1
|
Daich Varela M, Duignan ES, De Silva SR, Ba-Abbad R, Fujinami-Yokokawa Y, Leo S, Fujinami K, Mahroo OA, Robson AG, Webster AR, Michaelides M. CERKL-Associated Retinal Dystrophy: Genetics, Phenotype, and Natural History. Ophthalmol Retina 2023; 7:918-931. [PMID: 37331655 PMCID: PMC11108804 DOI: 10.1016/j.oret.2023.06.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 06/09/2023] [Accepted: 06/12/2023] [Indexed: 06/20/2023]
Abstract
PURPOSE To analyze the clinical characteristics, natural history, and genetics of CERKL-associated retinal dystrophy in the largest series to date. DESIGN Multicenter retrospective cohort study. SUBJECTS Forty-seven patients (37 families) with likely disease-causing CERKL variants. METHODS Review of clinical notes, ophthalmic images, and molecular diagnosis from 2 international centers. MAIN OUTCOME MEASURES Visual function, retinal imaging, and characteristics were evaluated and correlated. RESULTS The mean age at the first visit was 29.6 ± 13.9 years, and the mean follow-up time was 9.1 ± 7.4 years. The most frequent initial symptom was central vision loss (40%), and the most common retinal feature was well-demarcated areas of macular atrophy (57%). Seventy-seven percent of the participants had double-null genotypes, and 64% had electrophysiological assessment. Among the latter, 53% showed similar severity of rod and cone dysfunction, 27% revealed a rod-cone, 10% a cone-rod, and 10% a macular dystrophy dysfunction pattern. Patients without double-null genotypes tended to have fewer pigment deposits and included a higher proportion of older patients with a relatively mild electrophysiological phenotype. Longitudinal analysis showed that over half of the cohort lost 15 ETDRS letters or more in ≥ 1 eye during the first 5 years of follow-up. CONCLUSIONS The phenotype of CERKL-retinal dystrophy is broad, encompassing isolated macular disease to severe retina-wide involvement, with a range of functional phenotypes, generally not fitting in the rod-cone/cone-rod dichotomy. Disease onset is often earlier, with more severe retinal degenerative changes and photoreceptor dysfunction, in nullizygous cases. FINANCIAL DISCLOSURE(S) Proprietary or commercial disclosure may be found in the Footnotes and Disclosures at the end of this article.
Collapse
Affiliation(s)
- Malena Daich Varela
- Moorfields Eye Hospital, London, United Kingdom; UCL Institute of Ophthalmology, University College London, London, United Kingdom
| | | | - Samantha R De Silva
- Moorfields Eye Hospital, London, United Kingdom; UCL Institute of Ophthalmology, University College London, London, United Kingdom
| | - Rola Ba-Abbad
- Ocular Genetics Services, King Khaled Eye Specialist Hospital, Riyadh, Saudi Arabia
| | - Yu Fujinami-Yokokawa
- UCL Institute of Ophthalmology, University College London, London, United Kingdom; Laboratory of Visual Physiology, Division of Vision Research, National Institute of Sensory Organs, National Hospital Organization Tokyo Medical Center, Tokyo, Japan; Department of Health Policy and Management, School of Medicine, Keio University, Tokyo, Japan
| | - Shaun Leo
- Moorfields Eye Hospital, London, United Kingdom
| | - Kaoru Fujinami
- Moorfields Eye Hospital, London, United Kingdom; UCL Institute of Ophthalmology, University College London, London, United Kingdom; Laboratory of Visual Physiology, Division of Vision Research, National Institute of Sensory Organs, National Hospital Organization Tokyo Medical Center, Tokyo, Japan
| | - Omar A Mahroo
- Moorfields Eye Hospital, London, United Kingdom; UCL Institute of Ophthalmology, University College London, London, United Kingdom
| | - Anthony G Robson
- Moorfields Eye Hospital, London, United Kingdom; UCL Institute of Ophthalmology, University College London, London, United Kingdom
| | - Andrew R Webster
- Moorfields Eye Hospital, London, United Kingdom; UCL Institute of Ophthalmology, University College London, London, United Kingdom
| | - Michel Michaelides
- Moorfields Eye Hospital, London, United Kingdom; UCL Institute of Ophthalmology, University College London, London, United Kingdom.
| |
Collapse
|
2
|
Fu S, Fu J, Mobasher-Jannat A, Jadidi K, Li Y, Chen R, Imani S, Cheng J. Novel pathogenic CERKL variant in Iranian familial with inherited retinal dystrophies: genotype-phenotype correlation. 3 Biotech 2023; 13:166. [PMID: 37162806 PMCID: PMC10163994 DOI: 10.1007/s13205-023-03535-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 03/28/2023] [Indexed: 05/11/2023] Open
Abstract
Inherited retinal dystrophies (IRDs) include a large chronic heterogeneity genetic disease. While many disease-causing pathogenic variants were involved in the progression of IRD, the Ceramide Kinase Like (CERKL) gene variant in Iranian patients is not well characterized. In this study, a consanguineous Iranian family with three generations was recruited whom presented with the clinical diagnosis of autosomal recessive IRD. By targeted next-generation sequencing (TGS) and Sanger sequencing, the proband was found to have a novel, pathological homozygous deletion variant c.560_568del (p.187_190del) of the CERKL gene (NM_001030311.2) that co-segregated with the disease in all affected family members. The Cerkl is highly expressed in the later four developmental retinal stages, playing a vital role in retina degeneration. Therefore, the identification of a novel, homozygous deletion CERKL variant c.560_568del (p.187_190del) in an IRD familial cohort descent provides insights into the molecular pathogenesis of IRD and facilitates genetic counseling and disease prediction.
Collapse
Affiliation(s)
- Shangyi Fu
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX USA
- School of Medicine, Baylor College of Medicine, Houston, TX USA
| | - Jiewen Fu
- Key Laboratory of Epigenetics and Oncology, Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, Sichuan 646000 People’s Republic of China
| | | | - Khosrow Jadidi
- Department of Ophthalmology, Bina Eye Hospital Research Center, Tehran, Iran
| | - Yumei Li
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX USA
| | - Rui Chen
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX USA
| | - Saber Imani
- Key Laboratory of Epigenetics and Oncology, Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, Sichuan 646000 People’s Republic of China
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, Zhejiang China
| | - Jingliang Cheng
- Key Laboratory of Epigenetics and Oncology, Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, Sichuan 646000 People’s Republic of China
| |
Collapse
|
3
|
Sherpa RD, Hui SP. An insight on established retinal injury mechanisms and prevalent retinal stem cell activation pathways in vertebrate models. Animal Model Exp Med 2021; 4:189-203. [PMID: 34557646 PMCID: PMC8446703 DOI: 10.1002/ame2.12177] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 06/09/2021] [Indexed: 12/22/2022] Open
Abstract
Implementing different tools and injury mechanisms in multiple animal models of retina regeneration, researchers have discovered the existence of retinal stem/progenitor cells. Although they appear to be distributed uniformly across the vertebrate lineage, the reparative potential of the retina is mainly restricted to lower vertebrates. Regenerative repair post-injury requires the creation of a proliferative niche, vital for proper stem cell activation, propagation, and lineage differentiation. This seems to be lacking in mammals. Hence, in this review, we first discuss the many forms of retinal injuries that have been generated using animal models. Next, we discuss how they are utilized to stimulate regeneration and mimic eye disease pathologies. The key to driving stem cell activation in mammals relies on the information we can gather from these models. Lastly, we present a brief update about the genes, growth factors, and signaling pathways that have been brought to light using these models.
Collapse
Affiliation(s)
| | - Subhra Prakash Hui
- S. N. Pradhan Centre for NeurosciencesUniversity of CalcuttaKolkataIndia
| |
Collapse
|
4
|
Mirra S, García-Arroyo R, B Domènech E, Gavaldà-Navarro A, Herrera-Úbeda C, Oliva C, Garcia-Fernàndez J, Artuch R, Villarroya F, Marfany G. CERKL, a retinal dystrophy gene, regulates mitochondrial function and dynamics in the mammalian retina. Neurobiol Dis 2021; 156:105405. [PMID: 34048907 DOI: 10.1016/j.nbd.2021.105405] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/06/2021] [Accepted: 05/21/2021] [Indexed: 11/30/2022] Open
Abstract
The retina is a highly active metabolic organ that displays a particular vulnerability to genetic and environmental factors causing stress and homeostatic imbalance. Mitochondria constitute a bioenergetic hub that coordinates stress response and cellular homeostasis, therefore structural and functional regulation of the mitochondrial dynamic network is essential for the mammalian retina. CERKL (ceramide kinase like) is a retinal degeneration gene whose mutations cause Retinitis Pigmentosa in humans, a visual disorder characterized by photoreceptors neurodegeneration and progressive vision loss. CERKL produces multiple isoforms with a dynamic subcellular localization. Here we show that a pool of CERKL isoforms localizes at mitochondria in mouse retinal ganglion cells. The depletion of CERKL levels in CerklKD/KO(knockdown/knockout) mouse retinas cause increase of autophagy, mitochondrial fragmentation, alteration of mitochondrial distribution, and dysfunction of mitochondrial-dependent bioenergetics and metabolism. Our results support CERKL as a regulator of autophagy and mitochondrial biology in the mammalian retina.
Collapse
Affiliation(s)
- Serena Mirra
- Department of Genetics, Microbiology and Statistics and Institute of Biomedicine (IBUB), Faculty of Biology, University of Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Barcelona, Spain; Institut de Biomedicina de la Universitat de Barcelona- Institut de Recerca Hospital Sant Joan de Déu, IBUB-IRSJD, Barcelona, Spain.
| | - Rocío García-Arroyo
- Department of Genetics, Microbiology and Statistics and Institute of Biomedicine (IBUB), Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Elena B Domènech
- Department of Genetics, Microbiology and Statistics and Institute of Biomedicine (IBUB), Faculty of Biology, University of Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Barcelona, Spain
| | - Aleix Gavaldà-Navarro
- Institut de Biomedicina de la Universitat de Barcelona- Institut de Recerca Hospital Sant Joan de Déu, IBUB-IRSJD, Barcelona, Spain; Department of Biochemistry and Molecular Biomedicine, Barcelona, Spain; CIBEROBN, Instituto de Salud Carlos III, Spain
| | - Carlos Herrera-Úbeda
- Department of Genetics, Microbiology and Statistics and Institute of Biomedicine (IBUB), Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Clara Oliva
- Clinical Biochemistry Department, Hospital Sant Joan de Déu, Spain
| | - Jordi Garcia-Fernàndez
- Department of Genetics, Microbiology and Statistics and Institute of Biomedicine (IBUB), Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Rafael Artuch
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Barcelona, Spain; Clinical Biochemistry Department, Hospital Sant Joan de Déu, Spain
| | - Francesc Villarroya
- Institut de Biomedicina de la Universitat de Barcelona- Institut de Recerca Hospital Sant Joan de Déu, IBUB-IRSJD, Barcelona, Spain; Department of Biochemistry and Molecular Biomedicine, Barcelona, Spain; CIBEROBN, Instituto de Salud Carlos III, Spain
| | - Gemma Marfany
- Department of Genetics, Microbiology and Statistics and Institute of Biomedicine (IBUB), Faculty of Biology, University of Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Barcelona, Spain; Institut de Biomedicina de la Universitat de Barcelona- Institut de Recerca Hospital Sant Joan de Déu, IBUB-IRSJD, Barcelona, Spain.
| |
Collapse
|
5
|
Neurodegeneration, Neuroprotection and Regeneration in the Zebrafish Retina. Cells 2021; 10:cells10030633. [PMID: 33809186 PMCID: PMC8000332 DOI: 10.3390/cells10030633] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/10/2021] [Accepted: 03/01/2021] [Indexed: 12/15/2022] Open
Abstract
Neurodegenerative retinal diseases, such as glaucoma and diabetic retinopathy, involve a gradual loss of neurons in the retina as the disease progresses. Central nervous system neurons are not able to regenerate in mammals, therefore, an often sought after course of treatment for neuronal loss follows a neuroprotective or regenerative strategy. Neuroprotection is the process of preserving the structure and function of the neurons that have survived a harmful insult; while regenerative approaches aim to replace or rewire the neurons and synaptic connections that were lost, or induce regrowth of damaged axons or dendrites. In order to test the neuroprotective effectiveness or the regenerative capacity of a particular agent, a robust experimental model of retinal neuronal damage is essential. Zebrafish are being used more often in this type of study because their eye structure and development is well-conserved between zebrafish and mammals. Zebrafish are robust genetic tools and are relatively inexpensive to maintain. The large array of functional and behavioral tests available in zebrafish makes them an attractive model for neuroprotection studies. Some common insults used to model retinal disease and study neuroprotection in zebrafish include intense light, chemical toxicity and mechanical damage. This review covers the existing retinal neuroprotection and regeneration literature in the zebrafish and highlights their potential for future studies.
Collapse
|
6
|
Meyer JM, Lee E, Celli A, Park K, Cho R, Lambert W, Pitchford M, Gordon M, Tsai K, Cleaver J, Arron ST, Mauro TM. CERKL is upregulated in cutaneous squamous cell carcinoma and maintains cellular sphingolipids and resistance to oxidative stress. Br J Dermatol 2021; 185:147-152. [PMID: 33393080 DOI: 10.1111/bjd.19753] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/30/2020] [Indexed: 01/16/2023]
Abstract
BACKGROUND Ceramide kinase-like protein (CERKL) was originally described in retinal tissue. CERKL has been shown to protect cells from oxidative stress, and mutations in CERKL underlie the inherited disease retinitis pigmentosa. CERKL expression maintains cellular sphingolipids via an unknown mechanism. OBJECTIVES To determine whether CERKL is expressed in epidermis and cutaneous squamous cell carcinoma (cSCC) and whether CERKL expression affects cSCC sphingolipid metabolism and susceptibility to oxidative stress. METHODS CERKL expression was determined by RNA-Seq, quantitative polymerase chain reaction and immunohistochemistry. CERKL was knocked down in cSCC cells using small interfering RNA. Sphingolipid content was analysed by liquid chromatography-mass spectrometry. Oxidative stress was induced by treatment with H2 O2 , and apoptosis was measured using flow cytometry to determine annexin V binding. RESULTS CERKL mRNA and protein are highly expressed in actinic keratosis and cSCC in comparison with normal epidermis. CERKL is also expressed in metabolically active epithelial cells in normal hair bulbs and sebaceous glands. CERKL knockdown in cultured cSCC cells reduces cellular sphingolipid content and enhances susceptibility to oxidative stress. CONCLUSIONS These findings suggest that CERKL may be important in cSCC progression and could lead to novel strategies for prevention and treatment of cSCC.
Collapse
Affiliation(s)
- J M Meyer
- Dermatology Service, VA Medical Center and Department of Dermatology, UC San Francisco, San Francisco, CA, USA
| | - E Lee
- Dermatology Service, VA Medical Center and Department of Dermatology, UC San Francisco, San Francisco, CA, USA
| | - A Celli
- Dermatology Service, VA Medical Center and Department of Dermatology, UC San Francisco, San Francisco, CA, USA
| | - K Park
- Dermatology Service, VA Medical Center and Department of Dermatology, UC San Francisco, San Francisco, CA, USA
| | - R Cho
- Department of Dermatology, UC San Francisco, San Francisco, CA, USA
| | - W Lambert
- Pathology and Laboratory Medicine, Rutgers University, Newark, NJ, USA
| | - M Pitchford
- Dermatology Service, VA Medical Center and Department of Dermatology, UC San Francisco, San Francisco, CA, USA
| | - M Gordon
- Dermatology Service, VA Medical Center and Department of Dermatology, UC San Francisco, San Francisco, CA, USA
| | - K Tsai
- Moffitt Cancer Center, Tampa, FL, USA
| | - J Cleaver
- Department of Dermatology, UC San Francisco, San Francisco, CA, USA.,Department of Pharmaceutical Chemistry, UC San Francisco, San Francisco, CA, USA
| | - S T Arron
- Dermatology Service, VA Medical Center and Department of Dermatology, UC San Francisco, San Francisco, CA, USA
| | - T M Mauro
- Dermatology Service, VA Medical Center and Department of Dermatology, UC San Francisco, San Francisco, CA, USA
| |
Collapse
|
7
|
Meyer JM, Lee E, Celli A, Park K, Cho R, Lambert W, Pitchford M, Gordon M, Tsai K, Cleaver J, Arron ST, Mauro TM. CERKL is Upregulated in Cutaneous Squamous Cell Carcinoma and Maintains Cellular Sphingolipids and Resistance to Oxidative Stress. Br J Dermatol 2020:10.1111/bjd.19707. [PMID: 33270220 PMCID: PMC8172666 DOI: 10.1111/bjd.19707] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Ceramide Kinase-Like Protein (CERKL) was originally described in retinal tissue. CERKL has been shown to protect cells from oxidative stress, and mutations in CERKL underlie the inherited disease, retinitis pigmentosa. CERKL expression maintains cellular sphingolipids via an unknown mechanism. OBJECTIVES To determine whether CERKL is expressed in epidermis and cutaneous squamous cell carcinoma (cSCC) and whether CERKL expression affects cSCC sphingolipid metabolism and susceptibility to oxidative stress. METHODS CERKL expression was determined by RNA-Seq, qPCR and immunohistochemistry. CERKL was knocked down in cSCC cells using siRNA. Sphingolipid content was analyzed by liquid chromatography-mass spectrometry (LC-MS). Oxidative stress was induced by treatment with H2 O2 , and apoptosis was measured using flow cytometry to determine annexin v binding. RESULTS CERKL mRNA and protein are highly expressed in actinic keratosis and cSCC in comparison with normal epidermis. CERKL also is expressed in metabolically active epithelial cells in normal hair bulbs and sebaceous glands. CERKL knockdown in cultured cSCC cells reduces cellular sphingolipid content and enhances susceptibility to oxidative stress. CONCLUSIONS These findings suggest that CERKL may be important in cSCC progression and could lead to novel strategies for prevention and treatment of cSCC.
Collapse
Affiliation(s)
- J M Meyer
- Dermatology Service, VA Medical Center, Department of Dermatology, UC San Francisco, CA, USA
| | - E Lee
- Dermatology Service, VA Medical Center, Department of Dermatology, UC San Francisco, CA, USA
| | - A Celli
- Dermatology Service, VA Medical Center, Department of Dermatology, UC San Francisco, CA, USA
| | - K Park
- Dermatology Service, VA Medical Center, Department of Dermatology, UC San Francisco, CA, USA
| | - R Cho
- Department of Dermatology, UC San Francisco, CA, USA
| | - W Lambert
- Pathology and Laboratory Medicine, Rutgers University, Newark, NJ, USA
| | - M Pitchford
- Dermatology Service, VA Medical Center, Department of Dermatology, UC San Francisco, CA, USA
| | - M Gordon
- Dermatology Service, VA Medical Center, Department of Dermatology, UC San Francisco, CA, USA
| | - K Tsai
- Moffitt Cancer Center, Tampa, FL, USA
| | - J Cleaver
- Departments of Dermatology and Pharmaceutical Chemistry, UC San Francisco, CA, USA
| | - S T Arron
- Dermatology Service, VA Medical Center, Department of Dermatology, UC San Francisco, CA, USA
| | - T M Mauro
- Dermatology Service, VA Medical Center, Department of Dermatology, UC San Francisco, CA, USA
| |
Collapse
|
8
|
Han GP, Kim JM, Kang HK, Kil DY. Transcriptomic analysis of the liver in aged laying hens with different intensity of brown eggshell color. Anim Biosci 2020; 34:811-823. [PMID: 33152221 PMCID: PMC8100479 DOI: 10.5713/ajas.20.0237] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 09/22/2020] [Indexed: 11/27/2022] Open
Abstract
OBJECTIVE Eggshell color is an important indicator of egg quality for consumers, especially for brown eggs. Various factors related to laying hens and their environment affect brown eggshell coloration. However, there have been no studies investigating hepatic functions of laying hens with variable intensity of brown eggshell color. Therefore, this study was aimed to identify potential factors affecting brown eggshell coloration in aged laying hens at the hepatic transcriptomic level. METHODS Five hundred 92-wk-old Hy-line Brown laying hens were screened to select laying hens with different intensity of brown eggshell color based on eggshell color fans. Based on eggshell color scores, hens with dark brown eggshells (DBE; eggshell color fan score = 14.8) and hens with light brown eggshells (LBE; eggshell color fan score = 9.7) were finally selected for the liver sampling. We performed RNA-seq analysis using the liver samples through the paired-end sequencing libraries. Differentially expressed genes (DEGs) profiling was carried out to identify their biological meaning by bioinformatics. RESULTS A total of 290 DEGs were identified with 196 being up-regulated and 94 being down-regulated in DBE groups as compared to LBE groups. The Kyoto encyclopedia of genes and genomes (KEGG) analysis revealed that these DEGs belong to several biological pathways including herpes simplex infection (toll-like receptor 3 [TLR3], cyclin-dependent kinase 1, etc.) and influenza A (TLR3, radical S-adenosyl methionine domain containing 2, myxovirus [influenza virus] resistance 1, etc.). Genes related to stress response (ceremide kinase like) and nutrient metabolism (phosphoenolpyruvate carboxy-kinase 1, methylmalonic aciduria [cobalamin deficiency] cblB type, glycine receptor alpha 2, solute carrier family 7 member 11, etc.) were also identified to be differentially expressed. CONCLUSION The current results provide new insights regarding hepatic molecular functions related to different intensity of brown eggshell color in aged laying hens. These insights will contribute to future studies aiming to optimize brown eggshell coloration in aged laying hens.
Collapse
Affiliation(s)
- Gi Ppeum Han
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Korea
| | - Jun-Mo Kim
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Korea
| | - Hwan Ku Kang
- Poultry Research Institute, National Institute of Animal Science, Rural Development Administration, Pyeongchang 25342, Korea
| | - Dong Yong Kil
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Korea
| |
Collapse
|
9
|
Domènech EB, Andrés R, López-Iniesta MJ, Mirra S, García-Arroyo R, Milla S, Sava F, Andilla J, Loza-Álvarez P, de la Villa P, Gonzàlez-Duarte R, Marfany G. A New Cerkl Mouse Model Generated by CRISPR-Cas9 Shows Progressive Retinal Degeneration and Altered Morphological and Electrophysiological Phenotype. Invest Ophthalmol Vis Sci 2020; 61:14. [PMID: 32658961 PMCID: PMC7425692 DOI: 10.1167/iovs.61.8.14] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 06/14/2020] [Indexed: 12/14/2022] Open
Abstract
Purpose Close to 100 genes cause retinitis pigmentosa, a Mendelian rare disease that affects 1 out of 4000 people worldwide. Mutations in the ceramide kinase-like gene (CERKL) are a prevalent cause of autosomal recessive cause retinitis pigmentosa and cone-rod dystrophy, but the functional role of this gene in the retina has yet to be fully determined. We aimed to generate a mouse model that resembles the phenotypic traits of patients carrying CERKL mutations to undertake functional studies and assay therapeutic approaches. Methods The Cerkl locus has been deleted (around 97 kb of genomic DNA) by gene editing using the CRISPR-Cas9 D10A nickase. Because the deletion of the Cerkl locus is lethal in mice in homozygosis, a double heterozygote mouse model with less than 10% residual Cerkl expression has been generated. The phenotypic alterations of the retina of this new model have been characterized at the morphological and electrophysiological levels. Results This CerklKD/KO model shows retinal degeneration, with a decreased number of cones and progressive photoreceptor loss, poorly stacked photoreceptor outer segment membranes, defective retinal pigment epithelium phagocytosis, and altered electrophysiological recordings in aged retinas. Conclusions To our knowledge, this is the first Cerkl mouse model to mimic many of the phenotypic traits, including the slow but progressive retinal degeneration, shown by human patients carrying CERKL mutations. This useful model will provide unprecedented insights into the retinal molecular pathways altered in these patients and will contribute to the design of effective treatments.
Collapse
Affiliation(s)
- Elena B. Domènech
- Department of Genetics, Microbiology and Statistics, University of Barcelona, Barcelona, Spain
- CIBERER/ISCIII, University of Barcelona, Barcelona, Spain
| | - Rosa Andrés
- Department of Genetics, Microbiology and Statistics, University of Barcelona, Barcelona, Spain
- CIBERER/ISCIII, University of Barcelona, Barcelona, Spain
| | - M. José López-Iniesta
- Department of Genetics, Microbiology and Statistics, University of Barcelona, Barcelona, Spain
| | - Serena Mirra
- Department of Genetics, Microbiology and Statistics, University of Barcelona, Barcelona, Spain
- CIBERER/ISCIII, University of Barcelona, Barcelona, Spain
| | - Rocío García-Arroyo
- Department of Genetics, Microbiology and Statistics, University of Barcelona, Barcelona, Spain
| | - Santiago Milla
- Department of Systems Biology, University of Alcalá, Madrid, Spain
| | - Florentina Sava
- Department of Genetics, Microbiology and Statistics, University of Barcelona, Barcelona, Spain
| | - Jordi Andilla
- ICFO–The Institute of Photonic Sciences, Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Pablo Loza-Álvarez
- ICFO–The Institute of Photonic Sciences, Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Pedro de la Villa
- Department of Systems Biology, University of Alcalá, Madrid, Spain
- Ramón y Cajal Institute for Health Research, Madrid, Spain
| | - Roser Gonzàlez-Duarte
- Department of Genetics, Microbiology and Statistics, University of Barcelona, Barcelona, Spain
- CIBERER/ISCIII, University of Barcelona, Barcelona, Spain
- DBGen Ocular Genomics, Barcelona, Spain
| | - Gemma Marfany
- Department of Genetics, Microbiology and Statistics, University of Barcelona, Barcelona, Spain
- CIBERER/ISCIII, University of Barcelona, Barcelona, Spain
- DBGen Ocular Genomics, Barcelona, Spain
- Institute of Biomedicine, University of Barcelona, Barcelona, Spain
| |
Collapse
|
10
|
Simón MV, Prado Spalm FH, Vera MS, Rotstein NP. Sphingolipids as Emerging Mediators in Retina Degeneration. Front Cell Neurosci 2019; 13:246. [PMID: 31244608 PMCID: PMC6581011 DOI: 10.3389/fncel.2019.00246] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 05/17/2019] [Indexed: 12/12/2022] Open
Abstract
The sphingolipids ceramide (Cer), sphingosine-1-phosphate (S1P), sphingosine (Sph), and ceramide-1-phosphate (C1P) are key signaling molecules that regulate major cellular functions. Their roles in the retina have gained increasing attention during the last decade since they emerge as mediators of proliferation, survival, migration, neovascularization, inflammation and death in retina cells. As exacerbation of these processes is central to retina degenerative diseases, they appear as crucial players in their progression. This review analyzes the functions of these sphingolipids in retina cell types and their possible pathological roles. Cer appears as a key arbitrator in diverse retinal pathologies; it promotes inflammation in endothelial and retina pigment epithelium (RPE) cells and its increase is a common feature in photoreceptor death in vitro and in animal models of retina degeneration; noteworthy, inhibiting Cer synthesis preserves photoreceptor viability and functionality. In turn, S1P acts as a double edge sword in the retina. It is essential for retina development, promoting the survival of photoreceptors and ganglion cells and regulating proliferation and differentiation of photoreceptor progenitors. However, S1P has also deleterious effects, stimulating migration of Müller glial cells, angiogenesis and fibrosis, contributing to the inflammatory scenario of proliferative retinopathies and age related macular degeneration (AMD). C1P, as S1P, promotes photoreceptor survival and differentiation. Collectively, the expanding role for these sphingolipids in the regulation of critical processes in retina cell types and in their dysregulation in retina degenerations makes them attractive targets for treating these diseases.
Collapse
Affiliation(s)
- M Victoria Simón
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Departamento De Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS), Argentine National Research Council (CONICET), Bahía Blanca, Argentina
| | - Facundo H Prado Spalm
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Departamento De Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS), Argentine National Research Council (CONICET), Bahía Blanca, Argentina
| | - Marcela S Vera
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Departamento De Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS), Argentine National Research Council (CONICET), Bahía Blanca, Argentina
| | - Nora P Rotstein
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Departamento De Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS), Argentine National Research Council (CONICET), Bahía Blanca, Argentina
| |
Collapse
|
11
|
Hu X, Lu Z, Yu S, Reilly J, Liu F, Jia D, Qin Y, Han S, Liu X, Qu Z, Lv Y, Li J, Huang Y, Jiang T, Jia H, Wang Q, Liu J, Shu X, Tang Z, Liu M. CERKL regulates autophagy via the NAD-dependent deacetylase SIRT1. Autophagy 2019; 15:453-465. [PMID: 30205735 PMCID: PMC6351130 DOI: 10.1080/15548627.2018.1520548] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Revised: 08/18/2018] [Accepted: 08/22/2018] [Indexed: 01/07/2023] Open
Abstract
Macroautophagy/autophagy is an important intracellular mechanism for the maintenance of cellular homeostasis. Here we show that the CERKL (ceramide kinase like) gene, a retinal degeneration (RD) pathogenic gene, plays a critical role in regulating autophagy by stabilizing SIRT1. In vitro and in vivo, suppressing CERKL results in impaired autophagy. SIRT1 is one of the main regulators of acetylation/deacetylation in autophagy. In CERKL-depleted retinas and cells, SIRT1 is downregulated. ATG5 and ATG7, 2 essential components of autophagy, show a higher degree of acetylation in CERKL-depleted cells. Overexpression of SIRT1 rescues autophagy in CERKL-depleted cells, whereas CERKL loses its function of regulating autophagy in SIRT1-depleted cells, and overexpression of CERKL upregulates SIRT1. Finally, we show that CERKL directly interacts with SIRT1, and may regulate its phosphorylation at Ser27 to stabilize SIRT1. These results show that CERKL is an important regulator of autophagy and it plays this role by stabilizing the deacetylase SIRT1.
Collapse
Affiliation(s)
- Xuebin Hu
- Key Laboratory of Molecular Biophysics of Ministry of Education, Department of Genetics and Developmental Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, P.R. China
| | - Zhaojing Lu
- Key Laboratory of Molecular Biophysics of Ministry of Education, Department of Genetics and Developmental Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, P.R. China
| | - Shanshan Yu
- Key Laboratory of Molecular Biophysics of Ministry of Education, Department of Genetics and Developmental Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, P.R. China
| | - James Reilly
- Department of Life Sciences, Glasgow Caledonian University, Glasgow, UK
| | - Fei Liu
- Key Laboratory of Molecular Biophysics of Ministry of Education, Department of Genetics and Developmental Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, P.R. China
| | - Danna Jia
- Key Laboratory of Molecular Biophysics of Ministry of Education, Department of Genetics and Developmental Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, P.R. China
| | - Yayun Qin
- Key Laboratory of Molecular Biophysics of Ministry of Education, Department of Genetics and Developmental Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, P.R. China
| | - Shanshan Han
- Key Laboratory of Molecular Biophysics of Ministry of Education, Department of Genetics and Developmental Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, P.R. China
- Department of Life Sciences, Glasgow Caledonian University, Glasgow, UK
| | - Xiliang Liu
- Key Laboratory of Molecular Biophysics of Ministry of Education, Department of Genetics and Developmental Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, P.R. China
| | - Zhen Qu
- Key Laboratory of Molecular Biophysics of Ministry of Education, Department of Genetics and Developmental Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, P.R. China
| | - Yuexia Lv
- Key Laboratory of Molecular Biophysics of Ministry of Education, Department of Genetics and Developmental Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, P.R. China
| | - Jingzhen Li
- Key Laboratory of Molecular Biophysics of Ministry of Education, Department of Genetics and Developmental Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, P.R. China
| | - Yuwen Huang
- Key Laboratory of Molecular Biophysics of Ministry of Education, Department of Genetics and Developmental Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, P.R. China
| | - Tao Jiang
- Key Laboratory of Molecular Biophysics of Ministry of Education, Department of Genetics and Developmental Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, P.R. China
| | - Haibo Jia
- Key Laboratory of Molecular Biophysics of Ministry of Education, Department of Genetics and Developmental Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, P.R. China
| | - Qing Wang
- Key Laboratory of Molecular Biophysics of Ministry of Education, Department of Genetics and Developmental Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, P.R. China
| | - Jingyu Liu
- Key Laboratory of Molecular Biophysics of Ministry of Education, Department of Genetics and Developmental Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, P.R. China
| | - Xinhua Shu
- Department of Life Sciences, Glasgow Caledonian University, Glasgow, UK
| | - Zhaohui Tang
- Key Laboratory of Molecular Biophysics of Ministry of Education, Department of Genetics and Developmental Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, P.R. China
| | - Mugen Liu
- Key Laboratory of Molecular Biophysics of Ministry of Education, Department of Genetics and Developmental Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, P.R. China
| |
Collapse
|
12
|
Sengillo JD, Cho GY, Paavo M, Lee W, White E, Jauregui R, Sparrow JR, Allikmets R, Tsang SH. Hyperautofluorescent Dots are Characteristic in Ceramide Kinase Like-associated Retinal Degeneration. Sci Rep 2019; 9:876. [PMID: 30696906 PMCID: PMC6351646 DOI: 10.1038/s41598-018-37578-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 09/27/2018] [Indexed: 11/17/2022] Open
Abstract
There is a lack of studies which seek to discern disease expression in patients with mutations that alter retinal ceramide metabolism, specifically in the ceramide kinase like (CERKL) gene. This cross-sectional case series reports a novel phenotypic manifestation of CERKL-associated retinopathy. Four unrelated patients with homozygous CERKL mutations underwent a complete ocular exam, spectral-domain optical coherence tomography, short-wavelength fundus autofluorescence (SW-AF), quantitative autofluorescence (qAF), and full-field electroretinogram (ffERG). Decreased visual acuity and early-onset maculopathy were present in all patients. All four patients had extensive hyperautofluorescent foci surrounding an area of central atrophy on SW-AF imaging, which has not been previously characterized. An abnormal spatial distribution of qAF signal was seen in one patient, and abnormally elevated qAF8 signal in another patient. FfERG recordings showed markedly attenuated rod and cone response in all patients. We conclude that these patients exhibit several features that, collectively, may warrant screening of CERKL as a first candidate: early-onset maculopathy, severe generalized retinal dysfunction, peripheral lacunae, intraretinal pigment migration, and hyperautofluorescent foci on SW-AF.
Collapse
Affiliation(s)
- Jesse D Sengillo
- Department of Internal Medicine, Reading Hospital, West Reading, PA, USA
| | - Galaxy Y Cho
- Frank H. Netter MD School of Medicine, Quinnipiac University, North Haven, CT, USA
| | - Maarjaliis Paavo
- Department of Ophthalmology, Columbia University, New York, NY, USA
| | - Winston Lee
- Department of Ophthalmology, Columbia University, New York, NY, USA
| | - Eugenia White
- Department of Internal Medicine, University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | | | - Janet R Sparrow
- Department of Ophthalmology, Columbia University, New York, NY, USA.,Department of Pathology & Cell Biology, Columbia University, New York, NY, USA
| | - Rando Allikmets
- Department of Ophthalmology, Columbia University, New York, NY, USA.,Department of Pathology & Cell Biology, Columbia University, New York, NY, USA
| | - Stephen H Tsang
- Jonas Children's Vision Care, and Bernard & Shirlee Brown Glaucoma Laboratory, New York, USA. .,Department of Ophthalmology, Columbia University, New York, NY, USA. .,Department of Pathology & Cell Biology, Columbia University, New York, NY, USA. .,Institute of Human Nutrition, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA.
| |
Collapse
|
13
|
Avela K, Sankila EM, Seitsonen S, Kuuluvainen L, Barton S, Gillies S, Aittomäki K. A founder mutation in CERKL is a major cause of retinal dystrophy in Finland. Acta Ophthalmol 2018; 96:183-191. [PMID: 29068140 DOI: 10.1111/aos.13551] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 06/28/2017] [Indexed: 11/30/2022]
Abstract
PURPOSE To study the genetic aetiology of retinal dystrophies (RD) in Finnish patients. METHODS A targeted next-generation sequencing (NGS) panel of 105 retinal dystrophy genes was used in a cohort of 55 RD patients. RESULTS The overall diagnostic yield was 60% demonstrating the power of this approach. Interestingly, a missense mutation c.375C>G p.(Cys125Trp) in the CERKL gene was found in 18% of the patients in either a homozygous or compound heterozygous state. Data from Exome Aggregation Consortium (ExAC) Browser show that the CERKL c.375C>G p.(Cys125Trp) allele is enriched in the Finnish population and thus is a founder mutation. Furthermore, we report the clinical picture of 18 patients with mutations in the CERKL gene. CERKL mutations cause a macular-onset disease, in which symptoms first become apparent at the second decade. We also detected other novel founder mutations in the CERKL, EYS, RP1, ABCA4 and GUCY2D genes. CONCLUSION Our report indicates that the first diagnostic test for Finnish patients with sporadic or autosomal recessive RD should be a targeted test for founder mutations in the CERKL, EYS, RP1, ABCA4 and GUCY2D genes. These results confirm the utility of NGS-based gene panels as a powerful method for mutation identification in RD, thus enabling improved genetic counselling for these families.
Collapse
Affiliation(s)
- Kristiina Avela
- Department of Clinical Genetics; Helsinki University Hospital; Helsinki Finland
| | - Eeva-Marja Sankila
- Department of Ophthalmology; Helsinki University Hospital; Helsinki Finland
| | - Sanna Seitsonen
- Department of Ophthalmology; Helsinki University Hospital; Helsinki Finland
| | - Liina Kuuluvainen
- Department of Clinical Genetics; Helsinki University Hospital; Helsinki Finland
| | - Stephanie Barton
- St Mary's Hospital; Central Manchester University Hospitals and Manchester Centre for Genomic Medicine; Manchester UK
| | - Stuart Gillies
- St Mary's Hospital; Central Manchester University Hospitals and Manchester Centre for Genomic Medicine; Manchester UK
| | - Kristiina Aittomäki
- Department of Clinical Genetics; Helsinki University Hospital; Helsinki Finland
| |
Collapse
|
14
|
Yu S, Li C, Biswas L, Hu X, Liu F, Reilly J, Liu X, Liu Y, Huang Y, Lu Z, Han S, Wang L, Yu Liu J, Jiang T, Shu X, Wong F, Tang Z, Liu M. CERKL gene knockout disturbs photoreceptor outer segment phagocytosis and causes rod-cone dystrophy in zebrafish. Hum Mol Genet 2017; 26:2335-2345. [PMID: 28398482 DOI: 10.1093/hmg/ddx137] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Accepted: 04/04/2017] [Indexed: 11/13/2022] Open
Abstract
In humans, CERKL mutations cause widespread retinal degeneration: early dysfunction and loss of rod and cone photoreceptors in the outer retina and, progressively, death of cells in the inner retina. Despite intensive efforts, the function of CERKL remains obscure and studies in animal models have failed to clarify the disease mechanism of CERKL mutations. To address this gap in knowledge, we have generated a stable CERKL knockout zebrafish model by TALEN technology and a 7bp deletion in CERKL cDNA that caused the premature termination of CERKL. These CERKL-/- animals showed progressive degeneration of photoreceptor outer segments (OSs) and increased apoptosis of retinal cells, including those in the outer and inner retinal layers. Additionally, we confirmed by immunofluorescence and western-blot that rod degeneration in CERKL-/- zebrafish occurred earlier and was more significant than that in cone cells. Accumulation of shed OSs in the interphotoreceptor matrix was observed by transmission election microscopy (TEM). This suggested that CERKL may regulate the phagocytosis of OSs by the retinal pigment epithelium (RPE). We further found that the phagocytosis-associated protein MERTK was significantly reduced in CERKL-/- zebrafish. Additionally, in ARPE-19 cell lines, knockdown of CERKL also decreased the mRNA and protein level of MERTK, as well as the ox-POS phagocytosis. We conclude that CERKL deficiency in zebrafish may cause rod-cone dystrophy, but not cone-rod dystrophy, while interfering with the phagocytosis function of RPE associated with down-regulation of the expression of MERTK.
Collapse
Affiliation(s)
- Shanshan Yu
- Key Laboratory of Molecular Biophysics of Ministry of Education, Department of Genetics and Developmental Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, P.R. China
| | - Chang Li
- Key Laboratory of Molecular Biophysics of Ministry of Education, Department of Genetics and Developmental Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, P.R. China
| | - Lincoln Biswas
- Department of Life Sciences, Glasgow Caledonian University, Glasgow G4?0BA, UK
| | - Xuebin Hu
- Key Laboratory of Molecular Biophysics of Ministry of Education, Department of Genetics and Developmental Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, P.R. China
| | - Fei Liu
- Key Laboratory of Molecular Biophysics of Ministry of Education, Department of Genetics and Developmental Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, P.R. China
| | - James Reilly
- Department of Life Sciences, Glasgow Caledonian University, Glasgow G4?0BA, UK
| | - Xiliang Liu
- Key Laboratory of Molecular Biophysics of Ministry of Education, Department of Genetics and Developmental Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, P.R. China
| | - Ying Liu
- Key Laboratory of Molecular Biophysics of Ministry of Education, Department of Genetics and Developmental Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, P.R. China
| | - Yuwen Huang
- Key Laboratory of Molecular Biophysics of Ministry of Education, Department of Genetics and Developmental Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, P.R. China
| | - Zhaojing Lu
- Key Laboratory of Molecular Biophysics of Ministry of Education, Department of Genetics and Developmental Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, P.R. China
| | - Shanshan Han
- Key Laboratory of Molecular Biophysics of Ministry of Education, Department of Genetics and Developmental Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, P.R. China
| | - Lei Wang
- Department of Pathology & Lab Medicine, University of Cincinnati Medical Center, Cincinnati, OH 45267, USA
| | - Jing Yu Liu
- Key Laboratory of Molecular Biophysics of Ministry of Education, Department of Genetics and Developmental Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, P.R. China
| | - Tao Jiang
- Key Laboratory of Molecular Biophysics of Ministry of Education, Department of Genetics and Developmental Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, P.R. China
| | - Xinhua Shu
- Department of Life Sciences, Glasgow Caledonian University, Glasgow G4?0BA, UK
| | - Fulton Wong
- Department of Ophthalmology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Zhaohui Tang
- Key Laboratory of Molecular Biophysics of Ministry of Education, Department of Genetics and Developmental Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, P.R. China
| | - Mugen Liu
- Key Laboratory of Molecular Biophysics of Ministry of Education, Department of Genetics and Developmental Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, P.R. China
| |
Collapse
|
15
|
Blanco-Sánchez B, Clément A, Phillips JB, Westerfield M. Zebrafish models of human eye and inner ear diseases. Methods Cell Biol 2016; 138:415-467. [PMID: 28129854 DOI: 10.1016/bs.mcb.2016.10.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Eye and inner ear diseases are the most common sensory impairments that greatly impact quality of life. Zebrafish have been intensively employed to understand the fundamental mechanisms underlying eye and inner ear development. The zebrafish visual and vestibulo-acoustic systems are very similar to these in humans, and although not yet mature, they are functional by 5days post-fertilization (dpf). In this chapter, we show how the zebrafish has significantly contributed to the field of biomedical research and how researchers, by establishing disease models and meticulously characterizing their phenotypes, have taken the first steps toward therapies. We review here models for (1) eye diseases, (2) ear diseases, and (3) syndromes affecting eye and/or ear. The use of new genome editing technologies and high-throughput screening systems should increase considerably the speed at which knowledge from zebrafish disease models is acquired, opening avenues for better diagnostics, treatments, and therapies.
Collapse
Affiliation(s)
| | - A Clément
- University of Oregon, Eugene, OR, United States
| | | | | |
Collapse
|
16
|
Chen J, Liu F, Li H, Archacki S, Gao M, Liu Y, Liao S, Huang M, Wang J, Yu S, Li C, Tang Z, Liu M. pVHL interacts with Ceramide kinase like (CERKL) protein and ubiquitinates it for oxygen dependent proteasomal degradation. Cell Signal 2015; 27:2314-23. [DOI: 10.1016/j.cellsig.2015.08.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Revised: 08/01/2015] [Accepted: 08/15/2015] [Indexed: 12/30/2022]
|
17
|
Abstract
Visual defects affect a large proportion of humanity, have a significant negative impact on quality of life, and cause significant economic burden. The wide variety of visual disorders and the large number of gene mutations responsible require a flexible animal model system to carry out research for possible causes and cures for the blinding conditions. With eyes similar to humans in structure and function, zebrafish are an important vertebrate model organism that is being used to study genetic and environmental eye diseases, including myopia, glaucoma, retinitis pigmentosa, ciliopathies, albinism, and diabetes. This review details the use of zebrafish in modeling human ocular diseases.
Collapse
Affiliation(s)
- Brian A Link
- Department of Cell Biology, Neurobiology & Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin 53226; ,
| | - Ross F Collery
- Department of Cell Biology, Neurobiology & Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin 53226; ,
| |
Collapse
|
18
|
Syed J, Chandran A, Pandian GN, Taniguchi J, Sato S, Hashiya K, Kashiwazaki G, Bando T, Sugiyama H. A Synthetic Transcriptional Activator of Genes Associated with the Retina in Human Dermal Fibroblasts. Chembiochem 2015; 16:1497-501. [DOI: 10.1002/cbic.201500140] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Indexed: 01/30/2023]
|
19
|
Astudillo L, Sabourdy F, Therville N, Bode H, Ségui B, Andrieu-Abadie N, Hornemann T, Levade T. Human genetic disorders of sphingolipid biosynthesis. J Inherit Metab Dis 2015; 38:65-76. [PMID: 25141825 DOI: 10.1007/s10545-014-9736-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Accepted: 06/12/2014] [Indexed: 12/19/2022]
Abstract
Monogenic defects of sphingolipid biosynthesis have been recently identified in human patients. These enzyme deficiencies affect the synthesis of sphingolipid precursors, ceramides or complex glycosphingolipids. They are transmitted as autosomal recessive or dominant traits, and their resulting phenotypes often replicate the abnormalities seen in murine models deficient for the corresponding enzymes. In quite good agreement with the known critical roles of sphingolipids in cells from the nervous system and the epidermis, these genetic defects clinically manifest as neurological disorders, including paraplegia, epilepsy or peripheral neuropathies, or present with ichthyosis. The present review summarizes the genetic alterations, biochemical changes and clinical symptoms of this new group of inherited metabolic disorders. Hypotheses regarding the molecular pathophysiology and potential treatments of these diseases are also discussed.
Collapse
Affiliation(s)
- Leonardo Astudillo
- Centre de Recherches en Cancérologie de Toulouse (CRCT), Institut National de la Santé et de la Recherche Médicale (INSERM) UMR1037, Team n 4, CHU Rangueil, BP, 84225, 31432, Toulouse, France
| | | | | | | | | | | | | | | |
Collapse
|
20
|
CERKL interacts with mitochondrial TRX2 and protects retinal cells from oxidative stress-induced apoptosis. Biochim Biophys Acta Mol Basis Dis 2014; 1842:1121-9. [DOI: 10.1016/j.bbadis.2014.04.009] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2013] [Revised: 04/02/2014] [Accepted: 04/07/2014] [Indexed: 01/24/2023]
|
21
|
Roosing S, Thiadens AAHJ, Hoyng CB, Klaver CCW, den Hollander AI, Cremers FPM. Causes and consequences of inherited cone disorders. Prog Retin Eye Res 2014; 42:1-26. [PMID: 24857951 DOI: 10.1016/j.preteyeres.2014.05.001] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2013] [Revised: 04/29/2014] [Accepted: 05/06/2014] [Indexed: 11/18/2022]
Abstract
Hereditary cone disorders (CDs) are characterized by defects of the cone photoreceptors or retinal pigment epithelium underlying the macula, and include achromatopsia (ACHM), cone dystrophy (COD), cone-rod dystrophy (CRD), color vision impairment, Stargardt disease (STGD) and other maculopathies. Forty-two genes have been implicated in non-syndromic inherited CDs. Mutations in the 5 genes implicated in ACHM explain ∼93% of the cases. On the contrary, only 21% of CRDs (17 genes) and 25% of CODs (8 genes) have been elucidated. The fact that the large majority of COD and CRD-associated genes are yet to be discovered hints towards the existence of unknown cone-specific or cone-sensitive processes. The ACHM-associated genes encode proteins that fulfill crucial roles in the cone phototransduction cascade, which is the most frequently compromised (10 genes) process in CDs. Another 7 CD-associated proteins are required for transport processes towards or through the connecting cilium. The remaining CD-associated proteins are involved in cell membrane morphogenesis and maintenance, synaptic transduction, and the retinoid cycle. Further novel genes are likely to be identified in the near future by combining large-scale DNA sequencing and transcriptomics technologies. For 31 of 42 CD-associated genes, mammalian models are available, 14 of which have successfully been used for gene augmentation studies. However, gene augmentation for CDs should ideally be developed in large mammalian models with cone-rich areas, which are currently available for only 11 CD genes. Future research will aim to elucidate the remaining causative genes, identify the molecular mechanisms of CD, and develop novel therapies aimed at preventing vision loss in individuals with CD in the future.
Collapse
Affiliation(s)
- Susanne Roosing
- Department of Human Genetics, Radboud University Medical Center, PO Box 9101, 6500 HB, Nijmegen, The Netherlands; Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen, PO Box 9101, 6500 HB, Nijmegen, The Netherlands
| | | | - Carel B Hoyng
- Department of Ophthalmology, Radboud University Medical Center, PO Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Caroline C W Klaver
- Department of Ophthalmology Erasmus Medical Centre, 3000 CA, Rotterdam, The Netherlands; Department of Epidemiology, Erasmus Medical Centre, 3000 CA, Rotterdam, The Netherlands
| | - Anneke I den Hollander
- Department of Human Genetics, Radboud University Medical Center, PO Box 9101, 6500 HB, Nijmegen, The Netherlands; Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen, PO Box 9101, 6500 HB, Nijmegen, The Netherlands; Department of Ophthalmology, Radboud University Medical Center, PO Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Frans P M Cremers
- Department of Human Genetics, Radboud University Medical Center, PO Box 9101, 6500 HB, Nijmegen, The Netherlands; Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen, PO Box 9101, 6500 HB, Nijmegen, The Netherlands.
| |
Collapse
|
22
|
CERKL, a retinal disease gene, encodes an mRNA-binding protein that localizes in compact and untranslated mRNPs associated with microtubules. PLoS One 2014; 9:e87898. [PMID: 24498393 PMCID: PMC3912138 DOI: 10.1371/journal.pone.0087898] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Accepted: 12/30/2013] [Indexed: 11/25/2022] Open
Abstract
The function of CERKL (CERamide Kinase Like), a causative gene of retinitis pigmentosa and cone-rod dystrophy, still awaits characterization. To approach its cellular role we have investigated the subcellular localization and interaction partners of the full length CERKL isoform, CERKLa of 532 amino acids, in different cell lines, including a photoreceptor-derived cell line. We demonstrate that CERKLa is a main component of compact and untranslated mRNPs and that associates with other RNP complexes such as stress granules, P-bodies and polysomes. CERKLa is a protein that binds through its N-terminus to mRNAs and interacts with other mRNA-binding proteins like eIF3B, PABP, HSP70 and RPS3. Except for eIF3B, these interactions depend on the integrity of mRNAs but not of ribosomes. Interestingly, the C125W CERKLa pathological mutant does not interact with eIF3B and is absent from these complexes. Compact mRNPs containing CERKLa also associate with microtubules and are found in neurites of neural differentiated cells. These localizations had not been reported previously for any member of the retinal disorders gene family and should be considered when investigating the pathogenic mechanisms and therapeutical approaches in these diseases.
Collapse
|