1
|
Han J, Aljahdali N, Zhao S, Tang H, Harbottle H, Hoffmann M, Frye JG, Foley SL. Infection biology of Salmonella enterica. EcoSal Plus 2024; 12:eesp00012023. [PMID: 38415623 PMCID: PMC11636313 DOI: 10.1128/ecosalplus.esp-0001-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 07/31/2023] [Indexed: 02/29/2024]
Abstract
Salmonella enterica is the leading cause of bacterial foodborne illness in the USA, with an estimated 95% of salmonellosis cases due to the consumption of contaminated food products. Salmonella can cause several different disease syndromes, with the most common being gastroenteritis, followed by bacteremia and typhoid fever. Among the over 2,600 currently identified serotypes/serovars, some are mostly host-restricted and host-adapted, while the majority of serotypes can infect a broader range of host species and are associated with causing both livestock and human disease. Salmonella serotypes and strains within serovars can vary considerably in the severity of disease that may result from infection, with some serovars that are more highly associated with invasive disease in humans, while others predominantly cause mild gastroenteritis. These observed clinical differences may be caused by the genetic make-up and diversity of the serovars. Salmonella virulence systems are very complex containing several virulence-associated genes with different functions that contribute to its pathogenicity. The different clinical syndromes are associated with unique groups of virulence genes, and strains often differ in the array of virulence traits they display. On the chromosome, virulence genes are often clustered in regions known as Salmonella pathogenicity islands (SPIs), which are scattered throughout different Salmonella genomes and encode factors essential for adhesion, invasion, survival, and replication within the host. Plasmids can also carry various genes that contribute to Salmonella pathogenicity. For example, strains from several serovars associated with significant human disease, including Choleraesuis, Dublin, Enteritidis, Newport, and Typhimurium, can carry virulence plasmids with genes contributing to attachment, immune system evasion, and other roles. The goal of this comprehensive review is to provide key information on the Salmonella virulence, including the contributions of genes encoded in SPIs and plasmids during Salmonella pathogenesis.
Collapse
Affiliation(s)
- Jing Han
- National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas, USA
| | - Nesreen Aljahdali
- National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas, USA
- Biological Science Department, College of Science, King Abdul-Aziz University, Jeddah, Saudi Arabia
| | - Shaohua Zhao
- Center for Veterinary Medicine, U.S. Food and Drug Administration, Rockville, Maryland, USA
| | - Hailin Tang
- National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas, USA
| | - Heather Harbottle
- Center for Veterinary Medicine, U.S. Food and Drug Administration, Rockville, Maryland, USA
| | - Maria Hoffmann
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, Maryland, USA
| | - Jonathan G. Frye
- Agricutlutral Research Service, U.S. Department of Agriculture, Athens, Georgia, USA
| | - Steven L. Foley
- National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas, USA
| |
Collapse
|
2
|
Amaya FA, Blondel CJ, Reyes-Méndez F, Rivera D, Moreno-Switt A, Toro M, Badilla C, Santiviago CA, Pezoa D. Genomic analysis of Salmonella isolated from surface water and animal sources in Chile reveals new T6SS effector protein candidates. Front Microbiol 2024; 15:1496223. [PMID: 39723139 PMCID: PMC11669294 DOI: 10.3389/fmicb.2024.1496223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 11/12/2024] [Indexed: 12/28/2024] Open
Abstract
Type VI Secretion Systems (T6SS), widely distributed in Gram-negative bacteria, contribute to interbacterial competition and pathogenesis through the translocation of effector proteins to target cells. Salmonella harbor 5 pathogenicity islands encoding T6SS (SPI-6, SPI-19, SPI-20, SPI-21 and SPI-22), in which a limited number of effector proteins have been identified. Previous analyses by our group focused on the identification of candidate T6SS effectors and cognate immunity proteins in Salmonella genomes deposited in public databases. In this study, the analysis was centered on Salmonella isolates obtained from environmental sources in Chile. To this end, bioinformatics and comparative genomics analyses were performed using 695 genomes of Salmonella isolates representing 44 serotypes obtained from surface water and animal sources in Chile to identify new T6SS effector proteins. First, T6SS gene clusters were identified using the SecreT6 server. This analysis revealed that most isolates carry the SPI-6 T6SS gene cluster, whereas the SPI-19 and SPI-21 T6SS gene clusters were detected in isolates from a limited number of serotypes. In contrast, the SPI-20 and SPI-22 T6SS gene clusters were not detected. Subsequently, each ORF in the T6SS gene clusters identified was analyzed using bioinformatics tools for effector prediction, identification of immunity proteins and functional biochemical prediction. This analysis detected 20 of the 37 T6SS effector proteins previously reported in Salmonella. In addition, 4 new effector proteins with potential antibacterial activity were identified in SPI-6: 2 Rhs effectors with potential DNase activity (PAAR-RhsA-NucA_B and PAAR-RhsA-GH-E) and 2 effectors with potential RNase activity (PAAR-RhsA-CdiA and RhsA-CdiA). Interestingly, the repertoire of SPI-6 T6SS effectors varies among isolates of the same serotype. In SPI-19, no new effector protein was detected. Of note, some Rhs effectors of SPI-19 and SPI-6 present C-terminal ends with unknown function. The presence of cognate immunity proteins carrying domains present in bona fide immunity proteins suggests that these effectors have antibacterial activity. Finally, two new effectors were identified in SPI-21: one with potential peptidoglycan hydrolase activity and another with potential membrane pore-forming activity. Altogether, our work broadens the repertoire of Salmonella T6SS effector proteins and provides evidence that SPI-6, SPI-19 and SPI-21 T6SS gene clusters harbor a vast array of antibacterial effectors.
Collapse
Affiliation(s)
- Fernando A. Amaya
- Laboratorio de Microbiología, Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Carlos J. Blondel
- Facultad de Medicina y Facultad de Ciencias de la Vida, Instituto de Ciencias Biomédicas, Universidad Andrés Bello, Santiago, Chile
| | - Felipe Reyes-Méndez
- Núcleo de Investigación en One Health, Facultad de Medicina Veterinaria y Agronomía, Universidad de Las Américas, Santiago, Chile
| | - Dácil Rivera
- Escuela de Medicina Veterinaria, Facultad de Agronomía e Ingeniería Forestal, Facultad de Ciencias Biológicas y Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Andrea Moreno-Switt
- Escuela de Medicina Veterinaria, Facultad de Agronomía e Ingeniería Forestal, Facultad de Ciencias Biológicas y Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Magaly Toro
- Joint Institute for Food Safety and Applied Nutrition (JIFSAN), University of Maryland, College Park, MD, United States
- Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago, Chile
| | - Consuelo Badilla
- Núcleo de Investigación en One Health, Facultad de Medicina Veterinaria y Agronomía, Universidad de Las Américas, Santiago, Chile
| | - Carlos A. Santiviago
- Laboratorio de Microbiología, Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - David Pezoa
- Núcleo de Investigación en One Health, Facultad de Medicina Veterinaria y Agronomía, Universidad de Las Américas, Santiago, Chile
- Departamento de Ciencias Químicas y Biológicas, Universidad Bernardo O'Higgins, Santiago, Chile
| |
Collapse
|
3
|
Delgado-Suárez EJ, García-Meneses AV, Ponce-Hernández EA, Ruíz-López FA, Hernández-Pérez CF, Ballesteros-Nova NE, Soberanis-Ramos O, Rubio-Lozano MS. Long-term genomic surveillance reveals the circulation of clinically significant Salmonella in lymph nodes and beef trimmings from slaughter cattle from a Mexican feedlot. PLoS One 2024; 19:e0312275. [PMID: 39423186 PMCID: PMC11488740 DOI: 10.1371/journal.pone.0312275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 10/03/2024] [Indexed: 10/21/2024] Open
Abstract
This longitudinal study characterized Salmonella circulating in lymph nodes (LN, n = 800) and beef trimmings (n = 745) from slaughter cattle from a Mexican feedlot. During two years, LN and beef trimming samples were collected 72-96 h post-slaughter, and we obtained 77 isolates of the serovars Anatum (n = 23), Reading (n = 22), Typhimurium (n = 10), London (n = 9), Kentucky (n = 6), Fresno (n = 4), Give, Muenster, and monophasic 1,4,[5],12:i- (n = 1 each). These isolates were subjected to whole genome sequencing, single-nucleotide polymorphism (SNP)-based phylogenetic analysis, reconstruction of their ancestral isolation sources through evolutionary analysis, and virulence profiling. Although LN and beef trimmings were not mixed, evolutionary analysis estimated that the common ancestor of all study isolates was likely of LN origin. Moreover, isolates from both sources were highly clonal (0-21 SNP distance), highlighting the complexity of Salmonella transmission dynamics. The pathogen persisted across cattle cohorts, as shown by clonality between isolates collected in different years (1-20 SNP distance). Major virulence genes were highly conserved (97-100% identity to the reference sequences) and most isolates carried a conserved version of pathogenicity islands 1-5, 9, 11, and 12. Typhimurium strains carried the Salmonella plasmid virulence operon (spvRABCD), and a Muenster isolate carried the st313td gene, both of which are associated with invasive phenotypes. Most isolates (49/77) were genetically similar (1-43 SNPs) to strains involved in human salmonellosis, highlighting their public health significance. Further research is needed on Salmonella transmission dynamics in cattle and the mechanisms determining subclinical infection and persistence in farm environments.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Orbelín Soberanis-Ramos
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - María Salud Rubio-Lozano
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad de México, México
| |
Collapse
|
4
|
Blondel CJ, Amaya FA, Bustamante P, Santiviago CA, Pezoa D. Identification and distribution of new candidate T6SS effectors encoded in Salmonella Pathogenicity Island 6. Front Microbiol 2023; 14:1252344. [PMID: 37664116 PMCID: PMC10469887 DOI: 10.3389/fmicb.2023.1252344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 08/03/2023] [Indexed: 09/05/2023] Open
Abstract
The type VI secretion system (T6SS) is a contact-dependent contractile multiprotein apparatus widely distributed in Gram-negative bacteria. These systems can deliver different effector proteins into target bacterial and/or eukaryotic cells, contributing to the environmental fitness and virulence of many bacterial pathogens. Salmonella harbors five different T6SSs encoded in different genomic islands. The T6SS encoded in Salmonella Pathogenicity Island 6 (SPI-6) contributes to Salmonella competition with the host microbiota and its interaction with infected host cells. Despite its relevance, information regarding the total number of effector proteins encoded within SPI-6 and its distribution among different Salmonella enterica serotypes is limited. In this work, we performed bioinformatic and comparative genomics analyses of the SPI-6 T6SS gene cluster to expand our knowledge regarding the T6SS effector repertoire and the global distribution of these effectors in Salmonella. The analysis of a curated dataset of 60 Salmonella enterica genomes from the Secret6 database revealed the presence of 23 new putative T6SS effector/immunity protein (E/I) modules. These effectors were concentrated in the variable regions 1 to 3 (VR1-3) of the SPI-6 T6SS gene cluster. VR1-2 were enriched in candidate effectors with predicted peptidoglycan hydrolase activity, while VR3 was enriched in candidate effectors of the Rhs family with C-terminal extensions with predicted DNase, RNase, deaminase, or ADP-ribosyltransferase activity. A global analysis of known and candidate effector proteins in Salmonella enterica genomes from the NCBI database revealed that T6SS effector proteins are differentially distributed among Salmonella serotypes. While some effectors are present in over 200 serotypes, others are found in less than a dozen. A hierarchical clustering analysis identified Salmonella serotypes with distinct profiles of T6SS effectors and candidate effectors, highlighting the diversity of T6SS effector repertoires in Salmonella enterica. The existence of different repertoires of effector proteins suggests that different effector protein combinations may have a differential impact on the environmental fitness and pathogenic potential of these strains.
Collapse
Affiliation(s)
- Carlos J. Blondel
- Facultad de Medicina y Facultad de Ciencias de la Vida, Instituto de Ciencias Biomédicas, Universidad Andrés Bello, Santiago, Chile
| | - Fernando A. Amaya
- Laboratorio de Microbiología, Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Paloma Bustamante
- Facultad de Medicina Veterinaria y Agronomía, Universidad de Las Américas, Santiago, Chile
| | - Carlos A. Santiviago
- Laboratorio de Microbiología, Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - David Pezoa
- Núcleo de Investigaciones Aplicadas en Ciencias Veterinarias y Agronómicas, Facultad de Medicina Veterinaria y Agronomía, Universidad de Las Américas, Santiago, Chile
- Departamento de Ciencias Químicas y Biológicas, Universidad Bernardo O'Higgins, Santiago, Chile
| |
Collapse
|
5
|
Singh RP, Kumari K. Bacterial type VI secretion system (T6SS): an evolved molecular weapon with diverse functionality. Biotechnol Lett 2023; 45:309-331. [PMID: 36683130 DOI: 10.1007/s10529-023-03354-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 12/14/2022] [Accepted: 01/05/2023] [Indexed: 01/24/2023]
Abstract
Bacterial secretion systems are nanomolecular complexes that release a diverse set of virulence factors/or proteins into its surrounding or translocate to their target host cells. Among these systems, type VI secretion system 'T6SS' is a recently discovered molecular secretion system which is widely distributed in Gram-negative (-ve) bacteria, and shares structural similarity with the puncturing device of bacteriophages. The presence of T6SS is an advantage to many bacteria as it delivers toxins to its neighbour pathogens for competitive survival, and also translocates protein effectors to the host cells, leading to disruption of lipid membranes, cell walls, and cytoskeletons etc. Recent studies have characterized both anti-prokaryotic and anti-eukaryotic effectors, where T6SS is involved in diverse cellular functions including favouring colonization, enhancing the survival, adhesive modifications, internalization, and evasion of the immune system. With the evolution of advanced genomics and proteomics tools, there has been an increase in the number of characterized T6SS effector arsenals and also more clear information about the adaptive significance of this complex system. The functions of T6SS are generally regulated at the transcription, post-transcription and post-translational levels through diverse mechanisms. In the present review, we aimed to provide information about the distribution of T6SS in diverse bacteria, any structural similarity/or dissimilarity, effectors proteins, functional significance, and regulatory mechanisms. We also tried to provide information about the diverse roles played by T6SS in its natural environments and hosts, and further any changes in the microbiome.
Collapse
Affiliation(s)
- Rajnish Prakash Singh
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India.
| | - Kiran Kumari
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India
| |
Collapse
|
6
|
Wang Z, Li X, Du S, Sun X, Huang J, Shao Y. Protective Effects of Zinc on Salmonella Invasion, Intestinal Morphology and Immune Response of Young Pigeons Infected with Salmonella enterica Serovar Typhimurium. Biol Trace Elem Res 2022; 200:4817-4827. [PMID: 35028867 DOI: 10.1007/s12011-021-03057-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 12/03/2021] [Indexed: 11/02/2022]
Abstract
The study aimed to determine the effects of orally supplemental zinc on body weight, Salmonella invasion, serum IgA, intestinal histomorphology, and immune response of Salmonella enterica serovar Typhimurium (S. typhimurium)-challenged young pigeons. A total of 72 healthy White King pigeons (25 days old) with similar weight were randomly assigned to 3 treatments with six replicate cages. The 3 treatments were unchallenged, S. typhimurium-challenged, and S. typhimurium-challenged orally supplemented with 1 mg zinc per bird. Salmonella infection decreased (P < 0.05) the body weight, the bursa index, the serum IgA content, and the villus height/crypt depth ratio in the ileum, but increased the neutrophil proportion (P < 0.001) and the mRNA expressions of IL-1β and IL-8 in the jejunum (P < 0.05). Orally supplemental zinc reduced (P = 0.007) the bacterial load in the liver and improved (P < 0.05) the body weight, the bursa index, the serum IgA content, the villus height/crypt depth ratio, and the NOD-like receptor family pyrin domain containing 3 (NLRP3) protein expression, as well as tended to increase (P = 0.064) the protein abundance of caspase-1 of the jejunum, but did not alleviate the high level of neutrophil proportion and IL-1β mRNA expression of the jejunum (P > 0.05). The results indicated that oral zinc supplementation improved the intestinal mucosal morphology and enhanced the immune response, as well as activated caspase-1-dependent cell pyroptosis pathways in the jejunal epithelium, thereby restricting Salmonella invasion of the challenged young pigeons.
Collapse
Affiliation(s)
- Zheng Wang
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Xing Li
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Shaohua Du
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Xiaoshan Sun
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Jianguo Huang
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Yuxin Shao
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China.
| |
Collapse
|
7
|
Park N, Kwon JG, Na H, Lee S, Lee JH, Ryu S. Discovery and characterization of a new genotype of Salmonella enterica serovar Bareilly isolated from diarrhea patients of food-borne outbreaks. Front Microbiol 2022; 13:1024189. [DOI: 10.3389/fmicb.2022.1024189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 10/10/2022] [Indexed: 11/13/2022] Open
Abstract
Since the first food-borne outbreak of Salmonella enterica serovar Bareilly in the UK (2010), it has been recognized as a new type of food-borne pathogen in S. enterica. To detect and characterize this new serovar pathogen in South Korea, a total of 175 Salmonella strains was isolated and 31 isolates were identified as S. Bareilly from various food-borne outbreaks between 2014 and 2018. While pulsed-field gel electrophoresis (PFGE) analysis using XbaI revealed two major groups (A and B) each with two subgroups (A1, A2/B1, B2), average nucleotide identity (ANI), single nucleotide polymorphism (SNP), and in silico multilocus sequence typing (MLST) analyses confirmed only two major groups. Interestingly, extended SNP analysis with 67 S. Bareilly strains from outbreaks in other countries revealed that A group strains between 2014 and 2016 shared a close evolutionary relationship with the strains from outside of South Korea; however, the B group strains in 2018 were located in a separate SNP tree branch. These findings suggest that the A group may share common ancestor with the strains of previous outbreaks in the UK or other countries, while the B group is a new genotype. Comparative virulence factor (VF) analysis between the A and B group strains showed that S. Bareilly in the B group has more various than that of the A group. A comparative biofilm formation assay supports for this, which B group strain GG-21 has higher biofilm formation activity than A group strain GG-07. Antibiotic susceptibility test of 31 S. Bareilly strains revealed high susceptibility to 17 tested antibiotics, suggesting that S. Bareilly can be easily treated by antibiotics.
Collapse
|
8
|
Amaya FA, Blondel CJ, Barros-Infante MF, Rivera D, Moreno-Switt AI, Santiviago CA, Pezoa D. Identification of Type VI Secretion Systems Effector Proteins That Contribute to Interbacterial Competition in Salmonella Dublin. Front Microbiol 2022; 13:811932. [PMID: 35222335 PMCID: PMC8867033 DOI: 10.3389/fmicb.2022.811932] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 01/04/2022] [Indexed: 12/12/2022] Open
Abstract
The Type VI Secretion System (T6SS) is a multiprotein device that has emerged as an important fitness and virulence factor for many Gram-negative bacteria through the injection of effector proteins into prokaryotic or eukaryotic cells via a contractile mechanism. While some effector proteins specifically target bacterial or eukaryotic cells, others can target both types of cells (trans-kingdom effectors). In Salmonella, five T6SS gene clusters have been identified within pathogenicity islands SPI-6, SPI-19, SPI-20, SPI-21, and SPI-22, which are differentially distributed among serotypes. Salmonella enterica serotype Dublin (S. Dublin) is a cattle-adapted pathogen that harbors both T6SSSPI-6 and T6SSSPI-19. Interestingly, while both systems have been linked to virulence and host colonization in S. Dublin, an antibacterial activity has not been detected for T6SSSPI-6 in this serotype. In addition, there is limited information regarding the repertoire of effector proteins encoded within T6SSSPI-6 and T6SSSPI-19 gene clusters in S. Dublin. In the present study, we demonstrate that T6SSSPI-6 and T6SSSPI-19 of S. Dublin CT_02021853 contribute to interbacterial competition. Bioinformatic and comparative genomic analyses allowed us to identify genes encoding three candidate antibacterial effectors located within SPI-6 and two candidate effectors located within SPI-19. Each antibacterial effector gene is located upstream of a gene encoding a hypothetic immunity protein, thus conforming an effector/immunity (E/I) module. Of note, the genes encoding these effectors and immunity proteins are widely distributed in Salmonella genomes, suggesting a relevant role in interbacterial competition and virulence. Finally, we demonstrate that E/I modules SED_RS01930/SED_RS01935 (encoded in SPI-6), SED_RS06235/SED_RS06230, and SED_RS06335/SED_RS06340 (both encoded in SPI-19) contribute to interbacterial competition in S. Dublin CT_02021853.
Collapse
Affiliation(s)
- Fernando A. Amaya
- Laboratorio de Microbiología, Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Carlos J. Blondel
- Instituto de Ciencias Biomédicas, Facultad de Medicina y Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | | | - Dácil Rivera
- Escuela de Medicina Veterinaria, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Andrea I. Moreno-Switt
- Escuela de Medicina Veterinaria, Facultad de Agronomía e Ingeniería Forestal, Facultad de Ciencias Biológicas y Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
- Millennium Initiative on Collaborative Research on Bacterial Resistance (MICROB-R), Santiago, Chile
| | - Carlos A. Santiviago
- Laboratorio de Microbiología, Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
- *Correspondence: Carlos A. Santiviago, David Pezoa,
| | - David Pezoa
- Escuela de Medicina Veterinaria, Facultad de Ciencias, Universidad Mayor, Santiago, Chile
- *Correspondence: Carlos A. Santiviago, David Pezoa,
| |
Collapse
|
9
|
Schultz BM, Melo-Gonzalez F, Salazar GA, Porto BN, Riedel CA, Kalergis AM, Bueno SM. New Insights on the Early Interaction Between Typhoid and Non-typhoid Salmonella Serovars and the Host Cells. Front Microbiol 2021; 12:647044. [PMID: 34276584 PMCID: PMC8282409 DOI: 10.3389/fmicb.2021.647044] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 06/08/2021] [Indexed: 11/13/2022] Open
Abstract
Salmonella enterica is a common source of food and water-borne infections, causing a wide range of clinical ailments in both human and animal hosts. Immunity to Salmonella involves an interplay between different immune responses, which are rapidly initiated to control bacterial burden. However, Salmonella has developed several strategies to evade and modulate the host immune responses. In this sense, the main knowledge about the pathogenicity of this bacterium has been obtained by the study of mouse models with non-typhoidal serovars. However, this knowledge is not representative of all the pathologies caused by non-typhoidal serovars in the human. Here we review the most important features of typhoidal and non-typhoidal serovars and the diseases they cause in the human host, describing the virulence mechanisms used by these pathogens that have been identified in different models of infection.
Collapse
Affiliation(s)
- Bárbara M Schultz
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Felipe Melo-Gonzalez
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Geraldyne A Salazar
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Bárbara N Porto
- Laboratory of Clinical and Experimental Immunology, School of Medicine, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil.,Program in Translational Medicine, Hospital for Sick Children, Toronto, ON, Canada
| | - Claudia A Riedel
- Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Millennium Institute on Immunology and Immunotherapy, Universidad Andrés Bello, Santiago, Chile
| | - Alexis M Kalergis
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.,Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Susan M Bueno
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
10
|
Swietnicki W. Secretory System Components as Potential Prophylactic Targets for Bacterial Pathogens. Biomolecules 2021; 11:892. [PMID: 34203937 PMCID: PMC8232601 DOI: 10.3390/biom11060892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 06/13/2021] [Accepted: 06/14/2021] [Indexed: 01/18/2023] Open
Abstract
Bacterial secretory systems are essential for virulence in human pathogens. The systems have become a target of alternative antibacterial strategies based on small molecules and antibodies. Strategies to use components of the systems to design prophylactics have been less publicized despite vaccines being the preferred solution to dealing with bacterial infections. In the current review, strategies to design vaccines against selected pathogens are presented and connected to the biology of the system. The examples are given for Y. pestis, S. enterica, B. anthracis, S. flexneri, and other human pathogens, and discussed in terms of effectiveness and long-term protection.
Collapse
Affiliation(s)
- Wieslaw Swietnicki
- Department of Immunology of Infectious Diseases, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, ul. R. Weigla 12, 53-114 Wroclaw, Poland
| |
Collapse
|
11
|
Wang P, Dong JF, Li RQ, Li L, Zou QH. Roles of the Hcp family proteins in the pathogenicity of Salmonella typhimurium 14028s. Virulence 2020; 11:1716-1726. [PMID: 33300449 PMCID: PMC7733977 DOI: 10.1080/21505594.2020.1854538] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The type VI secretion system (T6SS) is a new secretion system that is widely distributed among Gram-negative bacteria. The core component hemolysin-coregulated protein (Hcp) can be used as both its structural protein and secretory protein or chaperone protein. Studies on Hcp are important to elucidate the overall virulence mechanism of T6SS. Salmonella typhimurium is an important foodborne pathogen. There are three copies of hcp genes identified in S. Typhimurium 14028s. This study aimed to characterize the functions of the three Hcp family proteins and to elucidate the interactions among them. The hcp gene deletion mutants were constructed by λ Red-based recombination system. Effects of hcp mutation on the pathogenicity of 14028s were studied by bacterial competition assays, Dictyostelium discoideum assays and mouse model. The three Hcp family proteins were found to play different roles. Hcp1 can affect the transcription of rpoS and type 2 flagellar gene and influence the motility of 14028s. It is also involved in the intracellular survival of 14028s in Dictyostelium discoideum; Hcp2 is involved in the early proliferative capacity of 14028s in mice and can prevent its excessive proliferation; Hcp3 did not show direct functions in these assays. Hcp1 can interact with Hcp2 and Hcp3. Deletion of one hcp gene can result in a transcription level variation in the other two hcp genes. Our findings elucidated the functions of the three Hcp family proteins in S.Typhimurium and illustrated that there are interactions between different Hcp proteins. This study will be helpful to fully understand how T6SS actions in an organism.
Collapse
Affiliation(s)
- Ping Wang
- Department of Microbiology& Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center , Beijing, China
| | - Jun-Fang Dong
- Department of Microbiology& Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center , Beijing, China
| | - Ren-Qing Li
- Institute for Infectious Disease and Endemic Disease Control, Beijing Center for Disease Prevention and Control, Beijing Research Center for Preventive Medicine , Beijing, China
| | - Lei Li
- Department of Microbiology& Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center , Beijing, China.,The MOH Key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology , Beijing, China
| | - Qing-Hua Zou
- Department of Microbiology& Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center , Beijing, China
| |
Collapse
|
12
|
Jia S, McWhorter AR, Andrews DM, Underwood GJ, Chousalkar KK. Challenges in Vaccinating Layer Hens against Salmonella Typhimurium. Vaccines (Basel) 2020; 8:E696. [PMID: 33228065 PMCID: PMC7712944 DOI: 10.3390/vaccines8040696] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 11/14/2020] [Accepted: 11/15/2020] [Indexed: 12/22/2022] Open
Abstract
Salmonella Typhimurium is among the most common causes of bacterial foodborne gastrointestinal disease in humans. Food items containing raw or undercooked eggs are frequently identified during traceback investigation as the source of the bacteria. Layer hens can become persistently infected with Salmonella Typhimurium and intermittently shed the bacteria over the course of their productive lifetime. Eggs laid in a contaminated environment are at risk of potential exposure to bacteria. Thus, mitigating the bacterial load on farms aids in the protection of the food supply chain. Layer hen producers use a multifaceted approach for reducing Salmonella on farms, including the all-in-all-out management strategy, strict biosecurity, sanitization, and vaccination. The use of live attenuated Salmonella vaccines is favored because they elicit a broader host immune response than killed or inactivated vaccines that have been demonstrated to provide cross-protection against multiple serovars. Depending on the vaccine, two to three doses of Salmonella Typhimurium vaccines are generally administered to layer hens within the first few weeks. The productive life of a layer hen, however, can exceed 70 weeks and it is unclear whether current vaccination regimens are effective for that extended period. The objective of this review is to highlight layer hen specific challenges that may affect vaccine efficacy.
Collapse
Affiliation(s)
- Siyuan Jia
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, SA 5371, Australia; (S.J.); (A.R.M.)
| | - Andrea R. McWhorter
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, SA 5371, Australia; (S.J.); (A.R.M.)
| | - Daniel M. Andrews
- Bioproperties Pty Ltd., Ringwood, VIC 3134, Australia; (D.M.A.); (G.J.U.)
| | | | - Kapil K. Chousalkar
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, SA 5371, Australia; (S.J.); (A.R.M.)
| |
Collapse
|
13
|
Soria-Bustos J, Ares MA, Gómez-Aldapa CA, González-Y-Merchand JA, Girón JA, De la Cruz MA. Two Type VI Secretion Systems of Enterobacter cloacae Are Required for Bacterial Competition, Cell Adherence, and Intestinal Colonization. Front Microbiol 2020; 11:560488. [PMID: 33072020 PMCID: PMC7541819 DOI: 10.3389/fmicb.2020.560488] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 08/12/2020] [Indexed: 12/22/2022] Open
Abstract
Enterobacter cloacae has emerged as an opportunistic pathogen in healthcare-associated infections. Analysis of the genomic sequences of several E. cloacae strains revealed the presence of genes that code for expression of at least one type VI secretion system (T6SS). Here, we report that E. cloacae strain ATCC 13047 codes for two functional T6SS named T6SS-1 and T6SS-2. T6SS-1 and T6SS-2 were preferentially expressed in tryptic soy broth and tissue culture medium (DMEM), respectively. Mutants in T6SS-1-associated genes clpV1 and hcp1 significantly affected their ability of inter- and intra-bacterial killing indicating that T6SS-1 is required for bacterial competition. In addition, the Hcp effector protein was detected in supernatants of E. cloacae cultures and a functional T6SS-1 was required for the secretion of this protein. A clpV2 mutant was impaired in both biofilm formation and adherence to epithelial cells, supporting the notion that these phenotypes are T6SS-2 dependent. In vivo data strongly suggest that both T6SSs are required for intestinal colonization because single and double mutants in clpV1 and clpV2 genes were defective in gut colonization in mice. We conclude that the two T6SSs are involved in the pathogenesis scheme of E. cloacae with specialized functions in the interaction with other bacteria and with host cells.
Collapse
Affiliation(s)
- Jorge Soria-Bustos
- Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias, Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico.,Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Miguel A Ares
- Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias, Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Carlos A Gómez-Aldapa
- Instituto de Ciencias Básicas e Ingeniería, Universidad Autónoma del Estado de Hidalgo, Carretera Pachuca-Tulancingo Km 4.5 Mineral de la Reforma, Hidalgo, Mexico
| | - Jorge A González-Y-Merchand
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Jorge A Girón
- Centro de Detección Biomolecular, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Miguel A De la Cruz
- Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias, Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| |
Collapse
|
14
|
Identification and Characterization of the Nuclease Activity of the Extracellular Proteins from Salmonella enterica Serovar Typhimurium. Curr Microbiol 2020; 77:3651-3660. [PMID: 32939640 DOI: 10.1007/s00284-020-02201-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 09/03/2020] [Indexed: 10/23/2022]
Abstract
Pathogens have evolved an array of strategies to establish a productive infection. The extracellular proteins secreted by pathogens are one of unique mechanisms to evade the host innate immune response. Many secretory proteins transported by the bacterial secretion systems have been widely investigated in Salmonella. Certain extracellular nucleases are essential for bacterial pathogenesis. However, there is no current data available for the enzymatic properties of the proteins secreted by Salmonella. Therefore, in the present study we have identified and characterized the nuclease activity of the extracellular proteins from Salmonella enterica serovar Typhimurium. It was demonstrated that the extracellular proteins from S. Typhimurium exhibited the deoxyribonucleases activity against λDNA by agarose gel electrophoresis and agar plate diffusion method. The activity was observed at 16 °C, 37 °C and 42 °C, and found to be highest at 42 °C and inhibited at temperatures over 60 °C. The nuclease activity was stable under alkaline conditions (pH 7-10) and the optimum pH was 9.0. The nuclease activity was promoted at high ionic strength of Ba2+, Ca2+, Mg2+, and Ni2+. Nuclease zymography analysis revealed that there were four activity bands in the extracellular proteins; followed by LC-ESI/MS/MS analysis seven proteins were identified. As demonstrated by nuclease zymography, the recombinant 5'-nucleotidase protein expressed in the prokaryotic expression system displayed the DNase activity. To our knowledge, the present findings represent the first direct and unambiguous demonstration of the nuclease activity of the extracellular proteins from S. Typhimurium, and it provides an important fundamental for further investigation of the role of the extracellular proteins in pathogenicity and immune evasion.
Collapse
|
15
|
Bao H, Wang S, Zhao JH, Liu SL. Salmonella secretion systems: Differential roles in pathogen-host interactions. Microbiol Res 2020; 241:126591. [PMID: 32932132 DOI: 10.1016/j.micres.2020.126591] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 08/24/2020] [Accepted: 08/29/2020] [Indexed: 12/26/2022]
Abstract
The bacterial genus Salmonella includes a large group of food-borne pathogens that cause a variety of gastrointestinal or systemic diseases in hosts. Salmonella use several secretion devices to inject various effectors targeting eukaryotic hosts, or bacteria. In the past few years, considerable progress has been made towards understanding the structural features and molecular mechanisms of the secretion systems of Salmonella, particularly regarding their roles in host-pathogen interactions. In this review, we summarize the current advances about the main characteristics of the Salmonella secretion systems. Clarifying the roles of the secretion systems in the process of infecting various hosts will broaden our understanding of the importance of microbial interactions in maintaining human health and will provide information for developing novel therapeutic approaches.
Collapse
Affiliation(s)
- Hongxia Bao
- Genomics Research Center, College of Pharmacy, Harbin Medical University, Harbin, China; HMU-UCCSM Centre for Infection and Genomics, Harbin Medical University, Harbin, China; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China.
| | - Shuang Wang
- Department of Biopharmaceutical Sciences (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Jian-Hua Zhao
- Genomics Research Center, College of Pharmacy, Harbin Medical University, Harbin, China; HMU-UCCSM Centre for Infection and Genomics, Harbin Medical University, Harbin, China; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China
| | - Shu-Lin Liu
- Genomics Research Center, College of Pharmacy, Harbin Medical University, Harbin, China; HMU-UCCSM Centre for Infection and Genomics, Harbin Medical University, Harbin, China; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China; Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Canada.
| |
Collapse
|
16
|
Whole-Genome-Based Survey for Polyphyletic Serovars of Salmonella enterica subsp. enterica Provides New Insights into Public Health Surveillance. Int J Mol Sci 2020; 21:ijms21155226. [PMID: 32718035 PMCID: PMC7432358 DOI: 10.3390/ijms21155226] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/07/2020] [Accepted: 07/17/2020] [Indexed: 02/06/2023] Open
Abstract
Serotyping has traditionally been considered the basis for surveillance of Salmonella, but it cannot distinguish distinct lineages sharing the same serovar that vary in host range, pathogenicity and epidemiology. However, polyphyletic serovars have not been extensively investigated. Public health microbiology is currently being transformed by whole-genome sequencing (WGS) data, which promote the lineage determination using a more powerful and accurate technique than serotyping. The focus in this study is to survey and analyze putative polyphyletic serovars. The multi-locus sequence typing (MLST) phylogenetic analysis identified four putative polyphyletic serovars, namely, Montevideo, Bareilly, Saintpaul, and Muenchen. Whole-genome-based phylogeny and population structure highlighted the polyphyletic nature of Bareilly and Saintpaul and the multi-lineage nature of Montevideo and Muenchen. The population of these serovars was defined by extensive genetic diversity, the open pan genome and the small core genome. Source niche metadata revealed putative existence of lineage-specific niche adaptation (host-preference and environmental-preference), exhibited by lineage-specific genomic contents associated with metabolism and transport. Meanwhile, differences in genetic profiles relating to virulence and antimicrobial resistance within each lineage may contribute to pathogenicity and epidemiology. The results also showed that recombination events occurring at the H1-antigen loci may be an important reason for polyphyly. The results presented here provide the genomic basis of simple, rapid, and accurate identification of phylogenetic lineages of these serovars, which could have important implications for public health.
Collapse
|
17
|
Song X, Zhang H, Liu X, Yuan J, Wang P, Lv R, Yang B, Huang D, Jiang L. The putative transcriptional regulator STM14_3563 facilitates Salmonella Typhimurium pathogenicity by activating virulence-related genes. Int Microbiol 2019; 23:381-390. [PMID: 31832871 DOI: 10.1007/s10123-019-00110-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 11/24/2019] [Accepted: 11/28/2019] [Indexed: 11/30/2022]
Abstract
Salmonella enterica serovar Typhimurium (S. Typhimurium) is an important gram-negative intracellular pathogen that infects humans and animals. More than 50 putative regulatory proteins have been identified in the S. Typhimurium genome, but few have been clearly defined. In this study, the physiological function and regulatory role of STM14_3563, which encodes a ParD family putative transcriptional regulator in S. Typhimurium, were investigated. Macrophage replication assays and mice experiments revealed that S. Typhimurium showed reduced growth in murine macrophages and attenuated virulence in mice owing to deletion of STM14_3563 gene. RNA sequencing (RNA-Seq) data showed that STM14_3563 exerts wide-ranging effects on gene expression in S. Typhimurium. STM14_3563 activates the expression of several genes encoded in Salmonella pathogenicity island (SPI)-6, SPI-12, and SPI-13, which are required for intracellular replication of S. Typhimurium. Additionally, the global transcriptional regulator Fis was found to directly activate STM14_3563 expression by binding to the STM14_3563 promoter. These results indicate that STM14_3563 is involved in the regulation of a variety of virulence-related genes in S. Typhimurium that contribute to its growth in macrophages and virulence in mice.
Collapse
Affiliation(s)
- Xiaorui Song
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, 300457, China.,The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, 300071, China.,Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin, 300457, China.,College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Huan Zhang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, 300457, China.,The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, 300071, China.,Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin, 300457, China.,College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Xiaoqian Liu
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, 300457, China.,The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, 300071, China.,Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin, 300457, China
| | - Jian Yuan
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, 300457, China.,The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, 300071, China.,Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin, 300457, China
| | - Peisheng Wang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, 300457, China.,The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, 300071, China.,Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin, 300457, China.,College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Runxia Lv
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, 300457, China.,The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, 300071, China.,Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin, 300457, China
| | - Bin Yang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, 300457, China.,The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, 300071, China.,Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin, 300457, China
| | - Di Huang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, 300457, China.,The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, 300071, China.,Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin, 300457, China
| | - Lingyan Jiang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, 300457, China. .,The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, 300071, China. .,Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin, 300457, China.
| |
Collapse
|
18
|
The Ferric Uptake Regulator Represses Type VI Secretion System Function by Binding Directly to the clpV Promoter in Salmonella enterica Serovar Typhimurium. Infect Immun 2019; 87:IAI.00562-19. [PMID: 31383745 DOI: 10.1128/iai.00562-19] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 07/25/2019] [Indexed: 12/16/2022] Open
Abstract
Type VI secretion systems (T6SSs) are highly conserved and complex protein secretion systems that deliver effector proteins into eukaryotic hosts or other bacteria. T6SSs are regulated precisely by a variety of regulatory systems, which enables bacteria to adapt to varied environments. A T6SS within Salmonella pathogenicity island 6 (SPI-6) is activated during infection, and it contributes to the pathogenesis, as well as interbacterial competition, of Salmonella enterica serovar Typhimurium (S. Typhimurium). However, the regulation of the SPI-6 T6SS in S. Typhimurium is not well understood. In this study, we found that the SPI-6 T6SS core gene clpV was significantly upregulated in response to the iron-depleted condition and during infection. The global ferric uptake regulator (Fur) was shown to repress the clpV expression in the iron-replete medium. Moreover, electrophoretic mobility shift and DNase I footprinting assays revealed that Fur binds directly to the clpV promoter region at multiple sites spanning the transcriptional start site. We also observed that the relieving of Fur-mediated repression on clpV contributed to the interbacterial competition activity and pathogenicity of S. Typhimurium. These findings provide insights into the direct regulation of Fur in the expression and functional activity of SPI-6 T6SS in S. Typhimurium and thus help to elucidate the mechanisms of bacterial adaptability and virulence.
Collapse
|
19
|
Ashari KS, Roslan NS, Omar AR, Bejo MH, Ideris A, Mat Isa N. Genome sequencing and analysis of Salmonella enterica subsp. enterica serovar Stanley UPM 517: Insights on its virulence-associated elements and their potentials as vaccine candidates. PeerJ 2019; 7:e6948. [PMID: 31293824 PMCID: PMC6601603 DOI: 10.7717/peerj.6948] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 04/05/2019] [Indexed: 12/12/2022] Open
Abstract
Salmonella enterica subsp. enterica serovar Stanley (S. Stanley) is a pathogen that contaminates food, and is related to Salmonella outbreaks in a variety of hosts such as humans and farm animals through products like dairy items and vegetables. Despite the fact that several vaccines of Salmonella strains had been constructed, none of them were developed according to serovar Stanley up to this day. This study presents results of genome sequencing and analysis on our S. Stanley UPM 517 strain taken from fecal swabs of 21-day-old healthy commercial chickens in Perak, Malaysia and used Salmonella enterica subsp. enterica serovar Typhimurium LT2 (S. Typhimurium LT2) as a reference to be compared with. First, sequencing and assembling of the Salmonella Stanley UPM 517 genome into a contiguous form were done. The work was then continued with scaffolding and gap filling. Annotation and alignment of the draft genome was performed with S. Typhimurium LT2. The other elements of virulence estimated in this study included Salmonella pathogenicity islands, resistance genes, prophages, virulence factors, plasmid regions, restriction-modification sites and the CRISPR-Cas system. The S. Stanley UPM 517 draft genome had a length of 4,736,817 bp with 4,730 coding sequence and 58 RNAs. It was discovered via genomic analysis on this strain that there were antimicrobial resistance properties toward a wide variety of antibiotics. Tcf and ste, the two fimbrial virulence clusters related with human and broiler intestinal colonizations which were not found in S. Typhimurium LT2, were atypically discovered in the S. Stanley UPM 517 genome. These clusters are involved in the intestinal colonization of human and broilers, respectively. There were seven Salmonella pathogenicity islands (SPIs) within the draft genome, which contained the virulence factors associated with Salmonella infection (except SPI-14). Five intact prophage regions, mostly comprising of the protein encoding Gifsy-1, Fels-1, RE-2010 and SEN34 prophages, were also encoded in the draft genome. Also identified were Type I–III restriction-modification sites and the CRISPR-Cas system of the Type I–E subtype. As this strain exhibited resistance toward numerous antibiotics, we distinguished several genes that had the potential for removal in the construction of a possible vaccine candidate to restrain and lessen the pervasiveness of salmonellosis and to function as an alternative to antibiotics.
Collapse
Affiliation(s)
- Khalidah Syahirah Ashari
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | | | - Abdul Rahman Omar
- Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia.,Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Mohd Hair Bejo
- Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia.,Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Aini Ideris
- Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia.,Department of Veterinary Clinical Studies, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Nurulfiza Mat Isa
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia.,Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| |
Collapse
|
20
|
Schroll C, Huang K, Ahmed S, Kristensen BM, Pors SE, Jelsbak L, Lemire S, Thomsen LE, Christensen JP, Jensen PR, Olsen JE. The SPI-19 encoded type-six secretion-systems (T6SS) of Salmonella enterica serovars Gallinarum and Dublin play different roles during infection. Vet Microbiol 2019; 230:23-31. [PMID: 30827393 DOI: 10.1016/j.vetmic.2019.01.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 01/05/2019] [Accepted: 01/06/2019] [Indexed: 12/19/2022]
Abstract
Salmonella Pathogenicity Islands 19 (SPI19) encodes a type VI secretion system (T6SS). SPI19 is only present in few serovars of S. enterica, including the host-adapted serovar S. Dublin and the host-specific serovar S. Gallinarum. The role of the SPI19 encoded T6SS in virulence in these serovar is not fully understood. Here we show that during infection of mice, a SPI19/T6SS deleted strain of S. Dublin 2229 was less virulent than the wild type strain after oral challenge, but not after IP challenge. The mutant strain also competed significantly poorer than the wild type strain when co-cultured with strains of E. coli, suggesting that this T6SS plays a role in pathogenicity by killing competing bacteria in the intestine. No significant difference was found between wild type S. Gallinarum G9 and its ΔSPI19/T6SS mutant in infection, whether chicken were challenged orally or by the IP route, and the S. Gallinarum G9 ΔSPI19/T6SS strain competed equally well as the wild type strain against strains of E. coli. However, contrary to what was observed with S. Dublin, the wild type G9 strains was significantly more cytotoxic to monocyte derived primary macrophages from hens than the mutant, suggesting that SPI19/T6SS in S. Gallinarum mediates killing of eukaryotic cells. The lack of significant importance of SPI19/T6SS after oral and systemic challenge of chicken was confirmed by knocking out SPI19 in a second strain, J91. Together the results suggest that the T6SS encoded from SPI19 have different roles in the two serovars and that it is a virulence-factor after oral challenge of mice in S. Dublin, while we cannot confirm previous results that SPI19/T6SS influence virulence significantly in S. Gallinarum.
Collapse
Affiliation(s)
- Casper Schroll
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Kaisong Huang
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Shahana Ahmed
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Bodil M Kristensen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Susanne Elisabeth Pors
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Lotte Jelsbak
- Department of Science and Environment, Roskilde University, Denmark
| | | | - Line E Thomsen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Jens Peter Christensen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Peter R Jensen
- Department of Food, Technical University of Denmark, Denmark
| | - John E Olsen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark.
| |
Collapse
|
21
|
Zhou Z, Lundstrøm I, Tran-Dien A, Duchêne S, Alikhan NF, Sergeant MJ, Langridge G, Fotakis AK, Nair S, Stenøien HK, Hamre SS, Casjens S, Christophersen A, Quince C, Thomson NR, Weill FX, Ho SYW, Gilbert MTP, Achtman M. Pan-genome Analysis of Ancient and Modern Salmonella enterica Demonstrates Genomic Stability of the Invasive Para C Lineage for Millennia. Curr Biol 2018; 28:2420-2428.e10. [PMID: 30033331 PMCID: PMC6089836 DOI: 10.1016/j.cub.2018.05.058] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 02/09/2018] [Accepted: 05/18/2018] [Indexed: 02/04/2023]
Abstract
Salmonella enterica serovar Paratyphi C causes enteric (paratyphoid) fever in humans. Its presentation can range from asymptomatic infections of the blood stream to gastrointestinal or urinary tract infection or even a fatal septicemia [1]. Paratyphi C is very rare in Europe and North America except for occasional travelers from South and East Asia or Africa, where the disease is more common [2, 3]. However, early 20th-century observations in Eastern Europe [3, 4] suggest that Paratyphi C enteric fever may once have had a wide-ranging impact on human societies. Here, we describe a draft Paratyphi C genome (Ragna) recovered from the 800-year-old skeleton (SK152) of a young woman in Trondheim, Norway. Paratyphi C sequences were recovered from her teeth and bones, suggesting that she died of enteric fever and demonstrating that these bacteria have long caused invasive salmonellosis in Europeans. Comparative analyses against modern Salmonella genome sequences revealed that Paratyphi C is a clade within the Para C lineage, which also includes serovars Choleraesuis, Typhisuis, and Lomita. Although Paratyphi C only infects humans, Choleraesuis causes septicemia in pigs and boar [5] (and occasionally humans), and Typhisuis causes epidemic swine salmonellosis (chronic paratyphoid) in domestic pigs [2, 3]. These different host specificities likely evolved in Europe over the last ∼4,000 years since the time of their most recent common ancestor (tMRCA) and are possibly associated with the differential acquisitions of two genomic islands, SPI-6 and SPI-7. The tMRCAs of these bacterial clades coincide with the timing of pig domestication in Europe [6]. Salmonella enterica aDNA sequences were found within 800-year-old teeth and bone The invasive Para C lineage was defined from 50,000 modern S. enterica genomes The Para C lineage includes Ragna, the aDNA genome, and human and swine pathogens Only few genomic changes occurred in the Para C lineage over its 3,000-year history
Collapse
Affiliation(s)
- Zhemin Zhou
- Warwick Medical School, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK.
| | - Inge Lundstrøm
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Øster Voldgade 5-7, 1350 Copenhagen, Denmark
| | - Alicia Tran-Dien
- Unité des Bactéries Pathogènes Entériques, Institut Pasteur, Paris, France
| | - Sebastián Duchêne
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Nabil-Fareed Alikhan
- Warwick Medical School, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK
| | - Martin J Sergeant
- Warwick Medical School, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK
| | | | - Anna K Fotakis
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Øster Voldgade 5-7, 1350 Copenhagen, Denmark
| | | | | | - Stian S Hamre
- Department of Archaeology, History, Cultural Studies and Religion, University of Bergen, Post Box 7805, 5020 Bergen, Norway
| | - Sherwood Casjens
- Pathology Department, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | | | - Christopher Quince
- Warwick Medical School, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK
| | | | | | - Simon Y W Ho
- School of Life and Environmental Sciences; University of Sydney, Sydney NSW 2006, Australia
| | - M Thomas P Gilbert
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Øster Voldgade 5-7, 1350 Copenhagen, Denmark; NTNU University Museum, N-7491 Trondheim, Norway.
| | - Mark Achtman
- Warwick Medical School, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK.
| |
Collapse
|
22
|
Lamas A, Miranda JM, Regal P, Vázquez B, Franco CM, Cepeda A. A comprehensive review of non-enterica subspecies of Salmonella enterica. Microbiol Res 2018; 206:60-73. [DOI: 10.1016/j.micres.2017.09.010] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 09/22/2017] [Accepted: 09/26/2017] [Indexed: 12/11/2022]
|
23
|
Matono T, Morita M, Yahara K, Lee KI, Izumiya H, Kaku M, Ohnishi M. Emergence of Resistance Mutations in Salmonella enterica Serovar Typhi Against Fluoroquinolones. Open Forum Infect Dis 2017; 4:ofx230. [PMID: 29255729 PMCID: PMC5726467 DOI: 10.1093/ofid/ofx230] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 10/18/2017] [Indexed: 12/24/2022] Open
Abstract
Background Little is known about the evolutionary process and emergence time of resistance mutations to fluoroquinolone in Salmonella enterica serovar Typhi. Methods We analyzed S. Typhi isolates collected from returned travelers between 2001 and 2016. Based on ciprofloxacin susceptibility, isolates were categorized as highly resistant (minimum inhibitory concentration [MIC] ≥ 4 μg/mL [CIPHR]), resistant (MIC = 1–2 μg/mL [CIPR]), intermediate susceptible (MIC = 0.12–0.5 μg/mL [CIPI]), and susceptible (MIC ≤ 0.06 μg/mL [CIPS]). Results A total of 107 isolates (33 CIPHR, 14 CIPR, 30 CIPI, and 30 CIPS) were analyzed by whole-genome sequencing; 2461 single nucleotide polymorphisms (SNPs) were identified. CIPS had no mutations in the gyrA or parC genes, while each CIPI had 1 of 3 single mutations in gyrA (encoding Ser83Phe [63.3%], Ser83Tyr [33.3%], or Asp87Asn [3.3%]). CIPHR had the same 3 mutations: 2 SNPs in gyrA (encoding Ser83Phe and Asp87Asn) and a third in parC (encoding Ser80Ile). CIPHR shared a common ancestor with CIPR and CIPI isolates harboring a single mutation in gyrA encoding Ser83Phe, suggesting that CIPHR emerged 16 to 23 years ago. Conclusions Three SNPs—2 in gyrA and 1 in parC—are present in S. Typhi strains highly resistant to fluoroquinolone, which were found to have evolved in 1993–2000, approximately 10 years after the beginning of the ciprofloxacin era. Highly resistant strains with survival advantages arose from strains harboring a single mutation in gyrA encoding Ser83Phe. Judicious use of fluoroquinolones is warranted to prevent acceleration of such resistance mechanisms in the future.
Collapse
Affiliation(s)
- Takashi Matono
- Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo, Japan.,Department of Infection Control and Laboratory Diagnostics, Internal Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Masatomo Morita
- Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Koji Yahara
- Department of Bacteriology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Ken-Ichi Lee
- Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Hidemasa Izumiya
- Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Mitsuo Kaku
- Department of Infection Control and Laboratory Diagnostics, Internal Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Makoto Ohnishi
- Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo, Japan
| |
Collapse
|
24
|
The invasome of Salmonella Dublin as revealed by whole genome sequencing. BMC Infect Dis 2017; 17:544. [PMID: 28778189 PMCID: PMC5544996 DOI: 10.1186/s12879-017-2628-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 07/21/2017] [Indexed: 12/13/2022] Open
Abstract
Background Salmonella enterica serovar Dublin is a zoonotic infection that can be transmitted from cattle to humans through consumption of contaminated milk and milk products. Outbreaks of human infections by S. Dublin have been reported in several countries including high-income countries. A high proportion of S. Dublin cases in humans are associated with invasive disease and systemic illness. The genetic basis of virulence in S. Dublin is not well characterized. Methods Whole genome sequencing was applied to a set of clinical invasive and non-invasive S. Dublin isolates from different countries in order to characterize the putative genetic determinants involved in the virulence and invasiveness of S. Dublin in humans. Results We identified several virulence factors that form the bacterial invasome and may contribute to increasing bacterial virulence and pathogenicity including mainly Gifsy-2 prophage, two different type 6 secretion systems (T6SSs) harbored by Salmonella pathogenicity islands; SPI-6 and SPI-19 respectively and virulence genes; ggt and PagN. Although Vi antigen and the virulence plasmid have been reported previously to contribute to the virulence of S. Dublin we did not detect them in all invasive isolates indicating that they are not the main virulence determinants in S. Dublin. Conclusion Several virulence factors within the genome of S. Dublin might contribute to the ability of S. Dublin to invade humans’ blood but there were no genomic markers that differentiate invasive from non-invasive isolates suggesting that host immune response play a crucial role in the clinical outcome of S. Dublin infection. Electronic supplementary material The online version of this article (doi:10.1186/s12879-017-2628-x) contains supplementary material, which is available to authorized users.
Collapse
|
25
|
Type VI secretion system contributes to Enterohemorrhagic Escherichia coli virulence by secreting catalase against host reactive oxygen species (ROS). PLoS Pathog 2017; 13:e1006246. [PMID: 28288207 PMCID: PMC5363993 DOI: 10.1371/journal.ppat.1006246] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 03/23/2017] [Accepted: 02/16/2017] [Indexed: 01/19/2023] Open
Abstract
Enterohemorrhagic Escherichia coli (EHEC) is one major type of contagious and foodborne pathogens. The type VI secretion system (T6SS) has been shown to be involved in the bacterial pathogenicity and bacteria-bacteria competition. Here, we show that EHEC could secrete a novel effector KatN, a Mn-containing catalase, in a T6SS-dependent manner. Expression of katN is promoted by RpoS and OxyR and repressed by H-NS, and katN contributes to bacterial growth under oxidative stress in vitro. KatN could be secreted into host cell cytosol after EHEC is phagocytized by macrophage, which leads to decreased level of intracellular reactive oxygen species (ROS) and facilitates the intramacrophage survival of EHEC. Finally, animal model results show that the deletion mutant of T6SS was attenuated in virulence compared with the wild type strain, while the deletion mutant of katN had comparable virulence to the wild type strain. Taken together, our findings suggest that EHEC could sense oxidative stress in phagosome and decrease the host cell ROS by secreting catalase KatN to facilitate its survival in the host cells.
Collapse
|
26
|
Wigley P. Salmonella enterica serovar Gallinarum: addressing fundamental questions in bacteriology sixty years on from the 9R vaccine. Avian Pathol 2017; 46:119-124. [DOI: 10.1080/03079457.2016.1240866] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Paul Wigley
- Department of Infection Biology, Institute for Infection & Global Health and School of Veterinary Science, University of Liverpool, Neston, UK
| |
Collapse
|
27
|
Riquelme S, Varas M, Valenzuela C, Velozo P, Chahin N, Aguilera P, Sabag A, Labra B, Álvarez SA, Chávez FP, Santiviago CA. Relevant Genes Linked to Virulence Are Required for Salmonella Typhimurium to Survive Intracellularly in the Social Amoeba Dictyostelium discoideum. Front Microbiol 2016; 7:1305. [PMID: 27602025 PMCID: PMC4993766 DOI: 10.3389/fmicb.2016.01305] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 08/08/2016] [Indexed: 01/08/2023] Open
Abstract
The social amoeba Dictyostelium discoideum has proven to be a useful model for studying relevant aspects of the host-pathogen interaction. In this work, D. discoideum was used as a model to study the ability of Salmonella Typhimurium to survive in amoebae and to evaluate the contribution of selected genes in this process. To do this, we performed infection assays using axenic cultures of D. discoideum co-cultured with wild-type S. Typhimurium and/or defined mutant strains. Our results confirmed that wild-type S. Typhimurium is able to survive intracellularly in D. discoideum. In contrast, mutants ΔaroA and ΔwaaL are defective in intracellular survival in this amoeba. Next, we included in our study a group of mutants in genes directly linked to Salmonella virulence. Of note, mutants ΔinvA, ΔssaD, ΔclpV, and ΔphoPQ also showed an impaired ability to survive intracellularly in D. discoideum. This indicates that S. Typhimurium requires a functional biosynthetic pathway of aromatic compounds, a lipopolysaccharide containing a complete O-antigen, the type III secretion systems (T3SS) encoded in SPI-1 and SPI-2, the type VI secretion system (T6SS) encoded in SPI-6 and PhoP/PhoQ two-component system to survive in D. discoideum. To our knowledge, this is the first report on the requirement of O-antigen and T6SS in the survival of Salmonella within amoebae. In addition, mutants ΔinvA and ΔssaD were internalized in higher numbers than the wild-type strain during competitive infections, suggesting that S. Typhimurium requires the T3SS encoded in SPI-1 and SPI-2 to evade phagocytosis by D. discoideum. Altogether, these results indicate that S. Typhimurium exploits a common set of genes and molecular mechanisms to survive within amoeba and animal host cells. The use of D. discoideum as a model for host-pathogen interactions will allow us to discover the gene repertoire used by Salmonella to survive inside the amoeba and to study the cellular processes that are affected during infection.
Collapse
Affiliation(s)
- Sebastián Riquelme
- Laboratorio de Microbiología, Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de ChileSantiago, Chile
| | - Macarena Varas
- Laboratorio de Microbiología de Sistemas, Departamento de Biología, Facultad de Ciencias, Universidad de ChileSantiago, Chile
| | - Camila Valenzuela
- Laboratorio de Microbiología, Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de ChileSantiago, Chile
| | - Paula Velozo
- Laboratorio de Microbiología, Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de ChileSantiago, Chile
| | - Nicolás Chahin
- Laboratorio de Microbiología, Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de ChileSantiago, Chile
| | - Paulina Aguilera
- Laboratorio de Microbiología de Sistemas, Departamento de Biología, Facultad de Ciencias, Universidad de ChileSantiago, Chile
| | - Andrea Sabag
- Laboratorio de Microbiología, Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de ChileSantiago, Chile
| | - Bayron Labra
- Laboratorio de Microbiología, Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de ChileSantiago, Chile
| | - Sergio A. Álvarez
- Laboratorio de Microbiología, Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de ChileSantiago, Chile
| | - Francisco P. Chávez
- Laboratorio de Microbiología de Sistemas, Departamento de Biología, Facultad de Ciencias, Universidad de ChileSantiago, Chile
| | - Carlos A. Santiviago
- Laboratorio de Microbiología, Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de ChileSantiago, Chile
| |
Collapse
|
28
|
Abstract
The type VI secretion system (T6SS) is a multiprotein complex widespread in Proteobacteria and dedicated to the delivery of toxins into both prokaryotic and eukaryotic cells. It thus participates in interbacterial competition as well as pathogenesis. The T6SS is a contractile weapon, related to the injection apparatus of contractile tailed bacteriophages. Basically, it assembles an inner tube wrapped by a sheath-like structure and anchored to the cell envelope via a membrane complex. The energy released by the contraction of the sheath propels the inner tube through the membrane channel and toward the target cell. Although the assembly and the mechanism of action are conserved across species, the repertoire of secreted toxins and the diversity of the regulatory mechanisms and of target cells make the T6SS a highly versatile secretion system. The T6SS is particularly represented in Escherichia coli pathotypes and Salmonella serotypes. In this review we summarize the current knowledge regarding the prevalence, the assembly, the regulation, and the roles of the T6SS in E. coli, Salmonella, and related species.
Collapse
Affiliation(s)
- Laure Journet
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires (LISM), Institut de Microbiologie de la Méditerranée (IMM), Centre National de la Recherche Scientifique (CNRS) - Aix-Marseille Université, UMR 7255, 13402 Marseille Cedex 20, France
| | - Eric Cascales
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires (LISM), Institut de Microbiologie de la Méditerranée (IMM), Centre National de la Recherche Scientifique (CNRS) - Aix-Marseille Université, UMR 7255, 13402 Marseille Cedex 20, France
| |
Collapse
|
29
|
Whole genome sequencing provides insights into the genetic determinants of invasiveness in Salmonella Dublin. Epidemiol Infect 2016; 144:2430-9. [PMID: 26996313 DOI: 10.1017/s0950268816000492] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Salmonella enterica subsp. enterica serovar Dublin (S. Dublin) is one of the non-typhoidal Salmonella (NTS); however, a relatively high proportion of human infections are associated with invasive disease. We applied whole genome sequencing to representative invasive and non-invasive clinical isolates of S. Dublin to determine the genomic variations among them and to investigate the underlying genetic determinants associated with invasiveness in S. Dublin. Although no particular genomic variation was found to differentiate in invasive and non-invasive isolates four virulence factors were detected within the genome of all isolates including two different type VI secretion systems (T6SS) encoded on two Salmonella pathogenicity islands (SPI), including SPI-6 (T6SSSPI-6) and SPI-19 (T6SSSPI-19), an intact lambdoid prophage (Gifsy-2-like prophage) that contributes significantly to the virulence and pathogenesis of Salmonella serotypes in addition to a virulence plasmid. These four virulence factors may all contribute to the potential of S. Dublin to cause invasive disease in humans.
Collapse
|
30
|
Silva-Valenzuela CA, Molina-Quiroz RC, Desai P, Valenzuela C, Porwollik S, Zhao M, Hoffman RM, Andrews-Polymenis H, Contreras I, Santiviago CA, McClelland M. Analysis of Two Complementary Single-Gene Deletion Mutant Libraries of Salmonella Typhimurium in Intraperitoneal Infection of BALB/c Mice. Front Microbiol 2016; 6:1455. [PMID: 26779130 PMCID: PMC4700939 DOI: 10.3389/fmicb.2015.01455] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 12/04/2015] [Indexed: 01/20/2023] Open
Abstract
Two pools of individual single gene deletion (SGD) mutants of S. Typhimurium 14028s encompassing deletions of 3,923 annotated non-essential ORFs and sRNAs were screened by intraperitoneal (IP) injection in BALB/c mice followed by recovery from spleen and liver 2 days post infection. The relative abundance of each mutant was measured by microarray hybridization. The two mutant libraries differed in the orientation of the antibiotic resistance cassettes (either sense-oriented Kan(R), SGD-K, or antisense-oriented Cam(R), SGD-C). Consistent systemic colonization defects were observed in both libraries and both organs for hundreds of mutants of genes previously reported to be important after IP injection in this animal model, and for about 100 new candidate genes required for systemic colonization. Four mutants with a range of apparent fitness defects were confirmed using competitive infections with the wild-type parental strain: ΔSTM0286, ΔSTM0551, ΔSTM2363, and ΔSTM3356. Two mutants, ΔSTM0286 and ΔSTM2363, were then complemented in trans with a plasmid encoding an intact copy of the corresponding wild-type gene, and regained the ability to fully colonize BALB/c mice systemically. These results suggest the presence of many more undiscovered Salmonella genes with phenotypes in IP infection of BALB/c mice, and validate the libraries for application to other systems.
Collapse
Affiliation(s)
- Cecilia A. Silva-Valenzuela
- Department of Microbiology and Molecular Genetics, University of California, IrvineIrvine, CA, USA
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de ChileSantiago, Chile
| | - Roberto C. Molina-Quiroz
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de ChileSantiago, Chile
- Center for Adaptation Genetics and Drug Resistance, Tufts UniversityBoston, MA, USA
| | - Prerak Desai
- Department of Microbiology and Molecular Genetics, University of California, IrvineIrvine, CA, USA
| | - Camila Valenzuela
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de ChileSantiago, Chile
| | - Steffen Porwollik
- Department of Microbiology and Molecular Genetics, University of California, IrvineIrvine, CA, USA
| | | | - Robert M. Hoffman
- Anticancer Inc.San Diego, CA, USA
- Department of Surgery, UC San Diego School of Medicine, University of California, San DiegoSan Diego, CA, USA
| | - Helene Andrews-Polymenis
- Department of Microbial Pathogenesis and Immunology, Texas A&M UniversityCollege Station, TX, USA
| | - Inés Contreras
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de ChileSantiago, Chile
| | - Carlos A. Santiviago
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de ChileSantiago, Chile
| | - Michael McClelland
- Department of Microbiology and Molecular Genetics, University of California, IrvineIrvine, CA, USA
| |
Collapse
|
31
|
Srikumar S, Kröger C, Hébrard M, Colgan A, Owen SV, Sivasankaran SK, Cameron ADS, Hokamp K, Hinton JCD. RNA-seq Brings New Insights to the Intra-Macrophage Transcriptome of Salmonella Typhimurium. PLoS Pathog 2015; 11:e1005262. [PMID: 26561851 PMCID: PMC4643027 DOI: 10.1371/journal.ppat.1005262] [Citation(s) in RCA: 184] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2015] [Accepted: 10/17/2015] [Indexed: 11/18/2022] Open
Abstract
Salmonella enterica serovar Typhimurium is arguably the world’s best-understood bacterial pathogen. However, crucial details about the genetic programs used by the bacterium to survive and replicate in macrophages have remained obscure because of the challenge of studying gene expression of intracellular pathogens during infection. Here, we report the use of deep sequencing (RNA-seq) to reveal the transcriptional architecture and gene activity of Salmonella during infection of murine macrophages, providing new insights into the strategies used by the pathogen to survive in a bactericidal immune cell. We characterized 3583 transcriptional start sites that are active within macrophages, and highlight 11 of these as candidates for the delivery of heterologous antigens from Salmonella vaccine strains. A majority (88%) of the 280 S. Typhimurium sRNAs were expressed inside macrophages, and SPI13 and SPI2 were the most highly expressed pathogenicity islands. We identified 31 S. Typhimurium genes that were strongly up-regulated inside macrophages but expressed at very low levels during in vitro growth. The SalComMac online resource allows the visualisation of every transcript expressed during bacterial replication within mammalian cells. This primary transcriptome of intra-macrophage S.-Typhimurium describes the transcriptional start sites and the transcripts responsible for virulence traits, and catalogues the sRNAs that may play a role in the regulation of gene expression during infection. The burden of Salmonellosis remains unacceptably high throughout the world and control measures have had limited success. Because Salmonella bacteria can be transmitted from the wider environment to animals and humans, the bacteria encounter diverse environments that include food, water, plant surfaces and the extracellular and intracellular phases of infection of eukaryotic hosts. An intricate transcriptional network has evolved to respond to a variety of environmental signals and control the “right time/ right place” expression of virulence genes. To understand how transcription is rewired during intracellular infection, we determined the primary transcriptome of Salmonella enterica serovar Typhimurium within murine macrophages. We report the coding genes, sRNAs and transcriptional start sites that are expressed within macrophages at 8 hours after infection, and use these to infer gene function. We identified gene promoters that are specifically expressed within macrophages and could drive the intracellular delivery of antigens by S. Typhimurium vaccine strains. These data contribute to our understanding of the mechanisms used by Salmonella to regulate virulence gene expression whilst replicating inside mammalian cells.
Collapse
Affiliation(s)
- Shabarinath Srikumar
- Department of Microbiology, School of Genetics and Microbiology, Moyne Institute of Preventive Medicine, Trinity College, Dublin, Ireland
- Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Carsten Kröger
- Department of Microbiology, School of Genetics and Microbiology, Moyne Institute of Preventive Medicine, Trinity College, Dublin, Ireland
- Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Magali Hébrard
- Department of Microbiology, School of Genetics and Microbiology, Moyne Institute of Preventive Medicine, Trinity College, Dublin, Ireland
| | - Aoife Colgan
- Department of Microbiology, School of Genetics and Microbiology, Moyne Institute of Preventive Medicine, Trinity College, Dublin, Ireland
| | - Siân V. Owen
- Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Sathesh K. Sivasankaran
- Department of Microbiology, School of Genetics and Microbiology, Moyne Institute of Preventive Medicine, Trinity College, Dublin, Ireland
| | | | - Karsten Hokamp
- Department of Genetics, School of Genetics and Microbiology, Smurfit Institute of Genetics, Trinity College, Dublin, Ireland
| | - Jay C. D. Hinton
- Department of Microbiology, School of Genetics and Microbiology, Moyne Institute of Preventive Medicine, Trinity College, Dublin, Ireland
- Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
- * E-mail:
| |
Collapse
|
32
|
H-NS Silencing of the Salmonella Pathogenicity Island 6-Encoded Type VI Secretion System Limits Salmonella enterica Serovar Typhimurium Interbacterial Killing. Infect Immun 2015; 83:2738-50. [PMID: 25916986 DOI: 10.1128/iai.00198-15] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2015] [Accepted: 04/16/2015] [Indexed: 12/26/2022] Open
Abstract
The secretion of bacterial toxin proteins is achieved by dedicated machineries called secretion systems. The type VI secretion system (T6SS) is a widespread versatile machine used for the delivery of protein toxins to both prokaryotic and eukaryotic cells. In Salmonella enterica serovar Typhimurium, the expression of the T6SS genes is activated during macrophage or mouse infection. Here, we show that the T6SS gene cluster is silenced by the histone-like nucleoid structuring H-NS protein using a combination of reporter fusions, electrophoretic mobility shift assays, DNase footprinting, and fluorescence microscopy. We further demonstrate that derepression of the S. Typhimurium T6SS genes induces T6SS-dependent intoxication of competing bacteria. Our results suggest that relieving T6SS H-NS silencing may be used as a sense-and-kill mechanism that will help S. Typhimurium to homogenize and synchronize the microbial population to gain efficiency during infection.
Collapse
|
33
|
Effect of zinc on growth performance, gut morphometry, and cecal microbial community in broilers challenged with Salmonella enterica serovar typhimurium. J Microbiol 2014; 52:1002-11. [DOI: 10.1007/s12275-014-4347-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 09/24/2014] [Accepted: 10/14/2014] [Indexed: 10/24/2022]
|
34
|
Chowdhury R, Mandal RS, Ta A, Das S. An AIL family protein promotes type three secretion system-1-independent invasion and pathogenesis of Salmonella enterica serovar Typhi. Cell Microbiol 2014; 17:486-503. [PMID: 25308535 DOI: 10.1111/cmi.12379] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Revised: 09/25/2014] [Accepted: 10/04/2014] [Indexed: 02/05/2023]
Abstract
Adhesion and invasion of Intestinal Epithelial Cells (IECs) are critical for the pathogenesis of Salmonella Typhi, the aetiological agent of human typhoid fever. While type three secretion system-1 (T3SS-1) is a major invasion apparatus of Salmonella, independent invasion mechanisms were described for non-typhoidal Salmonellae. Here, we show that T2942, an AIL-like protein of S. Typhi Ty2 strain, is required for adhesion and invasion of cultured IECs. That invasion was T3SS-1 independent was proved by ectopic expression of T2942 in the non-invasive E. coli BL21 and double-mutant Ty2 (Ty2Δt2942ΔinvG) strains. Laminin and fibronectin were identified as the host-binding partners of T2942 with higher affinity for laminin. Standalone function of T2942 was confirmed by cell adhesion of the recombinant protein, while the protein or anti-T2942 antiserum blocked adhesion/invasion of S. Typhi, indicating specificity. A 20-amino acid extracellular loop was required for invasion, while several loop regions of T2942 contributed to adhesion. Further, T2942 cooperates with laminin-binding T2544 for adhesion and T3SS-1 for invasion. Finally, T2942 was required and synergistically worked with T3SS-1 for pathogenesis of S. Typhi in mice. Considering wide distribution of T2942 among clinical strains, the protein or the 20-mer peptide may be suitable for vaccine development.
Collapse
Affiliation(s)
- Rimi Chowdhury
- Division of Clinical Medicine, National Institute of Cholera and Enteric Diseases, P-33 Scheme XM C.I.T. Road, Beliaghata Kolkata, 700010, India
| | | | | | | |
Collapse
|
35
|
Porwollik S, Santiviago CA, Cheng P, Long F, Desai P, Fredlund J, Srikumar S, Silva CA, Chu W, Chen X, Canals R, Reynolds MM, Bogomolnaya L, Shields C, Cui P, Guo J, Zheng Y, Endicott-Yazdani T, Yang HJ, Maple A, Ragoza Y, Blondel CJ, Valenzuela C, Andrews-Polymenis H, McClelland M. Defined single-gene and multi-gene deletion mutant collections in Salmonella enterica sv Typhimurium. PLoS One 2014; 9:e99820. [PMID: 25007190 PMCID: PMC4089911 DOI: 10.1371/journal.pone.0099820] [Citation(s) in RCA: 131] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 05/19/2014] [Indexed: 01/30/2023] Open
Abstract
We constructed two collections of targeted single gene deletion (SGD) mutants and two collections of targeted multi-gene deletion (MGD) mutants in Salmonella enterica sv Typhimurium 14028s. The SGD mutant collections contain (1), 3517 mutants in which a single gene is replaced by a cassette containing a kanamycin resistance (KanR) gene oriented in the sense direction (SGD-K), and (2), 3376 mutants with a chloramphenicol resistance gene (CamR) oriented in the antisense direction (SGD-C). A combined total of 3773 individual genes were deleted across these SGD collections. The MGD collections contain mutants bearing deletions of contiguous regions of three or more genes and include (3), 198 mutants spanning 2543 genes replaced by a KanR cassette (MGD-K), and (4), 251 mutants spanning 2799 genes replaced by a CamR cassette (MGD-C). Overall, 3476 genes were deleted in at least one MGD collection. The collections with different antibiotic markers permit construction of all viable combinations of mutants in the same background. Together, the libraries allow hierarchical screening of MGDs for different phenotypic followed by screening of SGDs within the target MGD regions. The mutants of these collections are stored at BEI Resources (www.beiresources.org) and publicly available.
Collapse
Affiliation(s)
- Steffen Porwollik
- Department of Microbiology and Molecular Genetics, University of California Irvine, Irvine, California, United States of America
| | - Carlos A. Santiviago
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Pui Cheng
- Department of Microbiology and Molecular Genetics, University of California Irvine, Irvine, California, United States of America
| | - Fred Long
- Department of Microbiology and Molecular Genetics, University of California Irvine, Irvine, California, United States of America
| | - Prerak Desai
- Department of Microbiology and Molecular Genetics, University of California Irvine, Irvine, California, United States of America
| | - Jennifer Fredlund
- Department of Microbiology and Molecular Genetics, University of California Irvine, Irvine, California, United States of America
| | - Shabarinath Srikumar
- Department of Microbiology and Molecular Genetics, University of California Irvine, Irvine, California, United States of America
| | - Cecilia A. Silva
- Department of Microbiology and Molecular Genetics, University of California Irvine, Irvine, California, United States of America
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Weiping Chu
- Department of Microbiology and Molecular Genetics, University of California Irvine, Irvine, California, United States of America
| | - Xin Chen
- Department of Microbiology and Molecular Genetics, University of California Irvine, Irvine, California, United States of America
| | - Rocío Canals
- Department of Microbiology and Molecular Genetics, University of California Irvine, Irvine, California, United States of America
| | - M. Megan Reynolds
- Department of Microbial Pathogenesis and Immunology, Texas A&M University, College Station, Texas, United States of America
| | - Lydia Bogomolnaya
- Department of Microbial Pathogenesis and Immunology, Texas A&M University, College Station, Texas, United States of America
| | - Christine Shields
- Department of Microbial Pathogenesis and Immunology, Texas A&M University, College Station, Texas, United States of America
| | - Ping Cui
- Department of Microbial Pathogenesis and Immunology, Texas A&M University, College Station, Texas, United States of America
| | - Jinbai Guo
- Department of Microbial Pathogenesis and Immunology, Texas A&M University, College Station, Texas, United States of America
| | - Yi Zheng
- Department of Microbial Pathogenesis and Immunology, Texas A&M University, College Station, Texas, United States of America
| | - Tiana Endicott-Yazdani
- Department of Microbial Pathogenesis and Immunology, Texas A&M University, College Station, Texas, United States of America
| | - Hee-Jeong Yang
- Department of Microbial Pathogenesis and Immunology, Texas A&M University, College Station, Texas, United States of America
| | - Aimee Maple
- Department of Microbial Pathogenesis and Immunology, Texas A&M University, College Station, Texas, United States of America
| | - Yury Ragoza
- Department of Microbial Pathogenesis and Immunology, Texas A&M University, College Station, Texas, United States of America
| | - Carlos J. Blondel
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Camila Valenzuela
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Helene Andrews-Polymenis
- Department of Microbial Pathogenesis and Immunology, Texas A&M University, College Station, Texas, United States of America
| | - Michael McClelland
- Department of Microbiology and Molecular Genetics, University of California Irvine, Irvine, California, United States of America
| |
Collapse
|
36
|
Abstract
Salmonella enterica serovar Typhimurium is a food-borne pathogen that causes severe gastroenteritis. The ability of Salmonella to cause disease depends on two type III secretion systems (T3SSs) encoded in two distinct Salmonella pathogenicity islands, 1 and 2 (SPI1 and SPI2, respectively). S. Typhimurium encodes a solo LuxR homolog, SdiA, which can detect the acyl-homoserine lactones (AHLs) produced by other bacteria and upregulate the rck operon and the srgE gene. SrgE is predicted to encode a protein of 488 residues with a coiled-coil domain between residues 345 and 382. In silico studies have provided conflicting predictions as to whether SrgE is a T3SS substrate. Therefore, in this work, we tested the hypothesis that SrgE is a T3SS effector by two methods, a β-lactamase activity assay and a split green fluorescent protein (GFP) complementation assay. SrgE with β-lactamase fused to residue 40, 100, 150, or 300 was indeed expressed and translocated into host cells, but SrgE with β-lactamase fused to residue 400 or 488 was not expressed, suggesting interference by the coiled-coil domain. Similarly, SrgE with GFP S11 fused to residue 300, but not to residue 488, was expressed and translocated into host cells. With both systems, translocation into host cells was dependent upon SPI2. A phylogenetic analysis indicated that srgE is found only within Salmonella enterica subspecies. It is found sporadically within both typhoidal and nontyphoidal serovars, although the SrgE protein sequences found within typhoidal serovars tend to cluster separately from those found in nontyphoidal serovars, suggesting functional diversification.
Collapse
|
37
|
Pezoa D, Blondel CJ, Silva CA, Yang HJ, Andrews-Polymenis H, Santiviago CA, Contreras I. Only one of the two type VI secretion systems encoded in the Salmonella enterica serotype Dublin genome is involved in colonization of the avian and murine hosts. Vet Res 2014; 45:2. [PMID: 24405577 PMCID: PMC3899618 DOI: 10.1186/1297-9716-45-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Accepted: 12/03/2013] [Indexed: 12/23/2022] Open
Abstract
The type VI secretion system (T6SS) is a virulence factor for many Gram-negative bacteria. Salmonella genus harbors five phylogenetically distinct T6SS loci encoded in Salmonella Pathogenicity Islands (SPIs) SPI-6, SPI-19, SPI-20, SPI-21 and SPI-22, which are differentially distributed among serotypes. The T6SSs encoded in SPI-6 and SPI-19 contribute to pathogenesis of serotypes Typhimurium and Gallinarum in mice and chickens, respectively. Salmonella Dublin is a pathogen restricted to cattle where it causes a systemic disease. Also, it can colonize other hosts such as chickens and mice, which can act as reservoirs of this serotype. Salmonella Dublin harbors the genes for both T6SSSPI-6 and T6SSSPI-19. This study has determined the contribution of T6SSSPI-6 and T6SSSPI-19 to host-colonization by Salmonella Dublin using avian and murine models of infection. Competitive index experiments showed that, a mutant strain lacking both T6SSs (∆T6SSSPI-6/∆T6SSSPI-19) presents a strong colonization defect in cecum of chickens, similar to the defect observed for the ∆T6SSSPI-6 mutant, suggesting that this serotype requires a functional T6SSSPI-6 for efficient colonization of the avian gastrointestinal tract. Colonization of mice was also defective, although to a lesser extent than in chickens. In contrast, the T6SSSPI-19 was not necessary for colonization of either chickens or mice. Transfer of T6SSSPI-6, but not T6SSSPI-19, restored the ability of the double mutant to colonize both animal hosts. Our data indicate that Salmonella Dublin requires only the T6SSSPI-6 for efficient colonization of mice and chickens, and that the T6SSSPI-6 and T6SSSPI-19 are not functionally redundant.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Inés Contreras
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santos Dumont 964, Santiago, Chile.
| |
Collapse
|
38
|
Yue M, Schifferli DM. Allelic variation in Salmonella: an underappreciated driver of adaptation and virulence. Front Microbiol 2014; 4:419. [PMID: 24454310 PMCID: PMC3882659 DOI: 10.3389/fmicb.2013.00419] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Accepted: 12/20/2013] [Indexed: 01/08/2023] Open
Abstract
Salmonella enterica causes substantial morbidity and mortality in humans and animals. Infection and intestinal colonization by S. enterica require virulence factors that mediate bacterial binding and invasion of enterocytes and innate immune cells. Some S. enterica colonization factors and their alleles are host restricted, suggesting a potential role in regulation of host specificity. Recent data also suggest that colonization factors promote horizontal gene transfer of antimicrobial resistance genes by increasing the local density of Salmonella in colonized intestines. Although a profusion of genes are involved in Salmonella pathogenesis, the relative importance of their allelic variation has only been studied intensely in the type 1 fimbrial adhesin FimH. Although other Salmonella virulence factors demonstrate allelic variation, their association with specific metadata (e.g., host species, disease or carrier state, time and geographic place of isolation, antibiotic resistance profile, etc.) remains to be interrogated. To date, genome-wide association studies (GWAS) in bacteriology have been limited by the paucity of relevant metadata. In addition, due to the many variables amid metadata categories, a very large number of strains must be assessed to attain statistically significant results. However, targeted approaches in which genes of interest (e.g., virulence factors) are specifically sequenced alleviates the time-consuming and costly statistical GWAS analysis and increases statistical power, as larger numbers of strains can be screened for non-synonymous single nucleotide polymorphisms (SNPs) that are associated with available metadata. Congruence of specific allelic variants with specific metadata from strains that have a relevant clinical and epidemiological history will help to prioritize functional wet-lab and animal studies aimed at determining cause-effect relationships. Such an approach should be applicable to other pathogens that are being collected in well-curated repositories.
Collapse
Affiliation(s)
- Min Yue
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania Philadelphia, PA, USA
| | - Dieter M Schifferli
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania Philadelphia, PA, USA
| |
Collapse
|