1
|
Su WC, Lee J, Afshar M, Zhang K, Han I. Assessing community health risks from exposure to ultrafine particles containing transition metals in the Greater Houston Area. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169067. [PMID: 38049001 PMCID: PMC11215817 DOI: 10.1016/j.scitotenv.2023.169067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/06/2023] [Accepted: 12/01/2023] [Indexed: 12/06/2023]
Abstract
Ultrafine particles (UFPs) in urban air environments have been an essential public health concern. The inhalation of UFPs can introduce transition metals contained in the UFP into the human airways, leading to adverse health effects. Therefore, it is crucial to investigate urban air UFP exposure and health risks induced by transition metals. This research carried out a series of field measurements to study urban air UFP exposure in the Greater Houston Area. Three sampling sites in the Greater Houston Area representing varying levels of UFP exposures were selected. The newly developed Mobile Aerosol Lung Deposition Apparatus (MALDA) which consists of a complete set of human airway replicas and a pair of UFP particle sizers was deployed in the sampling sites during three sampling timeframes (morning rush hours, noon, and afternoon rush hours) to obtain on-site UFP respiratory deposition data. UFP samples were collected at the sampling sites for metal composition analysis. The acquired UFP respiratory deposition data and UFP composition data were then used to calculate the respiratory deposited mass of transition metals and estimate the associated health risks for individuals living near sampling sites. Our results showed that transition metal-induced non-cancer risks caused by exposure to urban UFPs were within acceptable limits. The estimated lifetime excess cancer risks were generally <10-6, indicating an overall acceptable level of transition metal-induced cancer risk.
Collapse
Affiliation(s)
- Wei-Chung Su
- Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, University of Texas Health Science Center at Houston, Houston, TX, USA; Southwest Center for Occupational and Environmental Health, School of Public Health, University of Texas Health Science Center at Houston, Houston, TX, USA.
| | - Jinho Lee
- Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Masoud Afshar
- Southwest Center for Occupational and Environmental Health, School of Public Health, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Kai Zhang
- Department of Environmental Health Sciences, School of Public Health, University at Albany, State University of New York, Rensselaer, NY, USA
| | - Inkyu Han
- Department of Epidemiology and Biostatistics, College of Public Health, Temple University, Philadelphia, PA, USA
| |
Collapse
|
2
|
Pedde M, Larson TV, D’Souza J, Szpiro AA, Kloog I, Lisabeth LD, Jacobs D, Sheppard L, Allison M, Kaufman JD, Adar SD. Coarse Particulate Matter and Markers of Inflammation and Coagulation in the Multi-Ethnic Study of Atherosclerosis (MESA) Population: A Repeat Measures Analysis. ENVIRONMENTAL HEALTH PERSPECTIVES 2024; 132:27009. [PMID: 38381480 PMCID: PMC10880818 DOI: 10.1289/ehp12972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 01/09/2024] [Accepted: 01/16/2024] [Indexed: 02/22/2024]
Abstract
BACKGROUND In contrast to fine particles, less is known of the inflammatory and coagulation impacts of coarse particulate matter (PM 10 - 2.5 , particulate matter with aerodynamic diameter ≤ 10 μ m and > 2.5 μ m ). Toxicological research suggests that these pathways might be important processes by which PM 10 - 2.5 impacts health, but there are relatively few epidemiological studies due to a lack of a national PM 10 - 2.5 monitoring network. OBJECTIVES We used new spatiotemporal exposure models to examine associations of both 1-y and 1-month average PM 10 - 2.5 concentrations with markers of inflammation and coagulation. METHODS We leveraged data from 7,071 Multi-Ethnic Study of Atherosclerosis and ancillary study participants 45-84 y of age who had repeated plasma measures of inflammatory and coagulation biomarkers. We estimated PM 10 - 2.5 at participant addresses 1 y and 1 month before each of up to four exams (2000-2012) using spatiotemporal models that incorporated satellite, regulatory monitoring, and local geographic data and accounted for spatial correlation. We used random effects models to estimate associations with interleukin-6 (IL-6), C-reactive protein (CRP), fibrinogen, and D-dimer, controlling for potential confounders. RESULTS Increases in PM 10 - 2.5 were not associated with greater levels of inflammation or coagulation. A 10 - μ g / m 3 increase in annual average PM 10 - 2.5 was associated with a 2.5% decrease in CRP [95% confidence interval (CI): - 5.5 , 0.6]. We saw no association between annual average PM 10 - 2.5 and the other markers (IL-6: - 0.7 % , 95% CI: - 2.6 , 1.2; fibrinogen: - 0.3 % , 95% CI: - 0.9 , 0.3; D-dimer: - 0.2 % , 95% CI: - 2.6 , 2.4). Associations consistently showed that a 1 0 - μ g / m 3 increase in 1-month average PM 10 - 2.5 was associated with reduced inflammation and coagulation, though none were distinguishable from no association (IL-6: - 1.2 % , 95% CI: - 3.0 , 0.5; CRP: - 2.5 % , 95% CI: - 5.3 , 0.4; fibrinogen: - 0.4 % , 95% CI: - 1.0 , 0.1; D-dimer: - 2.0 % , 95% CI: - 4.3 , 0.3). DISCUSSION We found no evidence that PM 10 - 2.5 is associated with higher inflammation or coagulation levels. More research is needed to determine whether the inflammation and coagulation pathways are as important in explaining observed PM 10 - 2.5 health impacts in humans as they have been shown to be in toxicology studies or whether PM 10 - 2.5 might impact human health through alternative biological mechanisms. https://doi.org/10.1289/EHP12972.
Collapse
Affiliation(s)
- Meredith Pedde
- Department of Epidemiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Timothy V. Larson
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, USA
- Department of Civil and Environmental Engineering, University of Washington, Seattle, Washington, USA
| | - Jennifer D’Souza
- Department of Epidemiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Adam A. Szpiro
- Department of Biostatistics, University of Washington, Seattle, Washington, USA
| | - Itai Kloog
- Department of Geography and Environmental Development, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Lynda D. Lisabeth
- Department of Epidemiology, University of Michigan, Ann Arbor, Michigan, USA
| | - David Jacobs
- Division of Epidemiology and Community Health, University of Minnesota, Minneapolis, Minnesota, USA
| | - Lianne Sheppard
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, USA
- Department of Biostatistics, University of Washington, Seattle, Washington, USA
| | - Matthew Allison
- Division of Preventive Medicine, University of California San Diego, San Diego, California, USA
| | - Joel D. Kaufman
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, USA
- Department of Epidemiology, University of Washington, Seattle, Washington, USA
- Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Sara D. Adar
- Department of Epidemiology, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
3
|
Aslam R, Sharif F, Baqar M, Nizami AS. Association of human cohorts exposed to blood and urinary biomarkers of PAHs with adult asthma in a South Asian metropolitan city. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:35945-35957. [PMID: 36538227 DOI: 10.1007/s11356-022-24445-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 11/24/2022] [Indexed: 06/17/2023]
Abstract
Semi-volatile organic compounds (SVOCs) are a major global problem that causes the greatest impact on urban settings and have been linked to bronchial asthma in both children and adults in Pakistan. The association between exposure of polycyclic aromatic hydrocarbons (PAHs) and asthma in the adult population is less clear. The current study aimed to assess the clinico-chemical parameters and blood levels of naphthalene phenanthrene, pyrene, and 1,2-benzanthracene and urinary levels of 1-OH pyrene and 1-OH phenanthrene as well as asthma-related biomarkers immunoglobulin E (IgE), resistin, and superoxide dismutase (SOD) of oxidative stress and other hematologic parameters in adults and their relationship with bronchial asthma. The GC/MS analysis showed higher mean concentrations of blood PAHs in asthma respondents (4.48 ± 1.34, 3.46 ± 1.04, 0.10 ± 0.03, and 0.29 ± 0.09) (ng/mL) as compared to controls (3.07 ± 0.92, 1.71 ± 0.51, 0.06 ± 0.02, and 0.11 ± 0.03) (ng/mL), with p = .006, p = .001, p = .050, and p = .001. Similarly, urinary levels of 1-OHpyr and 1-OHphe were significantly increased in adults with bronchial asthma (0.54 ± 0.16; 0.13 ± 0.04) (μmol/mol-Cr) than in controls (0.30 ± 0.09; 0.05 ± 0.02) (μmol/mol-Cr), with p = .002 and p = .0001, respectively, with a significant positive correlation to asthma severity. The asthma-related biomarkers IgE, resistin, and SOD were significantly higher (p 0.0001, 0.0001, and 0.0001) in people with asthma than in control persons. The findings showed that higher blood and urine PAHs levels were linked to higher asthma risk in adults and significant interaction with participants who smoked, had allergies, had a family history of asthma, and were exposed to dust. The current study's findings will be useful to local regulatory agencies in Lahore in terms of managing exposure and advocating efforts to minimize PAH pollution and manage health.
Collapse
Affiliation(s)
- Rabia Aslam
- Sustainable Development Study Centre (SDSC), Government College University, Lahore, 54000, Pakistan.
| | - Faiza Sharif
- Sustainable Development Study Centre (SDSC), Government College University, Lahore, 54000, Pakistan
| | - Mujtaba Baqar
- Sustainable Development Study Centre (SDSC), Government College University, Lahore, 54000, Pakistan.
| | - Abdul-Sattar Nizami
- Sustainable Development Study Centre (SDSC), Government College University, Lahore, 54000, Pakistan
| |
Collapse
|
4
|
Rehman A, Kumari R, Kamthan A, Tiwari R, Srivastava RK, van der Westhuizen FH, Mishra PK. Cell-free circulating mitochondrial DNA: An emerging biomarker for airborne particulate matter associated with cardiovascular diseases. Free Radic Biol Med 2023; 195:103-120. [PMID: 36584454 DOI: 10.1016/j.freeradbiomed.2022.12.083] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/16/2022] [Accepted: 12/20/2022] [Indexed: 12/29/2022]
Abstract
The association of airborne particulate matter exposure with the deteriorating function of the cardiovascular system is fundamentally driven by the impairment of mitochondrial-nuclear crosstalk orchestrated by aberrant redox signaling. The loss of delicate balance in retrograde communication from mitochondria to the nucleus often culminates in the methylation of the newly synthesized strand of mitochondrial DNA (mtDNA) through DNA methyl transferases. In highly metabolic active tissues such as the heart, mtDNA's methylation state alteration impacts mitochondrial bioenergetics. It affects transcriptional regulatory processes involved in biogenesis, fission, and fusion, often accompanied by the integrated stress response. Previous studies have demonstrated a paradoxical role of mtDNA methylation in cardiovascular pathologies linked to air pollution. A pronounced alteration in mtDNA methylation contributes to systemic inflammation, an etiological determinant for several co-morbidities, including vascular endothelial dysfunction and myocardial injury. In the current article, we evaluate the state of evidence and examine the considerable promise of using cell-free circulating methylated mtDNA as a predictive biomarker to reduce the more significant burden of ambient air pollution on cardiovascular diseases.
Collapse
Affiliation(s)
- Afreen Rehman
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India.
| | - Roshani Kumari
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India.
| | - Arunika Kamthan
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India.
| | - Rajnarayan Tiwari
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India.
| | | | | | - Pradyumna Kumar Mishra
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India.
| |
Collapse
|
5
|
Koman PD, Billmire M, Baker KR, Carter JM, Thelen BJ, French NHF, Bell SA. Using wildland fire smoke modeling data in gerontological health research (California, 2007-2018). THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:156403. [PMID: 35660427 DOI: 10.1016/j.scitotenv.2022.156403] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 05/06/2022] [Accepted: 05/28/2022] [Indexed: 06/15/2023]
Abstract
Widespread population exposure to wildland fire smoke underscores the urgent need for new techniques to characterize fire-derived pollution for epidemiologic studies and to build climate-resilient communities especially for aging populations. Using atmospheric chemical transport modeling, we examined air quality with and without wildland fire smoke PM2.5. In 12-km gridded output, the 24-hour average concentration of all-source PM2.5 in California (2007-2018) was 5.16 μg/m3 (S.D. 4.66 μg/m3). The average concentration of fire-PM2.5 in California by year was 1.61 μg/m3 (~30% of total PM2.5). The contribution of fire-source PM2.5 ranged from 6.8% to 49%. We define a "smokewave" as two or more consecutive days with modeled levels above 35 μg/m3. Based on model-derived fire-PM2.5, 99.5% of California's population lived in a county that experienced at least one smokewave from 2007 to 2018, yet understanding of the impact of smoke on the health of aging populations is limited. Approximately 2.7 million (56%) of California residents aged 65+ years lived in counties representing the top 3 quartiles of fire-PM2.5 concentrations (2007-2018). For each year (2007-2018), grid cells containing skilled nursing facilities had significantly higher mean concentrations of all-source PM2.5 than cells without those facilities, but they also had generally lower mean concentrations of wildland fire-specific PM2.5. Compared to rural monitors in California, model predictions of wildland fire impacts on daily average PM2.5 carbon (organic and elemental) performed well most years but tended to overestimate wildland fire impacts for high-fire years. The modeling system isolated wildland fire PM2.5 from other sources at monitored and unmonitored locations, which is important for understanding exposures for aging population in health studies.
Collapse
Affiliation(s)
- Patricia D Koman
- University of Michigan, School of Public Health, Environmental Health Sciences, 1415 Washington Heights, Ann Arbor, MI 48109, USA.
| | - Michael Billmire
- Michigan Technological University, Michigan Tech Research Institute, 3600 Green Court, Suite 100, Ann Arbor, MI 48105, USA.
| | - Kirk R Baker
- U.S. Environmental Protection Agency, Office of Air and Radiation, Office of Air Quality Planning & Standards, Research Triangle Park, NC 27709, USA.
| | - Julie M Carter
- University of Michigan, School of Public Health, Environmental Health Sciences, 1415 Washington Heights, Ann Arbor, MI 48109, USA; Michigan Technological University, Michigan Tech Research Institute, 3600 Green Court, Suite 100, Ann Arbor, MI 48105, USA.
| | - Brian J Thelen
- Michigan Technological University, Michigan Tech Research Institute, 3600 Green Court, Suite 100, Ann Arbor, MI 48105, USA.
| | - Nancy H F French
- Michigan Technological University, Michigan Tech Research Institute, 3600 Green Court, Suite 100, Ann Arbor, MI 48105, USA.
| | - Sue Anne Bell
- University of Michigan, School of Nursing, Ann Arbor, MI 48109, USA.
| |
Collapse
|
6
|
Basith S, Manavalan B, Shin TH, Park CB, Lee WS, Kim J, Lee G. The Impact of Fine Particulate Matter 2.5 on the Cardiovascular System: A Review of the Invisible Killer. NANOMATERIALS 2022; 12:nano12152656. [PMID: 35957086 PMCID: PMC9370264 DOI: 10.3390/nano12152656] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 07/29/2022] [Accepted: 07/30/2022] [Indexed: 12/26/2022]
Abstract
Air pollution exerts several deleterious effects on the cardiovascular system, with cardiovascular disease (CVD) accounting for 80% of all premature deaths caused by air pollution. Short-term exposure to particulate matter 2.5 (PM2.5) leads to acute CVD-associated deaths and nonfatal events, whereas long-term exposure increases CVD-associated risk of death and reduces longevity. Here, we summarize published data illustrating how PM2.5 may impact the cardiovascular system to provide information on the mechanisms by which it may contribute to CVDs. We provide an overview of PM2.5, its associated health risks, global statistics, mechanistic underpinnings related to mitochondria, and hazardous biological effects. We elaborate on the association between PM2.5 exposure and CVD development and examine preventive PM2.5 exposure measures and future strategies for combating PM2.5-related adverse health effects. The insights gained can provide critical guidelines for preventing pollution-related CVDs through governmental, societal, and personal measures, thereby benefitting humanity and slowing climate change.
Collapse
Affiliation(s)
- Shaherin Basith
- Department of Physiology, Ajou University School of Medicine, Suwon 16499, Korea; (S.B.); (T.H.S.); (C.B.P.)
| | - Balachandran Manavalan
- Computational Biology and Bioinformatics Laboratory, Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon 16419, Korea;
| | - Tae Hwan Shin
- Department of Physiology, Ajou University School of Medicine, Suwon 16499, Korea; (S.B.); (T.H.S.); (C.B.P.)
| | - Chan Bae Park
- Department of Physiology, Ajou University School of Medicine, Suwon 16499, Korea; (S.B.); (T.H.S.); (C.B.P.)
| | - Wang-Soo Lee
- Department of Internal Medicine, Division of Cardiology, College of Medicine, Chung-Ang University, Seoul 06973, Korea;
| | - Jaetaek Kim
- Department of Internal Medicine, Division of Endocrinology and Metabolism, College of Medicine, Chung-Ang University, Seoul 06973, Korea
- Correspondence: (J.K.); (G.L.)
| | - Gwang Lee
- Department of Physiology, Ajou University School of Medicine, Suwon 16499, Korea; (S.B.); (T.H.S.); (C.B.P.)
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Korea
- Correspondence: (J.K.); (G.L.)
| |
Collapse
|
7
|
Brunst KJ, Hsu HHL, Zhang L, Zhang X, Carroll KN, Just A, Coull BA, Kloog I, Wright RO, Baccarelli AA, Wright RJ. Prenatal particulate matter exposure and mitochondrial mutational load at the maternal-fetal interface: Effect modification by genetic ancestry. Mitochondrion 2022; 62:102-110. [PMID: 34785263 PMCID: PMC9175302 DOI: 10.1016/j.mito.2021.11.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 10/26/2021] [Accepted: 11/08/2021] [Indexed: 12/30/2022]
Abstract
Prenatal ambient particulate matter (PM2.5) exposure impacts infant development and alters placental mitochondrial DNA abundance. We investigated whether the timing of PM2.5 exposure predicts placental mitochondrial mutational load using NextGen sequencing in 283 multi-ethnic mother-infant dyads. We observed increased PM2.5exposure, particularly during mid- to late-pregnancy and among genes coding for NADH dehydrogenase and subunits of ATP synthase, was associated with a greater amount of nonsynonymous mutations. The strongest associations were observed for participants of African ancestry. Further work is needed to tease out the role of mitochondrial genetics and its impact on offspring development and emerging disease disparities.
Collapse
Affiliation(s)
- Kelly J Brunst
- Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, 160 Panzeca Way, Cincinnati, OH 45267, USA.
| | - Hsiao-Hsien Leon Hsu
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, 17 East 102(nd) St. New York, NY 10029, USA.
| | - Li Zhang
- Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, 160 Panzeca Way, Cincinnati, OH 45267, USA.
| | - Xiang Zhang
- Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, 160 Panzeca Way, Cincinnati, OH 45267, USA.
| | - Kecia N Carroll
- Kravis Children's Hospital, Department of Pediatrics, Icahn School of Medicine at Mount Sinai, 17 East 102(nd) St. New York, NY 10029, USA; Institute for Exposomic Research, Icahn School of Medicine at Mount Sinai, 17 East 102(nd) St., New York, NY 10029, USA.
| | - Allan Just
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, 17 East 102(nd) St. New York, NY 10029, USA
| | - Brent A Coull
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, 655 Huntington Ave., Boston, MA 02115, USA.
| | - Itai Kloog
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, 17 East 102(nd) St. New York, NY 10029, USA; Department of Geography and Environmental Development, Ben-Gurion University of the Negev, P.O.B 653, Beer Sheva, Israel.
| | - Robert O Wright
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, 17 East 102(nd) St. New York, NY 10029, USA; Institute for Exposomic Research, Icahn School of Medicine at Mount Sinai, 17 East 102(nd) St., New York, NY 10029, USA.
| | - Andrea A Baccarelli
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University Medical Center, 722 W 168(th) St. New York, NY 10032, USA.
| | - Rosalind J Wright
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, 17 East 102(nd) St. New York, NY 10029, USA; Institute for Exposomic Research, Icahn School of Medicine at Mount Sinai, 17 East 102(nd) St., New York, NY 10029, USA.
| |
Collapse
|
8
|
Vargas-Mendoza N, Angeles-Valencia M, Morales-González Á, Morales-Martínez M, Madrigal-Bujaidar E, Álvarez-González I, Fregoso-Aguilar T, Delgado-Olivares L, Madrigal-Santillán EO, Morales-González JA. Effect of Silymarin Supplementation in Lung and Liver Histological Modifications during Exercise Training in a Rodent Model. J Funct Morphol Kinesiol 2021; 6:72. [PMID: 34564191 PMCID: PMC8482127 DOI: 10.3390/jfmk6030072] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/25/2021] [Accepted: 08/27/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Exercise training induces adaptive physiological and morphological modifications in the entire organism; however, excessive loads of training may increase damage in tissues. The purpose of this study was to evaluate the effect of silymarin in lung and liver histological changes in rats subjected to exercise training (ET). METHODS Male Wistar rats were subjected to an 8-week ET treadmill program 5 days per week, 60 min/session, and were previously administered 100 mg ascorbic acid or 100 mg of silymarin. RESULTS Silymarin increased alveolar and bronchial muscle size, improve vascularization, and reduced tissue inflammation. In liver, silymarin promoted the reduction of lipid content. CONCLUSION Silymarin supplementation may improve inflammation in pulmonary tissue after 8 weeks of the ET treadmill program, improve cell recovery, and reduce intrahepatic lipid content.
Collapse
Affiliation(s)
- Nancy Vargas-Mendoza
- Laboratorio de Medicina de Conservación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, Col. Casco de Santo Tomás, Del. Miguel Hidalgo, Ciudad de México 11340, Mexico; (N.V.-M.); (M.A.-V.)
| | - Marcelo Angeles-Valencia
- Laboratorio de Medicina de Conservación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, Col. Casco de Santo Tomás, Del. Miguel Hidalgo, Ciudad de México 11340, Mexico; (N.V.-M.); (M.A.-V.)
| | - Ángel Morales-González
- Escuela Superior de Cómputo, Instituto Politécnico Nacional, Av. Juan de Dios Bátiz s/n Esquina Miguel Othón de Mendizabal, Unidad Profesional Adolfo López Mateos, Ciudad de México 07738, Mexico;
| | - Mauricio Morales-Martínez
- Licenciatura en Nutrición, Universidad Intercontinental, Insurgentes Sur 4303, Santa Úrsula Xitla, Alcaldía Tlalpan, Ciudad de México 14420, Mexico;
| | - Eduardo Madrigal-Bujaidar
- Laboratorio de Genética, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional A. López Mateos, Av. Wilfrido Massieu, Col., Lindavista, Ciudad de México 07738, Mexico; (E.M.-B.); (I.Á.-G.)
| | - Isela Álvarez-González
- Laboratorio de Genética, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional A. López Mateos, Av. Wilfrido Massieu, Col., Lindavista, Ciudad de México 07738, Mexico; (E.M.-B.); (I.Á.-G.)
| | - Tomás Fregoso-Aguilar
- Laboratorio de Hormonas y Conducta, Departamento de Fisiología, ENCB Campus Zacatenco, Instituto Politécnico Nacional, Ciudad de México 07700, Mexico;
| | - Luis Delgado-Olivares
- Centro de Investigación Interdisciplinario, Área Académica de Nutrición, Instituto de Ciencias de la Salud, Universidad Autónoma del Estado de Hidalgo, Circuito Actopan-Tilcuauttla, s/n, Ex Hacienda La Concepción, San Agustín Tlaxiaca 42160, Hidalgo, Mexico;
| | - Eduardo Osiris Madrigal-Santillán
- Laboratorio de Medicina de Conservación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, Col. Casco de Santo Tomás, Del. Miguel Hidalgo, Ciudad de México 11340, Mexico; (N.V.-M.); (M.A.-V.)
| | - José A. Morales-González
- Laboratorio de Medicina de Conservación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, Col. Casco de Santo Tomás, Del. Miguel Hidalgo, Ciudad de México 11340, Mexico; (N.V.-M.); (M.A.-V.)
| |
Collapse
|
9
|
Brunst KJ, Zhang L, Zhang X, Baccarelli AA, Bloomquist T, Wright RJ. Associations Between Maternal Lifetime Stress and Placental Mitochondrial DNA Mutations in an Urban Multiethnic Cohort. Biol Psychiatry 2021; 89:570-578. [PMID: 33229036 PMCID: PMC7889635 DOI: 10.1016/j.biopsych.2020.09.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 09/08/2020] [Accepted: 09/10/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND Disrupted placental functioning due to stress can have lifelong implications. Cumulative stress and trauma are likely to have lasting impacts on maternal physiological functioning and offspring development, resulting in increased risk for later-life complex disorders for which racial disparities exist. METHODS This study examined the association between maternal lifetime stress and placental mitochondrial DNA mutational load in an urban multiethnic cohort. Maternal lifetime exposure to stressful events was assessed using the validated Life Stressor Checklist-Revised. Whole mitochondrial DNA sequencing was performed and mutations were determined for 365 placenta samples with complete exposure and covariate data. Multivariable regression was used to model maternal lifetime stress in relation to placental mitochondrial DNA mutational load. Racial/ethnic differences were examined by cross-product terms and contrast statements. Gene-wise analyses were conducted. RESULTS We identified 13,189 heteroplasmies (Phred score > 10,000, minor allele frequency < 0.5, number of mutant reads > 1). Women experiencing increased psychosocial stress over their lifetime exhibited a higher number of total placental mitochondrial mutations (β = .23, 95% confidence interval = .03 to .42) and heteroplasmic mutations (β = .18, 95% confidence interval = .05 to .31) but not homoplasmic mutations (β = -.008, 95% confidence interval = -.03 to .01); the strongest associations were observed among Black women and genes coding for NADH dehydrogenase and cytochrome c oxidase subunits. CONCLUSIONS Cumulative maternal lifetime stress is associated with a greater mitochondrial mutational load, particularly among Black women. The impact of racial/ethnic differences in mutational load on placental function directly affecting offspring development and/or leading to chronic disease disparities warrants further investigation.
Collapse
Affiliation(s)
- Kelly J. Brunst
- University of Cincinnati, College of Medicine, Department of Environmental and Public Health Sciences, 160 Panzeca Way, Cincinnati, OH 45267
| | - Li Zhang
- University of Cincinnati, College of Medicine, Department of Environmental and Public Health Sciences, 160 Panzeca Way, Cincinnati, OH 45267
| | - Xiang Zhang
- University of Cincinnati, College of Medicine, Department of Environmental and Public Health Sciences, 160 Panzeca Way, Cincinnati, OH 45267
| | - Andrea A. Baccarelli
- Columbia University, Mailman School of Public Health, Department of Environmental Health Sciences, 722 West 168 Street, New York, NY 10032
| | - Tessa Bloomquist
- Columbia University, Mailman School of Public Health, Department of Environmental Health Sciences, 722 West 168 Street, New York, NY 10032
| | - Rosalind J. Wright
- Icahn School of Medicine at Mount Sinai, Department of Pediatrics and Department of Environmental Medicine & Public Health, 1 Gustave L. Levy Place, New York, NY 10029
| |
Collapse
|
10
|
Accelerated epigenetic age as a biomarker of cardiovascular sensitivity to traffic-related air pollution. Aging (Albany NY) 2020; 12:24141-24155. [PMID: 33289704 PMCID: PMC7762491 DOI: 10.18632/aging.202341] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 10/27/2020] [Indexed: 11/25/2022]
Abstract
BACKGROUND Accelerated epigenetic age has been proposed as a biomarker of increased aging, which may indicate disruptions in cellular and organ system homeostasis and thus contribute to sensitivity to environmental exposures. METHODS Using 497 participants from the CATHGEN cohort, we evaluated whether accelerated epigenetic aging increases cardiovascular sensitivity to traffic-related air pollution (TRAP) exposure. We used residential proximity to major roadways and source apportioned air pollution models as measures of TRAP exposure, and chose peripheral arterial disease (PAD) and blood pressure as outcomes based on previous associations with TRAP. We used Horvath epigenetic age acceleration (AAD) and phenotypic age acceleration (PhenoAAD) as measures of age acceleration, and adjusted all models for chronological age, race, sex, smoking, and socioeconomic status. RESULTS We observed significant interactions between TRAP and both AAD and PhenoAAD. Interactions indicated that increased epigenetic age acceleration elevated associations between proximity to roadways and PAD. Interactions were also observed between AAD and gasoline and diesel source apportioned PM2.5. CONCLUSION Epigenetic age acceleration may be a biomarker of sensitivity to air pollution, particularly for TRAP in urban cohorts. This presents a novel means by which to understand sensitivity to air pollution and provides a molecular measure of environmental sensitivity.
Collapse
|
11
|
Daiber A, Kuntic M, Hahad O, Delogu LG, Rohrbach S, Di Lisa F, Schulz R, Münzel T. Effects of air pollution particles (ultrafine and fine particulate matter) on mitochondrial function and oxidative stress - Implications for cardiovascular and neurodegenerative diseases. Arch Biochem Biophys 2020; 696:108662. [PMID: 33159890 DOI: 10.1016/j.abb.2020.108662] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 10/28/2020] [Accepted: 10/29/2020] [Indexed: 02/06/2023]
Abstract
Environmental pollution is a major cause of global mortality and burden of disease. All chemical pollution forms together may be responsible for up to 12 million annual excess deaths as estimated by the Lancet Commission on pollution and health as well as the World Health Organization. Ambient air pollution by particulate matter (PM) and ozone was found to be associated with an all-cause mortality rate of up to 9 million in the year 2015, with the majority being of cerebro- and cardiovascular nature (e.g. stroke and ischemic heart disease). Recent evidence suggests that exposure to airborne particles and gases contributes to and accelerates neurodegenerative diseases. Especially, airborne toxic particles contribute to these adverse health effects. Whereas it is well established that air pollution in the form of PM may lead to dysregulation of neurohormonal stress pathways and may trigger inflammation as well as oxidative stress, leading to secondary damage of cardiovascular structures, the mechanistic impact of PM-induced mitochondrial damage and dysfunction is not well established. With the present review we will discuss similarities between mitochondrial damage and dysfunction observed in the development and progression of cardiovascular disease and neurodegeneration as well as those adverse mitochondrial pathomechanisms induced by airborne PM.
Collapse
Affiliation(s)
- Andreas Daiber
- Department of Cardiology, University Medical Center Mainz, Johannes Gutenberg University, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany.
| | - Marin Kuntic
- Department of Cardiology, University Medical Center Mainz, Johannes Gutenberg University, Germany
| | - Omar Hahad
- Department of Cardiology, University Medical Center Mainz, Johannes Gutenberg University, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany
| | - Lucia G Delogu
- Department of Biomedical Sciences, University of Padova, 35131, Padova, Italy
| | - Susanne Rohrbach
- Institute of Physiology, Justus-Liebig University, Giessen, Germany
| | - Fabio Di Lisa
- Department of Biomedical Sciences, University of Padova, 35131, Padova, Italy
| | - Rainer Schulz
- Institute of Physiology, Justus-Liebig University, Giessen, Germany
| | - Thomas Münzel
- Department of Cardiology, University Medical Center Mainz, Johannes Gutenberg University, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany.
| |
Collapse
|
12
|
Asally R, Markham R, Manconi F. Mitochondrial DNA haplogroup H association with endometriosis and possible role in inflammation and pain. JOURNAL OF ENDOMETRIOSIS AND PELVIC PAIN DISORDERS 2020. [DOI: 10.1177/2284026520940518] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Introduction: Endometriosis is an inflammatory disease characterised by the presence of endometrial-like tissue outside the uterus and affects approximately 10%–15% of women in their reproductive years. Pain is one of the predominant symptoms of the disease. Oxidative stress is involved in the pathophysiology of endometriosis and develops when there is an imbalance between the reactive oxygen species and reactive nitrogen species production, and the elimination capacity of antioxidants in the reproductive tract. High levels of reactive oxygen species can induce pain indirectly through oxidative stress-associated inflammation or directly through sensitising the nociceptive neurons that transmit the signals to the cerebral sensory cortex which are perceived as a feeling of pain. Mitochondria are the main source of reactive oxygen species, which generate through oxidative phosphorylation. Given that the mitochondria are involved in reactive oxygen species formation and energy production, which are required for the activation and proliferation of peripheral lymphocytes, it has been suggested that mitochondrial DNA variants are involved in the pathogenesis of endometriosis. This study has provided a better understanding of maternally inherited risk factors which contribute to the pain mechanisms associated with endometriosis. Results: Mitochondrial DNA haplogroup H was found to be significantly higher in women with endometriosis. This study was the first to report the association between the European mitochondrial haplogroup H and the risk of pain associated with endometriosis. Discussion: The results suggest that there are maternally inherited risk factors in women with endometriosis causing high reactive oxygen species production and oxidative stress, which facilitate pain generation in women with endometriosis.
Collapse
Affiliation(s)
- Razan Asally
- Discipline of Obstetrics, Gynaecology and Neonatology, The University of Sydney, Camperdown, NSW, Australia
- Saudi Arabian Ministry of Higher Education, Riyadh, Saudi Arabia
| | - Robert Markham
- Discipline of Obstetrics, Gynaecology and Neonatology, The University of Sydney, Camperdown, NSW, Australia
| | - Frank Manconi
- Discipline of Obstetrics, Gynaecology and Neonatology, The University of Sydney, Camperdown, NSW, Australia
| |
Collapse
|
13
|
Kunovac A, Hathaway QA, Pinti MV, Taylor AD, Hollander JM. Cardiovascular adaptations to particle inhalation exposure: molecular mechanisms of the toxicology. Am J Physiol Heart Circ Physiol 2020; 319:H282-H305. [PMID: 32559138 PMCID: PMC7473925 DOI: 10.1152/ajpheart.00026.2020] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 06/12/2020] [Accepted: 06/12/2020] [Indexed: 12/13/2022]
Abstract
Ambient air, occupational settings, and the use and distribution of consumer products all serve as conduits for toxicant exposure through inhalation. While the pulmonary system remains a primary target following inhalation exposure, cardiovascular implications are exceptionally culpable for increased morbidity and mortality. The epidemiological evidence for cardiovascular dysfunction resulting from acute or chronic inhalation exposure to particulate matter has been well documented, but the mechanisms driving the resulting disturbances remain elusive. In the current review, we aim to summarize the cellular and molecular mechanisms that are directly linked to cardiovascular health following exposure to a variety of inhaled toxicants. The purpose of this review is to provide a comprehensive overview of the biochemical changes in the cardiovascular system following particle inhalation exposure and to highlight potential biomarkers that exist across multiple exposure paradigms. We attempt to integrate these molecular signatures in an effort to provide direction for future investigations. This review also characterizes how molecular responses are modified in at-risk populations, specifically the impact of environmental exposure during critical windows of development. Maternal exposure to particulate matter during gestation can lead to fetal epigenetic reprogramming, resulting in long-term deficits to the cardiovascular system. In both direct and indirect (gestational) exposures, connecting the biochemical mechanisms with functional deficits outlines pathways that can be targeted for future therapeutic intervention. Ultimately, future investigations integrating "omics"-based approaches will better elucidate the mechanisms that are altered by xenobiotic inhalation exposure, identify biomarkers, and guide in clinical decision making.
Collapse
Affiliation(s)
- Amina Kunovac
- Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, West Virginia
- Mitochondria, Metabolism & Bioenergetics Working Group, West Virginia University School of Medicine, Morgantown, West Virginia
- Center for Inhalation Toxicology, West Virginia University School of Medicine, Morgantown, West Virginia
| | - Quincy A Hathaway
- Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, West Virginia
- Mitochondria, Metabolism & Bioenergetics Working Group, West Virginia University School of Medicine, Morgantown, West Virginia
- Center for Inhalation Toxicology, West Virginia University School of Medicine, Morgantown, West Virginia
| | - Mark V Pinti
- Mitochondria, Metabolism & Bioenergetics Working Group, West Virginia University School of Medicine, Morgantown, West Virginia
- West Virginia University School of Pharmacy, Morgantown, West Virginia
| | - Andrew D Taylor
- Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, West Virginia
- Mitochondria, Metabolism & Bioenergetics Working Group, West Virginia University School of Medicine, Morgantown, West Virginia
| | - John M Hollander
- Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, West Virginia
- Mitochondria, Metabolism & Bioenergetics Working Group, West Virginia University School of Medicine, Morgantown, West Virginia
- Center for Inhalation Toxicology, West Virginia University School of Medicine, Morgantown, West Virginia
| |
Collapse
|
14
|
Impairment of mitochondrial function by particulate matter: Implications for the brain. Neurochem Int 2020; 135:104694. [DOI: 10.1016/j.neuint.2020.104694] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 02/03/2020] [Accepted: 02/04/2020] [Indexed: 12/18/2022]
|
15
|
Riaz H, Syed BM, Laghari Z, Pirzada S. Analysis of inflammatory markers in apparently healthy automobile vehicle drivers in response to exposure to traffic pollution fumes. Pak J Med Sci 2020; 36:657-662. [PMID: 32494251 PMCID: PMC7260889 DOI: 10.12669/pjms.36.4.2025] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Objective: This study aimed to evaluate pattern of markers of inflammation in apparently healthy drivers who exposed to traffic fumes. Methods: This cross-sectional study was conducted from June 2016 to January 2017 at Liaquat University of Medical & Health Sciences (LUMHS), Jamshoro. It looked into the effects of traffic pollutants on markers of inflammation including CRP, Leukocytes count, IL-6, TNF-α, TNF-β of healthy human volunteers. Eighty-seven, apparently healthy, non-smoking automobile vehicle drivers, having daily contact of traffic exhaust for at least six hours, aged between 18-40 years recruited for this study. Levels of traffic-generated pollutants P.M2.5, P.M10, NOx were recorded in different areas of Hyderabad City. Results: P.M2.5 found to be positively correlated with markers of inflammation including IL-6 (rs = 0.99), TNF-α (rs = 0.41), CRP mg/dl (rs = 0.99) , neutrophils (rs = 0.29), lymphocytes (rs = 0.31), eosinophils (rs = 0.20), monocytes (rs = 0.42) and basophils (rs = 0.16). Positive correlation present among IL-6 (rs = 0.21), TNF-α (rs = 0.49) and CRP mg/dl (rs = 0.22) % (rs = -0.31), Leukocytes (rs = 0.14) neutrophils (rs = 0.31), lymphocytes (rs = 0.21), monocytes (rs = 0.50), basophils (rs = 0.17) with P.M10. NOx showed positive correlation with IL-6 (rs = 0.22), TNF-α (rs = 0.48), CRP (rs = 0.22), neutrophils (rs = 0.31), lymphocytes (rs = 0.13), basophils (rs = 0.17) and monocytes (rs = 0.48). Conclusion: Findings of our study suggest that almost all markers of inflammation are positively correlated with traffic pollutants and this condition might raise the risk of systemic diseases.
Collapse
Affiliation(s)
- Hina Riaz
- Dr. Hina Riaz, MBBS, Lecturer, Department of Physiology, Liaquat University of Medical & Health Sciences (LUMHS), Jamshoro, Pakistan
| | - Binafsha Manzoor Syed
- Dr. Binafsha Manzoor Syed, MBBS, PhD, Director Medical Research Centre, Director Clinical Research Division, Director ORIC, Liaquat University of Medical & Health Sciences (LUMHS), Jamshoro, Pakistan
| | - Zulfiqar Laghari
- Prof. Dr. Zulfiqar Laghari, PhD, Chairperson, Department of Physiology, University of Sindh, Jamshoro, Pakistan
| | - Suleman Pirzada
- Dr. Suleman Peerzada, MBBS, PhD, Assistant Professor, Department of Molecular Biology and Genetics, Liaquat University of Medical & Health Sciences (LUMHS), Jamshoro, Pakistan
| |
Collapse
|
16
|
Towarnicki SG, Kok LM, Ballard JWO. Yin and Yang of mitochondrial ROS in Drosophila. JOURNAL OF INSECT PHYSIOLOGY 2020; 122:104022. [PMID: 32045573 DOI: 10.1016/j.jinsphys.2020.104022] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 12/12/2019] [Accepted: 02/07/2020] [Indexed: 06/10/2023]
Abstract
In this study, we test the hypothesis that Drosophila larvae producing mildly elevated levels of endogenous mitochondrial reactive oxygen species (ROS) benefit in stressful environmental conditions due to the priming of antioxidant responses. Reactive oxygen species (ROS) are produced as a by-product of oxidative phosphorylation and may be elevated when mutations decrease the efficiency of ATP production. In moderation, ROS are necessary for cell signaling and organismal health, but in excess can damage DNA, proteins, and lipids. We utilize two Drosophila melanogaster strains (Dahomey and Alstonville) that share the same nuclear genetic background but differ in their mitochondrial DNA haplotypes. Previously, we reported that Dahomey larvae harboring the V161L ND4 mtDNA mutation have reduced proton pumping and higher levels of mitochondrial ROS than Alstonville larvae when they are fed a 1:2 protein: carbohydrate (P:C) diet. Here, we explore the potential for mitochondrial ROS to provide resistance to dietary stressors by feeding larvae 1:2 P:C food supplemented with ethanol or hydrogen peroxide (H2O2). When fed a diet supplemented with ethanol or H2O2, Dahomey develop more quickly than Alstonville into larger pupae, while Alstonville developed faster on the control. Dahomey larvae displayed higher antioxidant capacity than Alstonville on all diets, with mitochondrial H2O2 levels unchanged after the addition of stressors. Addition of stressors to the diet did not affect the mitochondrial functions of Dahomey larvae as measured by mitochondrial membrane potential, respiratory control ratio, or larval survival after bacterial challenge. In contrast, Alstonville larvae developed slower, had lower pupal weight, higher cytosolic H2O2, and had reduced mitochondrial functions. Further, Alstonville larvae fed the ethanol treated diet had lower survival after bacterial infection than those fed the control diet. Surprisingly, they had greater survival when fed diet with H2O2 indicating a mitotype by stressor interaction that influences the immune response. Overall, these data suggest that elevated mitochondrial ROS in Dahomey can result in greater antioxidant capacity that prevents oxidative damage from exogenous stressors and may be a conserved response to high ethanol found in rotting fruit.
Collapse
Affiliation(s)
- Samuel G Towarnicki
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia.
| | - Leanne M Kok
- Saxion University of Applied Sciences Maarten Harpertszoon Tromplaan 28, 7513 AB Enschede, The Netherlands.
| | - J William O Ballard
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia.
| |
Collapse
|
17
|
Ma H, Wang H, Zhang H, Guo H, Zhang W, Hu F, Yao Y, Wang D, Li C, Wang J. Effects of phenanthrene on oxidative stress and inflammation in lung and liver of female rats. ENVIRONMENTAL TOXICOLOGY 2020; 35:37-46. [PMID: 31456356 DOI: 10.1002/tox.22840] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 08/08/2019] [Accepted: 08/09/2019] [Indexed: 06/10/2023]
Abstract
Phenanthrene (Phe) female rat model was established to explore the effects of Phe on oxidative stress and inflammation. The rats were randomly divided into three groups including control (C), low (L), and high (H) group. Phe was supplied to L and H groups at the dosage of 180 mg/kg and 900 mg/kg orally at first day, and with the dose 90 mg/kg and 450 mg/kg by intraperitoneal injection at the last 2 days. The C group was enriched with the same volume of corn oil. The blood, lung, and liver tissues were collected. The superoxide dismutase (SOD), malonaldehyde (MDA), and 8-hydroxy-2-deoxyguanosine (8-OHdG) were detected to evaluate oxidative stress. The protein and mRNA expressions of interleukin 6 (IL-6), tumor necrosis factor-α (TNF-α), transforming growth factor-β (TGF-β), and interleukin 10 (IL-10) were detected to evaluate inflammation. Further, the forkhead box transcription factor 3 (Foxp3) was analyzed to hint the injury mechanism of inflammation. The results showed SOD and MDA in lung and liver, and serum 8-OHdG elevated significantly in H groups (P < .05). Meanwhile, there were significant increases in the protein and mRNA expression of TNF-α and IL-6 in lung and liver of H groups (P < .05). In addition, the protein and mRNA expressions of TGF-β and Foxp3 were all decreased significantly in both lung and liver of H groups (P < .05). Results demonstrated that an obvious change of Phe exposure could induce oxidative stress and inflammation in female rats. This is a first pilot study to explore the association between Phe exposure and oxidative stress and inflammation using a female rat model.
Collapse
Affiliation(s)
- Haitao Ma
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, Gansu, China
| | - Huiling Wang
- Department of Integrated Chinese and Western Medicine Gynecology, Gansu Provincial Maternity and Child-care Hospital, Lanzhou, China
| | - Haojun Zhang
- Department of Hospital Infection, People's Hospital of Gansu Province, Lanzhou, China
| | - Huizhen Guo
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, Gansu, China
| | - Wenwen Zhang
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, Gansu, China
| | - Fengjing Hu
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, Gansu, China
| | - Yueli Yao
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, Gansu, China
| | - Dong Wang
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, Gansu, China
| | - Chengyun Li
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, Gansu, China
| | - Junling Wang
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, Gansu, China
| |
Collapse
|
18
|
Jhun I, Kim J, Cho B, Gold DR, Schwartz J, Coull BA, Zanobetti A, Rice MB, Mittleman MA, Garshick E, Vokonas P, Bind MA, Wilker EH, Dominici F, Suh H, Koutrakis P. Synthesis of Harvard Environmental Protection Agency (EPA) Center studies on traffic-related particulate pollution and cardiovascular outcomes in the Greater Boston Area. JOURNAL OF THE AIR & WASTE MANAGEMENT ASSOCIATION (1995) 2019; 69:900-917. [PMID: 30888266 PMCID: PMC6650311 DOI: 10.1080/10962247.2019.1596994] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 03/11/2019] [Indexed: 05/24/2023]
Abstract
The association between particulate pollution and cardiovascular morbidity and mortality is well established. While the cardiovascular effects of nationally regulated criteria pollutants (e.g., fine particulate matter [PM2.5] and nitrogen dioxide) have been well documented, there are fewer studies on particulate pollutants that are more specific for traffic, such as black carbon (BC) and particle number (PN). In this paper, we synthesized studies conducted in the Greater Boston Area on cardiovascular health effects of traffic exposure, specifically defined by BC or PN exposure or proximity to major roadways. Large cohort studies demonstrate that exposure to traffic-related particles adversely affect cardiac autonomic function, increase systemic cytokine-mediated inflammation and pro-thrombotic activity, and elevate the risk of hypertension and ischemic stroke. Key patterns emerged when directly comparing studies with overlapping exposure metrics and population cohorts. Most notably, cardiovascular risk estimates of PN and BC exposures were larger in magnitude or more often statistically significant compared to those of PM2.5 exposures. Across multiple exposure metrics (e.g., short-term vs. long-term; observed vs. modeled) and different population cohorts (e.g., elderly, individuals with co-morbidities, young healthy individuals), there is compelling evidence that BC and PN represent traffic-related particles that are especially harmful to cardiovascular health. Further research is needed to validate these findings in other geographic locations, characterize exposure errors associated with using monitored and modeled traffic pollutant levels, and elucidate pathophysiological mechanisms underlying the cardiovascular effects of traffic-related particulate pollutants. Implications: Traffic emissions are an important source of particles harmful to cardiovascular health. Traffic-related particles, specifically BC and PN, adversely affect cardiac autonomic function, increase systemic inflammation and thrombotic activity, elevate BP, and increase the risk of ischemic stroke. There is evidence that BC and PN are associated with greater cardiovascular risk compared to PM2.5. Further research is needed to elucidate other health effects of traffic-related particles and assess the feasibility of regulating BC and PN or their regional and local sources.
Collapse
Affiliation(s)
- Iny Jhun
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA
- Harvard Medical School, Boston, MA
| | - Jina Kim
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA
| | | | - Diane R. Gold
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA
- Harvard Medical School, Boston, MA
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Boston, MA
| | - Joel Schwartz
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA
| | - Brent A. Coull
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Antonella Zanobetti
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA
| | - Mary B. Rice
- Division of Pulmonary, Critical Care and Sleep Medicine, Beth Israel Deaconess Medical Center, Boston, MA
| | - Murray A. Mittleman
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA
- Cardiovascular Epidemiology Research Unit, Beth Israel Deaconess Medical Center, Boston, MA
| | - Eric Garshick
- Harvard Medical School, Boston, MA
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Boston, MA
- Pulmonary, Allergy, Sleep and Critical Care Medicine, Veterans Affairs Boston Healthcare System, Boston, MA
| | - Pantel Vokonas
- Veterans Affairs Normative Aging Study, Veterans Affairs Boston Healthcare System, Boston, MA
- Department of Preventive Medicine and Epidemiology, Boston University School of Medicine, Boston, MA
| | - Marie-Abele Bind
- Faculty of Arts and Sciences, Science Center, Harvard University, Cambridge, MA
| | - Elissa H. Wilker
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA
- Cardiovascular Epidemiology Research Unit, Beth Israel Deaconess Medical Center, Boston, MA
- Sanofi Genzyme, Cambridge, MA
| | - Francesca Dominici
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Helen Suh
- Tufts University, Department of Civil and Environmental Engineering, Medford, MA
| | - Petros Koutrakis
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA
| |
Collapse
|
19
|
Ward-Caviness CK. A review of gene-by-air pollution interactions for cardiovascular disease, risk factors, and biomarkers. Hum Genet 2019; 138:547-561. [DOI: 10.1007/s00439-019-02004-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 03/22/2019] [Indexed: 02/07/2023]
|
20
|
Health effects of ultrafine particles: a systematic literature review update of epidemiological evidence. Int J Public Health 2019; 64:547-559. [DOI: 10.1007/s00038-019-01202-7] [Citation(s) in RCA: 200] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 01/04/2019] [Accepted: 01/09/2019] [Indexed: 12/21/2022] Open
|
21
|
Boovarahan SR, Kurian GA. Mitochondrial dysfunction: a key player in the pathogenesis of cardiovascular diseases linked to air pollution. REVIEWS ON ENVIRONMENTAL HEALTH 2018; 33:111-122. [PMID: 29346115 DOI: 10.1515/reveh-2017-0025] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 12/11/2017] [Indexed: 06/07/2023]
Abstract
Air pollution has become an environmental burden with regard to non-communicable diseases, particularly heart disease. It has been reported that air pollution can accelerate the development of heart failure and atrial fibrillation. Air pollutants encompass various particulate matters (PMs), which change the blood composition and heart rate and eventually leads to cardiac failure by triggering atherosclerotic plaque ruptures or by developing irreversible ischemia. A series of major epidemiological and observational studies have established the noxious effect of air pollutants on cardiovascular diseases (CVD), but the underlying molecular mechanisms of its susceptibility and the pathological disease events remain largely elusive and are predicted to be initiated in the cell organelle. The basis of this belief is that mitochondria are one of the major targets of environmental toxicants that can damage mitochondrial morphology, function and its DNA (manifested in non-communicable diseases). In this article, we review the literature related to air pollutants that adversely affect the progression of CVD and that target mitochondrial morphological and functional activities and how mitochondrial DNA (mtDNA) copy number variation, which reflects the airborne oxidant-induced cell damage, correlates with heart failure. We conclude that environmental health assessment should focus on the cellular/circulatory mitochondrial functional copy number status, which can predict the outcome of CVD.
Collapse
Affiliation(s)
- Sri Rahavi Boovarahan
- Vascular Biology Laboratory, School of Chemical and Biotechnology, SASTRA University, Thanjavur, Tamilnadu, India
| | - Gino A Kurian
- Vascular Biology Laboratory, School of Chemical and Biotechnology, SASTRA University, Thanjavur, Tamilnadu, India
| |
Collapse
|
22
|
Kurai J, Watanabe M, Sano H, Iwata K, Hantan D, Shimizu E. A Muscarinic Antagonist Reduces Airway Inflammation and Bronchoconstriction Induced by Ambient Particulate Matter in a Mouse Model of Asthma. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:ijerph15061189. [PMID: 29882826 PMCID: PMC6025324 DOI: 10.3390/ijerph15061189] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 06/04/2018] [Accepted: 06/04/2018] [Indexed: 01/29/2023]
Abstract
Ambient particulate matter (PM) can increase airway inflammation and induce bronchoconstriction in asthma. This study aimed to investigate the effect of tiotropium bromide, a long-acting muscarinic antagonist, on airway inflammation and bronchoconstriction induced by ambient PM in a mouse model of asthma. We compared the effect of tiotropium bromide to that of fluticasone propionate and formoterol fumarate. BALB/c mice were sensitized to ovalbumin (OVA) via the airways and then administered tiotropium bromide, fluticasone propionate, or formoterol fumarate. Mice were also sensitized to ambient PM via intranasal instillation. Differential leukocyte counts and the concentrations of interferon (IFN)-γ, interleukin (IL)-5, IL-6, IL-13, and keratinocyte-derived chemokine (KC/CXCL1) were measured in bronchoalveolar lavage fluid (BALF). Diacron-reactive oxygen metabolites (dROMs) were measured in the serum. Airway resistance and airway inflammation were evaluated in lung tissue 24 h after the OVA challenge. Ambient PM markedly increased neutrophilic airway inflammation in mice with OVA-induced asthma. Tiotropium bromide improved bronchoconstriction, and reduced neutrophil numbers, decreased the concentrations of IL-5, IL-6, IL-13, and KC/CXCL1 in BALF. However, tiotropium bromide did not decrease the levels of dROMs increased by ambient PM. Though eosinophilic airway inflammation was reduced with fluticasone propionate, neutrophilic airway inflammation was unaffected. Bronchoconstriction was improved with formoterol fumarate, but not with fluticasone propionate. In conclusion, tiotropium bromide reduced bronchoconstriction, subsequently leading to reduced neutrophilic airway inflammation induced by ambient PM.
Collapse
Affiliation(s)
- Jun Kurai
- Department of Respiratory Medicine and Rheumatology, Faculty of Medicine, Tottori University, 36-1 Nishi-cho, Yonago, Tottori 683-8504, Japan.
| | - Masanari Watanabe
- Department of Respiratory Medicine and Rheumatology, Faculty of Medicine, Tottori University, 36-1 Nishi-cho, Yonago, Tottori 683-8504, Japan.
| | - Hiroyuki Sano
- Department of Respiratory Medicine and Allergology, Kinki University, 377-2 Ohnohigashi, Osakasayama, Osaka 589-0014, Japan.
| | - Kyoko Iwata
- Department of Respiratory Medicine and Rheumatology, Faculty of Medicine, Tottori University, 36-1 Nishi-cho, Yonago, Tottori 683-8504, Japan.
- Mio Fertility Clinic, Reproductive Centre, 2-2-1 Kuzumo-Minami, Yonago, Tottori 683-0008, Japan.
| | - Degejirihu Hantan
- Department of Respiratory Medicine and Rheumatology, Faculty of Medicine, Tottori University, 36-1 Nishi-cho, Yonago, Tottori 683-8504, Japan.
| | - Eiji Shimizu
- Department of Respiratory Medicine and Rheumatology, Faculty of Medicine, Tottori University, 36-1 Nishi-cho, Yonago, Tottori 683-8504, Japan.
| |
Collapse
|
23
|
p66Shc Mediates Mitochondrial Dysfunction Dependent on PKC Activation in Airway Epithelial Cells Induced by Cigarette Smoke. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:5837123. [PMID: 29849902 PMCID: PMC5925171 DOI: 10.1155/2018/5837123] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Revised: 02/08/2018] [Accepted: 02/28/2018] [Indexed: 12/02/2022]
Abstract
Airway epithelial mitochondrial injury plays a critical role in the pathogenesis of chronic obstructive pulmonary disease (COPD). The p66Shc adaptor protein is a newly recognized mediator of mitochondrial dysfunction. However, little is known about the effect of p66Shc on airway epithelial damage in the development of COPD. The aim of the present study is to investigate the roles of p66Shc and its upstream regulators in the mitochondrial injury of airway epithelial cells (Beas-2b) induced by cigarette smoke extract (CSE). Our present study revealed that CSE increased p66Shc expression and its mitochondrial translocation in concentration and time-dependent manners in airway epithelial cells. And p66Shc siRNA significantly attenuated mitochondrial dysfunction and cell injury when airway epithelial cells were stimulated with 7.5% CSE. The total and phosphorylated expression of PKCβ and PKCδ was significantly increased associated with mitochondrial dysfunction and cell injury when airway epithelial cells were exposed to 7.5% CSE. The pretreatments with pharmacological inhibitors of PKCβ and PKCδ could notably suppress p66Shc phosphorylation and its mitochondrial translocation and protect the mitochondria and cells against oxidative damage when airway epithelial cells were incubated with 7.5% CSE. These data suggest that a novel PKCβ/δ-p66Shc signaling pathway may be involved in the pathogenesis of COPD and other oxidative stress-associated pulmonary diseases and provide a potential therapeutic target for these diseases.
Collapse
|
24
|
Chen Y, Meyer JN, Hill HZ, Lange G, Condon MR, Klein JC, Ndirangu D, Falvo MJ. Role of mitochondrial DNA damage and dysfunction in veterans with Gulf War Illness. PLoS One 2017; 12:e0184832. [PMID: 28910366 PMCID: PMC5599026 DOI: 10.1371/journal.pone.0184832] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 08/31/2017] [Indexed: 11/22/2022] Open
Abstract
Gulf War Illness (GWI) is a chronic multi-symptom illness not currently diagnosed by standard medical or laboratory test that affects 30% of veterans who served during the 1990-1991 Gulf War. The clinical presentation of GWI is comparable to that of patients with certain mitochondrial disorders-i.e., clinically heterogeneous multisystem symptoms. Therefore, we hypothesized that mitochondrial dysfunction may contribute to both the symptoms of GWI as well as its persistence over time. We recruited 21 cases of GWI (CDC and Kansas criteria) and 7 controls to participate in this study. Peripheral blood samples were obtained in all participants and a quantitative polymerase chain reaction (QPCR) based assay was performed to quantify mitochondrial and nuclear DNA lesion frequency and mitochondrial DNA (mtDNA) copy number (mtDNAcn) from peripheral blood mononuclear cells. Samples were also used to analyze nuclear DNA lesion frequency and enzyme activity for mitochondrial complexes I and IV. Both mtDNA lesion frequency (p = 0.015, d = 1.13) and mtDNAcn (p = 0.001; d = 1.69) were elevated in veterans with GWI relative to controls. Nuclear DNA lesion frequency was also elevated in veterans with GWI (p = 0.344; d = 1.41), but did not reach statistical significance. Complex I and IV activity (p > 0.05) were similar between groups and greater mtDNA lesion frequency was associated with reduced complex I (r2 = -0.35, p = 0.007) and IV (r2 = -0.28, p < 0.01) enzyme activity. In conclusion, veterans with GWI exhibit greater mtDNA damage which is consistent with mitochondrial dysfunction.
Collapse
Affiliation(s)
- Yang Chen
- War Related Illness and Injury Study Center, Veterans Affairs New Jersey Health Care System, East Orange, New Jersey, United States of America
- New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, New Jersey, United States of America
| | - Joel N Meyer
- Nicholas School of the Environment, Duke University, Durham, North Carolina, United States of America
| | - Helene Z Hill
- New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, New Jersey, United States of America
| | - Gudrun Lange
- Pain and Fatigue Study Center, Beth Israel Medical Center and Albert Einstein Medical Center, New York, New York, United States of America
| | - Michael R Condon
- New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, New Jersey, United States of America
- Surgical Services, Veterans Affairs New Jersey Health Care System, East Orange, New Jersey, United States of America
| | - Jacquelyn C Klein
- War Related Illness and Injury Study Center, Veterans Affairs New Jersey Health Care System, East Orange, New Jersey, United States of America
| | - Duncan Ndirangu
- War Related Illness and Injury Study Center, Veterans Affairs New Jersey Health Care System, East Orange, New Jersey, United States of America
| | - Michael J Falvo
- War Related Illness and Injury Study Center, Veterans Affairs New Jersey Health Care System, East Orange, New Jersey, United States of America
- New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, New Jersey, United States of America
| |
Collapse
|
25
|
Abstract
PURPOSE OF THE REVIEW The connections between allergy, asthma and metabolic syndrome are becoming increasingly clear. Recent research suggests a unifying mitochondrial link between the diverse phenotypes of these interlinked morbidities. The scope of this review is to highlight cellular mechanisms, epidemiology and environmental allergens influencing mitochondrial function and its importance in allergy and asthma. We briefly also consider the potential of mitochondria-targeted therapies in prevention and cure. RECENT FINDINGS Recent research has shown allergy, asthma and metabolic syndrome to be linked to mitochondrial dysfunction. Environmental pollutants and allergens are observed to cause mitochondrial dysfunction, primarily by inducing oxidative stress and ROS production. Malfunctioning mitochondria change the bioenergetics of the cell and its metabolic profile to favour systemic inflammation, which drives all three types of morbidities. Given the existing experimental evidence, approaches targeting mitochondria (e.g. antioxidant therapy and mitochondrial replacement) are being conducted in relevant disease models-with some progressing towards clinical trials, making mitochondrial function the focus of translational therapy research in asthma, allergy and linked metabolic syndrome.
Collapse
Affiliation(s)
- Divyaanka Iyer
- CSIR Institute of Genomics and Integrative Biology, Delhi University campus, Mall Road, Delhi, 110007, India
| | - Navya Mishra
- Indian Institute of Public Health, Gurugram, India.,Chest Research Foundation, Pune, India.,Academy of Scientific and Innovative Research, New Delhi, India
| | - Anurag Agrawal
- CSIR Institute of Genomics and Integrative Biology, Delhi University campus, Mall Road, Delhi, 110007, India. .,Academy of Scientific and Innovative Research, New Delhi, India.
| |
Collapse
|
26
|
Nwanaji-Enwerem JC, Colicino E, Dai L, Cayir A, Sanchez-Guerra M, Laue HE, Nguyen VT, Di Q, Just AC, Hou L, Vokonas P, Coull BA, Weisskopf MG, Baccarelli AA, Schwartz JD. Impacts of the Mitochondrial Genome on the Relationship of Long-Term Ambient Fine Particle Exposure with Blood DNA Methylation Age. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:8185-8195. [PMID: 28636816 PMCID: PMC5555236 DOI: 10.1021/acs.est.7b02409] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The mitochondrial genome has long been implicated in age-related disease, but no studies have examined its role in the relationship of long-term fine particle (PM2.5) exposure and DNA methylation age (DNAm-age)-a novel measure of biological age. In this analysis based on 940 observations between 2000 and 2011 from 552 Normative Aging Study participants, we determined the roles of mitochondrial DNA haplogroup variation and mitochondrial genome abundance in the relationship of PM2.5 with DNAm-age. We used the GEOS-chem transport model to estimate address-specific, one-year PM2.5 levels for each participant. DNAm-age and mitochondrial DNA markers were measured from participant blood samples. Nine haplogroups (H, I, J, K, T, U, V, W, and X) were present in the population. In fully adjusted linear mixed-effects models, the association of PM2.5 with DNAm-age (in years) was significantly diminished in carriers of haplogroup V (Pinteraction = 0.01; β = 0.18, 95%CI: -0.41, 0.78) compared to noncarriers (β = 1.25, 95%CI: 0.58, 1.93). Mediation analysis estimated that decreases in mitochondrial DNA copy number, a measure of mitochondrial genome abundance, mediated 12% of the association of PM2.5 with DNAm-age. Our data suggests that the mitochondrial genome plays a role in DNAm-age relationships particularly in the context of long-term PM2.5 exposure.
Collapse
Affiliation(s)
- Jamaji C. Nwanaji-Enwerem
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA, 02115
| | - Elena Colicino
- Department of Environmental Health Sciences, Columbia Mailman School of Public Health, New York, NY, USA, 10032
| | - Lingzhen Dai
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA, 02115
| | - Akin Cayir
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA, 02115
- Vocational Health College, Canakkale Onsekiz Mart University, Canakkale, Turkey, 17100
| | - Marco Sanchez-Guerra
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA, 02115
- Department of Developmental Neurobiology, National Institute of Perinatology, Mexico City, Mexico, 11000
| | - Hannah E. Laue
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA, 02115
- Department of Environmental Health Sciences, Columbia Mailman School of Public Health, New York, NY, USA, 10032
| | - Vy T. Nguyen
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA, 02115
| | - Qian Di
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA, 02115
| | - Allan C. Just
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA, 10029
| | - Lifang Hou
- Center for Population Epigenetics, Department of Preventive Medicine, Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA, 60611
| | - Pantel Vokonas
- VA Normative Aging Study, Veterans Affairs Boston Healthcare System and the Department of Medicine, Boston University School of Medicine, Boston, MA, USA, 02118
| | - Brent A. Coull
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA, 02115
| | - Marc G. Weisskopf
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA, 02115
| | - Andrea A. Baccarelli
- Department of Environmental Health Sciences, Columbia Mailman School of Public Health, New York, NY, USA, 10032
| | - Joel D. Schwartz
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA, 02115
| |
Collapse
|
27
|
Liberatore KL, Dukowic-Schulze S, Miller ME, Chen C, Kianian SF. The role of mitochondria in plant development and stress tolerance. Free Radic Biol Med 2016; 100:238-256. [PMID: 27036362 DOI: 10.1016/j.freeradbiomed.2016.03.033] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 03/25/2016] [Accepted: 03/28/2016] [Indexed: 01/03/2023]
Abstract
Eukaryotic cells require orchestrated communication between nuclear and organellar genomes, perturbations in which are linked to stress response and disease in both animals and plants. In addition to mitochondria, which are found across eukaryotes, plant cells contain a second organelle, the plastid. Signaling both among the organelles (cytoplasmic) and between the cytoplasm and the nucleus (i.e. nuclear-cytoplasmic interactions (NCI)) is essential for proper cellular function. A deeper understanding of NCI and its impact on development, stress response, and long-term health is needed in both animal and plant systems. Here we focus on the role of plant mitochondria in development and stress response. We compare and contrast features of plant and animal mitochondrial genomes (mtDNA), particularly highlighting the large and highly dynamic nature of plant mtDNA. Plant-based tools are powerful, yet underutilized, resources for enhancing our fundamental understanding of NCI. These tools also have great potential for improving crop production. Across taxa, mitochondria are most abundant in cells that have high energy or nutrient demands as well as at key developmental time points. Although plant mitochondria act as integrators of signals involved in both development and stress response pathways, little is known about plant mtDNA diversity and its impact on these processes. In humans, there are strong correlations between particular mitotypes (and mtDNA mutations) and developmental differences (or disease). We propose that future work in plants should focus on defining mitotypes more carefully and investigating their functional implications as well as improving techniques to facilitate this research.
Collapse
Affiliation(s)
- Katie L Liberatore
- United States Department of Agriculture-Agricultural Research Service, Cereal Disease Laboratory, St. Paul, MN 55108, United States; Department of Plant Pathology, University of Minnesota, St. Paul, MN 55108, United States.
| | | | - Marisa E Miller
- United States Department of Agriculture-Agricultural Research Service, Cereal Disease Laboratory, St. Paul, MN 55108, United States; Department of Horticultural Science, University of Minnesota, St. Paul, MN 55108, United States
| | - Changbin Chen
- Department of Horticultural Science, University of Minnesota, St. Paul, MN 55108, United States
| | - Shahryar F Kianian
- United States Department of Agriculture-Agricultural Research Service, Cereal Disease Laboratory, St. Paul, MN 55108, United States; Department of Plant Pathology, University of Minnesota, St. Paul, MN 55108, United States
| |
Collapse
|
28
|
Bjørklund G, Chirumbolo S. Role of oxidative stress and antioxidants in daily nutrition and human health. Nutrition 2016; 33:311-321. [PMID: 27746034 DOI: 10.1016/j.nut.2016.07.018] [Citation(s) in RCA: 148] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 07/14/2016] [Accepted: 07/24/2016] [Indexed: 12/20/2022]
Abstract
Diet may be defined as a complex process that should involve a deeper comprehension of metabolism, energy balance, and the molecular pathways involved in cellular stress response and survival, gut microflora genetics, enzymatic polymorphism within the human population, and the role of plant-derived polyphenols in this context. Metabolic syndrome, encompassing pathologies with a relatively high morbidity, such as type 2 diabetes, obesity, and cardiovascular disease, is a bullet point of the big concern about how daily dietary habits should promote health and prevent metabolic impairments to prevent hospitalization and the need for health care. From a clinical point of view, very few papers deal with this concern, whereas most of the evidence reported focuses on in vitro and animal models, which study the activity of phytochemicals contained in the daily diet. A fundamental issue addressed by dietitians deals with the role exerted by redox-derived reactive species. Most plant polyphenols act as antioxidants, but recent evidence supports the idea that these compounds primarily activate a mild oxidative stress to elicit a positive, beneficial response from cells. How these compounds may act upon the detoxifying system exerting a scavenging role from reactive oxygen or nitrogen species is still a matter of debate; however, it can be argued that their role is even more complex than expected, acting as signaling molecules in the cross-talk mitochondria-endoplasmic reticulum and in enzymatic pathways involved in the energetic balance. In this relationship, a fundamental role is played by the brain-adipose tissue-gut axis. The aim of this review was to elucidate this topic and the state of art about the role of reactive species in cell signaling and the function of metabolism and survival to reappraise the role of plant-derived chemicals.
Collapse
Affiliation(s)
- Geir Bjørklund
- Council for Nutritional and Environmental Medicine (CONEM), Mo i Rana, Norway
| | - Salvatore Chirumbolo
- Department of Neurological and Movement Sciences, University of Verona, Verona, Italy.
| |
Collapse
|
29
|
Zhang Y, Dong S, Wang H, Tao S, Kiyama R. Biological impact of environmental polycyclic aromatic hydrocarbons (ePAHs) as endocrine disruptors. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2016; 213:809-824. [PMID: 27038213 DOI: 10.1016/j.envpol.2016.03.050] [Citation(s) in RCA: 220] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Revised: 03/03/2016] [Accepted: 03/20/2016] [Indexed: 05/20/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are often detected in the environment and are regarded as endocrine disruptors. We here designated mixtures of PAHs in the environment as environmental PAHs (ePAHs) to discuss their effects collectively, which could be different from the sum of the constituent PAHs. We first summarized the biological impact of environmental PAHs (ePAHs) found in the atmosphere, sediments, soils, and water as a result of human activities, accidents, or natural phenomena. ePAHs are characterized by their sources and forms, followed by their biological effects and social impact, and bioassays that are used to investigate their biological effects. The findings of the bioassays have demonstrated that ePAHs have the ability to affect the endocrine systems of humans and animals. The pathways that mediate cell signaling for the endocrine disruptions induced by ePAHs and PAHs have also been summarized in order to obtain a clearer understanding of the mechanisms responsible for these effects without animal tests; they include specific signaling pathways (MAPK and other signaling pathways), regulatory mechanisms (chromatin/epigenetic regulation, cell cycle/DNA damage control, and cytoskeletal/adhesion regulation), and cell functions (apoptosis, autophagy, immune responses/inflammation, neurological responses, and development/differentiation) induced by specific PAHs, such as benz[a]anthracene, benzo[a]pyrene, benz[l]aceanthrylene, cyclopenta[c,d]pyrene, 7,12-dimethylbenz[a]anthracene, fluoranthene, fluorene, 3-methylcholanthrene, perylene, phenanthrene, and pyrene as well as their derivatives. Estrogen signaling is one of the most studied pathways associated with the endocrine-disrupting activities of PAHs, and involves estrogen receptors and aryl hydrocarbon receptors. However, some of the actions of PAHs are contradictory, complex, and unexplainable. Although several possibilities have been suggested, such as direct interactions between PAHs and receptors and the suppression of their activities through other pathways, the mechanisms underlying the activities of PAHs remain unclear. Thus, standardized assay protocols for pathway-based assessments are considered to be important to overcome these issues.
Collapse
Affiliation(s)
- Yanyan Zhang
- College of Urban and Environmental Sciences, Peking University, Beijing 100871, PR China
| | - Sijun Dong
- Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China
| | - Hongou Wang
- Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China
| | - Shu Tao
- College of Urban and Environmental Sciences, Peking University, Beijing 100871, PR China
| | - Ryoiti Kiyama
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8566, Japan.
| |
Collapse
|
30
|
Li X, Ding Z, Zhang C, Zhang X, Meng Q, Wu S, Wang S, Yin L, Pu Y, Chen R. MicroRNA-1228(*) inhibit apoptosis in A549 cells exposed to fine particulate matter. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:10103-10113. [PMID: 26867688 DOI: 10.1007/s11356-016-6253-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 02/04/2016] [Indexed: 06/05/2023]
Abstract
Studies have reported associations between fine particulate matter (PM2.5) and respiratory disorders; however, the underlying mechanism is not completely clear owing to the complex components of PM2.5. microRNAs (miRNAs) demonstrate tremendous regulation to target genes, which are sensitive to exogenous stimulation, and facilitate the integrative understood of biological responses. Here, significantly modulated miRNA were profiled by miRNA microarray, coupled with bioinformatic analysis; the potential biological function of modulated miRNA were predicted and subsequently validated by cell-based assays. Downregulation of miR-1228-5p (miR-1228(*)) expression in human A549 cells were associated with PM2.5-induced cellular apoptosis through a mitochondria-dependent pathway. Further, overexpression of miR-1228(*) rescued the cellular damages induced by PM2.5. Thus, our results demonstrate that PM2.5-induced A549 apoptosis is initiated by mitochondrial dysfunction and miR-1228(*) could protect A549 cells against apoptosis. The involved pathways and target genes might be used for future mechanistic studies.
Collapse
Affiliation(s)
- Xiaobo Li
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Dingjiaqiao 87, Nanjing, 210009, China
| | - Zhen Ding
- Department of Environmental Health and Endemic Disease Control, Jiangsu Provincial Center for Disease Prevention and Control, Nanjing, 210009, China
| | - Chengcheng Zhang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Dingjiaqiao 87, Nanjing, 210009, China
| | - Xin Zhang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Dingjiaqiao 87, Nanjing, 210009, China
| | - Qingtao Meng
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Dingjiaqiao 87, Nanjing, 210009, China
| | - Shenshen Wu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Dingjiaqiao 87, Nanjing, 210009, China
| | - Shizhi Wang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Dingjiaqiao 87, Nanjing, 210009, China
| | - Lihong Yin
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Dingjiaqiao 87, Nanjing, 210009, China
| | - Yuepu Pu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Dingjiaqiao 87, Nanjing, 210009, China
| | - Rui Chen
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Dingjiaqiao 87, Nanjing, 210009, China.
| |
Collapse
|
31
|
Kamal A, Cincinelli A, Martellini T, Malik RN. Linking mobile source-PAHs and biological effects in traffic police officers and drivers in Rawalpindi (Pakistan). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2016; 127:135-143. [PMID: 26827277 DOI: 10.1016/j.ecoenv.2016.01.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2015] [Revised: 11/12/2015] [Accepted: 01/11/2016] [Indexed: 06/05/2023]
Abstract
The aim of this study was to evaluate the effect of traffic related polycyclic aromatic hydrocarbons (PAHs) on blood parameters of subjects, including traffic police officers (TP), drivers (DR) and control subjects (CN) with presumably different levels of exposure. We quantified the urinary 1-hydroxypyrene (1-OHPyr), α-naphthol and β-naphthol (α- and β-naph) as biomarkers of exposure to PAHs in relation with biomarkers of effect (Hb, MCV, PCV, PLT, RBCs), biomarkers of inflammation/infection (CRP, WBCs), oxidative stress (SOD) and oxidative DNA damage i.e. 8-hydroxy-2-deoxyguanosine (8-OHdG). Results showed that mean 1-OHPyr, α-naph and β-naph concentrations were significantly higher in TPs (0.98, 1.55, and 1.9µmolmol-Cr(-1), respectively, p<0.05) than CNs (0.7, 0.6; 0.67µmolmol-Cr(-1), respectively, P<0.05). Furthermore, WBC and CRP were found in higher concentrations in TPs than CNs (7.04×10(3)µL(-1) and 0.95mgL(-1) vs. 5.1×10(3)µL(-1) and 0.54mgL(-1), respectively). The urinary 8-OHdG level, a biomarker of oxidative DNA damage, was higher in TPs than both CN and DR subjects (48ngmg-Cr(-1), 24ngmg-Cr(-1) and 33ngmg-Cr(-1), respectively). Self-reported health assessment indicates that, on the basis of daily time spent in the middle of heavy traffic, TPs and DRs more frequently suffered from adverse head and respiratory symptoms. The PCA analysis evidenced the impact of traffic pollution on exposure biomarkers and DNA damage. The study suggests that traffic pollution may be associated with important health risk, in particular on the respiratory system, not only for workers exposed to traffic exhausts but also for general public. Finally, vehicular air pollution in the city of Rawalpindi should be a high-priority concern for the Pakistan Government that needs to be addressed.
Collapse
Affiliation(s)
- Atif Kamal
- Environmental Biology and Ecotoxicology Laboratory, Department of Environmental Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Alessandra Cincinelli
- Department of Chemistry, University of Florence, Via della Lastruccia, 3, Sesto Fiorentino, 50019 Florence, Italy; CNR, Istituto per la Dinamica dei Processi Ambientali, Via Dorsoduro 2137, 30123 Venezia, Italy
| | - Tania Martellini
- Department of Chemistry, University of Florence, Via della Lastruccia, 3, Sesto Fiorentino, 50019 Florence, Italy
| | - Riffat Naseem Malik
- Environmental Biology and Ecotoxicology Laboratory, Department of Environmental Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan.
| |
Collapse
|
32
|
Update on the Mechanisms of Pulmonary Inflammation and Oxidative Imbalance Induced by Exercise. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:4868536. [PMID: 26881028 PMCID: PMC4736402 DOI: 10.1155/2016/4868536] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2015] [Revised: 11/02/2015] [Accepted: 11/08/2015] [Indexed: 11/17/2022]
Abstract
The mechanisms involved in the generation of oxidative damage and lung inflammation induced by physical exercise are described. Changes in lung function induced by exercise involve cooling of the airways, fluid evaporation of the epithelial surface, increased contact with polluting substances, and activation of the local and systemic inflammatory response. The present work includes evidence obtained from the different types of exercise in terms of duration and intensity, the effect of both acute performance and chronic performance, and the influence of special conditions such as cold weather, high altitude, and polluted environments. Levels of prooxidants, antioxidants, oxidative damage to biomolecules, and cellularity, as well as levels of soluble mediators of the inflammatory response and its effects on tissues, are described in samples of lung origin. These samples include tissue homogenates, induced sputum, bronchoalveolar lavage fluid, biopsies, and exhaled breath condensate obtained in experimental protocols conducted on animal and human models. Finally, the need to simultaneously explore the oxidative/inflammatory parameters to establish the interrelation between them is highlighted.
Collapse
|
33
|
Calderón-Garcidueñas L, Leray E, Heydarpour P, Torres-Jardón R, Reis J. Air pollution, a rising environmental risk factor for cognition, neuroinflammation and neurodegeneration: The clinical impact on children and beyond. Rev Neurol (Paris) 2015; 172:69-80. [PMID: 26718591 DOI: 10.1016/j.neurol.2015.10.008] [Citation(s) in RCA: 140] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 10/27/2015] [Accepted: 10/27/2015] [Indexed: 12/12/2022]
Abstract
Air pollution (indoors and outdoors) is a major issue in public health as epidemiological studies have highlighted its numerous detrimental health consequences (notably, respiratory and cardiovascular pathological conditions). Over the past 15 years, air pollution has also been considered a potent environmental risk factor for neurological diseases and neuropathology. This review examines the impact of air pollution on children's brain development and the clinical, cognitive, brain structural and metabolic consequences. Long-term potential consequences for adults' brains and the effects on multiple sclerosis (MS) are also discussed. One challenge is to assess the effects of lifetime exposures to outdoor and indoor environmental pollutants, including occupational exposures: how much, for how long and what type. Diffuse neuroinflammation, damage to the neurovascular unit, and the production of autoantibodies to neural and tight-junction proteins are worrisome findings in children chronically exposed to concentrations above the current standards for ozone and fine particulate matter (PM2.5), and may constitute significant risk factors for the development of Alzheimer's disease later in life. Finally, data supporting the role of air pollution as a risk factor for MS are reviewed, focusing on the effects of PM10 and nitrogen oxides.
Collapse
Affiliation(s)
- L Calderón-Garcidueñas
- The University of Montana, Missoula, MT, 59812, USA; Universidad del Valle de México, Mexico City 04850, Mexico
| | - E Leray
- EHESP Sorbonne Paris Cité, Rennes, France
| | - P Heydarpour
- MS Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - R Torres-Jardón
- Centro de Ciencias de la Atmósfera, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - J Reis
- Service de Neurologie, Centre Hospitalier Universitaire, Hôpital de Hautepierre, 1, avenue Molière, 67200 Strasbourg, France.
| |
Collapse
|
34
|
Brunst KJ, Baccarelli AA, Wright RJ. Integrating mitochondriomics in children's environmental health. J Appl Toxicol 2015; 35:976-91. [PMID: 26046650 PMCID: PMC4714560 DOI: 10.1002/jat.3182] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Accepted: 04/23/2015] [Indexed: 12/18/2022]
Abstract
The amount of scientific research linking environmental exposures and childhood health outcomes continues to grow; yet few studies have teased out the mechanisms involved in environmentally-induced diseases. Cells can respond to environmental stressors in many ways: inducing oxidative stress/inflammation, changes in energy production and epigenetic alterations. Mitochondria, tiny organelles that each retains their own DNA, are exquisitely sensitive to environmental insults and are thought to be central players in these pathways. While it is intuitive that mitochondria play an important role in disease processes, given that every cell of our body is dependent on energy metabolism, it is less clear how environmental exposures impact mitochondrial mechanisms that may lead to enhanced risk of disease. Many of the effects of the environment are initiated in utero and integrating mitochondriomics into children's environmental health studies is a critical priority. This review will highlight (i) the importance of exploring environmental mitochondriomics in children's environmental health, (ii) why environmental mitochondriomics is well suited to biomarker development in this context, and (iii) how molecular and epigenetic changes in mitochondria and mitochondrial DNA (mtDNA) may reflect exposures linked to childhood health outcomes.
Collapse
Affiliation(s)
- Kelly J. Brunst
- Kravis Children’s Hospital, Department of Pediatrics, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Andrea A. Baccarelli
- Department of Environmental Health, Laboratory of Environmental Epigenetics, Exposure Epidemiology and Risk Program, Harvard T. H. Chan School of Public Health, 677 Huntington Avenue, Boston, MA 02115, USA
| | - Rosalind J. Wright
- Kravis Children’s Hospital, Department of Pediatrics, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, 1428 Madison Avenue, New York, NY 10029, USA
| |
Collapse
|
35
|
Demetriou CA, Vineis P. Carcinogenicity of ambient air pollution: use of biomarkers, lessons learnt and future directions. J Thorac Dis 2015; 7:67-95. [PMID: 25694819 DOI: 10.3978/j.issn.2072-1439.2014.12.31] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Accepted: 11/20/2014] [Indexed: 12/11/2022]
Abstract
The association between ambient air pollution (AAP) exposure and lung cancer risk has been investigated in prospective studies and the results are generally consistent, indicating that long-term exposure to air pollution can cause lung cancer. Biomarkers can enhance research on the health effects of air pollution by improving exposure assessment, increasing the understanding of mechanisms, and enabling the investigation of individual susceptibility. In this review, we assess DNA adducts as biomarkers of exposure to AAP and early biological effect, and DNA methylation as biomarker of early biological change and discuss critical issues arising from their incorporation in AAP health impact evaluations, such as confounding, individual susceptibilities, timing, intensity and duration of exposure, and investigated tissue. DNA adducts and DNA methylation are treated as paradigms. However, the lessons, learned from their use in the examination of AAP carcinogenicity, can be applied to investigations of other biomarkers involved in AAP carcinogenicity.
Collapse
Affiliation(s)
- Christiana A Demetriou
- 1 MRC-PHE Center for Environment and Health, School of Public Health, Imperial College London, London, UK ; 2 Department of Electron Microscopy/Molecular Pathology, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Paolo Vineis
- 1 MRC-PHE Center for Environment and Health, School of Public Health, Imperial College London, London, UK ; 2 Department of Electron Microscopy/Molecular Pathology, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| |
Collapse
|
36
|
Calderón-Garcidueñas L, Kulesza RJ, Doty RL, D'Angiulli A, Torres-Jardón R. Megacities air pollution problems: Mexico City Metropolitan Area critical issues on the central nervous system pediatric impact. ENVIRONMENTAL RESEARCH 2015; 137:157-69. [PMID: 25543546 DOI: 10.1016/j.envres.2014.12.012] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 12/11/2014] [Accepted: 12/12/2014] [Indexed: 05/02/2023]
Abstract
The chronic health effects associated with sustained exposures to high concentrations of air pollutants are an important issue for millions of megacity residents and millions more living in smaller urban and rural areas. Particulate matter (PM) and ozone (O3) concentrations close or above their respective air quality standards during the last 20 years affect 24 million people living in the Mexico City Metropolitan Area (MCMA). Herein we discuss PM and O3 trends in MCMA and their possible association with the observed central nervous system (CNS) effects in clinically healthy children. We argue that prenatal and postnatal sustained exposures to a natural environmental exposure chamber contribute to detrimental neural responses. The emerging picture for MCMA children shows systemic inflammation, immunodysregulation at both systemic and brain levels, oxidative stress, neuroinflammation, small blood vessel pathology, and an intrathecal inflammatory process, along with the early neuropathological hallmarks for Alzheimer and Parkinson's diseases. Exposed brains are briskly responding to their harmful environment and setting the bases for structural and volumetric changes, cognitive, olfactory, auditory and vestibular deficits and long term neurodegenerative consequences. We need to improve our understanding of the PM pediatric short and long term CNS impact through multidisciplinary research. Public health benefit can be achieved by integrating interventions that reduce fine PM levels and pediatric exposures and establishing preventative screening programs targeting pediatric populations that are most at risk. We fully expect that the health of 24 million residents is important and blocking pediatric air pollution research and hiding critical information that ought to be available to our population, health, education and social workers is not in the best interest of our children.
Collapse
Affiliation(s)
| | - Randy J Kulesza
- Auditory Research Center, Lake Erie College of Osteopathic Medicine, Erie, PA, USA
| | - Richard L Doty
- Smell and Taste Center, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | - Amedeo D'Angiulli
- Department of Neuroscience, Carleton University, Ottawa, Ontario, Canada K1S 5B6
| | - Ricardo Torres-Jardón
- Centro de Ciencias de la Atmósfera, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
37
|
Shaughnessy DT, McAllister K, Worth L, Haugen AC, Meyer JN, Domann FE, Van Houten B, Mostoslavsky R, Bultman SJ, Baccarelli AA, Begley TJ, Sobol RW, Hirschey MD, Ideker T, Santos JH, Copeland WC, Tice RR, Balshaw DM, Tyson FL. Mitochondria, energetics, epigenetics, and cellular responses to stress. ENVIRONMENTAL HEALTH PERSPECTIVES 2014; 122:1271-8. [PMID: 25127496 PMCID: PMC4256704 DOI: 10.1289/ehp.1408418] [Citation(s) in RCA: 195] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Accepted: 08/14/2014] [Indexed: 05/17/2023]
Abstract
BACKGROUND Cells respond to environmental stressors through several key pathways, including response to reactive oxygen species (ROS), nutrient and ATP sensing, DNA damage response (DDR), and epigenetic alterations. Mitochondria play a central role in these pathways not only through energetics and ATP production but also through metabolites generated in the tricarboxylic acid cycle, as well as mitochondria-nuclear signaling related to mitochondria morphology, biogenesis, fission/fusion, mitophagy, apoptosis, and epigenetic regulation. OBJECTIVES We investigated the concept of bidirectional interactions between mitochondria and cellular pathways in response to environmental stress with a focus on epigenetic regulation, and we examined DNA repair and DDR pathways as examples of biological processes that respond to exogenous insults through changes in homeostasis and altered mitochondrial function. METHODS The National Institute of Environmental Health Sciences sponsored the Workshop on Mitochondria, Energetics, Epigenetics, Environment, and DNA Damage Response on 25-26 March 2013. Here, we summarize key points and ideas emerging from this meeting. DISCUSSION A more comprehensive understanding of signaling mechanisms (cross-talk) between the mitochondria and nucleus is central to elucidating the integration of mitochondrial functions with other cellular response pathways in modulating the effects of environmental agents. Recent studies have highlighted the importance of mitochondrial functions in epigenetic regulation and DDR with environmental stress. Development and application of novel technologies, enhanced experimental models, and a systems-type research approach will help to discern how environmentally induced mitochondrial dysfunction affects key mechanistic pathways. CONCLUSIONS Understanding mitochondria-cell signaling will provide insight into individual responses to environmental hazards, improving prediction of hazard and susceptibility to environmental stressors.
Collapse
Affiliation(s)
- Daniel T Shaughnessy
- Division of Extramural Research and Training, National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health (NIH), Department of Health and Human Services (DHHS), Research Triangle Park, North Carolina, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Kurai J, Watanabe M, Tomita K, Yamasaki HSA, Shimizu E. Influence of Asian dust particles on immune adjuvant effects and airway inflammation in asthma model mice. PLoS One 2014; 9:e111831. [PMID: 25386753 PMCID: PMC4227670 DOI: 10.1371/journal.pone.0111831] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Accepted: 10/07/2014] [Indexed: 11/18/2022] Open
Abstract
OBJECTIVE An Asian dust storm (ADS) contains airborne particles that affect conditions such as asthma, but the mechanism of exacerbation is unclear. The objective of this study was to compare immune adjuvant effects and airway inflammation induced by airborne particles collected on ADS days and the original ADS soil (CJ-1 soil) in asthma model mice. METHODS Airborne particles were collected on ADS days in western Japan. NC/Nga mice were co-sensitized by intranasal instillation with ADS airborne particles and/or Dermatophagoides farinae (Df), and with CJ-1 soil and/or Df for 5 consecutive days. Df-sensitized mice were stimulated with Df challenge intranasally at 7 days after the last Df sensitization. At 24 hours after challenge, serum allergen specific antibody, differential leukocyte count and inflammatory cytokines in bronchoalveolar lavage fluid (BALF) were measured, and airway inflammation was examined histopathologically. RESULTS Co-sensitization with ADS airborne particles and Df increased the neutrophil and eosinophil counts in BALF. Augmentation of airway inflammation was also observed in peribronchiolar and perivascular lung areas. Df-specific serum IgE was significantly elevated by ADS airborne particles, but not by CJ-1 soil. Levels of interleukin (IL)-5, IL-13, IL-6, and macrophage inflammatory protein-2 were higher in BALF in mice treated with ADS airborne particles. CONCLUSION These results suggest that substances attached to ADS airborne particles that are not in the original ADS soil may play important roles in immune adjuvant effects and airway inflammation.
Collapse
Affiliation(s)
- Jun Kurai
- Department of Respiratory Medicine and Rheumatology, Tottori University Faculty of Medicine, Yonago, Tottori, Japan
- * E-mail:
| | - Masanari Watanabe
- Department of Respiratory Medicine and Rheumatology, Tottori University Faculty of Medicine, Yonago, Tottori, Japan
| | - Katsuyuki Tomita
- Department of Respiratory Medicine, Yonago Medical Center, Yonago, Tottori, Japan
| | - Hiroyuki Sano Akira Yamasaki
- Department of Respiratory Medicine and Allergology, Kinki University Faculty of Medicine, Osaka-Sayama, Osaka, Japan
| | - Eiji Shimizu
- Department of Respiratory Medicine and Rheumatology, Tottori University Faculty of Medicine, Yonago, Tottori, Japan
| |
Collapse
|
39
|
Møller P, Danielsen PH, Karottki DG, Jantzen K, Roursgaard M, Klingberg H, Jensen DM, Christophersen DV, Hemmingsen JG, Cao Y, Loft S. Oxidative stress and inflammation generated DNA damage by exposure to air pollution particles. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2014; 762:133-66. [DOI: 10.1016/j.mrrev.2014.09.001] [Citation(s) in RCA: 181] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Revised: 09/04/2014] [Accepted: 09/04/2014] [Indexed: 01/09/2023]
|
40
|
Lu Y, Su S, Jin W, Wang B, Li N, Shen H, Li W, Huang Y, Chen H, Zhang Y, Chen Y, Lin N, Wang X, Tao S. Characteristics and cellular effects of ambient particulate matter from Beijing. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2014; 191:63-69. [PMID: 24811947 DOI: 10.1016/j.envpol.2014.04.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 04/05/2014] [Accepted: 04/07/2014] [Indexed: 06/03/2023]
Abstract
In vitro tests using human adenocarcinomic alveolar epithelial cell line A549 and small mouse monocyte-macrophage cell line J774A.1 were conducted to test toxicity of six PM (particulate matter) samples from Beijing. The properties of the samples differ significantly. The production of inflammatory cytokine (TNF-α for J774A.1) and chemokine (IL-8 for A549) and the level of intracellular reactive oxygen species (ROS) were used as endpoints. There was a positive correlation between water soluble organic carbon and DTT-based redox activity. Both cell types produced increased levels of inflammatory mediators and had higher level of intracelllar ROS, indicating the presence of PM-induced inflammatory response and oxidative stress, which were dose-dependent and significantly different among the samples. The releases of IL-8 from A549 and TNF-α from J774A.1 were significantly correlated to PM size, Zeta potential, endotoxin, major metals, and polycyclic aromatic hydrocarbons. No correlation between ROS and these properties was identified.
Collapse
Affiliation(s)
- Yan Lu
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, PR China
| | - Shu Su
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, PR China
| | - Wenjie Jin
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, PR China
| | - Bin Wang
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, PR China
| | - Ning Li
- Department of Pathobiology & Diagnostic Investigation, Michigan State University, East Lansing, MI 48824, USA
| | - Huizhong Shen
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, PR China
| | - Wei Li
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, PR China
| | - Ye Huang
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, PR China
| | - Han Chen
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, PR China
| | - Yanyan Zhang
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, PR China
| | - Yuanchen Chen
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, PR China
| | - Nan Lin
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, PR China
| | - Xilong Wang
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, PR China
| | - Shu Tao
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, PR China.
| |
Collapse
|
41
|
Colicino E, Power MC, Cox DG, Weisskopf MG, Hou L, Alexeeff SE, Sanchez-Guerra M, Vokonas P, Spiro III A, Schwartz J, Baccarelli AA. Mitochondrial haplogroups modify the effect of black carbon on age-related cognitive impairment. Environ Health 2014; 13:42. [PMID: 24884505 PMCID: PMC4049407 DOI: 10.1186/1476-069x-13-42] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Accepted: 05/02/2014] [Indexed: 05/18/2023]
Abstract
BACKGROUND Traffic-related air pollution has been linked with impaired cognition in older adults, possibly due to effects of oxidative stress on the brain. Mitochondria are the main source of cellular oxidation. Haplogroups in mitochondrial DNA (mtDNA) mark individual differences in oxidative potential and are possible determinants of neurodegeneration. The aim of this study was to investigate whether mtDNA haplogroups determined differential susceptibility to cognitive effects of long-term exposure to black carbon (BC), a marker of traffic-related air pollution. METHODS We investigated 582 older men (72 ± 7 years) in the VA Normative Aging Study cohort with ≤4 visits per participant (1.8 in average) between 1995-2007. Low (≤25) Mini Mental State Examination (MMSE) was used to assess impaired cognition in multiple domains. We fitted repeated-measure logistic regression using validated-LUR BC estimated in the year before their first visit at the participant's address. RESULTS Mitochondrial haplotyping identified nine haplogroups phylogenetically categorized in four clusters. BC showed larger effect on MMSE in Cluster 4 carriers, including I, W and X haplogroups, [OR = 2.7; 95% CI (1.3-5.6)], moderate effect in Cluster 1, including J and T haplogroups [OR = 1.6; 95% CI: (0.9-2.9)], and no effect in Cluster 2 (H and V haplogroups) [OR = 1.1; 95% CI: (0.8-1.5)] or Cluster 3 (K and U haplogroups) [OR = 1.0; 95% CI: (0.6-1.6)]. BC effect varied only moderately across the I, X, and W haplogroups or across the J and T haplogroups. CONCLUSIONS The association of BC with impaired cognition was worsened in carriers of phylogenetically-related mtDNA haplogroups in Cluster 4. No BC effects were detected in Cluster 2 and 3 carriers. MtDNA haplotypes may modify individual susceptibility to the particle cognitive effects.
Collapse
Affiliation(s)
- Elena Colicino
- Department of Environmental Health, Harvard School of Public Health, 665 Huntington Ave, Boston, MA 02115, USA
| | - Melinda C Power
- Department of Environmental Health, Harvard School of Public Health, 665 Huntington Ave, Boston, MA 02115, USA
- Department of Epidemiology, Harvard School of Public Health, 665 Huntington Ave, Boston, MA 02115, USA
| | - David G Cox
- INSERM U1052, Centre de Recherche en Cancérologie de Lyon, Lyon F-69000, France
- Centre Léon Bérard, Pole de Recherche Translationnelle, Lyon F-69008, France
| | - Marc G Weisskopf
- Department of Environmental Health, Harvard School of Public Health, 665 Huntington Ave, Boston, MA 02115, USA
- Department of Epidemiology, Harvard School of Public Health, 665 Huntington Ave, Boston, MA 02115, USA
| | - Lifang Hou
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, 420 East Superior St, Chicago, IL 60611, USA
| | - Stacy E Alexeeff
- Department of Environmental Health, Harvard School of Public Health, 665 Huntington Ave, Boston, MA 02115, USA
| | - Marco Sanchez-Guerra
- Department of Environmental Health, Harvard School of Public Health, 665 Huntington Ave, Boston, MA 02115, USA
| | - Pantel Vokonas
- VA Boston Healthcare System, Boston University Schools of Public Health and Medicine, 88E Newton St, Boston, MA 02118, USA
| | - Avron Spiro III
- VA Boston Healthcare System, Boston University Schools of Public Health and Medicine, 88E Newton St, Boston, MA 02118, USA
| | - Joel Schwartz
- Department of Environmental Health, Harvard School of Public Health, 665 Huntington Ave, Boston, MA 02115, USA
- Department of Epidemiology, Harvard School of Public Health, 665 Huntington Ave, Boston, MA 02115, USA
| | - Andrea A Baccarelli
- Department of Environmental Health, Harvard School of Public Health, 665 Huntington Ave, Boston, MA 02115, USA
- Department of Epidemiology, Harvard School of Public Health, 665 Huntington Ave, Boston, MA 02115, USA
| |
Collapse
|
42
|
Gaweda-Walerych K, Zekanowski C. The impact of mitochondrial DNA and nuclear genes related to mitochondrial functioning on the risk of Parkinson's disease. Curr Genomics 2014; 14:543-59. [PMID: 24532986 PMCID: PMC3924249 DOI: 10.2174/1389202914666131210211033] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Revised: 07/30/2013] [Accepted: 08/29/2013] [Indexed: 12/21/2022] Open
Abstract
Mitochondrial dysfunction and oxidative stress are the major factors implicated in Parkinson’s disease (PD)
pathogenesis. The maintenance of healthy mitochondria is a very complex process coordinated bi-genomically. Here, we
review association studies on mitochondrial haplogroups and subhaplogroups, discussing the underlying molecular
mechanisms. We also focus on variation in the nuclear genes (NDUFV2, PGC-1alpha, HSPA9, LRPPRC, MTIF3,
POLG1, and TFAM encoding NADH dehydrogenase (ubiquinone) flavoprotein 2, peroxisome proliferator-activated receptor
gamma coactivator 1-alpha, mortalin, leucine-rich pentatricopeptide repeat containing protein, translation initiation
factor 3, mitochondrial DNA polymerase gamma, and mitochondrial transcription factor A, respectively) primarily linked
to regulation of mitochondrial functioning that recently have been associated with PD risk. Possible interactions between
mitochondrial and nuclear genetic variants and related proteins are discussed.
Collapse
Affiliation(s)
- Katarzyna Gaweda-Walerych
- Laboratory of Neurogenetics, Mossakowski Medical Research Centre, Polish Academy of Sciences, Pawinskiego 5 str., 02-106 Warszawa, Poland
| | - Cezary Zekanowski
- Laboratory of Neurogenetics, Mossakowski Medical Research Centre, Polish Academy of Sciences, Pawinskiego 5 str., 02-106 Warszawa, Poland
| |
Collapse
|
43
|
Air pollution, inflammation and preterm birth: a potential mechanistic link. Med Hypotheses 2013; 82:219-24. [PMID: 24382337 DOI: 10.1016/j.mehy.2013.11.042] [Citation(s) in RCA: 110] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Accepted: 11/30/2013] [Indexed: 01/02/2023]
Abstract
Preterm birth is a public health issue of global significance, which may result in mortality during the perinatal period or may lead to major health and financial consequences due to lifelong impacts. Even though several risk factors for preterm birth have been identified, prevention efforts have failed to halt the increasing rates of preterm birth. Epidemiological studies have identified air pollution as an emerging potential risk factor for preterm birth. However, many studies were limited by study design and inadequate exposure assessment. Due to the ubiquitous nature of ambient air pollution and the potential public health significance of any role in causing preterm birth, a novel focus investigating possible causal mechanisms influenced by air pollution is therefore a global health priority. We hypothesize that air pollution may act together with other biological factors to induce systemic inflammation and influence the duration of pregnancy. Evaluation and testing of this hypothesis is currently being conducted in a prospective cohort study in Mexico City and will provide an understanding of the pathways that mediate the effects of air pollution on preterm birth. The important public health implication is that crucial steps in this mechanistic pathway can potentially be acted on early in pregnancy to reduce the risk of preterm birth.
Collapse
|
44
|
Calderón-Garcidueñas L, Cross JV, Franco-Lira M, Aragón-Flores M, Kavanaugh M, Torres-Jardón R, Chao CK, Thompson C, Chang J, Zhu H, D'Angiulli A. Brain immune interactions and air pollution: macrophage inhibitory factor (MIF), prion cellular protein (PrP(C)), Interleukin-6 (IL-6), interleukin 1 receptor antagonist (IL-1Ra), and interleukin-2 (IL-2) in cerebrospinal fluid and MIF in serum differentiate urban children exposed to severe vs. low air pollution. Front Neurosci 2013; 7:183. [PMID: 24133408 PMCID: PMC3794301 DOI: 10.3389/fnins.2013.00183] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Accepted: 09/23/2013] [Indexed: 02/05/2023] Open
Abstract
Mexico City Metropolitan Area children chronically exposed to high concentrations of air pollutants exhibit an early brain imbalance in genes involved in oxidative stress, inflammation, innate and adaptive immune responses along with accumulation of misfolded proteins observed in the early stages of Alzheimer and Parkinson's diseases. A complex modulation of serum cytokines and chemokines influences children's brain structural and gray/white matter volumetric responses to air pollution. The search for biomarkers associating systemic and CNS inflammation to brain growth and cognitive deficits in the short term and neurodegeneration in the long-term is our principal aim. We explored and compared a profile of cytokines, chemokines (Multiplexing LASER Bead Technology) and Cellular prion protein (PrP(C)) in normal cerebro-spinal-fluid (CSF) of urban children with high vs. low air pollution exposures. PrP(C) and macrophage inhibitory factor (MIF) were also measured in serum. Samples from 139 children ages 11.91 ± 4.2 years were measured. Highly exposed children exhibited significant increases in CSF MIF (p = 0.002), IL6 (p = 0.006), IL1ra (p = 0.014), IL-2 (p = 0.04), and PrP(C) (p = 0.039) vs. controls. MIF serum concentrations were higher in exposed children (p = 0.009). Our results suggest CSF as a MIF, IL6, IL1Ra, IL-2, and PrP(C) compartment that can possibly differentiate air pollution exposures in children. MIF, a key neuro-immune mediator, is a potential biomarker bridge to identify children with CNS inflammation. Fine tuning of immune-to-brain communication is crucial to neural networks appropriate functioning, thus the short and long term effects of systemic inflammation and dysregulated neural immune responses are of deep concern for millions of exposed children. Defining the linkage and the health consequences of the brain / immune system interactions in the developing brain chronically exposed to air pollutants ought to be of pressing importance for public health.
Collapse
Affiliation(s)
- Lilian Calderón-Garcidueñas
- Department of Biomedical Sciences, The Center for Structural and Functional Neurosciences, The University of Montana Missoula, MT, USA ; Hospital Central Militar, Secretaria de la Defensa Nacional Mexico City, Mexico
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|