1
|
Joković N, Pešić S, Vitorović J, Bogdanović A, Sharifi-Rad J, Calina D. Glucosinolates and Their Hydrolytic Derivatives: Promising Phytochemicals With Anticancer Potential. Phytother Res 2025; 39:1035-1089. [PMID: 39726346 DOI: 10.1002/ptr.8419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 10/29/2024] [Accepted: 12/10/2024] [Indexed: 12/28/2024]
Abstract
Recent research has increasingly focused on phytochemicals as promising anticancer agents, with glucosinolates (GSLs) and their hydrolytic derivatives playing a central role. These sulfur-containing compounds, found in plants of the Brassicales order, are converted by myrosinase enzymes into biologically active products, primarily isothiocyanates (ITCs) and indoles, which exhibit significant anticancer properties. Indole-3-carbinol, diindolylmethane, sulforaphane (SFN), phenethyl isothiocyanate (PEITC), benzyl isothiocyanate, and allyl isothiocyanate have shown potent anticancer effects in animal models, particularly in breast, prostate, lung, melanoma, bladder, hepatoma, and gastrointestinal cancers. Clinical studies further support the chemopreventive effects of SFN and PEITC, particularly in detoxifying carcinogens and altering biochemical markers in cancer patients. These compounds have demonstrated good bioavailability, low toxicity, and minimal adverse effects, supporting their potential therapeutic application. Their anticancer mechanisms include the modulation of reactive oxygen species, suppression of cancer-related signaling pathways, and direct interaction with tumor cell proteins. Additionally, semi-synthetic derivatives of GSLs have been developed to enhance anticancer efficacy. In conclusion, GSLs and their derivatives offer significant potential as both chemopreventive and therapeutic agents, warranting further clinical investigation to optimize their application in cancer treatment.
Collapse
Affiliation(s)
- Nataša Joković
- Department of Biology and Ecology, Faculty of Science and Mathematics, University of Niš, Niš, Serbia
| | - Strahinja Pešić
- Department of Biology and Ecology, Faculty of Science and Mathematics, University of Niš, Niš, Serbia
| | - Jelena Vitorović
- Department of Biology and Ecology, Faculty of Science and Mathematics, University of Niš, Niš, Serbia
| | - Andrija Bogdanović
- Department of Biology and Ecology, Faculty of Science and Mathematics, University of Niš, Niš, Serbia
| | - Javad Sharifi-Rad
- Universidad Espíritu Santo, Samborondón, Ecuador
- Department of Medicine, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, Craiova, Romania
| |
Collapse
|
2
|
Zhang Y, Saha K, Nandani R, Yuan J, Dey M, Gu Z. Isothiocyanates attenuate heparin-induced proliferation of colon cancer cells in vitro. Food Sci Nutr 2024; 12:7842-7853. [PMID: 39479720 PMCID: PMC11521738 DOI: 10.1002/fsn3.4296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 06/05/2024] [Accepted: 06/11/2024] [Indexed: 11/02/2024] Open
Abstract
Isothiocyanates (ITCs), prevalent in cruciferous vegetables, are known for their anticarcinogenic properties. Prior research has indicated that heparin can stimulate the growth of colon cancer cells. However, the implications of ITCs in the diet of cancer patients receiving heparin-based therapies have yet to be fully understood. This exploratory in vitro study examines the proliferative effects of low-molecular-weight heparin (LMWH) on human colon cancer cells and assesses the antiproliferative potential of four ITC compounds, exploring possible epidermal growth factor family of receptor tyrosine kinases (Erb-B) related mechanisms. We evaluated cell viability in HCT-116 and HT-29 cell lines following treatment with ITCs alone or combined with LMWH (20 μg/mL) at various concentrations (1-100 μM). Clonogenic and wound-healing assays were performed after 24 h of treatment with 5 μM ITCs. Additionally, messenger RNA (mRNA) and protein expression of Erb-B family genes was measured using quantitative polymerase chain reaction (qPCR) and Western blotting. Statistical analysis was conducted using analysis of variance (ANOVA) with Dunnett's post hoc test. Results indicated that the half-maximal inhibitory concentration (IC50) values for Phenylethyl isothiocyanate (PEITC), Benzyl isothiocyanate (BITC), and Sulforaphane (SFN) were lower than those of Allyl isothiocyanate (AITC) in LMWH-stimulated HCT-116 (20.77, 19.10, and 44.05 μM, respectively) and HT-29 (74.94, 26.77, and 43.49 μM, respectively). PEITC and SFN significantly reduced ErbB1 (epidermal growth factor receptor (EGFR)) and ErbB4 (receptor tyrosine-protein kinase erbB-4) expression, while BITC decreased ErbB2 (receptor tyrosine-protein kinase erbB-2) and transforming growth factor beta (TGF-β) expression in HCT-116 cells (all, p < .05). PEITC, BITC, and SFN also increased proapoptotic Bax expression and decreased the antiapoptotic B-cell lymphoma 2 (Bcl-2) expression (all, p < .05). These findings suggest that specific ITCs may mitigate cancer cell proliferation induced by LMWH in cancer therapies, highlighting their potential therapeutic efficacy.
Collapse
Affiliation(s)
- Yizi Zhang
- Department of Agricultural and Biosystems EngineeringSouth Dakota State UniversityBrookingsSouth DakotaUSA
| | - Karabi Saha
- Department of Pharmaceutical SciencesSouth Dakota State UniversityBrookingsSouth DakotaUSA
| | - Raj Nandani
- Department of Pharmaceutical SciencesSouth Dakota State UniversityBrookingsSouth DakotaUSA
| | - Jiahui Yuan
- Department of Agricultural and Biosystems EngineeringSouth Dakota State UniversityBrookingsSouth DakotaUSA
| | - Moul Dey
- School of Health and Consumer SciencesSouth Dakota State UniversityBrookingsSouth DakotaUSA
| | - Zhengrong Gu
- Department of Agricultural and Biosystems EngineeringSouth Dakota State UniversityBrookingsSouth DakotaUSA
| |
Collapse
|
3
|
Shoaib S, Ansari MA, Ghazwani M, Hani U, Jamous YF, Alali Z, Wahab S, Ahmad W, Weir SA, Alomary MN, Yusuf N, Islam N. Prospective Epigenetic Actions of Organo-Sulfur Compounds against Cancer: Perspectives and Molecular Mechanisms. Cancers (Basel) 2023; 15:cancers15030697. [PMID: 36765652 PMCID: PMC9913804 DOI: 10.3390/cancers15030697] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/12/2023] [Accepted: 01/18/2023] [Indexed: 01/24/2023] Open
Abstract
Major epigenetic alterations, such as chromatin modifications, DNA methylation, and miRNA regulation, have gained greater attention and play significant roles in oncogenesis, representing a new paradigm in our understanding of cancer susceptibility. These epigenetic changes, particularly aberrant promoter hypermethylation, abnormal histone acetylation, and miRNA dysregulation, represent a set of epigenetic patterns that contribute to inappropriate gene silencing at every stage of cancer progression. Notably, the cancer epigenome possesses various HDACs and DNMTs, which participate in the histone modifications and DNA methylation. As a result, there is an unmet need for developing the epigenetic inhibitors against HDACs and DNMTs for cancer therapy. To date, several epigenetically active synthetic inhibitors of DNA methyltransferases and histone deacetylases have been developed. However, a growing body of research reports that most of these synthetic inhibitors have significant side effects and a narrow window of specificity for cancer cells. Targeting tumor epigenetics with phytocompounds that have the capacity to modulate abnormal DNA methylation, histone acetylation, and miRNAs expression is one of the evolving strategies for cancer prevention. Encouragingly, there are many bioactive phytochemicals, including organo-sulfur compounds that have been shown to alter the expression of key tumor suppressor genes, oncogenes, and oncogenic miRNAs through modulation of DNA methylation and histones in cancer. In addition to vitamins and microelements, dietary phytochemicals such as sulforaphane, PEITC, BITC, DADS, and allicin are among a growing list of naturally occurring anticancer agents that have been studied as an alternative strategy for cancer treatment and prevention. Moreover, these bioactive organo-sulfur compounds, either alone or in combination with other standard cancer drugs or phytochemicals, showed promising results against many cancers. Here, we particularly summarize and focus on the impact of specific organo-sulfur compounds on DNA methylation and histone modifications through targeting the expression of different DNMTs and HDACs that are of particular interest in cancer therapy and prevention.
Collapse
Affiliation(s)
- Shoaib Shoaib
- Department of Biochemistry, Faculty of Medicine, Aligarh Muslim University, Aligarh 202001, Uttar Pradesh, India
| | - Mohammad Azam Ansari
- Department of Epidemic Disease Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Mohammed Ghazwani
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia
| | - Umme Hani
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia
| | - Yahya F. Jamous
- Vaccine and Bioprocessing Center, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia
| | - Zahraa Alali
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, University of Hafr Al Batin, Hafr Al Batin 31991, Saudi Arabia
| | - Shadma Wahab
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia
| | - Wasim Ahmad
- Department of Pharmacy, Mohammed Al-Mana College for Medical Sciences, Dammam 34222, Saudi Arabia
| | - Sydney A. Weir
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Mohammad N. Alomary
- National Centre for Biotechnology, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia
- Correspondence: (M.N.A.); (N.I.)
| | - Nabiha Yusuf
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Najmul Islam
- Department of Biochemistry, Faculty of Medicine, Aligarh Muslim University, Aligarh 202001, Uttar Pradesh, India
- Correspondence: (M.N.A.); (N.I.)
| |
Collapse
|
4
|
Lu Y, Wang X, Pu H, Lin Y, Li D, Liu SQ, Huang D. Moringin and Its Structural Analogues as Slow H 2S Donors: Their Mechanisms and Bioactivity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:7235-7245. [PMID: 32543184 DOI: 10.1021/acs.jafc.0c02358] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Moringin (rhamnobenzyl isothiocyanate) is a major bioactive compound in moringa seeds, which have been used as a healthy food. However, its bioactivity mechanisms are not well understood. We investigated moringin and its structurally similar analogues, including benzyl isothiocyanate and 4-hydroxylbenzyl isothiocyanate, for their hydrogen sulfide (H2S)-releasing activity triggered by cysteine. These isothiocyanates rapidly formed cysteine adducts, which underwent intramolecular cyclization followed by slowly releasing (a) organic amine and raphanusamic acid and (b) H2S and 2-carbylamino-4,5-dihydrothiazole-4-carboxylic acids. The product distributions are highly dependent on para-substituents on the phenyl group. Moringin has higher cytotoxicity to cancer cells and is a more potent anti-inflammatory agent than benzyl and hydroxybenzyl analogues, while benzyl isothiocyanate is a better antibacterial agent. Taken together, their bioactivity may not be directly related to their H2S donation activity. However, other metabolites alone do not have cytotoxicity and anti-inflammatory activity. These findings indicated that their activity may be the combination effects of different metabolites via competitive pathways as well the para-substituent groups of benzyl ITCs.
Collapse
Affiliation(s)
- Yuyun Lu
- Department of Food Science and Technology, Science Drive 2, Faculty of Science, National University of Singapore, 117542 Singapore
| | - Xingyi Wang
- Department of Food Science and Technology, Science Drive 2, Faculty of Science, National University of Singapore, 117542 Singapore
| | - Haoliang Pu
- Department of Food Science and Technology, Science Drive 2, Faculty of Science, National University of Singapore, 117542 Singapore
| | - Yi Lin
- Department of Food Science and Technology, Science Drive 2, Faculty of Science, National University of Singapore, 117542 Singapore
| | - Dan Li
- Department of Food Science and Technology, Science Drive 2, Faculty of Science, National University of Singapore, 117542 Singapore
- National University of Singapore (Suzhou) Research Institute, 377 Lin Quan Street, Suzhou Industrial Park, Suzhou, Jiangsu 215123, China
| | - Shao Quan Liu
- Department of Food Science and Technology, Science Drive 2, Faculty of Science, National University of Singapore, 117542 Singapore
- National University of Singapore (Suzhou) Research Institute, 377 Lin Quan Street, Suzhou Industrial Park, Suzhou, Jiangsu 215123, China
| | - Dejian Huang
- Department of Food Science and Technology, Science Drive 2, Faculty of Science, National University of Singapore, 117542 Singapore
- National University of Singapore (Suzhou) Research Institute, 377 Lin Quan Street, Suzhou Industrial Park, Suzhou, Jiangsu 215123, China
| |
Collapse
|
5
|
Phenethyl Isothiocyanate Exposure Promotes Oxidative Stress and Suppresses Sp1 Transcription Factor in Cancer Stem Cells. Int J Mol Sci 2019; 20:ijms20051027. [PMID: 30818757 PMCID: PMC6429440 DOI: 10.3390/ijms20051027] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 02/05/2019] [Accepted: 02/22/2019] [Indexed: 12/11/2022] Open
Abstract
Aldehyde dehydrogenase 1 (ALDH1) is a cytosolic marker of cancer stem cells (CSCs), which are a sub-population within heterogeneous tumor cells. CSCs associate with therapy-resistance, self-renewal, malignancy, tumor-relapse, and reduced patient-survival window. ALDH1-mediated aldehyde scavenging helps CSCs to survive a higher level of oxidative stress than regular cancer cells. Cruciferous vegetable-derived phenethyl isothiocyanate (PEITC) selectively induces reactive oxygen species (ROS), leading to apoptosis of cancer cells, but not healthy cells. However, this pro-oxidant role of PEITC in CSCs is poorly understood and is investigated here. In a HeLa CSCs model (hCSCs), the sphere-culture and tumorsphere assay showed significantly enriched ALDHhi CSCs from HeLa parental cells (p < 0.05). Aldefluor assay and cell proliferation assay revealed that PEITC treatments resulted in a reduced number of ALDHhi hCSCs in a concentration-dependent manner (p < 0.05). In the ROS assay, PEITC promoted oxidative stress in hCSCs (p ≤ 0.001). Using immunoblotting and flow cytometry techniques, we reported that PEITC suppressed the cancer-associated transcription factor (Sp1) and a downstream multidrug resistance protein (P-glycoprotein) (both, p < 0.05). Furthermore, PEITC-treatment of hCSCs, prior to xenotransplantation in mice, lowered the in vivo tumor-initiating potential of hCSCs. In summary, PEITC treatment suppressed the proliferation of ALDH1 expressing cancer stem cells as well as key factors that are involved with drug-resistance, while promoting oxidative stress and apoptosis in hCSCs.
Collapse
|
6
|
Dayalan Naidu S, Suzuki T, Yamamoto M, Fahey JW, Dinkova‐Kostova AT. Phenethyl Isothiocyanate, a Dual Activator of Transcription Factors NRF2 and HSF1. Mol Nutr Food Res 2018; 62:e1700908. [PMID: 29710398 PMCID: PMC6175120 DOI: 10.1002/mnfr.201700908] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 03/30/2018] [Indexed: 12/19/2022]
Abstract
Cruciferous vegetables are rich sources of glucosinolates which are the biogenic precursor molecules of isothiocyanates (ITCs). The relationship between the consumption of cruciferous vegetables and chemoprotection has been widely documented in epidemiological studies. Phenethyl isothiocyanate (PEITC) occurs as its glucosinolate precursor gluconasturtiin in the cruciferous vegetable watercress (Nasturtium officinale). PEITC has multiple biological effects, including activation of cytoprotective pathways, such as those mediated by the transcription factor nuclear factor erythroid 2 p45-related factor 2 (NRF2) and the transcription factor heat shock factor 1 (HSF1), and can cause changes in the epigenome. However, at high concentrations, PEITC leads to accumulation of reactive oxygen species and cytoskeletal changes, resulting in cytotoxicity. Underlying these activities is the sulfhydryl reactivity of PEITC with cysteine residues in its protein targets. This chemical reactivity highlights the critical importance of the dose of PEITC for achieving on-target selectivity, which should be carefully considered in the design of future clinical trials.
Collapse
Affiliation(s)
- Sharadha Dayalan Naidu
- Cullman Chemoprotection CenterJohns Hopkins UniversityBaltimoreMD21205USA
- Department of Pharmacology and Molecular SciencesJohns Hopkins University School of MedicineBaltimoreMD21205USA
| | - Takafumi Suzuki
- Department of Medical BiochemistryTohoku University Graduate School of MedicineSendai980‐8575Japan
| | - Masayuki Yamamoto
- Department of Medical BiochemistryTohoku University Graduate School of MedicineSendai980‐8575Japan
| | - Jed W. Fahey
- Cullman Chemoprotection CenterJohns Hopkins UniversityBaltimoreMD21205USA
- Department of Pharmacology and Molecular SciencesJohns Hopkins University School of MedicineBaltimoreMD21205USA
- Department of MedicineDivision of Clinical PharmacologyJohns Hopkins University School of MedicineBaltimoreMD21205USA
- Department of International HealthCenter for Human NutritionJohns Hopkins University Bloomberg School of Public HealthBaltimoreMD21205USA
| | - Albena T. Dinkova‐Kostova
- Cullman Chemoprotection CenterJohns Hopkins UniversityBaltimoreMD21205USA
- Department of Pharmacology and Molecular SciencesJohns Hopkins University School of MedicineBaltimoreMD21205USA
- Department of MedicineDivision of Clinical PharmacologyJohns Hopkins University School of MedicineBaltimoreMD21205USA
- Jacqui Wood Cancer CentreDivision of Cancer ResearchSchool of MedicineUniversity of DundeeDundeeDD1 9SYScotlandUK
| |
Collapse
|
7
|
Liu Y, Upadhyaya B, Fardin-Kia AR, Juenemann RM, Dey M. Dietary resistant starch type 4-derived butyrate attenuates nuclear factor-kappa-B1 through modulation of histone H3 trimethylation at lysine 27. Food Funct 2018; 7:3772-3781. [PMID: 27713965 DOI: 10.1039/c6fo00856a] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Indigestible resistant starches (RS) are substrates for gut-microbial metabolism and have been shown to attenuate intestinal inflammation but the supporting evidence is inconsistent and lacks mechanistic explanation. We have recently reported dietary RS type 4 (RS4) induced improvements in immunometabolic functions in humans and a concomitant increase in butyrogenic gut-bacteria. Since inflammation is a key component in metabolic diseases, here we investigated the effects of RS4-derived butyrate on the epigenetic repression of pro-inflammatory genes in vivo and in vitro. RS4-fed mice, compared to the control-diet group, had higher cecal butyrate and increased tri-methylation of lysine 27 on histone 3 (H3K27me3) in the promoter of nuclear factor-kappa-B1 (NFκB1) in the colon tissue. The H3K27me3-enrichment inversely correlated with the concentration dependent down-regulation of NFκB1 in sodium butyrate treated human colon epithelial cells. Two additional inflammatory genes were attenuated by sodium butyrate, but were not linked with H3K27me3 changes. This exploratory study presents a new opportunity for studying underlying H3K27me3 and other methylation modifying mechanisms linked to RS4 biological activity.
Collapse
Affiliation(s)
- Yi Liu
- Department of Health and Nutritional Sciences, Box 2203, South Dakota State University, Brookings, SD 57007, USA.
| | - Bijaya Upadhyaya
- Department of Health and Nutritional Sciences, Box 2203, South Dakota State University, Brookings, SD 57007, USA.
| | - Ali Reza Fardin-Kia
- Office of Regulatory Science, Center for Food Safety and Applied Nutrition, HFS-717, US Food and Drug Administration, College Park, MD 20740, USA
| | - Robert M Juenemann
- Department of Health and Nutritional Sciences, Box 2203, South Dakota State University, Brookings, SD 57007, USA.
| | - Moul Dey
- Department of Health and Nutritional Sciences, Box 2203, South Dakota State University, Brookings, SD 57007, USA.
| |
Collapse
|
8
|
Han NR, Moon PD, Ryu KJ, Kim HM, Jeong HJ. Phenethyl isothiocyanate decreases thymic stromal lymphopoietin-induced inflammatory reactions in mast cells. J Food Biochem 2017. [DOI: 10.1111/jfbc.12449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Na-Ra Han
- Department of Pharmacology; College of Korean Medicine, Kyung Hee University; Seoul 02447 Republic of Korea
| | - Phil-Dong Moon
- Center for Converging Humanities; Kyung Hee University; Seoul 02447 Republic of Korea
| | - Ka-Jung Ryu
- Department of Pharmacology; College of Korean Medicine, Kyung Hee University; Seoul 02447 Republic of Korea
| | - Hyung-Min Kim
- Department of Pharmacology; College of Korean Medicine, Kyung Hee University; Seoul 02447 Republic of Korea
| | - Hyun-Ja Jeong
- Department of Food Science & Technology and Research Institute for Basic Science; Hoseo University; Chungnam 31499 Republic of Korea
| |
Collapse
|
9
|
Dietary Phenethyl Isothiocyanate Protects Mice from Colitis Associated Colon Cancer. Int J Mol Sci 2017; 18:ijms18091908. [PMID: 28878142 PMCID: PMC5618557 DOI: 10.3390/ijms18091908] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 08/30/2017] [Accepted: 09/01/2017] [Indexed: 12/14/2022] Open
Abstract
We have previously reported alleviation of dextran sodium sulfate (DSS)-induced ulcerative colitis signs in phenethyl isothiocyanate (PEITC)-treated mice. Here we investigated chemoprotective activities of PEITC in mice with Azoxymethane-DSS induced colitis associated colon carcinogenesis. We also examined the molecular mediators associated with the PEITC effects using relevant cell lines. A 0.12% PEITC-enriched mouse-diet reduced mucosal and submucosal inflammation as well as glandular atypia by 12% and the frequency of adenocarcinoma by 17% with a concomitant improvement in overall disease activity indices compared to the diseased control group. Lipopolysaccharide-induced in vitro up-regulation of key mediators of inflammation, immune response, apoptosis, and cell proliferation were attenuated by 10 μM PEITC. Three of these mediators showed concentration-dependent reduction in respective mRNAs. Furthermore, PEITC inhibited Nuclear factor kappa B1 (NFκB1) proteins in a concentration-dependent manner. The NFκB1 mRNA expression inversely correlated ( r = −0.940, p = 0.013) with tri-methylation of lysine 27 on histone 3 near its promoter region in a time-dependent manner. These results indicate that PEITC may slow down the development of colon carcinogenesis in an inflammatory intestinal setting which is potentially associated with epigenetic modulation of NFκB1 signaling.
Collapse
|
10
|
Gianfredi V, Nucci D, Vannini S, Villarini M, Moretti M. In vitro Biological Effects of Sulforaphane (SFN), Epigallocatechin-3-gallate (EGCG), and Curcumin on Breast Cancer Cells: A Systematic Review of the Literature. Nutr Cancer 2017; 69:969-978. [PMID: 28872903 DOI: 10.1080/01635581.2017.1359322] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Much of the recent research in neoplasia has been focusing on the epigenetics of cancer cells, particularly as regards the search for potential molecular biomarkers that could be used for early diagnosis, effective treatment, and prognosis of several types of cancer. Carcinogenesis often starts with mutations in oncogenes and tumor suppressor genes, and it leads to anomalies in cellular processes as vital as cell cycle regulation and apoptosis. Because malignant changes arise as a result of genetic as well as epigenetic mechanisms, one possible means of intervention involves reprogramming gene expression, so as to-at least in part-revert the molecular alterations. DNA methylation and demethylation, acetylation and deacetylation of histones, and microRNAs are a few examples of the epigenetic mechanisms responsible for tumor development and progression. Many biologically active compounds present in food-including sulforaphane, curcumin, and epigallocatechin-have been found to modulate those processes. We here systematically review information on the effects of such bioactive dietary compounds on human breast cancer cell lines, and explore the mechanisms underlying those effects with a view to their potential therapeutic application.
Collapse
Affiliation(s)
- Vincenza Gianfredi
- a Graduate School of Specialization in Hygiene and Preventive Medicine, Department of Experimental Medicine , University of Perugia , Piazzale Gambuli, Perugia , Italy
| | - Daniele Nucci
- b Digestive Endoscopy Unit , Veneto Institute of Oncology IOV-I.R.C.C.S , Padua , Italy
| | - Samuele Vannini
- c Department of Pharmaceutical Sciences, Unit of Public Health , University of Perugia , Perugia , Italy
| | - Milena Villarini
- c Department of Pharmaceutical Sciences, Unit of Public Health , University of Perugia , Perugia , Italy
| | - Massimo Moretti
- c Department of Pharmaceutical Sciences, Unit of Public Health , University of Perugia , Perugia , Italy
| |
Collapse
|
11
|
Pereira LP, Silva P, Duarte M, Rodrigues L, Duarte CMM, Albuquerque C, Serra AT. Targeting Colorectal Cancer Proliferation, Stemness and Metastatic Potential Using Brassicaceae Extracts Enriched in Isothiocyanates: A 3D Cell Model-Based Study. Nutrients 2017; 9:nu9040368. [PMID: 28394276 PMCID: PMC5409707 DOI: 10.3390/nu9040368] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 03/23/2017] [Accepted: 04/01/2017] [Indexed: 01/28/2023] Open
Abstract
Colorectal cancer (CRC) recurrence is often attributable to circulating tumor cells and/or cancer stem cells (CSCs) that resist to conventional therapies and foster tumor progression. Isothiocyanates (ITCs) derived from Brassicaceae vegetables have demonstrated anticancer effects in CRC, however little is known about their effect in CSCs and tumor initiation properties. Here we examined the effect of ITCs-enriched Brassicaceae extracts derived from watercress and broccoli in cell proliferation, CSC phenotype and metastasis using a previously developed three-dimensional HT29 cell model with CSC-like traits. Both extracts were phytochemically characterized and their antiproliferative effect in HT29 monolayers was explored. Next, we performed cell proliferation assays and flow cytometry analysis in HT29 spheroids treated with watercress and broccoli extracts and respective main ITCs, phenethyl isothiocyanate (PEITC) and sulforaphane (SFN). Soft agar assays and relative quantitative expression analysis of stemness markers and Wnt/β-catenin signaling players were performed to evaluate the effect of these phytochemicals in stemness and metastasis. Our results showed that both Brassicaceae extracts and ITCs exert antiproliferative effects in HT29 spheroids, arresting cell cycle at G₂/M, possibly due to ITC-induced DNA damage. Colony formation and expression of LGR5 and CD133 cancer stemness markers were significantly reduced. Only watercress extract and PEITC decreased ALDH1 activity in a dose-dependent manner, as well as β-catenin expression. Our research provides new insights on CRC therapy using ITC-enriched Brassicaceae extracts, specially watercress extract, to target CSCs and circulating tumor cells by impairing cell proliferation, ALDH1-mediated chemo-resistance, anoikis evasion, self-renewal and metastatic potential.
Collapse
Affiliation(s)
- Lucília P Pereira
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780-901 Oeiras, Portugal.
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), 2780-157 Oeiras, Portugal.
| | - Patrícia Silva
- Unidade de Investigação em Patobiologia Molecular (UIPM), Instituto Português de Oncologia de Lisboa Francisco Gentil, E.P.E (IPOLFG, EPE), 1099-023 Lisboa, Portugal.
| | - Marlene Duarte
- Unidade de Investigação em Patobiologia Molecular (UIPM), Instituto Português de Oncologia de Lisboa Francisco Gentil, E.P.E (IPOLFG, EPE), 1099-023 Lisboa, Portugal.
| | - Liliana Rodrigues
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780-901 Oeiras, Portugal.
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), 2780-157 Oeiras, Portugal.
| | - Catarina M M Duarte
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780-901 Oeiras, Portugal.
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), 2780-157 Oeiras, Portugal.
| | - Cristina Albuquerque
- Unidade de Investigação em Patobiologia Molecular (UIPM), Instituto Português de Oncologia de Lisboa Francisco Gentil, E.P.E (IPOLFG, EPE), 1099-023 Lisboa, Portugal.
| | - Ana Teresa Serra
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780-901 Oeiras, Portugal.
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), 2780-157 Oeiras, Portugal.
| |
Collapse
|
12
|
Krautkramer KA, Rey FE, Denu JM. Chemical signaling between gut microbiota and host chromatin: What is your gut really saying? J Biol Chem 2017; 292:8582-8593. [PMID: 28389558 DOI: 10.1074/jbc.r116.761577] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Mammals and their gut microbial communities share extensive and tightly coordinated co-metabolism of dietary substrates. A large number of microbial metabolites have been detected in host circulation and tissues and, in many cases, are linked to host metabolic, developmental, and immunological states. The presence of these metabolites in host tissues intersects with regulation of the host's epigenetic machinery. Although it is established that the host's epigenetic machinery is sensitive to levels of endogenous metabolites, the roles for microbial metabolites in epigenetic regulation are just beginning to be elucidated. This review focuses on eukaryotic chromatin regulation by endogenous and gut microbial metabolites and how these regulatory events may impact host developmental and metabolic phenotypes.
Collapse
Affiliation(s)
- Kimberly A Krautkramer
- From the Wisconsin Institute for Discovery, Morgridge Institute for Research, and the Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53715 and
| | - Federico E Rey
- the Department of Bacteriology, University of Wisconsin, Madison, Wisconsin 53706
| | - John M Denu
- From the Wisconsin Institute for Discovery, Morgridge Institute for Research, and the Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53715 and
| |
Collapse
|
13
|
Nachat A, Turoff-Ortmeyer S, Liu C, Mcculloch M. PEITC in End-Stage B-Cell Prolymphocytic Leukemia: Case Report of Possible Sensitization to Salvage R-CHOP. Perm J 2017; 20:74-80. [PMID: 27168399 DOI: 10.7812/tpp/15-153] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
INTRODUCTION B-cell prolymphocytic leukemia (B-PLL) is a rare, aggressive leukemia distinct from chronic lymphocytic leukemia, with median survival of only 3 years. B-PLL is resistant to most chemotherapy and newer targeted therapies such as alemtuzumab and thalidomide. Phenylethyl isothiocyanate (PEITC) is a natural compound from horseradish with evidence for therapeutic potential in multiple leukemia types. CASE PRESENTATION Here we present a case report of a 53-year-old man whose chronic lymphocytic leukemia transformed to end-stage B-PLL, disqualifying him for allogenic stem cell transplantation. He was treated with PEITC followed by salvage R-CHOP (Rituximab, Cyclophosphamide, Hydroxydaunorubicin [doxorubicin hydrochloride], Oncovin [vincristine sulfate], Prednisone or Prednisolone) chemotherapy, which led to normalized white blood cell count and disease stabilization that requalified him for allogenic peripheral stem-cell transplant therapy. We conducted a systematic review to analyze and interpret the potential contribution of PEITC to his unexpectedly favorable R-CHOP response. Following sequential 8 weeks of PEITC/pentostatin and 6 cycles of R-CHOP, the patient received allogenic peripheral blood stem cell transplant on an outpatient basis and remains well at the time of this publication, with no evidence of CD20+ small B-cells. DISCUSSION Given the limited data for R-CHOP in B-PLL, this patient's recovery suggests presensitization of B-PLL cells toward R-CHOP, potentially justifying further investigation.
Collapse
Affiliation(s)
- Arian Nachat
- Physician Lead for Integrative Medicine at Walnut Creek Hospital in CA.
| | | | - Chunnan Liu
- Medical Oncologist at Walnut Creek Hospital in CA.
| | - Michael Mcculloch
- Chief of Research for Integrative Medicine at the Pine Street Foundation in San Anselmo and at Walnut Creek Hospital in CA.
| |
Collapse
|
14
|
Zhou ZH, Yang J, Kong AN. Phytochemicals in Traditional Chinese Herbal Medicine: Cancer Prevention and Epigenetics Mechanisms. ACTA ACUST UNITED AC 2017. [DOI: 10.1007/s40495-017-0086-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
15
|
Chou YC, Chang MY, Wang MJ, Liu HC, Chang SJ, Harnod T, Hung CH, Lee HT, Shen CC, Chung JG. Phenethyl isothiocyanate alters the gene expression and the levels of protein associated with cell cycle regulation in human glioblastoma GBM 8401 cells. ENVIRONMENTAL TOXICOLOGY 2017; 32:176-187. [PMID: 26678675 DOI: 10.1002/tox.22224] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 11/12/2015] [Accepted: 11/25/2015] [Indexed: 06/05/2023]
Abstract
Glioblastoma is the most common and aggressive primary brain malignancy. Phenethyl isothiocyanate (PEITC), a member of the isothiocyanate family, can induce apoptosis in many human cancer cells. Our previous study disclosed that PEITC induces apoptosis through the extrinsic pathway, dysfunction of mitochondria, reactive oxygen species (ROS)-induced endoplasmic reticulum (ER) stress, and intrinsic (mitochondrial) pathway in human brain glioblastoma multiforme (GBM) 8401 cells. To the best of our knowledge, we first investigated the effects of PEITC on the genetic levels of GBM 8401 cells in vitro. PEITC may induce G0/G1 cell-cycle arrest through affecting the proteins such as cdk2, cyclin E, and p21 in GBM 8401 cells. Many genes associated with cell-cycle regulation of GBM 8401 cells were changed after PEITC treatment: 48 genes were upregulated and 118 were downregulated. The cell-division cycle protein 20 (CDC20), Budding uninhibited by benzimidazole 1 homolog beta (BUB1B), and cyclin B1 were downregulated, and clusterin was upregulated in GBM 8401 cells treated with PEITC. These changes of gene expression can provide the effects of PEITC on the genetic levels and potential biomarkers for glioblastoma. © 2015 Wiley Periodicals, Inc. Environ Toxicol 32: 176-187, 2017.
Collapse
Affiliation(s)
- Yu-Cheng Chou
- Division of Neurosurgical Oncology, Neurological Institute, Taichung Veterans General Hospital, Taichung, 407, Taiwan
- Institute of Medical Sciences, Tzu Chi University, Hualien, 970, Taiwan
- National Defense Medical Center, Taipei, 114, Taiwan
- Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung, 404, Taiwan
| | - Meng-Ya Chang
- Institute of Medical Sciences, Tzu Chi University, Hualien, 970, Taiwan
| | - Mei-Jen Wang
- Institute of Medical Sciences, Tzu Chi University, Hualien, 970, Taiwan
- Department of Medical Research, Buddhist Tzu Chi General Hospital, Hualien, 970, Taiwan
| | - Hsin-Chung Liu
- Departments of Biological Science and Technology, China Medical University, Taichung, 404, Taiwan
| | - Shu-Jen Chang
- School of Pharmacy, China Medical University, Taichung, 404, Taiwan
| | - Tomor Harnod
- Department of Neurosurgery, Buddhist Tzu Chi General Hospital and College of Medicine, Tzu Chi University, Hualien, 970, Taiwan
| | - Chih-Huang Hung
- Institute of Medical Sciences, Tzu Chi University, Hualien, 970, Taiwan
| | - Hsu-Tung Lee
- Division of Neurosurgical Oncology, Neurological Institute, Taichung Veterans General Hospital, Taichung, 407, Taiwan
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, 114, Taiwan
| | - Chiung-Chyi Shen
- Division of Minimally Invasive Skull Base Neurosurgery, Neurological Institute, Taichung Veterans General Hospital, Taichung, 407, Taiwan
| | - Jing-Gung Chung
- Departments of Biological Science and Technology, China Medical University, Taichung, 404, Taiwan
- Department of Biotechnology, Asia University, Taichung, 413, Taiwan, Republic of China
| |
Collapse
|
16
|
Boyanapalli SSS, Li W, Fuentes F, Guo Y, Ramirez CN, Gonzalez XP, Pung D, Kong ANT. Epigenetic reactivation of RASSF1A by phenethyl isothiocyanate (PEITC) and promotion of apoptosis in LNCaP cells. Pharmacol Res 2016; 114:175-184. [PMID: 27818231 DOI: 10.1016/j.phrs.2016.10.021] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 10/21/2016] [Accepted: 10/24/2016] [Indexed: 12/23/2022]
Abstract
Epigenetic silencing of tumor suppressor genes is a phenomenon frequently observed in multiple cancers. Ras-association domain family 1 isoform A (RASSF1A) is a well-characterized tumor suppressor that belongs to the Ras-association domain family. Several studies have demonstrated that hypermethylation of the RASSF1A promoter is frequently observed in lung, prostate, and breast cancers. Phenethyl isothiocyanate (PEITC), a phytochemical abundant in cruciferous vegetables, possesses chemopreventive activities; however, its potential involvement in epigenetic mechanisms remains elusive. The present study aimed to examine the role of PEITC in the epigenetic reactivation of RASSF1A and the induction of apoptosis in LNCaP cells. LNCaP cells were treated for 5days with 0.01% DMSO, 2.5 or 5μM PETIC or 2.5μM azadeoxycytidine (5-Aza) with 0.5μM trichostatin A (TSA). We evaluated the effects of these treatments on CpG demethylation using methylation-specific polymerase chain reaction (MSP) and bisulfite genomic sequencing (BGS). CpG demethylation was significantly enhanced in cells treated with 5μM PEITC and 5-Aza+TSA; therefore, the latter treatment was used as a positive control in subsequent experiments. The decrease in RASSF1A promoter methylation correlated with an increase in expression of the RASSF1A gene in a dose-dependent manner. To confirm that promoter demethylation was mediated by DNA methyltransferases (DNMTs), we analyzed the expression levels of DNMTs and histone deacetylases (HDACs) at the gene and protein levels. PEITC reduced DNMT1, 3A and 3B protein levels in a dose-dependent manner, and 5μM PEITC significantly reduced DNMT3A and 3B protein levels. HDAC1, 2, 4 and 6 protein expression was also inhibited by 5μM PEITC. The combination of 5-Aza and TSA, a DNMT inhibitor and a HDAC inhibitor, respectively, was used as a positive control as this treatment significantly inhibited both HDACs and DNMTs. The function of RASSF1A reactivation in promoting apoptosis and inducing G2/M cell cycle arrest was analyzed using flow-cytometry analysis with Annexin V and propidium iodide (PI). Growth inhibition effect on LNCaP cells were investigated by colony formation assay. In addition, we analyzed p21, caspase-3 and 7, Bax, and Cyclin B1 protein levels. Flow-cytometry analysis of cells stained with PI alone demonstrated that 5μM PEITC promotes early apoptosis and G2/M cell cycle arrest. Flow cytometry analysis of cells stained with Annexin V and PI also demonstrated an increased proportion of cells in early apoptosis in cells treated with 5μM PEITC or 5-Aza with TSA. PEITC and efficiently inhibit colony numbers and total area. In addition, 5μM PEITC significantly enhanced p21, caspase-3, 7 and Bax levels and reduced Cyclin B1 expression compared with the control group. Collectively, the results of our study suggest that PEITC induces apoptosis in LNCaP cells potentially by reactivating RASSF1A via epigenetic mechanisms.
Collapse
Affiliation(s)
- Sarandeep S S Boyanapalli
- Center for Cancer Prevention Research, Department of Pharmaceutics, Ernest-Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road Piscataway, NJ, 08854, United States
| | - Wenji Li
- Center for Cancer Prevention Research, Department of Pharmaceutics, Ernest-Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road Piscataway, NJ, 08854, United States
| | - Francisco Fuentes
- Center for Cancer Prevention Research, Department of Pharmaceutics, Ernest-Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road Piscataway, NJ, 08854, United States
| | - Yue Guo
- Center for Cancer Prevention Research, Department of Pharmaceutics, Ernest-Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road Piscataway, NJ, 08854, United States
| | - Christina N Ramirez
- Center for Cancer Prevention Research, Department of Pharmaceutics, Ernest-Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road Piscataway, NJ, 08854, United States
| | - Ximena-Parades Gonzalez
- Center for Cancer Prevention Research, Department of Pharmaceutics, Ernest-Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road Piscataway, NJ, 08854, United States
| | - Douglas Pung
- Center for Cancer Prevention Research, Department of Pharmaceutics, Ernest-Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road Piscataway, NJ, 08854, United States
| | - Ah-Ng Tony Kong
- Center for Cancer Prevention Research, Department of Pharmaceutics, Ernest-Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road Piscataway, NJ, 08854, United States.
| |
Collapse
|
17
|
Zhang C, Shu L, Kim H, Khor TO, Wu R, Li W, Kong ANT. Phenethyl isothiocyanate (PEITC) suppresses prostate cancer cell invasion epigenetically through regulating microRNA-194. Mol Nutr Food Res 2016; 60:1427-36. [PMID: 26820911 DOI: 10.1002/mnfr.201500918] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Revised: 12/16/2015] [Accepted: 12/17/2015] [Indexed: 12/13/2022]
Abstract
SCOPE Tumor metastasis greatly contributes to the mortality of prostate cancer. The glucosinolate-derived phenethyl isothiocyanate (PEITC) has been widely documented to reduce the risk of prostate cancer by modulating multiple biologically relevant processes. Emerging evidence suggests that PEITC may exert its anti-cancer effects through epigenetic mechanisms including microRNAs. Altered levels of miRNA have been linked to tumor malignancy due to their capacity to regulate functional gene expression in carcinogenesis. Here, we assessed the effects of PEITC on miRNA expression which is related to PCa cell invasiveness. METHODS AND RESULTS Utilizing oligonucleotide microarray first identified the most affected miRNAs in LNCaP cells after PEITC treatment. Several top altered miRNAs were further validated using quantitative PCR. Interestingly, overexpression of miR-194 suppressed PC3 cell invasion in matrigel-coated Transwell chambers. Bone morphogenetic protein 1 (BMP1) was shown to be a direct target of miR-194. Downregulation of BMP1 by miR-194 or PEITC led to decreased expression of key oncogenic matrix metalloproteinases, MMP2 and MMP9. This in turn resulted in the suppression of tumor invasion. CONCLUSION Our results indicate that miR-194 downregulates the expression of oncogenic MMP2 and MMP9 by targeting BMP1, which suggests a potential new mechanistic target by which PEITC suppresses prostate cancer cell invasiveness.
Collapse
Affiliation(s)
- Chengyue Zhang
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey, USA.,Center for Cancer Prevention Research, Ernest Mario School of Pharmacy, Rutgers, , the State University of New Jersey, USA.,Center for Epigenomics of CAM Natural Products, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, USA
| | - Limin Shu
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey, USA.,Center for Cancer Prevention Research, Ernest Mario School of Pharmacy, Rutgers, , the State University of New Jersey, USA
| | - Hyuck Kim
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey, USA.,Center for Cancer Prevention Research, Ernest Mario School of Pharmacy, Rutgers, , the State University of New Jersey, USA
| | - Tin Oo Khor
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey, USA.,Center for Cancer Prevention Research, Ernest Mario School of Pharmacy, Rutgers, , the State University of New Jersey, USA
| | - Renyi Wu
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey, USA.,Center for Cancer Prevention Research, Ernest Mario School of Pharmacy, Rutgers, , the State University of New Jersey, USA.,Center for Epigenomics of CAM Natural Products, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, USA
| | - Wenji Li
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey, USA.,Center for Cancer Prevention Research, Ernest Mario School of Pharmacy, Rutgers, , the State University of New Jersey, USA.,Center for Epigenomics of CAM Natural Products, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, USA
| | - Ah-Ng Tony Kong
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey, USA.,Center for Cancer Prevention Research, Ernest Mario School of Pharmacy, Rutgers, , the State University of New Jersey, USA.,Center for Epigenomics of CAM Natural Products, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, USA
| |
Collapse
|
18
|
Zhang T, Shao Y, Chu TY, Huang HS, Liou YL, Li Q, Zhou H. MiR-135a and MRP1 play pivotal roles in the selective lethality of phenethyl isothiocyanate to malignant glioma cells. Am J Cancer Res 2016; 6:957-972. [PMID: 27293991 PMCID: PMC4889712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 03/02/2016] [Indexed: 06/06/2023] Open
Abstract
Amounting evidence has demonstrated that phenethyl isothiocyanate (PEITC) is a strong inducer of reactive oxygen species (ROS) and functions as a selective killer to various human cancer cells. However, it remains obscure whether PEITC has potential selective lethality to malignant glioma cells. Thus in this study, we performed multiple analysis such as MTT assay, Hoechst 33258 staining, flow cytometry, foci formation, RT-PCR, Western blot, and transfection to explore the selective lethality of PEITC to malignant glioma cells and the underlying mechanisms. We found that PEITC induced a selective apoptosis and suppressed tumorigenicity and migration of malignant glioma cells. Furthermore, we found PEITC significantly induced GSH depletion, ROS production, caspase-9 and caspase-3 activation, and miR-135a upregulation in malignant glioma cells but not in normal cells. Moreover, PEITC activated the miR-135a-mitochondria dependent apoptosis pathway as demonstrated by downregulation of STAT6, SMAD5 and Bcl-xl while upregulation of Bax expression and Cytochrome-C release in malignant glioma cell lines but not in the immortalized human normal glial HEB cells. Correspondingly, the above PEITC-induced activation of the ROS-MiR-135a-Mitochondria dependent apoptosis pathways in malignant glioma was attenuated by pre-transfection with miR-135a inhibitor, pre-treatment with multidrug resistance-associated protein 1 (MRP1) inhibitor Sch B, or combination with glutathione (GSH). These results revealed that PEITC selectively induced apoptosis of malignant glioma cells through MRP1-mediated export of GSH to activate ROS-MiR-135a-Mitochondria dependent apoptosis pathway, suggesting a potential application of PEITC for treating glioma.
Collapse
Affiliation(s)
- Taolan Zhang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South UniversityChangsha 410008, P. R. China
- Institute of Clinical Pharmacology, Central South University; Hunan Key Laboratory of PharmacogeneticsChangsha 410078, P. R. China
| | - Yingying Shao
- Institute of Life Sciences, Chongqing Medical University1 Yixueyuan Rd, Yuzhong District, Chongqing 400016, P. R. China
| | - Tang-Yuan Chu
- Institute of Medical Sciences, Tzu Chi UniversityHualien 970, Taiwan
| | - Hsuan-Shun Huang
- Institute of Medical Sciences, Tzu Chi UniversityHualien 970, Taiwan
| | - Yu-Ligh Liou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South UniversityChangsha 410008, P. R. China
- Institute of Clinical Pharmacology, Central South University; Hunan Key Laboratory of PharmacogeneticsChangsha 410078, P. R. China
- IStat Biomedical Co. Ltd.Taipei, Taiwan
| | - Qing Li
- Department of Clinical Pharmacology, Xiangya Hospital, Central South UniversityChangsha 410008, P. R. China
- Institute of Clinical Pharmacology, Central South University; Hunan Key Laboratory of PharmacogeneticsChangsha 410078, P. R. China
| | - Honghao Zhou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South UniversityChangsha 410008, P. R. China
- Institute of Clinical Pharmacology, Central South University; Hunan Key Laboratory of PharmacogeneticsChangsha 410078, P. R. China
| |
Collapse
|
19
|
Sarkar R, Mukherjee S, Biswas J, Roy M. Phenethyl isothiocyanate, by virtue of its antioxidant activity, inhibits invasiveness and metastatic potential of breast cancer cells: HIF-1α as a putative target. Free Radic Res 2015; 50:84-100. [DOI: 10.3109/10715762.2015.1108520] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
20
|
Majnik AV, Lane RH. The relationship between early-life environment, the epigenome and the microbiota. Epigenomics 2015; 7:1173-84. [DOI: 10.2217/epi.15.74] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
21
|
Guo Y, Su ZY, Kong ANT. Current Perspectives on Epigenetic Modifications by Dietary Chemopreventive and Herbal Phytochemicals. ACTA ACUST UNITED AC 2015; 1:245-257. [PMID: 26328267 DOI: 10.1007/s40495-015-0023-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Studies during the last two decades have revealed the involvement of epigenetic modifications in the development of human cancer. It is now recognized that the interplay of DNA methylation, post-translational histone modification, and non-coding RNAs can interact with genetic defects to drive tumorigenesis. The early onset, reversibility, and dynamic nature of such epigenetic modifications enable them to be developed as promising cancer biomarkers and preventive/therapeutic targets. In addition to the recent approval of several epigenetic therapies in the treatment of human cancer, emerging studies have indicated that dietary phytochemicals might exert cancer chemopreventive effects by targeting epigenetic mechanisms. In this review, we will present the current understanding of the epigenetic alterations in carcinogenesis and highlight the potential of targeting these mechanisms to treat/prevent cancer. The latest findings, published in the past three years regarding the effects of dietary phytochemicals in modulating epigenetic mechanisms will also be discussed.
Collapse
Affiliation(s)
- Yue Guo
- Graduate Program in Pharmaceutical Sciences, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA ; Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Zheng-Yuan Su
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Ah-Ng Tony Kong
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| |
Collapse
|
22
|
Gupta P, Wright SE, Kim SH, Srivastava SK. Phenethyl isothiocyanate: a comprehensive review of anti-cancer mechanisms. BIOCHIMICA ET BIOPHYSICA ACTA 2014; 1846:405-424. [PMID: 25152445 PMCID: PMC4260992 DOI: 10.1016/j.bbcan.2014.08.003] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Revised: 08/11/2014] [Accepted: 08/13/2014] [Indexed: 01/22/2023]
Abstract
The epidemiological evidence suggests a strong inverse relationship between dietary intake of cruciferous vegetables and the incidence of cancer. Among other constituents of cruciferous vegetables, isothiocyanates (ITC) are the main bioactive chemicals present. Phenethyl isothiocyanate (PEITC) is present as gluconasturtiin in many cruciferous vegetables with remarkable anti-cancer effects. PEITC is known to not only prevent the initiation phase of carcinogenesis process but also to inhibit the progression of tumorigenesis. PEITC targets multiple proteins to suppress various cancer-promoting mechanisms such as cell proliferation, progression and metastasis. Pre-clinical evidence suggests that combination of PEITC with conventional anti-cancer agents is also highly effective in improving overall efficacy. Based on accumulating evidence, PEITC appears to be a promising agent for cancer therapy and is already under clinical trials for leukemia and lung cancer. This is the first review which provides a comprehensive analysis of known targets and mechanisms along with a critical evaluation of PEITC as a future anti-cancer agent.
Collapse
Affiliation(s)
- Parul Gupta
- Department of Biomedical Sciences and Cancer Biology Center, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - Stephen E Wright
- Department of Biomedical Sciences and Cancer Biology Center, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA; Department of Internal Medicine, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - Sung-Hoon Kim
- Cancer Preventive Material Development Research Center, College of Korean Medicine, Department of Pathology, Kyunghee University, 1 Hoegi-dong, Dongdaemun-ku, Seoul 131-701, South Korea.
| | - Sanjay K Srivastava
- Department of Biomedical Sciences and Cancer Biology Center, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA; Cancer Preventive Material Development Research Center, College of Korean Medicine, Department of Pathology, Kyunghee University, 1 Hoegi-dong, Dongdaemun-ku, Seoul 131-701, South Korea.
| |
Collapse
|
23
|
Ilic NM, Dey M, Poulev A, Logendra S, Kuhn PE, Raskin I. Anti-inflammatory activity of grains of paradise (Aframomum melegueta Schum) extract. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:10452-7. [PMID: 25293633 PMCID: PMC4212708 DOI: 10.1021/jf5026086] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
The ethanolic extract of grains of paradise (Aframomum melegueta Schum, Zingiberaceae) has been evaluated for inhibitory activity on cyclooxygenase-2 (COX-2) enzyme, in vivo for the anti-inflammatory activity and expression of several pro-inflammatory genes. Bioactivity-guided fractionation showed that the most active COX-2 inhibitory compound in the extract was [6]-paradol. [6]-Shogaol, another compound from the extract, was the most active inhibitory compound in pro-inflammatory gene expression assays. In a rat paw edema model, the whole extract reduced inflammation by 49% at 1000 mg/kg. Major gingerols from the extract [6]-paradol, [6]-gingerol, and [6]-shogaol reduced inflammation by 20, 25 and 38%. respectively when administered individually at a dose of 150 mg/kg. [6]-Shogaol efficacy was at the level of aspirin, used as a positive control. Grains of paradise extract has demonstrated an anti-inflammatory activity, which is in part due to the inhibition of COX-2 enzyme activity and expression of pro-inflammatory genes.
Collapse
Affiliation(s)
- Nebojsa M. Ilic
- Institute
of Food Technology, University of Novi Sad, Bulevar cara Lazara 1, 21 000 Novi Sad, Serbia
- Phone: +381 21 485 3824. E-mail:
| | - Moul Dey
- Biotech
Center, Cook College, Rutgers University, 59 Dudley Road, New Brunswick, New Jersey 08901-8520, United States
| | - Alexander
A. Poulev
- Biotech
Center, Cook College, Rutgers University, 59 Dudley Road, New Brunswick, New Jersey 08901-8520, United States
| | - Sithes Logendra
- Biotech
Center, Cook College, Rutgers University, 59 Dudley Road, New Brunswick, New Jersey 08901-8520, United States
| | - Peter E. Kuhn
- Biotech
Center, Cook College, Rutgers University, 59 Dudley Road, New Brunswick, New Jersey 08901-8520, United States
| | - Ilya Raskin
- Biotech
Center, Cook College, Rutgers University, 59 Dudley Road, New Brunswick, New Jersey 08901-8520, United States
| |
Collapse
|
24
|
Wang D, Upadhyaya B, Liu Y, Knudsen D, Dey M. Phenethyl isothiocyanate upregulates death receptors 4 and 5 and inhibits proliferation in human cancer stem-like cells. BMC Cancer 2014; 14:591. [PMID: 25127663 PMCID: PMC4148558 DOI: 10.1186/1471-2407-14-591] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Accepted: 08/11/2014] [Indexed: 11/23/2022] Open
Abstract
Background The cytokine TRAIL (tumor necrotic factor-related apoptosis-inducing ligand) selectively induces apoptosis in cancer cells, but cancer stem cells (CSCs) that contribute to cancer-recurrence are frequently TRAIL-resistant. Here we examined hitherto unknown effects of the dietary anti-carcinogenic compound phenethyl isothiocyanate (PEITC) on attenuation of proliferation and tumorigenicity and on up regulation of death receptors and apoptosis in human cervical CSC. Methods Cancer stem-like cells were enriched from human cervical HeLa cell line by sphere-culture method and were characterized by CSC-specific markers’ analyses (flow cytometry) and Hoechst staining. Cell proliferation assays, immunoblotting, and flow cytometry were used to assess anti-proliferative as well as pro-apoptotic effects of PEITC exposure in HeLa CSCs (hCSCs). Xenotransplantation study in a non-obese diabetic, severe combined immunodeficient (NOD/SCID) mouse model, histopathology, and ELISA techniques were further utilized to validate our results in vivo. Results PEITC attenuated proliferation of CD44high/+/CD24low/–, stem-like, sphere-forming subpopulations of hCSCs in a concentration- and time-dependent manner that was comparable to the CSC antagonist salinomycin. PEITC exposure-associated up-regulation of cPARP (apoptosis-associated cleaved poly [ADP-ribose] polymerase) levels and induction of DR4 and DR5 (death receptor 4 and 5) of TRAIL signaling were observed. Xenotransplantation of hCSCs into mice resulted in greater tumorigenicity than HeLa cells, which was diminished along with serum hVEGF-A (human vascular endothelial growth factor A) levels in the PEITC-pretreated hCSC group. Lung metastasis was observed only in the hCSC-injected group that did not receive PEITC-pretreatment. Conclusions The anti-proliferative effects of PEITC in hCSCs may at least partially result from up regulation of DR4 and possibly DR5 of TRAIL-mediated apoptotic pathways. PEITC may offer a novel approach for improving therapeutic outcomes in cancer patients.
Collapse
Affiliation(s)
| | | | | | | | - Moul Dey
- Health and Nutritional Sciences, South Dakota State University, Box 2203, Brookings, SD 57007, USA.
| |
Collapse
|
25
|
Affiliation(s)
- M. Dey
- South Dakota State University, Brookings, SD, U.S.A
- Corresponding author. Health and Nutritional Sciences, Box 2203, South Dakota State University, Brookings, SD 57007, U.S.A.Tel: +1.605.688.4050; Fax: +1.605.688.5603
| |
Collapse
|