1
|
Kanjo K, Lothe R, Nagar G, Rajurkar M, Rao H, Batwal S, Shaligram U, Varadarajan R. Destabilising Effect of Class B CpG Adjuvants on Different Proteins and Vaccine Candidates. Vaccines (Basel) 2025; 13:395. [PMID: 40333326 PMCID: PMC12031019 DOI: 10.3390/vaccines13040395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 03/19/2025] [Accepted: 04/02/2025] [Indexed: 05/09/2025] Open
Abstract
Background: Adjuvants function by enhancing the breadth, durability, and magnitude of the immune response, but little is known about their impact on vaccine stability. CpG is a widely used adjuvant that is included in several recently approved COVID-19 vaccines using Spike protein, RBD, or whole inactivated virus. Methods: Here, we investigate the in vitro stability of the Receptor-Binding Domain (RBD) of the SARS-CoV-2 Spike protein, as well as a number of other proteins formulated with a class B CpG adjuvant. Results: We show that RBD, BSA, and lysozyme proteins are less thermally stable, more aggregation-prone, and more protease-sensitive in the presence of CpG than without it, and that these effects are enhanced with prolonged incubation. For RBD, the effects of CpG are pH-independent but dependent on the salt concentration, with relative destabilisation decreasing with an increasing salt concentration, indicative of an electrostatic component to the interaction between CpG and the protein. The reduced thermal and proteolytic stability found in the presence of CpG is indicative of a preferential interaction of CpG with the unfolded state of the protein relative to its native state. It remains to be determined if these in vitro characteristics are unique to CpG or are also shared by other non-CpG commercial adjuvants, if they are antigen-dependent, and if and how they correlate with the in vivo immunogenicity of an adjuvanted vaccine. Conclusions: It is demonstrated that the CpG adjuvant is critical to enhancing immunogenicity and is a key reason for the success of multiple licensed commercial vaccines. Nonetheless, our work suggests that careful and systematic in vitro formulation studies may be warranted for the development of suitable, stable formulations of CpG-adjuvanted vaccine candidates.
Collapse
Affiliation(s)
- Kawkab Kanjo
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, India;
| | - Rakesh Lothe
- Serum Institute of India Pvt. Ltd., Pune 411028, India; (R.L.); (G.N.); (M.R.); (H.R.); (S.B.); (U.S.)
| | - Gaurav Nagar
- Serum Institute of India Pvt. Ltd., Pune 411028, India; (R.L.); (G.N.); (M.R.); (H.R.); (S.B.); (U.S.)
| | - Meghraj Rajurkar
- Serum Institute of India Pvt. Ltd., Pune 411028, India; (R.L.); (G.N.); (M.R.); (H.R.); (S.B.); (U.S.)
| | - Harish Rao
- Serum Institute of India Pvt. Ltd., Pune 411028, India; (R.L.); (G.N.); (M.R.); (H.R.); (S.B.); (U.S.)
| | - Saurabh Batwal
- Serum Institute of India Pvt. Ltd., Pune 411028, India; (R.L.); (G.N.); (M.R.); (H.R.); (S.B.); (U.S.)
| | - Umesh Shaligram
- Serum Institute of India Pvt. Ltd., Pune 411028, India; (R.L.); (G.N.); (M.R.); (H.R.); (S.B.); (U.S.)
| | - Raghavan Varadarajan
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, India;
| |
Collapse
|
2
|
Liu S, Lin M, Zhou X. T4 Phage Displaying Dual Antigen Clusters Against H3N2 Influenza Virus Infection. Vaccines (Basel) 2025; 13:70. [PMID: 39852849 PMCID: PMC11769387 DOI: 10.3390/vaccines13010070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 01/09/2025] [Accepted: 01/11/2025] [Indexed: 01/26/2025] Open
Abstract
BACKGROUND The current H3N2 influenza subunit vaccine exhibits weak immunogenicity, which limits its effectiveness in preventing and controlling influenza virus infections. METHODS In this study, we aimed to develop a T4 phage-based nanovaccine designed to enhance the immunogenicity of two antigens by displaying the HA1 and M2e antigens of the H3N2 influenza virus on each phage nanoparticle. Specifically, we fused the Soc protein with the HA1 antigen and the Hoc protein with the M2e antigen, assembling them onto a T4 phage that lacks Soc and Hoc proteins (Soc-Hoc-T4), thereby constructing a nanovaccine that concurrently presents both HA1 and M2e antigens. RESULTS The analysis of the optical density of the target protein bands indicated that each particle could display approximately 179 HA1 and 68 M2e antigen molecules. Additionally, animal experiments demonstrated that this nanoparticle vaccine displaying dual antigen clusters induced a stronger specific immune response, higher antibody titers, a more balanced Th1/Th2 immune response, and enhanced CD4+ and CD8+ T cell effects compared to immunization with HA1 and M2e antigen molecules alone. Importantly, mice immunized with the T4 phage displaying dual antigen clusters achieved full protection (100% protection) against the H3N2 influenza virus, highlighting its robust protective efficacy. CONCLUSIONS In summary, our findings indicate that particles based on a T4 phage displaying antigen clusters exhibit ideal immunogenicity and protective effects, providing a promising strategy for the development of subunit vaccines against various viruses beyond influenza.
Collapse
Affiliation(s)
- Shenglong Liu
- College of Veterinary Medicine, Institute of Comparative Medicine, Yangzhou University, Yangzhou 225009, China; (S.L.); (M.L.)
| | - Mengzhou Lin
- College of Veterinary Medicine, Institute of Comparative Medicine, Yangzhou University, Yangzhou 225009, China; (S.L.); (M.L.)
| | - Xin Zhou
- College of Veterinary Medicine, Institute of Comparative Medicine, Yangzhou University, Yangzhou 225009, China; (S.L.); (M.L.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou 225009, China
| |
Collapse
|
3
|
Gao W, Jiang X, Hu Z, Wang Q, Shi Y, Tian X, Qiao M, Zhang J, Li Y, Li X. Epidemiological investigation, determination of related factors, and spatial-temporal cluster analysis of wild type pseudorabies virus seroprevalence in China during 2022. Front Vet Sci 2023; 10:1298434. [PMID: 38111735 PMCID: PMC10726123 DOI: 10.3389/fvets.2023.1298434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 11/13/2023] [Indexed: 12/20/2023] Open
Abstract
Introduction Pseudorabies virus (PRV) is a linear DNA virus with a double-stranded structure, capable of infecting a diverse array of animal species, including humans. This study sought to ascertain the seroprevalence of Pseudorabies Virus (PRV) in China by conducting a comprehensive collection of blood samples from 16 provinces over the course of 2022. Methods The presence of PRV gE antibodies was detected through the utilization of an enzyme-linked immunosorbent assay (ELISA) technique. Logistic regression analysis was conducted to identify potential related factors associated with the serologic status of PRV gE at the animal level. Additionally, the SaTScan 10.1 software was used to analyze the spatial and temporal clusters of PRV gE seroprevalence. Results A comprehensive collection of 161,880 samples was conducted, encompassing 556 swine farms throughout the country. The analysis revealed that the seroprevalence of PRV gE antibodies was 12.36% (95% confidence interval [CI], 12.20% to 12.52%) at the individual animal level. However, at the swine farm level, the seroprevalence was considerably higher, reaching 46.22% (95% CI, 42.08% to 50.37%). Related factors for PRV infection at the farm level included the geographic distribution of farms and seasonal variables. Moreover, five distinct high seroprevalence clusters of PRV gE were identified across China, with the peak prevalence observed during the months of April through June 2022. Conclusion Our findings serve as a valuable addition to existing research on the seroprevalence, related factors, and temporal clustering of PRV gE in China. Furthermore, our study provides a reference point for the development of effective strategies for the prevention and control of pseudorabies and wild virus outbreaks.
Collapse
Affiliation(s)
- Wenchao Gao
- Shandong New Hope Liuhe Co., Ltd., Qingdao, Shandong, China
- Shandong Engineering Laboratory of Pig and Poultry Healthy Breeding and Disease Diagnosis Technology, Qingdao, Shandong, China
- New Hope Liuhe Co., Ltd., Chengdu, Sichuan, China
- Key Laboratory of Feed and Livestock and Poultry Products Quality and Safety Control, Ministry of Agriculture and Rural Affairs, Chengdu, Sichuan, China
| | - Xiaoxue Jiang
- Shandong New Hope Liuhe Co., Ltd., Qingdao, Shandong, China
- Shandong Engineering Laboratory of Pig and Poultry Healthy Breeding and Disease Diagnosis Technology, Qingdao, Shandong, China
- New Hope Liuhe Co., Ltd., Chengdu, Sichuan, China
- Key Laboratory of Feed and Livestock and Poultry Products Quality and Safety Control, Ministry of Agriculture and Rural Affairs, Chengdu, Sichuan, China
| | - Zhiqiang Hu
- Shandong New Hope Liuhe Co., Ltd., Qingdao, Shandong, China
- Shandong Engineering Laboratory of Pig and Poultry Healthy Breeding and Disease Diagnosis Technology, Qingdao, Shandong, China
- New Hope Liuhe Co., Ltd., Chengdu, Sichuan, China
- Key Laboratory of Feed and Livestock and Poultry Products Quality and Safety Control, Ministry of Agriculture and Rural Affairs, Chengdu, Sichuan, China
| | - Qing Wang
- Shandong New Hope Liuhe Co., Ltd., Qingdao, Shandong, China
- Shandong Engineering Laboratory of Pig and Poultry Healthy Breeding and Disease Diagnosis Technology, Qingdao, Shandong, China
- New Hope Liuhe Co., Ltd., Chengdu, Sichuan, China
- Key Laboratory of Feed and Livestock and Poultry Products Quality and Safety Control, Ministry of Agriculture and Rural Affairs, Chengdu, Sichuan, China
| | - Yuntong Shi
- Shandong New Hope Liuhe Co., Ltd., Qingdao, Shandong, China
- Shandong Engineering Laboratory of Pig and Poultry Healthy Breeding and Disease Diagnosis Technology, Qingdao, Shandong, China
- New Hope Liuhe Co., Ltd., Chengdu, Sichuan, China
- Key Laboratory of Feed and Livestock and Poultry Products Quality and Safety Control, Ministry of Agriculture and Rural Affairs, Chengdu, Sichuan, China
| | - Xiaogang Tian
- Shandong New Hope Liuhe Co., Ltd., Qingdao, Shandong, China
- Shandong Engineering Laboratory of Pig and Poultry Healthy Breeding and Disease Diagnosis Technology, Qingdao, Shandong, China
- New Hope Liuhe Co., Ltd., Chengdu, Sichuan, China
- Key Laboratory of Feed and Livestock and Poultry Products Quality and Safety Control, Ministry of Agriculture and Rural Affairs, Chengdu, Sichuan, China
| | - Mengli Qiao
- New Hope Liuhe Co., Ltd., Chengdu, Sichuan, China
- Key Laboratory of Feed and Livestock and Poultry Products Quality and Safety Control, Ministry of Agriculture and Rural Affairs, Chengdu, Sichuan, China
- Xiajin New Hope Liuhe Agriculture and Animal Husbandry Co., Ltd., Dezhou, China
| | - Jinyong Zhang
- New Hope Liuhe Co., Ltd., Chengdu, Sichuan, China
- Key Laboratory of Feed and Livestock and Poultry Products Quality and Safety Control, Ministry of Agriculture and Rural Affairs, Chengdu, Sichuan, China
- Xiajin New Hope Liuhe Agriculture and Animal Husbandry Co., Ltd., Dezhou, China
| | - Yang Li
- Shandong New Hope Liuhe Co., Ltd., Qingdao, Shandong, China
- Shandong Engineering Laboratory of Pig and Poultry Healthy Breeding and Disease Diagnosis Technology, Qingdao, Shandong, China
- New Hope Liuhe Co., Ltd., Chengdu, Sichuan, China
- Key Laboratory of Feed and Livestock and Poultry Products Quality and Safety Control, Ministry of Agriculture and Rural Affairs, Chengdu, Sichuan, China
- Xiajin New Hope Liuhe Agriculture and Animal Husbandry Co., Ltd., Dezhou, China
| | - Xiaowen Li
- Shandong New Hope Liuhe Co., Ltd., Qingdao, Shandong, China
- Shandong Engineering Laboratory of Pig and Poultry Healthy Breeding and Disease Diagnosis Technology, Qingdao, Shandong, China
- New Hope Liuhe Co., Ltd., Chengdu, Sichuan, China
- Key Laboratory of Feed and Livestock and Poultry Products Quality and Safety Control, Ministry of Agriculture and Rural Affairs, Chengdu, Sichuan, China
- Xiajin New Hope Liuhe Agriculture and Animal Husbandry Co., Ltd., Dezhou, China
- Shandong New Hope Liuhe Agriculture and Animal Husbandry Technology Co., Ltd. (New Hope Liuhe Academy of Swine Research), Dezhou, China
| |
Collapse
|
4
|
Chang C, Wang H, Hua T, Zhang D, Hong W, Deng B, Tang B. A single dose of Astragalus saponins adjuvanted inactivated vaccine for pseudorabies virus protected mice against lethal challenge. Front Vet Sci 2022; 9:1036161. [PMID: 36478947 PMCID: PMC9719957 DOI: 10.3389/fvets.2022.1036161] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 10/31/2022] [Indexed: 08/18/2024] Open
Abstract
Pseudorabies (PR) is an important infectious disease of swine that causes enormous economic losses to the swine industry in China. Immunization with vaccines is a routine practice to control this disease. PRV inactivated vaccines usually require a booster vaccination to provide complete immune protection. Therefore, Astragalus saponins (AST) have been added as an immunopotentiator to improve the immune efficacy and reduce the immunization times for the PRV inactivated vaccine. The results in mice have shown that a single dose of AST-adjuvanted PRV inactivated vaccine promoted higher production of gB-specific IgG, IgG1, and IgG2a and neutralizing antibody, secretion of Th1-type (IFN-γ) and Th2-type (IL-4) cytokines, and lymphocyte proliferation than mice immunized without AST. Compared to mice immunized without AST, a single dose of the AST-adjuvanted PRV inactivated vaccine improved the survival percentage of mice and reduced the PRV viral loads in the lungs and brains after lethal challenge. In summary, AST was an effective immunopotentiator to improve the immune efficacy of a single dose PRV inactivated vaccine.
Collapse
Affiliation(s)
- Chen Chang
- Institute of Veterinary Immunology and Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- National Research Center of Veterinary Bio-product Engineering and Technology, Jiangsu Academy of Agricultural Science, Nanjing, China
| | - Haiyan Wang
- Institute of Veterinary Immunology and Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- National Research Center of Veterinary Bio-product Engineering and Technology, Jiangsu Academy of Agricultural Science, Nanjing, China
| | - Tao Hua
- Institute of Veterinary Immunology and Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- National Research Center of Veterinary Bio-product Engineering and Technology, Jiangsu Academy of Agricultural Science, Nanjing, China
| | - Daohua Zhang
- Institute of Veterinary Immunology and Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- National Research Center of Veterinary Bio-product Engineering and Technology, Jiangsu Academy of Agricultural Science, Nanjing, China
| | - Weibin Hong
- Dongguan Animal Disease Control and Prevention Center, Dongguan, China
| | - Bihua Deng
- Institute of Veterinary Immunology and Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- National Research Center of Veterinary Bio-product Engineering and Technology, Jiangsu Academy of Agricultural Science, Nanjing, China
| | - Bo Tang
- Institute of Veterinary Immunology and Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- National Research Center of Veterinary Bio-product Engineering and Technology, Jiangsu Academy of Agricultural Science, Nanjing, China
| |
Collapse
|
5
|
Qiao Y, Zhang Y, Chen J, Jin S, Shan Y. A biepitope, adjuvant-free, self-assembled influenza nanovaccine provides cross-protection against H3N2 and H1N1 viruses in mice. NANO RESEARCH 2022; 15:8304-8314. [PMID: 35911479 PMCID: PMC9325945 DOI: 10.1007/s12274-022-4482-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 05/27/2023]
Abstract
Currently, the incorporation of multiple epitopes into vaccines is more desirable than the incorporation of a single antigen for universal influenza vaccine development. However, epitopes induce poor immune responses. Although the use of adjuvants can overcome this obstacle, it may raise new problems. Effective antigen delivery vehicles that can function as both antigen carriers and intrinsic adjuvants are highly desired for vaccine development. Here, we report a biepitope nanovaccine that provides complete protection in mice against H3N2 virus as well as partial protection against H1N1 virus. This vaccine (3MCD-f) consists of two conserved epitopes (matrix protein 2 ectodomain (M2e) and CDhelix), and these epitopes were presented on the surface of ferritin in a sequential tandem format. Subcutaneous immunization with 3MCD-f in the absence of adjuvant induces robust humoral and cellular immune responses. These results provide a proof of concept for the 3MCD-f nanovaccine that might be an ideal candidate for future influenza pandemics.
Collapse
Affiliation(s)
- Yongbo Qiao
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, 130012 China
| | - YaXin Zhang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, 130012 China
| | - Jie Chen
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, 130012 China
| | - Shenghui Jin
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, 130012 China
| | - Yaming Shan
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, 130012 China
| |
Collapse
|
6
|
Nanishi E, Borriello F, O’Meara TR, McGrath ME, Saito Y, Haupt RE, Seo HS, van Haren SD, Cavazzoni CB, Brook B, Barman S, Chen J, Diray-Arce J, Doss-Gollin S, De Leon M, Prevost-Reilly A, Chew K, Menon M, Song K, Xu AZ, Caradonna TM, Feldman J, Hauser BM, Schmidt AG, Sherman AC, Baden LR, Ernst RK, Dillen C, Weston SM, Johnson RM, Hammond HL, Mayer R, Burke A, Bottazzi ME, Hotez PJ, Strych U, Chang A, Yu J, Sage PT, Barouch DH, Dhe-Paganon S, Zanoni I, Ozonoff A, Frieman MB, Levy O, Dowling DJ. An aluminum hydroxide:CpG adjuvant enhances protection elicited by a SARS-CoV-2 receptor binding domain vaccine in aged mice. Sci Transl Med 2022; 14:eabj5305. [PMID: 34783582 PMCID: PMC10176044 DOI: 10.1126/scitranslmed.abj5305] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Global deployment of vaccines that can provide protection across several age groups is still urgently needed to end the COVID-19 pandemic, especially in low- and middle-income countries. Although vaccines against SARS-CoV-2 based on mRNA and adenoviral vector technologies have been rapidly developed, additional practical and scalable SARS-CoV-2 vaccines are required to meet global demand. Protein subunit vaccines formulated with appropriate adjuvants represent an approach to address this urgent need. The receptor binding domain (RBD) is a key target of SARS-CoV-2 neutralizing antibodies but is poorly immunogenic. We therefore compared pattern recognition receptor (PRR) agonists alone or formulated with aluminum hydroxide (AH) and benchmarked them against AS01B and AS03-like emulsion-based adjuvants for their potential to enhance RBD immunogenicity in young and aged mice. We found that an AH and CpG adjuvant formulation (AH:CpG) produced an 80-fold increase in anti-RBD neutralizing antibody titers in both age groups relative to AH alone and protected aged mice from the SARS-CoV-2 challenge. The AH:CpG-adjuvanted RBD vaccine elicited neutralizing antibodies against both wild-type SARS-CoV-2 and the B.1.351 (beta) variant at serum concentrations comparable to those induced by the licensed Pfizer-BioNTech BNT162b2 mRNA vaccine. AH:CpG induced similar cytokine and chemokine gene enrichment patterns in the draining lymph nodes of both young adult and aged mice and enhanced cytokine and chemokine production in human mononuclear cells of younger and older adults. These data support further development of AH:CpG-adjuvanted RBD as an affordable vaccine that may be effective across multiple age groups.
Collapse
Affiliation(s)
- Etsuro Nanishi
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children’s Hospital, Boston, MA, USA 02115
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA 02115
| | - Francesco Borriello
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children’s Hospital, Boston, MA, USA 02115
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA 02115
- Division of Immunology, Boston Children’s Hospital, Boston, MA, USA 02115
- Present address: Generate Biomedicines, Cambridge, MA, USA 02139
| | - Timothy R. O’Meara
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children’s Hospital, Boston, MA, USA 02115
| | - Marisa E. McGrath
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA 21201
| | - Yoshine Saito
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children’s Hospital, Boston, MA, USA 02115
| | - Robert E. Haupt
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA 21201
| | - Hyuk-Soo Seo
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA 02115
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA 02115
| | - Simon D. van Haren
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children’s Hospital, Boston, MA, USA 02115
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA 02115
| | - Cecilia B. Cavazzoni
- Transplantation Research Center, Renal Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA 02115
| | - Byron Brook
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children’s Hospital, Boston, MA, USA 02115
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA 02115
| | - Soumik Barman
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children’s Hospital, Boston, MA, USA 02115
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA 02115
| | - Jing Chen
- Research Computing Group, Boston Children’s Hospital, Boston, MA, USA 02115
| | - Joann Diray-Arce
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children’s Hospital, Boston, MA, USA 02115
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA 02115
| | - Simon Doss-Gollin
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children’s Hospital, Boston, MA, USA 02115
| | - Maria De Leon
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children’s Hospital, Boston, MA, USA 02115
| | - Alejandra Prevost-Reilly
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children’s Hospital, Boston, MA, USA 02115
| | - Katherine Chew
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children’s Hospital, Boston, MA, USA 02115
| | - Manisha Menon
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children’s Hospital, Boston, MA, USA 02115
| | - Kijun Song
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA 02115
| | - Andrew Z. Xu
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA 02115
| | | | - Jared Feldman
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA 02139
| | - Blake M. Hauser
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA 02139
| | - Aaron G. Schmidt
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA 02139
- Department of Microbiology, Harvard Medical School, Boston, MA, USA 02115
| | - Amy C. Sherman
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children’s Hospital, Boston, MA, USA 02115
- Department of Medicine, Brigham and Women’s Hospital, Boston, MA, USA 02115
| | - Lindsey R. Baden
- Department of Medicine, Brigham and Women’s Hospital, Boston, MA, USA 02115
| | - Robert K. Ernst
- Department of Microbial Pathogenesis, University of Maryland School of Dentistry, Baltimore, MD, USA 21201
| | - Carly Dillen
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA 21201
| | - Stuart M. Weston
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA 21201
| | - Robert M. Johnson
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA 21201
| | - Holly L. Hammond
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA 21201
| | - Romana Mayer
- Department of Pathology, University of Maryland Medical Center, Baltimore, MD, USA 21201
| | - Allen Burke
- Department of Pathology, University of Maryland Medical Center, Baltimore, MD, USA 21201
| | - Maria E. Bottazzi
- Texas Children’s Hospital Center for Vaccine Development, Baylor College of Medicine, Houston, TX, USA 77030
- National School of Tropical Medicine and Departments of Pediatrics and Molecular Virology & Microbiology, Baylor College of Medicine, Houston, TX, USA 77030
| | - Peter J. Hotez
- Texas Children’s Hospital Center for Vaccine Development, Baylor College of Medicine, Houston, TX, USA 77030
- National School of Tropical Medicine and Departments of Pediatrics and Molecular Virology & Microbiology, Baylor College of Medicine, Houston, TX, USA 77030
| | - Ulrich Strych
- Texas Children’s Hospital Center for Vaccine Development, Baylor College of Medicine, Houston, TX, USA 77030
- National School of Tropical Medicine and Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA 77030
| | - Aiquan Chang
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA 02115
| | - Jingyou Yu
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA 02115
| | - Peter T. Sage
- Transplantation Research Center, Renal Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA 02115
| | - Dan H. Barouch
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA 02115
| | - Sirano Dhe-Paganon
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA 02115
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA 02115
| | - Ivan Zanoni
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA 02115
- Division of Immunology, Boston Children’s Hospital, Boston, MA, USA 02115
| | - Al Ozonoff
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children’s Hospital, Boston, MA, USA 02115
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA 02115
| | - Matthew B. Frieman
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA 21201
| | - Ofer Levy
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children’s Hospital, Boston, MA, USA 02115
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA 02115
- Broad Institute of MIT & Harvard, Cambridge, MA, USA 02142
| | - David J. Dowling
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children’s Hospital, Boston, MA, USA 02115
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA 02115
| |
Collapse
|
7
|
Nanishi E, Borriello F, O'Meara TR, McGrath ME, Saito Y, Haupt RE, Seo HS, van Haren SD, Brook B, Chen J, Diray-Arce J, Doss-Gollin S, Leon MD, Chew K, Menon M, Song K, Xu AZ, Caradonna TM, Feldman J, Hauser BM, Schmidt AG, Sherman AC, Baden LR, Ernst RK, Dillen C, Weston SM, Johnson RM, Hammond HL, Mayer R, Burke A, Bottazzi ME, Hotez PJ, Strych U, Chang A, Yu J, Barouch DH, Dhe-Paganon S, Zanoni I, Ozonoff A, Frieman MB, Levy O, Dowling DJ. Alum:CpG adjuvant enables SARS-CoV-2 RBD-induced protection in aged mice and synergistic activation of human elder type 1 immunity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021. [PMID: 34031655 DOI: 10.1101/2021.05.20.444848] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Global deployment of vaccines that can provide protection across several age groups is still urgently needed to end the COVID-19 pandemic especially for low- and middle-income countries. While vaccines against SARS-CoV-2 based on mRNA and adenoviral-vector technologies have been rapidly developed, additional practical and scalable SARS-CoV-2 vaccines are needed to meet global demand. In this context, protein subunit vaccines formulated with appropriate adjuvants represent a promising approach to address this urgent need. Receptor-binding domain (RBD) is a key target of neutralizing antibodies (Abs) but is poorly immunogenic. We therefore compared pattern recognition receptor (PRR) agonists, including those activating STING, TLR3, TLR4 and TLR9, alone or formulated with aluminum hydroxide (AH), and benchmarked them to AS01B and AS03-like emulsion-based adjuvants for their potential to enhance RBD immunogenicity in young and aged mice. We found that the AH and CpG adjuvant formulation (AH:CpG) demonstrated the highest enhancement of anti-RBD neutralizing Ab titers in both age groups (∼80-fold over AH), and protected aged mice from the SARS-CoV-2 challenge. Notably, AH:CpG-adjuvanted RBD vaccine elicited neutralizing Abs against both wild-type SARS-CoV-2 and B.1.351 variant at serum concentrations comparable to those induced by the authorized mRNA BNT162b2 vaccine. AH:CpG induced similar cytokine and chemokine gene enrichment patterns in the draining lymph nodes of both young adult and aged mice and synergistically enhanced cytokine and chemokine production in human young adult and elderly mononuclear cells. These data support further development of AH:CpG-adjuvanted RBD as an affordable vaccine that may be effective across multiple age groups. One Sentence Summary Alum and CpG enhance SARS-CoV-2 RBD protective immunity, variant neutralization in aged mice and Th1-polarizing cytokine production by human elder leukocytes.
Collapse
|
8
|
Käser T. Swine as biomedical animal model for T-cell research-Success and potential for transmittable and non-transmittable human diseases. Mol Immunol 2021; 135:95-115. [PMID: 33873098 DOI: 10.1016/j.molimm.2021.04.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 03/23/2021] [Accepted: 04/01/2021] [Indexed: 02/07/2023]
Abstract
Swine is biologically one of the most relevant large animal models for biomedical research. With its use as food animal that can be exploited as a free cell and tissue source for research and its high susceptibility to human diseases, swine additionally represent an excellent option for both the 3R principle and One Health research. One of the previously most limiting factors of the pig model was its arguably limited immunological toolbox. Yet, in the last decade, this toolbox has vastly improved including the ability to study porcine T-cells. This review summarizes the swine model for biomedical research with focus on T cells. It first contrasts the swine model to the more commonly used mouse and non-human primate model before describing the current capabilities to characterize and extend our knowledge on porcine T cells. Thereafter, it not only reflects on previous biomedical T-cell research but also extends into areas in which more in-depth T-cell analyses could strongly benefit biomedical research. While the former should inform on the successes of biomedical T-cell research in swine, the latter shall inspire swine T-cell researchers to find collaborations with researchers working in other areas - such as nutrition, allergy, cancer, transplantation, infectious diseases, or vaccine development.
Collapse
Affiliation(s)
- Tobias Käser
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, 1060 William Moore Drive, 27607 Raleigh, NC, USA.
| |
Collapse
|
9
|
A Solution with Ginseng Saponins and Selenium as Vaccine Diluent to Increase Th1/Th2 Immune Responses in Mice. J Immunol Res 2020; 2020:2714257. [PMID: 32149156 PMCID: PMC7054799 DOI: 10.1155/2020/2714257] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 11/24/2019] [Accepted: 12/13/2019] [Indexed: 12/22/2022] Open
Abstract
Pseudorabies is an important infectious disease of swine, and immunization using attenuated pseudorabies virus (aPrV) vaccine is a routine practice to control this disease in swine herds. This study was to evaluate a saline solution containing ginseng stem-leaf saponins (GSLS) and sodium selenite (Se) as a vaccine adjuvant for its enhancement of immune response to aPrV vaccine. The results showed that aPrV vaccine diluted with saline containing GSLS-Se (aP-GSe) induced significantly higher immune responses than that of the vaccine diluted with saline alone (aP-S). The aP-GSe promoted higher production of gB-specific IgG, IgG1, and IgG2a, neutralizing antibody titers, secretion of Th1-type (IFN-γ, IL-2, IL-12), and Th2-type (IL-4, IL-6, IL-10) cytokines, and upregulated the T-bet/GATA-3 mRNA expression when compared to aP-S. In addition, cytolytic activity of NK cells, lymphocyte proliferation, and CD4+/CD8+ ratio was also significantly increased by aP-GSe. More importantly, aP-GSe conferred a much higher resistance of mice to a field virulent pseudorabies virus (fPrV) challenge. As the present study was conducted in mice, further study is required to evaluate the aP-GSe to improve the vaccination against PrV in swine.
Collapse
|
10
|
Li R, Zhang L, Shi P, Deng H, Li Y, Ren J, Fu X, Zhang L, Huang J. Immunological effects of different types of synthetic CpG oligodeoxynucleotides on porcine cells. RSC Adv 2017. [DOI: 10.1039/c7ra04493c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The agonists of toll-like receptor 9, synthetic oligodeoxynucleotides (ODNs) containing CpG sequences, stimulate innate and adaptive immune responses in humans and a variety of animal species.
Collapse
Affiliation(s)
- Ruiqiao Li
- School of Life Sciences
- Tianjin University
- Tianjin
- China
| | - Lilin Zhang
- School of Life Sciences
- Tianjin University
- Tianjin
- China
| | - Peidian Shi
- School of Life Sciences
- Tianjin University
- Tianjin
- China
| | - Hui Deng
- School of Life Sciences
- Tianjin University
- Tianjin
- China
| | - Yi Li
- School of Life Sciences
- Tianjin University
- Tianjin
- China
| | - Jie Ren
- School of Life Sciences
- Tianjin University
- Tianjin
- China
| | - Xubin Fu
- Tianjin Ruipu Biotechnology Limited Co
- Tianjin
- China
| | - Lei Zhang
- School of Life Sciences
- Tianjin University
- Tianjin
- China
| | - Jinhai Huang
- School of Life Sciences
- Tianjin University
- Tianjin
- China
| |
Collapse
|
11
|
CpG oligodeoxynucleotide protect neonatal piglets from challenge with the enterotoxigenic E. coli. Vet Immunol Immunopathol 2014; 161:66-76. [PMID: 25081388 DOI: 10.1016/j.vetimm.2014.07.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Revised: 07/02/2014] [Accepted: 07/06/2014] [Indexed: 11/23/2022]
Abstract
CpG motifs activates mammalian lymphocytes and macrophages to produce cytokines and polyclonal Ig. These include IFN-γ, IL-12, TNF-a, which are important in the control of bacterial infection. But thus far, the innate immunostimulatory effects of CpG ODN against pathogen have been established mainly in mouse, monkey, sheep, chicken, but not in neonatal piglets. The purpose of this study is to determine the potential protection of CpG ODN against enterotoxigenic Escherichia coli (ETEC) (with which neonatal piglets were susceptible to infection in our lab) in neonatal piglets. Here, we show intranasal (IN)-mucosal and intramuscularly (IM) systemic administration of CpG ODN could enhance innate cellular (cytokine) immunity in the sera and intestine mucosa post challenge, and thereafter the development of antigen-specific antibodies in piglets. IN and IM immunizations of neonatal piglets without antigen both reduced the ETEC excretion and alleviated diarrhoea symptoms upon challenge, and IN route had better protection effects than IM route. Protection in this study was linked to induction of a Th1 response which induced by CpG ODN. Co-delivery with Emulsigen (EM), could improve protection mediated by CpG ODN. These observations indicate that IN administration of 100 μg/kg CpG ODN with 20% EM codelivery may represent a valuable strategy for induction of innate immunity against ETEC infection in neonatal piglets.
Collapse
|
12
|
Dobbs NA, Zhou X, Pulse M, Hodge LM, Schoeb TR, Simecka JW. Antigen-pulsed bone marrow-derived and pulmonary dendritic cells promote Th2 cell responses and immunopathology in lungs during the pathogenesis of murine Mycoplasma pneumonia. THE JOURNAL OF IMMUNOLOGY 2014; 193:1353-63. [PMID: 24973442 DOI: 10.4049/jimmunol.1301772] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Mycoplasmas are a common cause of pneumonia in humans and animals, and attempts to create vaccines have not only failed to generate protective host responses, but they have exacerbated the disease. Mycoplasma pulmonis causes a chronic inflammatory lung disease resulting from a persistent infection, similar to other mycoplasma respiratory diseases. Using this model, Th1 subsets promote resistance to mycoplasma disease and infection, whereas Th2 responses contribute to immunopathology. The purpose of the present study was to evaluate the capacity of cytokine-differentiated dendritic cell (DC) populations to influence the generation of protective and/or pathologic immune responses during M. pulmonis respiratory disease in BALB/c mice. We hypothesized that intratracheal inoculation of mycoplasma Ag-pulsed bone marrow-derived DCs could result in the generation of protective T cell responses during mycoplasma infection. However, intratracheal inoculation (priming) of mice with Ag-pulsed DCs resulted in enhanced pathology in the recipient mice when challenged with mycoplasma. Inoculation of immunodeficient SCID mice with Ag-pulsed DCs demonstrated that this effect was dependent on lymphocyte responses. Similar results were observed when mice were primed with Ag-pulsed pulmonary, but not splenic, DCs. Lymphocytes generated in uninfected mice after the transfer of either Ag-pulsed bone marrow-derived DCs or pulmonary DCs were shown to be IL-13(+) Th2 cells, known to be associated with immunopathology. Thus, resident pulmonary DCs most likely promote the development of immunopathology in mycoplasma disease through the generation of mycoplasma-specific Th2 responses. Vaccination strategies that disrupt or bypass this process could potentially result in a more effective vaccination.
Collapse
Affiliation(s)
- Nicole A Dobbs
- Division of Infectious Diseases, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Xia Zhou
- Department of Ophthalmology, Xiangya Hospital of Central South University, Changsha 410008, China
| | - Mark Pulse
- Department of Cell Biology and Immunology, University of North Texas Health Science Center, Fort Worth, TX 76107; and
| | - Lisa M Hodge
- Department of Cell Biology and Immunology, University of North Texas Health Science Center, Fort Worth, TX 76107; and
| | - Trenton R Schoeb
- Division of Genomics, Department of Genetics, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Jerry W Simecka
- Department of Cell Biology and Immunology, University of North Texas Health Science Center, Fort Worth, TX 76107; and
| |
Collapse
|
13
|
Parameswaran N, Russell GC, Bartley K, Grant DM, Deane D, Todd H, Dagleish MP, Haig DM. The effect of the TLR9 ligand CpG-oligodeoxynucleotide on the protective immune response to alcelaphine herpesvirus-1-mediated malignant catarrhal fever in cattle. Vet Res 2014; 45:59. [PMID: 24886334 PMCID: PMC4059458 DOI: 10.1186/1297-9716-45-59] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Accepted: 05/14/2014] [Indexed: 12/02/2022] Open
Abstract
We wished to determine the effect of of CpG ODN adjuvant on the magnitude and duration of protective immunity against alcelaphine herpesvirus-1 (AlHV-1) malignant catarrhal fever (MCF), a fatal lymphoproliferative disease of cattle. Immunity was associated with a mucosal barrier of virus-neutralising antibody. The results showed that CpG ODN included either with emulsigen adjuvant and attenuated AlHV-1 (atAlHV-1) or alone with atAlHV-1 did not affect the overall protection from clinical disease or duration of immunity achieved using emulsigen and atAlHV-1. This is in contrast to other similar studies in cattle with BoHV-1 or cattle and pigs with various other immunogens. In addition to this, several other novel observations were made, not reported previously. Firstly, we were able to statistically verify that vaccine protection against MCF was associated with virus-neutralising antibodies (nAbs) in nasal secretions but was not associated with antibodies in blood plasma, nor with total virus-specific antibody (tAb) titres in either nasal secretions or blood plasma. Furthermore, CpG ODN alone as adjuvant did not support the generation of virus-neutralising antibodies. Secondly, there was a significant boost in tAb in animals with MCF comparing titres before and after challenge. This was not seen with protected animals. Finally, there was a strong IFN-γ response in animals with emulsigen and atAlHV-1 immunisation, as measured by IFN-γ secreting PBMC in culture (and a lack of IL-4) that was not affected by the inclusion of CpG ODN. This suggests that nAbs at the oro-nasal-pharyngeal region are important in protection against AlHV-1 MCF.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - David M Haig
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, LE12 5RD Nottingham, UK.
| |
Collapse
|