle implantation of AAV-BMP4 yielded a large amount of new bone tissues. The ectopic bone tissues can be harvested as a bone graft and can successfully repair the mouse skull defect without any bony overgrowth in situ. Conclusion The results indicate that the bone tissues purposely generated by AAV-BMP4 in the skeletal muscle may be a new alternative of bone grafting for clinical purposes.
Collapse
Affiliation(s)
- Ke Tian
- Department of Orthopedic Surgery, First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450003, Henan, China
| | - Min Qi
- Department of Geriatrics, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, 471009, Henan, China
| | - Limin Wang
- Department of Orthopedic Surgery, First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450003, Henan, China
| | - Zhifu Li
- Department of Orthopedic Surgery, First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450003, Henan, China
| | - Jianzhong Xu
- Department of Orthopedic Surgery, First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450003, Henan, China
| | - Yi Li
- Department of Orthopedic Surgery, First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450003, Henan, China
| | - Guanlei Liu
- Department of Orthopedic Surgery, First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450003, Henan, China
| | - Bing Wang
- Molecular Therapy Laboratory, Department of Orthopedic Surgery, University of Pittsburgh, Pittsburgh, PA, 15219, USA
| | - Johnny Huard
- Department of Orthopaedic Surgery, Stem Cell Research Center, University of Pittsburgh School of Medicine, 206 Bridgeside Point II, 450 Technology Drive, Pittsburgh, PA, 15219, USA
| | - Guangheng Li
- Department of Orthopedic Surgery, First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450003, Henan, China.
| |
Collapse
|
38
|
Qi X, Zeng Y. Biomarkers and pharmaceutical strategies in steroid-induced osteonecrosis of the femoral head: A literature review. J Int Med Res 2014; 43:3-8. [PMID: 25505050 DOI: 10.1177/0300060514554724] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The underlying pathology of steroid-induced osteonecrosis of the femoral head (ONFH) is unclear but is known to be multifactorial. It is therefore difficult to find a single predictive biomarker for this disease, and multiple biomarkers are likely to contribute to ONFH progression. Investigation of protein–protein interactions is vital in order to elucidate fully the pathogenesis of this disease, and provide new treatment strategies. This review article discusses the known biomarkers and current treatment strategies for ONFH.
Collapse
Affiliation(s)
- Xinyu Qi
- Guangzhou University of Traditional Chinese Medicine, Guangzhou, China
| | - Yirong Zeng
- First Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou, China
| |
Collapse
|
39
|
Fan L, Li J, Yu Z, Dang X, Wang K. Hypoxia-inducible factor prolyl hydroxylase inhibitor prevents steroid-associated osteonecrosis of the femoral head in rabbits by promoting angiogenesis and inhibiting apoptosis. PLoS One 2014; 9:e107774. [PMID: 25244080 PMCID: PMC4171501 DOI: 10.1371/journal.pone.0107774] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2014] [Accepted: 08/14/2014] [Indexed: 12/31/2022] Open
Abstract
The purpose of this study was to investigate the preventive effect of ethyl 3,4-dihydroxybenzoate(EDHB) on steroid-associated femoral head osteonecrosis(ONFH) in a rabbit model. New Zealand white rabbits were randomly divided into two groups (prevention group and model group), each containing 24 rabbits. Osteonecrosis was induced by lipopolysaccharide(LPS) combined with methylprednisolone(MPS). The prevention group received an intraperitoneal injection of EDHB at 50 mg/kg body weight every other day starting three days before establishing rabbit models of osteonecrosis, for a total of nine doses. Osteonecrosis was verified by haematoxylin-eosin (HE) staining. The expression of HIF-1α and VEGF was analyzed by immunohistochemistry. Angiogenesis, apoptosis and microstructural parameters were also analyzed. The rabbit models of osteonecrosis were successfully established and observed by HE staining. Histopathological observations indicated that EDHB reduced the rate of empty lacunae and the incidence of osteonecrosis. Immunohistochemical staining for HIF-1α and VEGF suggested that EDHB therapy inhibited degradation of HIF-1α and promoted expression of VEGF. Ink artery infusion angiography and microvessel density analysis revealed that there were more microvessels in the prevention group than in the model group. The TUNEL apoptosis assay suggested that EDHB intervention could reduce the number of apoptotic cells in avascular osteonecrosis of the femoral head. Micro-CT scanning indicated that the treatment group had better microstructural parameters than the model group. EDHB prevents steroid-associated osteonecrosis of the femoral head in rabbits by promoting angiogenesis and inhibiting apoptosis of bone cells and hematopoietic tissue.
Collapse
Affiliation(s)
- Lihong Fan
- Department of Orthopedics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Jia Li
- Department of Orthopedics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Zefeng Yu
- Department of Orthopedics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Xiaoqian Dang
- Department of Orthopedics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Kunzheng Wang
- Department of Orthopedics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
- * E-mail:
| |
Collapse
|
40
|
Ding H, Chen S, Song WQ, Gao YS, Guan JJ, Wang Y, Sun Y, Zhang CQ. Dimethyloxaloylglycine improves angiogenic activity of bone marrow stromal cells in the tissue-engineered bone. Int J Biol Sci 2014; 10:746-56. [PMID: 25013382 PMCID: PMC4081608 DOI: 10.7150/ijbs.8535] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Accepted: 02/08/2014] [Indexed: 11/05/2022] Open
Abstract
One of the big challenges in tissue engineering for treating large bone defects is to promote the angiogenesis of the tissue-engineered bone. Hypoxia inducible factor-1α (HIF-1α) plays an important role in angiogenesis-osteogenesis coupling during bone regeneration, and can activate a broad array of angiogenic factors. Dimethyloxaloylglycine (DMOG) can activate HIF-1α expression in cells at normal oxygen tension. In this study, we explored the effect of DMOG on the angiogenic activity of bone mesenchymal stem cells (BMSCs) in the tissue-engineered bone. The effect of different concentrations of DMOG on HIF-1a expression in BMSCs was detected with western blotting, and the mRNA expression and secretion of related angiogenic factors in DMOG-treated BMSCs were respectively analyzed using qRT-PCR and enzyme linked immunosorbent assay. The tissue-engineered bone constructed with β-tricalcium phosphate (β-TCP) and DMOG-treated BMSCs were implanted into the critical-sized calvarial defects to test the effectiveness of DMOG in improving the angiogenic activity of BMSCs in the tissue-engineered bone. The results showed DMOG significantly enhanced the mRNA expression and secretion of related angiogenic factors in BMSCs by activating the expression of HIF-1α. More newly formed blood vessels were observed in the group treated with β-TCP and DMOG-treated BMSCs than in other groups. And there were also more bone regeneration in the group treated with β-TCP and DMOG-treated BMSCs. Therefore, we believed DMOG could enhance the angiogenic activity of BMSCs by activating the expression of HIF-1α, thereby improve the angiogenesis of the tissue-engineered bone and its bone healing capacity.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yuan Sun
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Chang-Qing Zhang
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| |
Collapse
|
41
|
Ding H, Gao YS, Wang Y, Hu C, Sun Y, Zhang C. Dimethyloxaloylglycine increases the bone healing capacity of adipose-derived stem cells by promoting osteogenic differentiation and angiogenic potential. Stem Cells Dev 2014; 23:990-1000. [PMID: 24328551 DOI: 10.1089/scd.2013.0486] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Hypoxia inducible factor-1α (HIF-1α) plays an important role in angiogenesis-osteogenesis coupling during bone regeneration, which can enhance the bone healing capacity of mesenchymal stem cells (MSCs) by improving their osteogenic and angiogenic activities. Previous studies transduced the HIF-1α gene into MSCs with lentivirus vectors to improve their bone healing capacity. However, the risks due to lentivirus vectors, such as tumorigenesis, should be considered before clinical application. Dimethyloxaloylglycine (DMOG) is a cell-permeable prolyl-4-hydroxylase inhibitor, which can activate the expression of HIF-1α in cells at normal oxygen tension. Therefore, DMOG is expected to be an alternative strategy for enhancing HIF-1α expression in cells. In this study, we explored the osteogenic and angiogenic activities of adipose-derived stem cells (ASCs) treated with different concentrations of DMOG in vitro, and the bone healing capacity of DMOG-treated ASCs combined with hydrogels for treating critical-sized calvarial defects in rats. The results showed that DMOG had no obvious cytotoxic effects on ASCs and could inhibit the death of ASCs induced by serum deprivation. DMOG markedly increased vascular endothelial growth factor production in ASCs in a dose-dependent manner and improved the osteogenic differentiation potential of ASCs by activating the expression of HIF-1α. Rats with critical-sized calvarial defects treated with hydrogels containing DMOG-treated ASCs had more bone regeneration and new vessel formation than the other groups. Therefore, we believe that DMOG enhanced the angiogenic and osteogenic activity of ASCs by activating the expression of HIF-1α, thereby improving the bone healing capacity of ASCs in rat critical-sized calvarial defects.
Collapse
Affiliation(s)
- Hao Ding
- 1 Department of Orthopedic Surgery, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University , Shanghai, China
| | | | | | | | | | | |
Collapse
|
42
|
|