1
|
Maheshwari N, Jermiin LS, Cotroneo C, Gordon SV, Shields DC. Insights into the production and evolution of lantibiotics from a computational analysis of peptides associated with the lanthipeptide cyclase domain. ROYAL SOCIETY OPEN SCIENCE 2024; 11:240491. [PMID: 39021782 PMCID: PMC11251773 DOI: 10.1098/rsos.240491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 06/12/2024] [Accepted: 06/13/2024] [Indexed: 07/20/2024]
Abstract
Lanthipeptides are a large group of ribosomally encoded peptides cyclized by thioether and methylene bridges, which include the lantibiotics, lanthipeptides with antimicrobial activity. There are over 100 experimentally characterized lanthipeptides, with at least 25 distinct cyclization bridging patterns. We set out to understand the evolutionary dynamics and diversity of lanthipeptides. We identified 977 peptides in 2785 bacterial genomes from short open-reading frames encoding lanthipeptide modifiable amino acids (C, S and T) that lay chromosomally adjacent to genes encoding proteins containing the cyclase domain. These appeared to be synthesized by both known and novel enzymatic combinations. Our predictor of bridging topology suggested 36 novel-predicted topologies, including a single-cysteine topology seen in 179 lanthionine or labionin containing peptides, which were enriched for histidine. Evidence that supported the relevance of the single-cysteine containing lanthipeptide precursors included the presence of the labionin motif among single cysteine peptides that clustered with labionin-associated synthetase domains, and the leader features of experimentally defined lanthipeptides that were shared with single cysteine predictions. Evolutionary rate variation among peptide subfamilies suggests that selection pressures for functional change differ among subfamilies. Lanthipeptides that have recently evolved specific novel features may represent a richer source of potential novel antimicrobials, since their target species may have had less time to evolve resistance.
Collapse
Affiliation(s)
- Nikunj Maheshwari
- School of Medicine, University College Dublin, Dublin, Ireland
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| | - Lars S. Jermiin
- School of Medicine, University College Dublin, Dublin, Ireland
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
- Research School of Biology, Australian National University, Canberra, ACT, Australia
- School of Mathematical and Statistical Sciences, University of Galway, Galway, Ireland
| | - Chiara Cotroneo
- School of Medicine, University College Dublin, Dublin, Ireland
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| | - Stephen V. Gordon
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
- School of Veterinary Medicine, University College Dublin, Dublin, Ireland
| | - Denis C. Shields
- School of Medicine, University College Dublin, Dublin, Ireland
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| |
Collapse
|
2
|
Farid N, Waheed A, Motwani S. Synthetic and natural antimicrobials as a control against food borne pathogens: A review. Heliyon 2023; 9:e17021. [PMID: 37484319 PMCID: PMC10361103 DOI: 10.1016/j.heliyon.2023.e17021] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 05/28/2023] [Accepted: 06/04/2023] [Indexed: 07/25/2023] Open
Abstract
Food borne pathogens are one of the most common yet concerning cause of illnesses around the globe. These microbes invade the body via food items, through numerous mediums of contamination and it is impossible to completely eradicate these organisms from food. Extensive research has been made regarding their treatment. Unfortunately, the only available treatment currently is by antibiotics. Recent exponential increase in antibiotic resistance and the side effect of synthetic compounds have established a need for alternate therapies that could be utilized either on their own or along with antibiotics to provide protection against food-borne diseases. The aim of this review is to provide information regarding some common food borne diseases, their current and possible natural treatment. It will include details regarding some common foodborne pathogens, the disease they cause, prevalence, manifestations and treatment of the respective disease. Some natural modes of potential treatment will be summarized, which including phytochemicals, derived from plants either as crude extracts or as purified form and Bacteriocins as microbial based treatment, obtained from various types of bacteria. The paper will describe their mechanism of action, classification, susceptible organisms, some antimicrobial compounds and producing organisms, application in food systems and as potential treatment. Along with that, synthetic treatment i.e., antibiotics will be discussed including the first-line treatment of some common food borne infections, prevalence and mechanism of resistance against antibiotics in the pathogens.
Collapse
Affiliation(s)
- Neha Farid
- Corresponding author. Shaheed Zulfikar Ali Bhutto Institute of Science and Technology, Pakistan.
| | | | | |
Collapse
|
3
|
Maviza TP, Zarechenskaia AS, Burmistrova NR, Tchoub AS, Dontsova OA, Sergiev PV, Osterman IA. RtcB2-PrfH Operon Protects E. coli ATCC25922 Strain from Colicin E3 Toxin. Int J Mol Sci 2022; 23:6453. [PMID: 35742896 PMCID: PMC9223846 DOI: 10.3390/ijms23126453] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/28/2022] [Accepted: 06/07/2022] [Indexed: 02/01/2023] Open
Abstract
In the bid to survive and thrive in an environmental setting, bacterial species constantly interact and compete for resources and space in the microbial ecosystem. Thus, they have adapted to use various antibiotics and toxins to fight their rivals. Simultaneously, they have evolved an ability to withstand weapons that are directed against them. Several bacteria harbor colicinogenic plasmids which encode toxins that impair the translational apparatus. One of them, colicin E3 ribotoxin, mediates cleavage of the 16S rRNA in the decoding center of the ribosome. In order to thrive upon deployment of such ribotoxins, competing bacteria may have evolved counter-conflict mechanisms to prevent their demise. A recent study demonstrated the role of PrfH and the RtcB2 module in rescuing a damaged ribosome and the subsequent re-ligation of the cleaved 16S rRNA by colicin E3 in vitro. The rtcB2-prfH genes coexist as gene neighbors in an operon that is sporadically spread among different bacteria. In the current study, we report that the RtcB2-PrfH module confers resistance to colicin E3 toxicity in E. coli ATCC25922 cells in vivo. We demonstrated that the viability of E. coli ATCC25922 strain that is devoid of rtcB2 and prfH genes is impaired upon action of colicin E3, in contrast to the parental strain which has intact rtcB2 and prfH genes. Complementation of the rtcB2 and prfH gene knockout with a high copy number-plasmid (encoding either rtcB2 alone or both rtcB2-prfH operon) restored resistance to colicin E3. These results highlight a counter-conflict system that may have evolved to thwart colicin E3 activity.
Collapse
Affiliation(s)
- Tinashe P. Maviza
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow 121205, Russia; (T.P.M.); (A.S.Z.); (O.A.D.); (P.V.S.)
| | - Anastasiia S. Zarechenskaia
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow 121205, Russia; (T.P.M.); (A.S.Z.); (O.A.D.); (P.V.S.)
- Department of Chemistry, Faculty of Bioengineering and Bioinformatics and Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119992, Russia; (N.R.B.); (A.S.T.)
| | - Nadezhda R. Burmistrova
- Department of Chemistry, Faculty of Bioengineering and Bioinformatics and Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119992, Russia; (N.R.B.); (A.S.T.)
| | - Andrey S. Tchoub
- Department of Chemistry, Faculty of Bioengineering and Bioinformatics and Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119992, Russia; (N.R.B.); (A.S.T.)
| | - Olga A. Dontsova
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow 121205, Russia; (T.P.M.); (A.S.Z.); (O.A.D.); (P.V.S.)
- Department of Chemistry, Faculty of Bioengineering and Bioinformatics and Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119992, Russia; (N.R.B.); (A.S.T.)
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 119992, Russia
| | - Petr V. Sergiev
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow 121205, Russia; (T.P.M.); (A.S.Z.); (O.A.D.); (P.V.S.)
- Department of Chemistry, Faculty of Bioengineering and Bioinformatics and Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119992, Russia; (N.R.B.); (A.S.T.)
| | - Ilya A. Osterman
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow 121205, Russia; (T.P.M.); (A.S.Z.); (O.A.D.); (P.V.S.)
- Department of Chemistry, Faculty of Bioengineering and Bioinformatics and Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119992, Russia; (N.R.B.); (A.S.T.)
- Genetics and Life Sciences Research Center, Sirius University of Science and Technology, 1 Olympic Ave., Sochi 354340, Russia
| |
Collapse
|
4
|
Yaacob SN, Wahab RA, Misson M, Sabullah MK, Huyop F, Zin NM. Lactic acid bacteria and their bacteriocins: new potential weapons in the fight against methicillin-resistant Staphylococcus aureus. Future Microbiol 2022; 17:683-699. [PMID: 35414206 DOI: 10.2217/fmb-2021-0256] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Alternative solutions are eminently needed to combat the escalating number of infections caused by methicillin-resistant Staphylococcus aureus (MRSA). Bacteriocins produced by lactic acid bacteria are promising candidates for next-generation antibiotics. Studies have found that these stable and nontoxic ribosomally synthesized antimicrobial peptides exhibit significant potency against other bacteria, including antibiotic-resistant strains. Here the authors review previous studies on bacteriocins that have been effectively employed to manage MRSA infections. The authors' review focuses on the beneficial traits of bacteriocins for further application as templates for the design of novel drugs. Treatments that combine bacteriocins with other antimicrobials to combat pervasive MRSA infections are also highlighted. In short, future studies should focus on the pharmacodynamics and pharmacokinetics of bacteriocins-antimicrobials to understand their interactions, as this aspect would likely determine their efficacy in MRSA inhibition.
Collapse
Affiliation(s)
- Syariffah Ns Yaacob
- Department of Bioscience, Faculty of Science, Universiti Teknologi Malaysia, Johor Bahru, 81310, Malaysia
| | - Roswanira A Wahab
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, Johor Bahru, 81310, Malaysia
| | - Mailin Misson
- Biotechnology Research Institute, Jalan Universiti Malaysia Sabah, Kota Kinabalu, Sabah, 88400, Malaysia
| | - Mohd K Sabullah
- Faculty of Science and Natural Resources, Jalan Universiti Malaysia Sabah, Kota Kinabalu, Sabah, 88400, Malaysia
| | - Fahrul Huyop
- Department of Bioscience, Faculty of Science, Universiti Teknologi Malaysia, Johor Bahru, 81310, Malaysia
| | - Noraziah M Zin
- Center for Diagnostic, Therapeutic and Investigative Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, 50300, Malaysia
| |
Collapse
|
5
|
Parker JK, Davies BW. Microcins reveal natural mechanisms of bacterial manipulation to inform therapeutic development. MICROBIOLOGY (READING, ENGLAND) 2022; 168:001175. [PMID: 35438625 PMCID: PMC10233263 DOI: 10.1099/mic.0.001175] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 03/17/2022] [Indexed: 12/20/2022]
Abstract
Microcins are an understudied and poorly characterized class of antimicrobial peptides. Despite the existence of only 15 examples, all identified from the Enterobacteriaceae, microcins display diversity in sequence, structure, target cell uptake, cytotoxic mechanism of action and target specificity. Collectively, these features describe some of the unique means nature has contrived for molecules to cross the 'impermeable' barrier of the Gram-negative bacterial outer membrane and inflict cytotoxic effects. Microcins appear to be widely dispersed among different species and in different environments, where they function in regulating microbial communities in diverse ways, including through competition. Growing evidence suggests that microcins may be adapted for therapeutic uses such as antimicrobial drugs, microbiome modulators or facilitators of peptide uptake into cells. Advancing our biological, ecological and biochemical understanding of the roles of microcins in bacterial interactions, and learning how to regulate and modify microcin activity, is essential to enable such therapeutic applications.
Collapse
Affiliation(s)
| | - Bryan William Davies
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, USA
- John Ring LaMontagne Center for Infectious Diseases, The University of Texas at Austin, Austin, Texas, USA
| |
Collapse
|
6
|
Study of the Antimicrobial Potential of Bacteria found in Natural Resources. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2021. [DOI: 10.22207/jpam.15.2.28] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacteriocins are of great interest as potential antimicrobial agents against various types of bacteria, fungi, and viruses. Isolates of microorganisms derived from natural sources were used in the current study, including lactic acid bacteria and other antagonistic microorganisms. The species of the microorganisms were determined using 16S rDNA and ITS nrDNA analyses. E. coli, S. enterica, S. aureus, P. aeruginosa, B. mycoides, A. faecalis, P. vulgaris, S. flexneri , L. monocytogenes, C. albicans, A. flavus, and P. citrinum were used as pathogenic and opportunistic strains. It was found that 11 strains of antagonistic microorganisms have significant antimicrobial activity against all pathogenic and opportunistic microorganisms. The antimicrobial properties of these microorganisms are currently under study.
Collapse
|
7
|
Abstract
Bacteria secrete antibiotics to inhibit their competitors, but the presence of competitors can determine whether these toxins are produced. Here, we study the role of the competitive and resource environment on antibiotic production in Streptomyces, bacteria renowned for their production of antibiotics. One of the most important ways that bacteria compete for resources and space is by producing antibiotics that inhibit competitors. Because antibiotic production is costly, the biosynthetic gene clusters coordinating their synthesis are under strict regulatory control and often require “elicitors” to induce expression, including cues from competing strains. Although these cues are common, they are not produced by all competitors, and so the phenotypes causing induction remain unknown. By studying interactions between 24 antibiotic-producing strains of streptomycetes, we show that strains commonly inhibit each other’s growth and that this occurs more frequently if strains are closely related. Next, we show that antibiotic production is more likely to be induced by cues from strains that are closely related or that share secondary metabolite biosynthetic gene clusters (BGCs). Unexpectedly, antibiotic production is less likely to be induced by competitors that inhibit the growth of a focal strain, indicating that cell damage is not a general cue for induction. In addition to induction, antibiotic production often decreases in the presence of a competitor, although this response was not associated with genetic relatedness or overlap in BGCs. Finally, we show that resource limitation increases the chance that antibiotic production declines during competition. Our results reveal the importance of social cues and resource availability in the dynamics of interference competition in streptomycetes.
Collapse
|
8
|
Liao MJ, Miano A, Nguyen CB, Chao L, Hasty J. Survival of the weakest in non-transitive asymmetric interactions among strains of E. coli. Nat Commun 2020; 11:6055. [PMID: 33247128 PMCID: PMC7699631 DOI: 10.1038/s41467-020-19963-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 10/23/2020] [Indexed: 11/22/2022] Open
Abstract
Hierarchical organization in ecology, whereby interactions are nested in a manner that leads to a dominant species, naturally result in the exclusion of all but the dominant competitor. Alternatively, non-hierarchical competitive dynamics, such as cyclical interactions, can sustain biodiversity. Here, we designed a simple microbial community with three strains of E. coli that cyclically interact through (i) the inhibition of protein production, (ii) the digestion of genomic DNA, and (iii) the disruption of the cell membrane. We find that intrinsic differences in these three major mechanisms of bacterial warfare lead to an unbalanced community that is dominated by the weakest strain. We also use a computational model to describe how the relative toxin strengths, initial fractional occupancies, and spatial patterns affect the maintenance of biodiversity. The engineering of active warfare between microbial species establishes a framework for exploration of the underlying principles that drive complex ecological interactions. The maintenance of ecological diversity depends on the strength and direction of competitive interactions, but these interactions are difficult to study in microbial communities. Here the authors use engineered E. coli strains to show that competitively weak strains can persist when pairwise interactions are asymmetrical.
Collapse
Affiliation(s)
- Michael J Liao
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA.,BioCircuits Institute, University of California, San Diego, La Jolla, CA, USA
| | - Arianna Miano
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA.,BioCircuits Institute, University of California, San Diego, La Jolla, CA, USA
| | - Chloe B Nguyen
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Lin Chao
- Section of Ecology, Behavior and Evolution, Division of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Jeff Hasty
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA. .,BioCircuits Institute, University of California, San Diego, La Jolla, CA, USA. .,Molecular Biology Section, Division of Biological Science, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
9
|
Derome N, Filteau M. A continuously changing selective context on microbial communities associated with fish, from egg to fork. Evol Appl 2020; 13:1298-1319. [PMID: 32684960 PMCID: PMC7359827 DOI: 10.1111/eva.13027] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 05/13/2020] [Accepted: 05/14/2020] [Indexed: 02/06/2023] Open
Abstract
Fast increase of fish aquaculture production to meet consumer demands is accompanied by important ecological concerns such as disease outbreaks. Meanwhile, food waste is an important concern with fish products since they are highly perishable. Recent aquaculture and fish product microbiology, and more recently, microbiota research, paved the way to a highly integrated approach to understand complex relationships between host fish, product and their associated microbial communities at health/disease and preservation/spoilage frontiers. Microbial manipulation strategies are increasingly validated as promising tools either to replace or to complement traditional veterinary and preservation methods. In this review, we consider evolutionary forces driving fish microbiota assembly, in particular the changes in the selective context along the production chain. We summarize the current knowledge concerning factors governing assembly and dynamics of fish hosts and food microbial communities. Then, we discuss the current microbial community manipulation strategies from an evolutionary standpoint to provide a perspective on the potential for risks, conflict and opportunities. Finally, we conclude that to harness evolutionary forces in the development of sustainable microbiota manipulation applications in the fish industry, an integrated knowledge of the controlling abiotic and especially biotic factors is required.
Collapse
Affiliation(s)
- Nicolas Derome
- Institut de Biologie Intégrative et des Systèmes (IBIS)Université LavalQuébecQCCanada
- Département de BiologieUniversité LavalQuébecQCCanada
| | - Marie Filteau
- Département de BiologieUniversité LavalQuébecQCCanada
- Département des Sciences des alimentsInstitut sur la nutrition et les aliments fonctionnels (INAF)Université LavalQuébecQCCanada
| |
Collapse
|
10
|
Samuels AN, Roggiani M, Smith KA, Zhu J, Goulian M, Kohli RM. Deciphering the Role of Colicins during Colonization of the Mammalian Gut by Commensal E. coli. Microorganisms 2020; 8:microorganisms8050664. [PMID: 32370119 PMCID: PMC7284606 DOI: 10.3390/microorganisms8050664] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 04/30/2020] [Accepted: 04/30/2020] [Indexed: 12/20/2022] Open
Abstract
Colicins are specific and potent toxins produced by Enterobacteriaceae that result in the rapid elimination of sensitive cells. Colicin production is commonly found throughout microbial populations, suggesting its potential importance for bacterial survival in complex microbial environments. Nonetheless, as colicin biology has been predominately studied using synthetic models, it remains unclear how colicin production contributes to survival and fitness of a colicin-producing commensal strain in a natural environment. To address this gap, we took advantage of MP1, an E. coli strain that harbors a colicinogenic plasmid and is a natural colonizer of the murine gut. Using this model, we validated that MP1 is competent for colicin production and then directly interrogated the importance of colicin production and immunity for MP1 survival in the murine gut. We showed that colicin production is dispensable for sustained colonization in the unperturbed gut. A strain lacking colicin production or immunity shows minimal fitness defects and can resist displacement by colicin producers. This report extends our understanding of the role that colicin production may play for E. coli during gut colonization and suggests that colicin production is not essential for a commensal to persist in its physiologic niche in the absence of exogenous challenges.
Collapse
Affiliation(s)
- Amanda N. Samuels
- Department of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA;
- Graduate Group on Cell and Molecular Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA;
| | - Manuela Roggiani
- Department of Biology, School of Arts and Science, University of Pennsylvania, Philadelphia, PA 19104, USA; (M.R.); (K.A.S.); (M.G.)
| | - Kathryn A. Smith
- Department of Biology, School of Arts and Science, University of Pennsylvania, Philadelphia, PA 19104, USA; (M.R.); (K.A.S.); (M.G.)
- Department of Biology, Solenis LLC., Wilmington, DE 19803, USA
| | - Jun Zhu
- Graduate Group on Cell and Molecular Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA;
| | - Mark Goulian
- Department of Biology, School of Arts and Science, University of Pennsylvania, Philadelphia, PA 19104, USA; (M.R.); (K.A.S.); (M.G.)
| | - Rahul M. Kohli
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Correspondence: ; Tel.: +1-(215)-573-7523
| |
Collapse
|
11
|
Simons A, Alhanout K, Duval RE. Bacteriocins, Antimicrobial Peptides from Bacterial Origin: Overview of Their Biology and Their Impact against Multidrug-Resistant Bacteria. Microorganisms 2020; 8:E639. [PMID: 32349409 PMCID: PMC7285073 DOI: 10.3390/microorganisms8050639] [Citation(s) in RCA: 250] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 04/16/2020] [Accepted: 04/22/2020] [Indexed: 12/18/2022] Open
Abstract
Currently, the emergence and ongoing dissemination of antimicrobial resistance among bacteria are critical health and economic issue, leading to increased rates of morbidity and mortality related to bacterial infections. Research and development for new antimicrobial agents is currently needed to overcome this problem. Among the different approaches studied, bacteriocins seem to be a promising possibility. These molecules are peptides naturally synthesized by ribosomes, produced by both Gram-positive bacteria (GPB) and Gram-negative bacteria (GNB), which will allow these bacteriocin producers to survive in highly competitive polymicrobial environment. Bacteriocins exhibit antimicrobial activity with variable spectrum depending on the peptide, which may target several bacteria. Already used in some areas such as agro-food, bacteriocins may be considered as interesting candidates for further development as antimicrobial agents used in health contexts, particularly considering the issue of antimicrobial resistance. The aim of this review is to present an updated global report on the biology of bacteriocins produced by GPB and GNB, as well as their antibacterial activity against relevant bacterial pathogens, and especially against multidrug-resistant bacteria.
Collapse
Affiliation(s)
- Alexis Simons
- Université de Lorraine, CNRS, L2CM, F-54000 Nancy, France
- Institut Micalis, équipe Bactéries Pathogènes et Santé, Faculté de Pharmacie, Université Paris-Saclay—INRAE—AgroParisTech, 92296 Châtenay-Malabry, France
| | - Kamel Alhanout
- Université de Lorraine, CNRS, L2CM, F-54000 Nancy, France
| | - Raphaël E. Duval
- Université de Lorraine, CNRS, L2CM, F-54000 Nancy, France
- ABC Platform, Faculté de Pharmacie, F-54505 Vandœuvre-lès-Nancy, France
| |
Collapse
|
12
|
Characterization of the bacteriocins and the PrtR regulator in a plant-associated Pseudomonas strain. J Biotechnol 2020; 307:182-192. [DOI: 10.1016/j.jbiotec.2019.11.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 09/16/2019] [Accepted: 11/03/2019] [Indexed: 11/20/2022]
|
13
|
The Effects of Colicin Production Rates on Allelopathic Interactions in Escherichia coli Populations. Microorganisms 2019; 7:microorganisms7110564. [PMID: 31739595 PMCID: PMC6921034 DOI: 10.3390/microorganisms7110564] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 11/05/2019] [Accepted: 11/07/2019] [Indexed: 11/17/2022] Open
Abstract
Allelopathic interactions mediated by bacteriocins production serve microorganisms in the never-ending battle for resources and living space. Competition between the bacteriocin producer and sensitive populations results in the exclusion of one or the other depending on their initial frequencies, the structure of their habitat, their community density and their nutrient availability. These interactions were extensively studied in bacteriocins produced by Escherichia coli, the colicins. In spatially structured environments where interactions are local, colicin production has been shown to be advantageous to the producer population, allowing them to compete even when initially rare. Yet, in a well-mixed, unstructured environment where interactions are global, rare producer populations cannot invade a common sensitive population. Here we are showing, through an experimental model, that colicin-producers can outcompete sensitive and producer populations when the colicin production rates are enhanced. In fact, colicin production rates were proportional to the producer competitive fitness and their overall success in out-competing opponents when invading at very low initial frequencies. This ability of rare populations to invade established communities maintains diversity and allows the dispersal of beneficial traits.
Collapse
|
14
|
Baquero F, Lanza VF, Baquero MR, Del Campo R, Bravo-Vázquez DA. Microcins in Enterobacteriaceae: Peptide Antimicrobials in the Eco-Active Intestinal Chemosphere. Front Microbiol 2019; 10:2261. [PMID: 31649628 PMCID: PMC6795089 DOI: 10.3389/fmicb.2019.02261] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 09/17/2019] [Indexed: 12/31/2022] Open
Abstract
Microcins are low-molecular-weight, ribosomally produced, highly stable, bacterial-inhibitory molecules involved in competitive, and amensalistic interactions between Enterobacteriaceae in the intestine. These interactions take place in a highly complex chemical landscape, the intestinal eco-active chemosphere, composed of chemical substances that positively or negatively influence bacterial growth, including those originated from nutrient uptake, and those produced by the action of the human or animal host and the intestinal microbiome. The contribution of bacteria results from their effect on the host generated molecules, on food and digested food, and organic substances from microbial origin, including from bacterial degradation. Here, we comprehensively review the main chemical substances present in the human intestinal chemosphere, particularly of those having inhibitory effects on microorganisms. With this background, and focusing on Enterobacteriaceae, the most relevant human pathogens from the intestinal microbiota, the microcin’s history and classification, mechanisms of action, and mechanisms involved in microcin’s immunity (in microcin producers) and resistance (non-producers) are reviewed. Products from the chemosphere likely modulate the ecological effects of microcin activity. Several cross-resistance mechanisms are shared by microcins, colicins, bacteriophages, and some conventional antibiotics, which are expected to produce cross-effects. Double-microcin-producing strains (such as microcins MccM and MccH47) have been successfully used for decades in the control of pathogenic gut organisms. Microcins are associated with successful gut colonization, facilitating translocation and invasion, leading to bacteremia, and urinary tract infections. In fact, Escherichia coli strains from the more invasive phylogroups (e.g., B2) are frequently microcinogenic. A publicly accessible APD3 database http://aps.unmc.edu/AP/ shows particular genes encoding microcins in 34.1% of E. coli strains (mostly MccV, MccM, MccH47, and MccI47), and much less in Shigella and Salmonella (<2%). Some 4.65% of Klebsiella pneumoniae are microcinogenic (mostly with MccE492), and even less in Enterobacter or Citrobacter (mostly MccS). The high frequency and variety of microcins in some Enterobacteriaceae indicate key ecological functions, a notion supported by their dominance in the intestinal microbiota of biosynthetic gene clusters involved in the synthesis of post-translationally modified peptide microcins.
Collapse
Affiliation(s)
- Fernando Baquero
- Department of Microbiology, Ramón y Cajal University Hospital, Ramón y Cajal Institute for Health Research (IRYCIS), Madrid, Spain
| | - Val F Lanza
- Bioinformatics Unit, Ramón y Cajal University Hospital, Ramón y Cajal Institute for Health Research (IRYCIS), Madrid, Spain
| | - Maria-Rosario Baquero
- Department of Microbiology, Alfonso X El Sabio University, Villanueva de la Cañada, Spain
| | - Rosa Del Campo
- Department of Microbiology, Ramón y Cajal University Hospital, Ramón y Cajal Institute for Health Research (IRYCIS), Madrid, Spain
| | - Daniel A Bravo-Vázquez
- Department of Microbiology, Alfonso X El Sabio University, Villanueva de la Cañada, Spain
| |
Collapse
|
15
|
Competition among Escherichia coli Strains for Space and Resources. Vet Sci 2018; 5:vetsci5040093. [PMID: 30400157 PMCID: PMC6313926 DOI: 10.3390/vetsci5040093] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 10/17/2018] [Accepted: 10/30/2018] [Indexed: 12/31/2022] Open
Abstract
Shiga toxin-producing Escherichia coli (STEC) are a subgroup of E. coli causing human diseases. Methods to control STEC in livestock and humans are limited. These and other emerging pathogens are a global concern and novel mitigation strategies are required. Habitats populated by bacteria are subjected to competition pressures due to limited space and resources but they use various strategies to compete in natural environments. Our objective was to evaluate non-pathogenic E. coli strains isolated from cattle feces for their ability to out-compete STEC. Competitive fitness of non-pathogenic E. coli against STEC were assessed in competitions using liquid, agar, and nutrient limiting assays. Winners were determined by enumeration using O-serogroup specific quantitative PCR or a semi-quantitative grading. Initial liquid competitions identified two strong non-pathogenic competitors (O103F and O26E) capable of eliminating various STEC including O157 and O111. The strain O103F was dominant across permeable physical barriers for all tested E. coli and STEC strains indicating the diffusion of antimicrobial molecules. In direct contact and even with temporal disadvantages, O103F out-competed STEC O157E. The results suggest that O103F or the diffusible molecule(s) it produces have a potential to be used as an alternative STEC mitigation strategy, either in medicine or the food industry.
Collapse
|
16
|
Abstract
Bacteria live in dense environments where competition for space and resources is fierce. For this reason, they often use diffusible toxins to eliminate closely related strains. Some toxins trigger systematic retaliation, raising the question of the role of provocation in bacterial warfare. We combine mathematical modeling and experiments to study the costs and benefits of provocation. In one-to-one encounters, provocation is costly as it leads to strong counterattacks. However, with three or more strains present, provocation can provide benefits via a “divide-and-conquer” effect, whereby a strain forces its opponents to wipe each other out. This effect could be harnessed as a targeted antibacterial approach; adding low levels of certain antibiotics to communities can promote warfare and cross-elimination between strains. Competition in animals involves a wide variety of aggressive behaviors. One of the most sophisticated strategies for a focal actor is to provoke a competitor into uncontrolled aggression toward other competitors. Like animals, bacteria rely on a broad spectrum of molecular weapons, some of which provoke potential rivals by triggering retaliation. While bacterial provocation is well documented, its potential adaptive value has received little attention. Here, we examine the costs and benefits of provocation using mathematical modeling and experiments with Escherichia coli strains encoding colicin toxins. We show that provocation is typically costly in one-to-one encounters because a provoking strain receives a strong reciprocal attack compared with nonprovoking strains. By contrast, provocation can be strongly beneficial in communities including more than two toxin-producing strains, especially when the provoker is shielded from, or resistant to, its opponents’ toxins. In these scenarios, we demonstrate that the benefit of provocation derives from a “divide-and-conquer” effect by which aggression-provoking toxin producers force their competitors into increased reciprocal aggression, leading to their cross-elimination. Furthermore, we show that this effect can be mimicked by using antibiotics that promote warfare among strains in a bacterial community, highlighting the potential of provocation as an antimicrobial approach.
Collapse
|
17
|
Nascimento F, Vicente C, Cock P, Tavares M, Rossi M, Hasegawa K, Mota M. From plants to nematodes: Serratia grimesii BXF1 genome reveals an adaptation to the modulation of multi-species interactions. Microb Genom 2018; 4. [PMID: 29781797 PMCID: PMC6113876 DOI: 10.1099/mgen.0.000178] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Serratia grimesii BXF1 is a bacterium with the ability to modulate the development of several eukaryotic hosts. Strain BXF1 was isolated from the pinewood nematode, Bursaphelenchus xylophilus, the causative agent of pine wilt disease affecting pine forests worldwide. This bacterium potentiates Bursaphelenchus xylophilus reproduction, acts as a beneficial pine endophyte, and possesses fungal and bacterial antagonistic activities, further indicating a complex role in a wide range of trophic relationships. In this work, we describe and analyse the genome sequence of strain BXF1, and discuss several important aspects of its ecological role. Genome analysis indicates the presence of several genes related to the observed production of antagonistic traits, plant growth regulation and the modulation of nematode development. Moreover, most of the BXF1 genes are involved in environmental and genetic information processing, which is consistent with its ability to sense and colonize several niches. The results obtained in this study provide the basis to a better understanding of the role and evolution of strain BXF1 as a mediator of interactions between organisms involved in a complex disease system. These results may also bring new insights into general Serratia and Enterobacteriaceae evolution towards multitrophic interactions.
Collapse
Affiliation(s)
- Francisco Nascimento
- 2Information and Computer Sciences, James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK.,1Nemalab/ICAAM - Instituto de Ciências Agrárias e Ambientais Mediterrânicas, Departamento de Biologia, Universidade de Évora, Núcleo da Mitra, Ap. 94, 7002-554 Évora, Portugal
| | - Cláudia Vicente
- 1Nemalab/ICAAM - Instituto de Ciências Agrárias e Ambientais Mediterrânicas, Departamento de Biologia, Universidade de Évora, Núcleo da Mitra, Ap. 94, 7002-554 Évora, Portugal.,3Department of Environmental Biology, College of Bioscience and Biotechnology, Chubu University, 1200 Matsumoto, Kasugai, Aichi 487-8501, Japan
| | - Peter Cock
- 2Information and Computer Sciences, James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
| | - Maria Tavares
- 4Departamento de Microbiologia, Laboratório de Bioprocessos, Universidade Federal de Santa Catarina, Florianópolis SC 88040-900, Brazil
| | - Márcio Rossi
- 4Departamento de Microbiologia, Laboratório de Bioprocessos, Universidade Federal de Santa Catarina, Florianópolis SC 88040-900, Brazil
| | - Koichi Hasegawa
- 3Department of Environmental Biology, College of Bioscience and Biotechnology, Chubu University, 1200 Matsumoto, Kasugai, Aichi 487-8501, Japan
| | - Manuel Mota
- 1Nemalab/ICAAM - Instituto de Ciências Agrárias e Ambientais Mediterrânicas, Departamento de Biologia, Universidade de Évora, Núcleo da Mitra, Ap. 94, 7002-554 Évora, Portugal.,5Departamento Ciências da Vida, EPCV Universidade Lusófona de Humanidades e Tecnologias, C. Grande 376, Lisboa, 1749-024, Portugal
| |
Collapse
|
18
|
Mavridou DAI, Gonzalez D, Kim W, West SA, Foster KR. Bacteria Use Collective Behavior to Generate Diverse Combat Strategies. Curr Biol 2018; 28:345-355.e4. [PMID: 29395918 DOI: 10.1016/j.cub.2017.12.030] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 11/06/2017] [Accepted: 12/14/2017] [Indexed: 01/06/2023]
Abstract
Animals have evolved a wide diversity of aggressive behavior often based upon the careful monitoring of other individuals. Bacteria are also capable of aggression, with many species using toxins to kill or inhibit their competitors. Like animals, bacteria also have systems to monitor others during antagonistic encounters, but how this translates into behavior remains poorly understood. Here, we use colonies of Escherichia coli carrying colicin-encoding plasmids as a model for studying antagonistic behavior. We show that in the absence of threat, dispersed cells with low reproductive value produce colicin toxins spontaneously, generating efficient pre-emptive attacks. Cells can also respond conditionally to toxins released by clonemates via autoinduction or other genotypes via competition sensing. The strength of both pre-emptive and responsive attacks varies widely between strains. We demonstrate that this variability occurs easily through mutation by rationally engineering strains to recapitulate the diversity in naturally occurring strategies. Finally, we discover that strains that can detect both competitors and clonemates are capable of massive coordinated attacks on competing colonies. This collective behavior protects established colonies from competitors, mirroring the evolution of alarm calling in the animal world.
Collapse
Affiliation(s)
- Despoina A I Mavridou
- Department of Zoology, University of Oxford, Oxford OX1 3PS, UK; Calleva Research Centre for Evolution and Human Sciences, Magdalen College, Oxford OX1 4AU, UK; MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Imperial College London, Kensington, London SW7 2DD, UK
| | - Diego Gonzalez
- Department of Zoology, University of Oxford, Oxford OX1 3PS, UK; Calleva Research Centre for Evolution and Human Sciences, Magdalen College, Oxford OX1 4AU, UK
| | - Wook Kim
- Department of Zoology, University of Oxford, Oxford OX1 3PS, UK
| | - Stuart A West
- Department of Zoology, University of Oxford, Oxford OX1 3PS, UK; Calleva Research Centre for Evolution and Human Sciences, Magdalen College, Oxford OX1 4AU, UK
| | - Kevin R Foster
- Department of Zoology, University of Oxford, Oxford OX1 3PS, UK; Calleva Research Centre for Evolution and Human Sciences, Magdalen College, Oxford OX1 4AU, UK.
| |
Collapse
|
19
|
Streptococcus pneumoniae Modulates Staphylococcus aureus Biofilm Dispersion and the Transition from Colonization to Invasive Disease. mBio 2018; 9:mBio.02089-17. [PMID: 29317512 PMCID: PMC5760742 DOI: 10.1128/mbio.02089-17] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Streptococcus pneumoniae and Staphylococcus aureus are ubiquitous upper respiratory opportunistic pathogens. Individually, these Gram-positive microbes are two of the most common causative agents of secondary bacterial pneumonia following influenza A virus infection, and they constitute a significant source of morbidity and mortality. Since the introduction of the pneumococcal conjugate vaccine, rates of cocolonization with both of these bacterial species have increased, despite the traditional view that they are antagonistic and mutually exclusive. The interactions between S. pneumoniae and S. aureus in the context of colonization and the transition to invasive disease have not been characterized. In this report, we show that S. pneumoniae and S. aureus form stable dual-species biofilms on epithelial cells in vitro. When these biofilms are exposed to physiological changes associated with viral infection, S. pneumoniae disperses from the biofilm, whereas S. aureus dispersal is inhibited. These findings were supported by results of an in vivo study in which we used a novel mouse cocolonization model. In these experiments, mice cocolonized in the nares with both bacterial species were subsequently infected with influenza A virus. The coinfected mice almost exclusively developed pneumococcal pneumonia. These results indicate that despite our previous report that S. aureus disseminates into the lungs of mice stably colonized with these bacteria following influenza A virus infection, cocolonization with S. pneumoniae in vitro and in vivo inhibits S. aureus dispersal and transition to disease. This study provides novel insight into both the interactions between S. pneumoniae and S. aureus during carriage and the transition from colonization to secondary bacterial pneumonia. In this study, we demonstrate that Streptococcus pneumoniae can modulate the pathogenic potential of Staphylococcus aureus in a model of secondary bacterial pneumonia. We report that host physiological signals related to viral infection cease to elicit a dispersal response from S. aureus while in a dual-species setting with S. pneumoniae, in direct contrast to results of previous studies with each species individually. This study underscores the importance of studying polymicrobial communities and their implications in disease states.
Collapse
|
20
|
Diversity and distribution of nuclease bacteriocins in bacterial genomes revealed using Hidden Markov Models. PLoS Comput Biol 2017; 13:e1005652. [PMID: 28715501 PMCID: PMC5536347 DOI: 10.1371/journal.pcbi.1005652] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 07/31/2017] [Accepted: 06/21/2017] [Indexed: 11/28/2022] Open
Abstract
Bacteria exploit an arsenal of antimicrobial peptides and proteins to compete with each other. Three main competition systems have been described: type six secretion systems (T6SS); contact dependent inhibition (CDI); and bacteriocins. Unlike T6SS and CDI systems, bacteriocins do not require contact between bacteria but are diffusible toxins released into the environment. Identified almost a century ago, our understanding of bacteriocin distribution and prevalence in bacterial populations remains poor. In the case of protein bacteriocins, this is because of high levels of sequence diversity and difficulties in distinguishing their killing domains from those of other competition systems. Here, we develop a robust bioinformatics pipeline exploiting Hidden Markov Models for the identification of nuclease bacteriocins (NBs) in bacteria of which, to-date, only a handful are known. NBs are large (>60 kDa) toxins that target nucleic acids (DNA, tRNA or rRNA) in the cytoplasm of susceptible bacteria, usually closely related to the producing organism. We identified >3000 NB genes located on plasmids or on the chromosome from 53 bacterial species distributed across different ecological niches, including human, animals, plants, and the environment. A newly identified NB predicted to be specific for Pseudomonas aeruginosa (pyocin Sn) was produced and shown to kill P. aeruginosa thereby validating our pipeline. Intriguingly, while the genes encoding the machinery needed for NB translocation across the cell envelope are widespread in Gram-negative bacteria, NBs are found exclusively in γ-proteobacteria. Similarity network analysis demonstrated that NBs fall into eight groups each with a distinct arrangement of protein domains involved in import. The only structural feature conserved across all groups was a sequence motif critical for cell-killing that is generally not found in bacteriocins targeting the periplasm, implying a specific role in translocating the nuclease to the cytoplasm. Finally, we demonstrate a significant association between nuclease colicins, NBs specific for Escherichia coli, and virulence factors, suggesting NBs play a role in infection processes, most likely by enabling pathogens to outcompete commensal bacteria. Bacteria deploy a variety of antimicrobials to kill competing bacteria. Nuclease bacteriocins are a miscellaneous group of protein toxins that target closely related species, cleaving nucleic acids in the cytoplasm. It has proved difficult to establish how widespread bacteriocins are in bacterial populations due to the high diversity of bacteriocin-encoding genes. Here, we describe an in silico approach to identify nuclease bacteriocin genes in bacterial genomes and to distinguish them from other competition toxins. Bacteria that contain nuclease bacteriocin genes are found in many different types of environment but are prevalent in niches where interbacterial competition is likely to be high. Nuclease bacteriocins are found exclusively in γ-proteobacteria and are particularly abundant in the Enterobacteriaceae and Pseudomonadaceae families. Although the sequences we identify are indeed diverse (<20% sequence identity between protein families) we show that all nuclease bacteriocins contain an invariant motif, usually within a common structural scaffold, that is implicated in translocating the cytotoxic nuclease to the cytoplasm. Finally, we show that nuclease bacteriocins in pathogenic E. coli are strongly associated with virulence factors suggesting they play a role in pathogenicity mechanisms.
Collapse
|
21
|
Niehus R, Picot A, Oliveira NM, Mitri S, Foster KR. The evolution of siderophore production as a competitive trait. Evolution 2017; 71:1443-1455. [DOI: 10.1111/evo.13230] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 03/03/2017] [Accepted: 03/12/2017] [Indexed: 12/11/2022]
Affiliation(s)
- Rene Niehus
- Department of Zoology; University of Oxford; South Parks Road OX1 3PS Oxford United Kingdom
- Mahidol Oxford Tropical Medicine Research Unit (MORU); 10400 Bangkok Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine; University of Oxford; Oxford United Kingdom
| | - Aurore Picot
- Department of Zoology; University of Oxford; South Parks Road OX1 3PS Oxford United Kingdom
- Sorbonne Universités, UPMC Univ Paris 6, UPEC, Univ Paris Diderot, Univ Paris-Est Créteil, CNRS, INRA, IRD; Institute of Ecology and Environmental Sciences-Paris (iEES Paris); 7 quai Saint-Bernard 75 252 Paris France
| | - Nuno M. Oliveira
- Department of Zoology; University of Oxford; South Parks Road OX1 3PS Oxford United Kingdom
- Department of Applied Mathematics and Theoretical Physics (DAMTP); Centre for Mathematical Sciences; Wilberforce Road Cambridge CB3 0WA United Kingdom
| | - Sara Mitri
- Department of Fundamental Microbiology; University of Lausanne; CH-1015 Lausanne Switzerland
| | - Kevin R. Foster
- Department of Zoology; University of Oxford; South Parks Road OX1 3PS Oxford United Kingdom
- Oxford Centre for Integrative Systems Biology; University of Oxford; South Parks Road Oxford OX1 3QU United Kingdom
| |
Collapse
|
22
|
Ashrafi R, Bruneaux M, Sundberg LR, Pulkkinen K, Ketola T. Application of high resolution melting assay (HRM) to study temperature-dependent intraspecific competition in a pathogenic bacterium. Sci Rep 2017; 7:980. [PMID: 28428555 PMCID: PMC5430548 DOI: 10.1038/s41598-017-01074-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 03/22/2017] [Indexed: 01/18/2023] Open
Abstract
Studies on species’ responses to climate change have focused largely on the direct effect of abiotic factors and in particular temperature, neglecting the effects of biotic interactions in determining the outcome of climate change projections. Many microbes rely on strong interference competition; hence the fitness of many pathogenic bacteria could be a function of both their growth properties and intraspecific competition. However, due to technical challenges in distinguishing and tracking individual strains, experimental evidence on intraspecific competition has been limited so far. Here, we developed a robust application of the high-resolution melting (HRM) assay to study head-to-head competition between mixed genotype co-cultures of a waterborne bacterial pathogen of fish, Flavobacterium columnare, at two different temperatures. We found that competition outcome in liquid cultures seemed to be well predicted by growth yield of isolated strains, but was mostly inconsistent with interference competition results measured in inhibition tests on solid agar, especially as no growth inhibition between strain pairs was detected at the higher temperature. These results suggest that, for a given temperature, the factors driving competition outcome differ between liquid and solid environments.
Collapse
Affiliation(s)
- Roghaieh Ashrafi
- Department of Biological and Environmental Science (and Nanoscience Center), University of Jyvaskyla, Centre of Excellence in Biological Interactions, P.O. Box 35, FI-40014, Jyvaskyla, Finland.
| | - Matthieu Bruneaux
- Department of Biological and Environmental Science (and Nanoscience Center), University of Jyvaskyla, Centre of Excellence in Biological Interactions, P.O. Box 35, FI-40014, Jyvaskyla, Finland
| | - Lotta-Riina Sundberg
- Department of Biological and Environmental Science (and Nanoscience Center), University of Jyvaskyla, Centre of Excellence in Biological Interactions, P.O. Box 35, FI-40014, Jyvaskyla, Finland
| | - Katja Pulkkinen
- Department of Biological and Environmental Science, University of Jyvaskyla, P.O. Box 35, FI-40014, Jyvaskyla, Finland
| | - Tarmo Ketola
- Department of Biological and Environmental Science (and Nanoscience Center), University of Jyvaskyla, Centre of Excellence in Biological Interactions, P.O. Box 35, FI-40014, Jyvaskyla, Finland
| |
Collapse
|
23
|
Stubbendieck RM, Vargas-Bautista C, Straight PD. Bacterial Communities: Interactions to Scale. Front Microbiol 2016; 7:1234. [PMID: 27551280 PMCID: PMC4976088 DOI: 10.3389/fmicb.2016.01234] [Citation(s) in RCA: 179] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 07/25/2016] [Indexed: 12/11/2022] Open
Abstract
In the environment, bacteria live in complex multispecies communities. These communities span in scale from small, multicellular aggregates to billions or trillions of cells within the gastrointestinal tract of animals. The dynamics of bacterial communities are determined by pairwise interactions that occur between different species in the community. Though interactions occur between a few cells at a time, the outcomes of these interchanges have ramifications that ripple through many orders of magnitude, and ultimately affect the macroscopic world including the health of host organisms. In this review we cover how bacterial competition influences the structures of bacterial communities. We also emphasize methods and insights garnered from culture-dependent pairwise interaction studies, metagenomic analyses, and modeling experiments. Finally, we argue that the integration of multiple approaches will be instrumental to future understanding of the underlying dynamics of bacterial communities.
Collapse
Affiliation(s)
- Reed M. Stubbendieck
- Interdisciplinary Program in Genetics, Texas A&M University, College StationTX, USA
- Department of Biochemistry and Biophysics, Texas A&M University, College StationTX, USA
| | - Carol Vargas-Bautista
- Department of Plant Pathology and Microbiology, Texas A&M Agrilife Research, WeslacoTX, USA
| | - Paul D. Straight
- Interdisciplinary Program in Genetics, Texas A&M University, College StationTX, USA
- Department of Biochemistry and Biophysics, Texas A&M University, College StationTX, USA
| |
Collapse
|
24
|
Cavera VL, Arthur TD, Kashtanov D, Chikindas ML. Bacteriocins and their position in the next wave of conventional antibiotics. Int J Antimicrob Agents 2015; 46:494-501. [PMID: 26341839 DOI: 10.1016/j.ijantimicag.2015.07.011] [Citation(s) in RCA: 123] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 07/10/2015] [Accepted: 07/15/2015] [Indexed: 12/13/2022]
Abstract
Micro-organisms are capable of producing a range of defence mechanisms, including antibiotics, bacteriocins, lytic agents, protein exotoxins, etc. Such mechanisms have been identified in nearly 99% of studied bacteria. The multiplicity and diversity of bacteriocins and the resultant effects of their interactions with targeted bacteria on microbial ecology has been thoroughly studied and remains an area of investigation attracting many researchers. However, the incorporation of bacteriocins into drug delivery systems used in conjunction with, or as potential alternatives to, conventional antibiotics is only a recent, although rapidly expanding, field. The extensive array of bacteriocins positions them as one of the most promising options in the next wave of antibiotics. The goal of this review was to explore bacteriocins as novel antimicrobials, alone and in combination with established antibiotics, and thus position them as a potential tool for addressing the current antibiotic crisis.
Collapse
Affiliation(s)
- Veronica L Cavera
- Department of Biochemistry and Microbiology, Rutgers State University, 76 Lipman Drive, New Brunswick, NJ 08901, USA
| | - Timothy D Arthur
- Department of Biochemistry and Microbiology, Rutgers State University, 76 Lipman Drive, New Brunswick, NJ 08901, USA
| | - Dimitri Kashtanov
- School of Environmental and Biological Sciences, Rutgers State University, 65 Dudley Road, New Brunswick, NJ 08901, USA
| | - Michael L Chikindas
- School of Environmental and Biological Sciences, Rutgers State University, 65 Dudley Road, New Brunswick, NJ 08901, USA.
| |
Collapse
|
25
|
Ponce-Soto GY, Aguirre-von-Wobeser E, Eguiarte LE, Elser JJ, Lee ZMP, Souza V. Enrichment experiment changes microbial interactions in an ultra-oligotrophic environment. Front Microbiol 2015; 6:246. [PMID: 25883593 PMCID: PMC4381637 DOI: 10.3389/fmicb.2015.00246] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 03/13/2015] [Indexed: 11/13/2022] Open
Abstract
The increase of nutrients in water bodies, in particular nitrogen (N) and phosphorus (P) due to the recent expansion of agricultural and other human activities is accelerating environmental degradation of these water bodies, elevating the risk of eutrophication and reducing biodiversity. To evaluate the ecological effects of the influx of nutrients in an oligotrophic and stoichiometrically imbalanced environment, we performed a replicated in situ mesocosm experiment. We analyzed the effects of a N- and P-enrichment on the bacterial interspecific interactions in an experiment conducted in the Cuatro Cienegas Basin (CCB) in Mexico. This is a desert ecosystem comprised of several aquatic systems with a large number of microbial endemic species. The abundance of key nutrients in this basin exhibits strong stoichiometric imbalance (high N:P ratios), suggesting that species diversity is maintained mostly by competition for resources. We focused on the biofilm formation and antibiotic resistance of 960 strains of cultivated bacteria in two habitats, water and sediment, before and after 3 weeks of fertilization. The water habitat was dominated by Pseudomonas, while Halomonas dominated the sediment. Strong antibiotic resistance was found among the isolates at time zero in the nutrient-poor bacterial communities, but resistance declined in the bacteria isolated in the nutrient-rich environments, suggesting that in the nutrient-poor original environment, negative inter-specific interactions were important, while in the nutrient-rich environments, competitive interactions are not so important. In water, a significant increase in the percentage of biofilm-forming strains was observed for all treatments involving nutrient addition.
Collapse
Affiliation(s)
- Gabriel Y Ponce-Soto
- Laboratorio de Ecología Molecular y Experimental, Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México Coyoacán, México
| | | | - Luis E Eguiarte
- Laboratorio de Ecología Molecular y Experimental, Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México Coyoacán, México
| | - James J Elser
- School of Life Sciences, Arizona State University Tempe, AZ, USA
| | - Zarraz M-P Lee
- School of Life Sciences, Arizona State University Tempe, AZ, USA
| | - Valeria Souza
- Laboratorio de Ecología Molecular y Experimental, Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México Coyoacán, México
| |
Collapse
|
26
|
Redondo LM, Carrasco JMD, Redondo EA, Delgado F, Miyakawa MEF. Clostridium perfringens type E virulence traits involved in gut colonization. PLoS One 2015; 10:e0121305. [PMID: 25799452 PMCID: PMC4370460 DOI: 10.1371/journal.pone.0121305] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 01/30/2015] [Indexed: 02/04/2023] Open
Abstract
Clostridium perfringens type E disease in ruminants has been characterized by hemorrhagic enteritis or sudden death. Although type E isolates are defined by the production of alpha and iota toxin, little is known about the pathogenesis of C. perfringens type E infections. Thus far, the role of iota toxin as a virulence factor is unknown. In this report, iota toxin showed positive effects on adherence and colonization of C. perfringens type E while having negative effect on the adherence of type A cells. In-vitro and in-vivo models suggest that toxinotype E would be particularly adapted to exploit the changes induced by iota toxin in the surface of epithelial cells. In addition, type E strains produce metabolites that affected the growth of potential intra-specific competitors. These results suggest that the alteration of the enterocyte morphology induced by iota toxin concomitantly with the specific increase of type E cell adhesion and the strong intra-specific growth inhibition of other strains could be competitive traits inherent to type E isolates that improve its fitness within the bovine gut environment.
Collapse
Affiliation(s)
- Leandro M. Redondo
- Instituto de Patobiología, Centro Nacional de Investigaciones Agropecuarias, Instituto Nacional de Tecnología Agropecuaria, Castelar, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Autónoma de Buenos Aires, Argentina
| | - Juan M. Díaz Carrasco
- Instituto de Patobiología, Centro Nacional de Investigaciones Agropecuarias, Instituto Nacional de Tecnología Agropecuaria, Castelar, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Autónoma de Buenos Aires, Argentina
| | - Enzo A. Redondo
- Instituto de Patobiología, Centro Nacional de Investigaciones Agropecuarias, Instituto Nacional de Tecnología Agropecuaria, Castelar, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Autónoma de Buenos Aires, Argentina
| | - Fernando Delgado
- Instituto de Patobiología, Centro Nacional de Investigaciones Agropecuarias, Instituto Nacional de Tecnología Agropecuaria, Castelar, Buenos Aires, Argentina
| | - Mariano E. Fernández Miyakawa
- Instituto de Patobiología, Centro Nacional de Investigaciones Agropecuarias, Instituto Nacional de Tecnología Agropecuaria, Castelar, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Autónoma de Buenos Aires, Argentina
- * E-mail:
| |
Collapse
|
27
|
Leslie JL, Young VB. The rest of the story: the microbiome and gastrointestinal infections. Curr Opin Microbiol 2014; 23:121-5. [PMID: 25461582 DOI: 10.1016/j.mib.2014.11.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 11/11/2014] [Accepted: 11/13/2014] [Indexed: 02/06/2023]
Abstract
Bacterial infectious diseases are studied primarily as a host-pathogen dyad. However it is increasingly apparent that the gut microbial community is an important participant in these interactions. The gut microbiota influences bacterial infections in a number of ways, including via bacterial metabolism, stimulation of host immunity and direct bacterial antagonism. This review focuses on recent findings highlighting the interplay between the gastrointestinal microbiota, its host and bacterial pathogens; and emphasizes how these interactions ultimately impact our understanding of infectious diseases.
Collapse
Affiliation(s)
- Jhansi L Leslie
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Vincent B Young
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, USA; Division of Infectious Diseases, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA.
| |
Collapse
|
28
|
Activity spectrum of colicins produced by Shigella sonnei and genetic mechanism of colicin resistance in conspecific S. sonnei strains and Escherichia coli. Antimicrob Agents Chemother 2014; 59:152-8. [PMID: 25331695 DOI: 10.1128/aac.04122-14] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Colicin-mediated killing is an example of allelopathy, which has been found among several bacteria. Screening of 42 strains of Shigella sonnei isolated from diarrheal patients revealed that 39 (93%) S. sonnei strains were positive for colicin production against Escherichia coli DH5α. In the PCR-based detection of the colicin types, 36 (92.3%) were identified as E3, 2 (5.1%) as E3 and E8, and 1 (2.6%) as E3 and E2. Representative S. sonnei strains producing heterologous colicins exhibited antagonism against diarrheagenic Escherichia coli (DEC) groups. Although it is known that mutation in the colicin receptor renders the host resistant to colicin, there is a dearth of information on the genetic characterization of such mutants. In the fluctuation test, colicin-resistant E. coli mutants were found to occur spontaneously at the rates of 2.51 × 10(-8) and 5.52 × 10(-8) per generation when exposed to colicins E3 and E8 and colicins E3 and E2, respectively. Genotypic characterization of colicin-resistant E. coli (EC(Cr)) and S. sonnei (SS(Cr)) strains displayed mutations in the btuB gene, which encodes the receptor for vitamin B12 uptake. This gene was interrupted by various insertion sequences, such as IS1, IS2, and IS911. Complementation of EC(Cr) and SS(Cr) with plasmid-borne btuB (pbtuB) accomplished restoration of the colicin-susceptible phenotype. The vitamin B12 uptake assay gave an insight into the physiological relevance of the btuB mutation. Our studies provide insights into the latent influence of S. sonnei colicins in governing the existence of some of the shigellae and all of the DEC and the genetic mechanism underlying the emergence of resistance.
Collapse
|
29
|
Ghazaryan L, Tonoyan L, Ashhab AA, Soares MIM, Gillor O. The role of stress in colicin regulation. Arch Microbiol 2014; 196:753-64. [PMID: 25048159 DOI: 10.1007/s00203-014-1017-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 07/05/2014] [Accepted: 07/11/2014] [Indexed: 12/28/2022]
Abstract
Bacteriocins produced by Enterobacteriaceae are high molecular weight toxic proteins that kill target cells through a variety of mechanisms, including pore formation and nucleic acid degradation. What is remarkable about these toxins is that their expression results in death to the producing cells and therefore bacteriocin induction have to be tightly regulated, often confined to times of stress. Information on the regulation of bacteriocins produced by enteric bacteria is sketchy as their expression has only been elucidated in a handful of bacteria. Here, we review the known regulatory mechanisms of enteric bacteriocins and explore the expression of 12 of them in response to various triggers: DNA-damaging agents, stringent response, catabolite repression, oxidative stress, growth phase, osmolarity, cold shock, nutrient deprivation, anaerobiosis and pH stress. Our results indicate that the expression of bacteriocins is mostly confined to mutagenic triggers, while all other triggers tested are limited inducers.
Collapse
Affiliation(s)
- Lusine Ghazaryan
- Zuckerberg Institute for Water Research, J. Blaustein Institutes for Desert Research, Ben-Gurion University, 84990, Midreshet Ben-Gurion, Israel
| | | | | | | | | |
Collapse
|
30
|
Bacteriocin expression in sessile and planktonic populations of Escherichia coli. J Antibiot (Tokyo) 2014; 68:52-5. [DOI: 10.1038/ja.2014.84] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Revised: 05/20/2014] [Accepted: 05/28/2014] [Indexed: 11/08/2022]
|