1
|
Yadav PK, Chauhan D, Yadav P, Tiwari AK, Sultana N, Gupta D, Mishra K, Gayen JR, Wahajuddin M, Chourasia MK. Nanotechnology Assisted Drug Delivery Strategies for Chemotherapy: Recent Advances and Future Prospects. ACS APPLIED BIO MATERIALS 2025; 8:3601-3622. [PMID: 40318022 DOI: 10.1021/acsabm.5c00046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2025]
Abstract
In pursuit of the treatment of cancer, nanotechnology engineering has emerged as the simplest and most effective means, with the potential to deliver antitumor chemotherapeutics at the targeted site. Employing nanotechnology for drug delivery provides diverse nanosize particles ranging from one to a thousand nanometers. Reduced size improves drug bioavailability by increasing drug diffusion and decreasing the efflux rate. These nanocarriers offer an enormous scope for modification following the chemical and biological properties of both the drug and its disease. Moreover, these nanoformulations assist in targeting pharmaceutically active drug molecules to the desired site and have gained importance in recent years. Their modern use has revolutionized the antitumor action of many therapeutic agents. Higher drug loading efficiency, thermal stability, easy fabrication, low production cost, and large-scale industrial production draw attention to the application of nanotechnology as a better platform for the delivery of drug molecules. Furthermore, the interaction of nanocarrier technology-assisted agents lowers a drug's toxicity and therapeutic dosage, reduces drug tolerance, and enhances active drug concentration in neoplasm tissue, thus decreasing the concentration in healthy tissue. Nanotechnology-based medications are being widely explored and have depicted effective cancer management in vivo and in vitro systems, leading to many clinical trials with promising results. This review summarizes the innovative impact and application of different nanocarriers developed in recent years in cancer therapy. Subsequently, it also describes the essential findings and methodologies and their effects on cancer treatment. Compared with conventional therapy, nanomedicines can significantly improve the therapeutic effectiveness of antitumor drugs. Thus, the adverse effects associated with healthy tissues are decreased, and adverse effects are scaled back through enhanced permeability and retention effects. Lastly, future insights assisting nanotechnology in active therapeutics delivery and their scope in cancer chemotherapeutics have also been discussed.
Collapse
Affiliation(s)
- Pavan K Yadav
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Divya Chauhan
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Pooja Yadav
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Amrendra K Tiwari
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Nazneen Sultana
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh 226031, India
| | - Deepak Gupta
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh 226031, India
| | - Keerti Mishra
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh 226031, India
| | - Jiaur R Gayen
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh 226031, India
| | - Muhammad Wahajuddin
- Institute of Cancer Therapeutics, School of Pharmacy and Medical Sciences, Faculty of Life Sciences, University of Bradford, Richmond Road, Bradford BD7 1DP, United Kingdom
| | - Manish K Chourasia
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
2
|
Chen PHB, Li XL, Baskin JM. Synthetic Lipid Biology. Chem Rev 2025; 125:2502-2560. [PMID: 39805091 PMCID: PMC11969270 DOI: 10.1021/acs.chemrev.4c00761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Cells contain thousands of different lipids. Their rapid and redundant metabolism, dynamic movement, and many interactions with other biomolecules have justly earned lipids a reputation as a vexing class of molecules to understand. Further, as the cell's hydrophobic metabolites, lipids assemble into supramolecular structures─most commonly bilayers, or membranes─from which they carry out myriad biological functions. Motivated by this daunting complexity, researchers across disciplines are bringing order to the seeming chaos of biological lipids and membranes. Here, we formalize these efforts as "synthetic lipid biology". Inspired by the idea, central to synthetic biology, that our abilities to understand and build biological systems are intimately connected, we organize studies and approaches across numerous fields to create, manipulate, and analyze lipids and biomembranes. These include construction of lipids and membranes from scratch using chemical and chemoenzymatic synthesis, editing of pre-existing membranes using optogenetics and protein engineering, detection of lipid metabolism and transport using bioorthogonal chemistry, and probing of lipid-protein interactions and membrane biophysical properties. What emerges is a portrait of an incipient field where chemists, biologists, physicists, and engineers work together in proximity─like lipids themselves─to build a clearer description of the properties, behaviors, and functions of lipids and membranes.
Collapse
Affiliation(s)
- Po-Hsun Brian Chen
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, New York 14853, United States
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Xiang-Ling Li
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, New York 14853, United States
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Jeremy M Baskin
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, New York 14853, United States
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
3
|
Wu QJ, Lv WL. Cancer Vaccines Designed Based the Nanoparticle and Tumor Cells for the Treatment of Tumors: A Perspective. IET Nanobiotechnol 2024; 2024:5593879. [PMID: 38863969 PMCID: PMC11095075 DOI: 10.1049/2024/5593879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/27/2024] [Accepted: 02/05/2024] [Indexed: 06/13/2024] Open
Abstract
Cancer vaccines based on tumor cell components have shown promising results in animal and clinical studies. The vaccine system contains abundant tumor antigen components, which can activate the immune system by antigens. However, their efficacy has been limited by the inability of antigens delivery, which are the core components of vaccines, further fail to be presented and activation of effective cells. Nanotechnology offers a novel platform to enhance the immunogenicity of tumor-associated antigens and deliver them to antigen-presenting cells (APCs) more efficiently. In addition, nanotreatment of tumor cells derivate active ingredients could also help improve the effectiveness of cancer vaccines. In this review, we summarize recent advances in the development of cancer vaccines by the combination of nanotechnology and tumor-based ingredients, including liposomes, polymeric nanoparticles, metallic nanoparticles, virus-like particles and tumor cells membrane, tumor lysate, and specific tumor antigens. These nanovaccines have been designed to increase antigen uptake, prolong antigen presentation, and modulate immune responses through codelivery of immunostimulatory agents. We also further discuss challenges and opportunities in the clinical translation of these nanovaccines.
Collapse
Affiliation(s)
- Qing-Juan Wu
- Guang 'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Wen-Liang Lv
- Guang 'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
4
|
Aljabali AAA, Aljbaly MBM, Obeid MA, Shahcheraghi SH, Tambuwala MM. The Next Generation of Drug Delivery: Harnessing the Power of Bacteriophages. Methods Mol Biol 2024; 2738:279-315. [PMID: 37966606 DOI: 10.1007/978-1-0716-3549-0_18] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
The use of biomaterials, such as bacteriophages, as drug delivery vehicles (DDVs) has gained increasing interest in recent years due to their potential to address the limitations of conventional drug delivery systems. Bacteriophages offer several advantages as drug carriers, such as high specificity for targeting bacterial cells, low toxicity, and the ability to be engineered to express specific proteins or peptides for enhanced targeting and drug delivery. In addition, bacteriophages have been shown to reduce the development of antibiotic resistance, which is a major concern in the field of antimicrobial therapy. Many initiatives have been taken to take up various payloads selectively and precisely by surface functionalization of the outside or interior of self-assembling viral protein capsids. Bacteriophages have emerged as a promising platform for the targeted delivery of therapeutic agents, including drugs, genes, and imaging agents. They possess several properties that make them attractive as drug delivery vehicles, including their ability to specifically target bacterial cells, their structural diversity, their ease of genetic manipulation, and their biocompatibility. Despite the potential advantages of using bacteriophages as drug carriers, several challenges and limitations need to be addressed. One of the main challenges is the limited host range of bacteriophages, which restricts their use to specific bacterial strains. However, this can also be considered as an advantage, as it allows for precise and targeted drug delivery to the desired bacterial cells. The use of biomaterials, including bacteriophages, as drug delivery vehicles has shown promising potential to address the limitations of conventional drug delivery systems. Further research is needed to fully understand the potential of these biomaterials and address the challenges and limitations associated with their use.
Collapse
Affiliation(s)
- Alaa A A Aljabali
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Yarmouk University, Irbid, Jordan.
| | | | - Mohammad A Obeid
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Yarmouk University, Irbid, Jordan
| | - Seyed Hossein Shahcheraghi
- Department of Medical Genetics, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Murtaza M Tambuwala
- Lincoln Medical School, Brayford Pool Campus, University of Lincoln, Lincoln, UK.
| |
Collapse
|
5
|
Yazdan M, Naghib SM, Mozafari MR. Polymeric Micelle-Based Nanogels as Emerging Drug Delivery Systems in Breast Cancer Treatment: Promises and Challenges. Curr Drug Targets 2024; 25:649-669. [PMID: 38919076 DOI: 10.2174/0113894501294136240610061328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 04/24/2024] [Accepted: 04/29/2024] [Indexed: 06/27/2024]
Abstract
Breast cancer is a pervasive global health issue that disproportionately impacts the female population. Over the past few years, there has been considerable interest in nanotechnology due to its potential utility in creating drug-delivery systems designed to combat this illness. The primary aim of these devices is to enhance the delivery of targeted medications, optimise the specific cells that receive the drugs, tackle treatment resistance in malignant cells, and introduce novel strategies for preventing and controlling diseases. This research aims to examine the methodologies utilised by various carrier nanoparticles in the context of therapeutic interventions for breast cancer. The main objective is to investigate the potential application of novel delivery technologies to attain timely and efficient diagnosis and treatment. Current cancer research predominantly examines diverse drug delivery methodologies for chemotherapeutic agents. These methodologies encompass the development of hydrogels, micelles, exosomes, and similar compounds. This research aims to analyse the attributes, intricacies, notable advancements, and practical applications of the system in clinical settings. Despite the demonstrated efficacy of these methodologies, an apparent discrepancy can be observed between the progress made in developing innovative therapeutic approaches and their widespread implementation in clinical settings. It is critical to establish a robust correlation between these two variables to enhance the effectiveness of medication delivery systems based on nanotechnology in the context of breast cancer treatment.
Collapse
Affiliation(s)
- M Yazdan
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology (IUST), Tehran 1684613114, Iran
| | - S M Naghib
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology (IUST), Tehran 1684613114, Iran
| | - M R Mozafari
- Australasian Nanoscience and Nanotechnology Initiative (ANNI), Monash University LPO, Clayton, VIC 3168, Australia
| |
Collapse
|
6
|
Abstract
A wide range of biomaterials and engineered cell surfaces are composed of bioconjugates embedded in liposome membranes, surface-immobilized bilayers, or the plasma membranes of living cells. This review article summarizes the various ways that Nature anchors integral and peripheral proteins in a cell membrane and describes the strategies devised by chemical biologists to label a membrane protein in living cells. Also discussed are modern synthetic and semisynthetic methods to produce lipidated proteins. Subsequent sections describe methods to anchor a three-component synthetic construct that is composed of a lipophilic membrane anchor, hydrophilic linker, and exposed functional component. The surface exposed payload can be a fluorophore, aptamer, oligonucleotide, polypeptide, peptide nucleic acid, polysaccharide, branched dendrimer, or linear polymer. Hydrocarbon chains are commonly used as the membrane anchor, and a general experimental trend is that a two chain lipid anchor has higher membrane affinity than a cholesteryl or single chain lipid anchor. Amphiphilic fluorescent dyes are effective molecular probes for cell membrane imaging and a zwitterionic linker between the fluorophore and the lipid anchor promotes high persistence in the plasma membrane of living cells. A relatively new advance is the development of switchable membrane anchors as molecular tools for fundamental studies or as technology platforms for applied biomaterials.
Collapse
Affiliation(s)
- Rananjaya S Gamage
- Department of Chemistry and Biochemistry, 251 Nieuwland Science Hall, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Jordan L Chasteen
- Department of Chemistry and Biochemistry, 251 Nieuwland Science Hall, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Bradley D Smith
- Department of Chemistry and Biochemistry, 251 Nieuwland Science Hall, University of Notre Dame, Notre Dame, Indiana 46556, United States
| |
Collapse
|
7
|
Yadav PK, Saklani R, Tiwari AK, Verma S, Rana R, Chauhan D, Yadav P, Mishra K, Kedar AS, Kalleti N, Gayen JR, Wahajuddin M, Rath SK, Mugale MN, Mitra K, Sharma D, Chourasia MK. Enhanced apoptosis and mitochondrial cell death by paclitaxel-loaded TPP-TPGS 1000-functionalized nanoemulsion. Nanomedicine (Lond) 2023; 18:343-366. [PMID: 37140535 DOI: 10.2217/nnm-2022-0268] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023] Open
Abstract
Background: The present research was designed to develop a nanoemulsion (NE) of triphenylphosphine-D-α-tocopheryl-polyethylene glycol succinate (TPP-TPGS1000) and paclitaxel (PTX) to effectively deliver PTX to improve breast cancer therapy. Materials & methods: A quality-by-design approach was applied for optimization and in vitro and in vivo characterization were performed. Results: The TPP-TPGS1000-PTX-NE enhanced cellular uptake, mitochondrial membrane depolarization and G2M cell cycle arrest compared with free-PTX treatment. In addition, pharmacokinetics, biodistribution and in vivo live imaging studies in tumor-bearing mice showed that TPP-TPGS1000-PTX-NE had superior performance compared with free-PTX treatment. Histological and survival investigations ascertained the nontoxicity of the nanoformulation, suggesting new opportunities and potential to treat breast cancer. Conclusion: TPP-TPGS1000-PTX-NE improved the efficacy of breast cancer treatment by enhancing its effectiveness and decreasing drug toxicity.
Collapse
Affiliation(s)
- Pavan K Yadav
- Division of Pharmaceutics & Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, 226031, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Ravi Saklani
- Division of Pharmaceutics & Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, 226031, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Amrendra K Tiwari
- Division of Pharmaceutics & Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, 226031, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Saurabh Verma
- Division of Pharmaceutics & Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, 226031, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Rafquat Rana
- Division of Pharmaceutics & Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, 226031, India
| | - Divya Chauhan
- Division of Pharmaceutics & Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, 226031, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Pooja Yadav
- Division of Pharmaceutics & Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, 226031, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Keerti Mishra
- Division of Pharmaceutics & Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, 226031, India
| | - Ashwini S Kedar
- Division of Pharmaceutics & Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, 226031, India
| | - Navodayam Kalleti
- Division of Toxicology & Experiment Medicine, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, 226031, India
| | - Jiaur R Gayen
- Division of Pharmaceutics & Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, 226031, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Muhammad Wahajuddin
- Division of Pharmaceutics & Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, 226031, India
| | - Srikanta K Rath
- Division of Toxicology & Experiment Medicine, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, 226031, India
| | - Madhav N Mugale
- Division of Toxicology & Experiment Medicine, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, 226031, India
| | - Kalyan Mitra
- Electron Microscopy Division, Sophisticated Analytical Instrument Facility & Research, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, 226031, India
| | - Deepak Sharma
- Division of Pharmaceutics & Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, 226031, India
| | - Manish K Chourasia
- Division of Pharmaceutics & Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, 226031, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
8
|
Cardoso RV, Pereira PR, Freitas CS, Paschoalin VMF. Trends in Drug Delivery Systems for Natural Bioactive Molecules to Treat Health Disorders: The Importance of Nano-Liposomes. Pharmaceutics 2022; 14:2808. [PMID: 36559301 PMCID: PMC9785269 DOI: 10.3390/pharmaceutics14122808] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/04/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Drug delivery systems are believed to increase pharmaceutical efficacy and the therapeutic index by protecting and stabilizing bioactive molecules, such as protein and peptides, against body fluids' enzymes and/or unsuitable physicochemical conditions while preserving the surrounding healthy tissues from toxicity. Liposomes are biocompatible and biodegradable and do not cause immunogenicity following intravenous or topical administration. Still, their most important characteristic is the ability to load any drug or complex molecule uncommitted to its hydrophobic or hydrophilic character. Selecting lipid components, ratios and thermo-sensitivity is critical to achieve a suitable nano-liposomal formulation. Nano-liposomal surfaces can be tailored to interact successfully with target cells, avoiding undesirable associations with plasma proteins and enhancing their half-life in the bloodstream. Macropinocytosis-dynamin-independent, cell-membrane-cholesterol-dependent processes, clathrin, and caveolae-independent mechanisms are involved in liposome internalization and trafficking within target cells to deliver the loaded drugs to modulate cell function. A successful translation from animal studies to clinical trials is still an important challenge surrounding the approval of new nano-liposomal drugs that have been the focus of investigations. Precision medicine based on the design of functionalized nano-delivery systems bearing highly specific molecules to drive therapies is a promising strategy to treat degenerative diseases.
Collapse
Affiliation(s)
| | | | | | - Vania Margaret Flosi Paschoalin
- Programa de Pós-Graduação em Ciência de Alimentos e Programa de Pós-Graduação em Quimica, Instituto de Química, Universidade Federal do Rio de Janeiro, Av. Athos da Silveira Ramos 149-sala 545-Cidade Universitária, Rio de Janeiro 21941-909, RJ, Brazil
| |
Collapse
|
9
|
Liposomes- A promising strategy for drug delivery in anticancer applications. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
10
|
Bang JH, Ryu YC, Kim KA, Hwang BH. Targeted Delivery of Self-assembled Nanocomplex between Fusion Peptides and siRNAs for Breast Cancer Treatment. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108564] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
11
|
Gupta P, Neupane YR, Parvez S, Kohli K. Recent advances in targeted nanotherapeutic approaches for breast cancer management. Nanomedicine (Lond) 2021; 16:2605-2631. [PMID: 34854336 DOI: 10.2217/nnm-2021-0281] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Breast cancer is the most commonly occurring tumor disease worldwide. Breast cancer is currently managed by conventional chemotherapy, which is inadequate in curbing this heterogeneous disease and results in off-site toxic effects, suggesting effective treatment approaches with better therapeutic profiles are needed. This review, therefore, focuses on the recent advancements in delivering therapeutics to the target site using passive and/or active targeted nanodrug-delivery systems to ameliorate endolysosomal escape. In addition, recent strategies in targeting breast cancer stem cells are discussed. The role of naturally cell-secreted nanovesicles (exosomes) in the management of triple-negative breast cancer is also discussed.
Collapse
Affiliation(s)
- Priya Gupta
- Department of Pharmaceutics, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, 110062, India
| | - Yub Raj Neupane
- Department of Pharmacy, National University of Singapore, Singapore, 117559
| | - Suhel Parvez
- Department of Toxicology, School of Chemical & Life Sciences, Jamia Hamdard, New Delhi, 110062, India
| | - Kanchan Kohli
- Department of Pharmaceutics, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, 110062, India.,Lloyd Institute of Management & Technology (Pharm.), Plot No. 11, Knowledge Park-II, Greater Noida, 201308, Uttar Pradesh, India
| |
Collapse
|
12
|
Transferrin conjugated Stealth liposomes for sirolimus active targeting in breast cancer. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
13
|
Si Y, Zhang Y, Ngo HG, Guan JS, Chen K, Wang Q, Singh AP, Xu Y, Zhou L, Yang ES, Liu X(M. Targeted Liposomal Chemotherapies to Treat Triple-Negative Breast Cancer. Cancers (Basel) 2021; 13:cancers13153749. [PMID: 34359650 PMCID: PMC8345094 DOI: 10.3390/cancers13153749] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/23/2021] [Accepted: 07/24/2021] [Indexed: 02/08/2023] Open
Abstract
Simple Summary Triple-negative breast cancers (TNBCs) are mainly treated with standard chemotherapies. Combined therapies have been demonstrated as a promising treatment strategy in clinics. The aim of this study was to develop a new formulation of combined chemotherapies facilitated with a targeted delivery vehicle. We found that the mertansine and gemcitabine with different anti-cancer mechanisms resulted in high cytotoxicity in TNBC cells. The in vivo evaluations using two TNBC xenograft models confirmed the anti-tumor efficacy, i.e., significantly reduced tumor growth rate. Furthermore, the antibody-tagged liposomes effectively delivered the therapeutic drugs to TNBC tumor, which could reduce the side effects. This study is highly translational and the targeted liposomal drug formulation can be further investigated in future clinical trials for TNBC treatment. Abstract Triple-negative breast cancers (TNBCs) are highly aggressive and recurrent. Standard cytotoxic chemotherapies are currently the main treatment options, but their clinical efficacies are limited and patients usually suffer from severe side effects. The goal of this study was to develop and evaluate targeted liposomes-delivered combined chemotherapies to treat TNBCs. Specifically, the IC50 values of the microtubule polymerization inhibitor mertansine (DM1), mitotic spindle assembly defecting taxane (paclitaxel, PTX), DNA synthesis inhibitor gemcitabine (GC), and DNA damage inducer doxorubicin (AC) were tested in both TNBC MDA-MB-231 and MDA-MB-468 cells. Then we constructed the anti-epidermal growth factor receptor (EGFR) monoclonal antibody (mAb) tagged liposomes and confirmed its TNBC cell surface binding using flow cytometry, internalization with confocal laser scanning microscopy, and TNBC xenograft targeting in NSG female mice using In Vivo Imaging System. The safe dosage of anti-EGFR liposomal chemotherapies, i.e., <20% body weight change, was identified. Finally, the in vivo anti-tumor efficacy studies in TNBC cell line-derived xenograft and patient-derived xenograft models revealed that the targeted delivery of chemotherapies (mertansine and gemcitabine) can effectively inhibit tumor growth. This study demonstrated that the targeted liposomes enable the new formulations of combined therapies that improve anti-TNBC efficacy.
Collapse
Affiliation(s)
- Yingnan Si
- Department of Biomedical Engineering, University of Alabama at Birmingham, 1825 University Blvd, Birmingham, AL 35294, USA; (Y.S.); (Y.Z.); (H.G.N.); (K.C.); (Q.W.); (A.P.S.); (L.Z.)
| | - Ya Zhang
- Department of Biomedical Engineering, University of Alabama at Birmingham, 1825 University Blvd, Birmingham, AL 35294, USA; (Y.S.); (Y.Z.); (H.G.N.); (K.C.); (Q.W.); (A.P.S.); (L.Z.)
| | - Hanh Giai Ngo
- Department of Biomedical Engineering, University of Alabama at Birmingham, 1825 University Blvd, Birmingham, AL 35294, USA; (Y.S.); (Y.Z.); (H.G.N.); (K.C.); (Q.W.); (A.P.S.); (L.Z.)
| | - Jia-Shiung Guan
- Department of Medicine, University of Alabama at Birmingham, 703 19th Street South, Birmingham, AL 35294, USA; (J.-S.G.); (Y.X.)
| | - Kai Chen
- Department of Biomedical Engineering, University of Alabama at Birmingham, 1825 University Blvd, Birmingham, AL 35294, USA; (Y.S.); (Y.Z.); (H.G.N.); (K.C.); (Q.W.); (A.P.S.); (L.Z.)
| | - Qing Wang
- Department of Biomedical Engineering, University of Alabama at Birmingham, 1825 University Blvd, Birmingham, AL 35294, USA; (Y.S.); (Y.Z.); (H.G.N.); (K.C.); (Q.W.); (A.P.S.); (L.Z.)
| | - Ajeet Pal Singh
- Department of Biomedical Engineering, University of Alabama at Birmingham, 1825 University Blvd, Birmingham, AL 35294, USA; (Y.S.); (Y.Z.); (H.G.N.); (K.C.); (Q.W.); (A.P.S.); (L.Z.)
| | - Yuanxin Xu
- Department of Medicine, University of Alabama at Birmingham, 703 19th Street South, Birmingham, AL 35294, USA; (J.-S.G.); (Y.X.)
| | - Lufang Zhou
- Department of Biomedical Engineering, University of Alabama at Birmingham, 1825 University Blvd, Birmingham, AL 35294, USA; (Y.S.); (Y.Z.); (H.G.N.); (K.C.); (Q.W.); (A.P.S.); (L.Z.)
- Department of Medicine, University of Alabama at Birmingham, 703 19th Street South, Birmingham, AL 35294, USA; (J.-S.G.); (Y.X.)
| | - Eddy S. Yang
- Department of Radiation Oncology, University of Alabama at Birmingham, 1808 7th Avenue South, Birmingham, AL 35294, USA;
| | - Xiaoguang (Margaret) Liu
- Department of Biomedical Engineering, University of Alabama at Birmingham, 1825 University Blvd, Birmingham, AL 35294, USA; (Y.S.); (Y.Z.); (H.G.N.); (K.C.); (Q.W.); (A.P.S.); (L.Z.)
- Correspondence:
| |
Collapse
|
14
|
Wang Y, Xue P, Cao M, Yu T, Lane ST, Zhao H. Directed Evolution: Methodologies and Applications. Chem Rev 2021; 121:12384-12444. [PMID: 34297541 DOI: 10.1021/acs.chemrev.1c00260] [Citation(s) in RCA: 295] [Impact Index Per Article: 73.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Directed evolution aims to expedite the natural evolution process of biological molecules and systems in a test tube through iterative rounds of gene diversifications and library screening/selection. It has become one of the most powerful and widespread tools for engineering improved or novel functions in proteins, metabolic pathways, and even whole genomes. This review describes the commonly used gene diversification strategies, screening/selection methods, and recently developed continuous evolution strategies for directed evolution. Moreover, we highlight some representative applications of directed evolution in engineering nucleic acids, proteins, pathways, genetic circuits, viruses, and whole cells. Finally, we discuss the challenges and future perspectives in directed evolution.
Collapse
Affiliation(s)
- Yajie Wang
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Pu Xue
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Mingfeng Cao
- DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Tianhao Yu
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Stephan T Lane
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Huimin Zhao
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
15
|
Hyaluronic acid (HA)-coated naproxen-nanoparticles selectively target breast cancer stem cells through COX-independent pathways. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 124:112024. [PMID: 33947532 DOI: 10.1016/j.msec.2021.112024] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 02/23/2021] [Accepted: 03/05/2021] [Indexed: 02/07/2023]
Abstract
Cytotoxic chemotherapy continues to be the main therapeutic option for patients with metastatic breast cancer. Several studies have reported a significant association between chronic inflammation, carcinogenesis and the presence of cancer stem cells (CSC). We hypothesized that the use of non-steroidal anti-inflammatory drugs targeted to the CSC population could help reducing tumor progression and dissemination in otherwise hard to treat metastatic breast cancer. Within this study cationic naproxen (NAP)-bearing polymeric nanoparticles (NPs) were obtained by self-assembly and they were coated with hyaluronic acid (HA) via electrostatic interaction. HA-coated and uncoated NAP-bearing NPs with different sizes were produced by changing the ionic strength of the aqueous preparation solutions (i.e. 300 and 350 nm or 100 and 130 nm in diameter, respectively). HA-NPs were fully characterized in terms of physicochemical parameters and biological response in cancer cells, macrophages and endothelial cells. Our results revealed that HA-coating of NPs provided a better control in NAP release and improved their hemocompatibility, while ensuring a strong CSC-targeting in MCF-7 breast cancer cells. Furthermore, the best polymeric NPs formulation significantly (p < 0.001) reduced MCF-7 cells viability when compared to free drug (i.e. 45 ± 6% for S-HA-NPs and 87 ± 10% for free NAP) by p53-dependent induction of apoptosis; and the migration of these cell line was also significantly (p < 0.01) reduced by the nano-formulated NAP (i.e. 76.4% of open wound for S-HA-NPs and 61.6% of open wound for NAP). This increased anti-cancer activity of HA-NAP-NPs might be related to the induction of apoptosis through alterations of the GSK-3β-related COX-independent pathway. Overall, these findings suggest that the HA-NAP-NPs have the potential to improve the treatment of advanced breast cancer by increasing the anti-proliferative effect of NAP within the CSC subpopulation.
Collapse
|
16
|
Walker SP, Yallapragada VVB, Tangney M. Arming Yourself for The In Silico Protein Design Revolution. Trends Biotechnol 2020; 39:651-664. [PMID: 33139074 DOI: 10.1016/j.tibtech.2020.10.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 10/05/2020] [Accepted: 10/05/2020] [Indexed: 12/23/2022]
Abstract
Proteins mediate many essential processes of life to a degree of functional precision unmatched by any synthetic device. While engineered proteins are currently used in biotech, food, biomedicine, and material technology-based industries, the true potential of proteins is practically untapped. The emerging field of in silico protein design is predicted to provide the next quantum leap in the biotech industry. Having predictive control over protein function and the ability to redefine these functions have driven the field of protein engineering into an era of unprecedented development. This article provides a holistic analysis of protein design R&D (current state-of-the-art tools and knowhow) and commercial landscape, as well as a one-stop-shop profile of in silico protein design technology for biotechnology stakeholders.
Collapse
Affiliation(s)
- Sidney P Walker
- CancerResearch@UCC, University College Cork, Cork, Ireland; SynBioCentre, University College Cork, Cork, Ireland
| | - Venkata V B Yallapragada
- CancerResearch@UCC, University College Cork, Cork, Ireland; SynBioCentre, University College Cork, Cork, Ireland
| | - Mark Tangney
- CancerResearch@UCC, University College Cork, Cork, Ireland; SynBioCentre, University College Cork, Cork, Ireland; APC Microbiome Ireland, University College Cork, Cork, Ireland.
| |
Collapse
|
17
|
Li C, Li J, Xu Y, Zhan Y, Li Y, Song T, Zheng J, Yang H. Application of Phage-Displayed Peptides in Tumor Imaging Diagnosis and Targeting Therapy. Int J Pept Res Ther 2020; 27:587-595. [PMID: 32901205 PMCID: PMC7471523 DOI: 10.1007/s10989-020-10108-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 08/07/2020] [Accepted: 08/14/2020] [Indexed: 12/11/2022]
Abstract
Phage display is an effective and powerful technique that provides a route to discovery unique peptides targeting to tumor cells. Specifically binding peptides are considered as the valuable target directing molecule fragments with potential efficiency to improve the current tumor clinic, and offer new approaches for tumor prevention, diagnosis and treatment. We focus on the recent advances in the isolation of tumor-targeting peptides by biopanning methods, with particular emphasis on molecular imaging, and pharmaceutical targeting therapy.
Collapse
Affiliation(s)
- Chunyan Li
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Air Force Medical University, 127 West ChangLe Road, Xi'an, 710032 Shaanxi China
| | - Jia Li
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Air Force Medical University, 127 West ChangLe Road, Xi'an, 710032 Shaanxi China
| | - Ying Xu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Air Force Medical University, 127 West ChangLe Road, Xi'an, 710032 Shaanxi China
| | - Ying Zhan
- 518 Hospital of PLA, Xi'an, 710043 Shaanxi China
| | - Yu Li
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Air Force Medical University, 127 West ChangLe Road, Xi'an, 710032 Shaanxi China
| | - Tingting Song
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Air Force Medical University, 127 West ChangLe Road, Xi'an, 710032 Shaanxi China
| | - Jiao Zheng
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Air Force Medical University, 127 West ChangLe Road, Xi'an, 710032 Shaanxi China
| | - Hong Yang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Air Force Medical University, 127 West ChangLe Road, Xi'an, 710032 Shaanxi China
| |
Collapse
|
18
|
Lee S, Pham TC, Bae C, Choi Y, Kim YK, Yoon J. Nano theranostics platforms that utilize proteins. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213258] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
19
|
Saravanan M, Vahidi H, Medina Cruz D, Vernet-Crua A, Mostafavi E, Stelmach R, Webster TJ, Mahjoub MA, Rashedi M, Barabadi H. Emerging Antineoplastic Biogenic Gold Nanomaterials for Breast Cancer Therapeutics: A Systematic Review. Int J Nanomedicine 2020; 15:3577-3595. [PMID: 32547015 PMCID: PMC7245458 DOI: 10.2147/ijn.s240293] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 04/21/2020] [Indexed: 12/14/2022] Open
Abstract
Breast cancer remains as a concerning global health issue, being the second leading cause of cancer deaths among women in the United States (US) in 2019. Therefore, there is an urgent and substantial need to explore novel strategies to combat breast cancer. A potential solution may come from the use of cancer nanotechnology, an innovative field of study which investigates the potential of nanomaterials for cancer diagnosis, therapy, and theranostic applications. Consequently, the theranostic functionality of cancer nanotechnology has been gaining much attention between scientists during the past few years and is growing exponentially. The use of biosynthesized gold nanoparticles (AuNPs) has been explored as an efficient mechanism for the treatment of breast cancer. The present study supposed a global systematic review to evaluate the effectiveness of biogenic AuNPs for the treatment of breast cancer and their anticancer molecular mechanisms through in vitro studies. Online electronic databases, including Cochrane, PubMed, Scopus, Web of Science, Science Direct, ProQuest, and Embase, were searched for the articles published up to July 16, 2019. Our findings revealed that plant-mediated synthesis was the most common approach for the generation of AuNPs. Most of the studies reported spherical or nearly spherical-shaped AuNPs with a mean diameter less than 100 nm in size. A significantly larger cytotoxicity was observed when the biogenic AuNPs were tested towards breast cancer cells compared to healthy cells. Moreover, biogenic AuNPs demonstrated significant synergistic activity in combination with other anticancer drugs through in vitro studies. Although we provided strong and comprehensive preliminary in vitro data, further in vivo investigations are required to show the reliability and efficacy of these NPs in animal models.
Collapse
Affiliation(s)
- Muthupandian Saravanan
- Department of Medical Microbiology and Immunology, Division of Biomedical Science, School of Medicine, College of Health Sciences, Mekelle University, Mekelle 1871, Ethiopia
| | - Hossein Vahidi
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - David Medina Cruz
- Department of Chemical Engineering, Northeastern University, Boston, MA, USA.,Nanomedicine Science and Technology Center, Northeastern University, Boston, MA, USA
| | - Ada Vernet-Crua
- Department of Chemical Engineering, Northeastern University, Boston, MA, USA.,Nanomedicine Science and Technology Center, Northeastern University, Boston, MA, USA
| | - Ebrahim Mostafavi
- Department of Chemical Engineering, Northeastern University, Boston, MA, USA.,Nanomedicine Science and Technology Center, Northeastern University, Boston, MA, USA
| | - Ryan Stelmach
- Department of Chemical Engineering, Northeastern University, Boston, MA, USA
| | - Thomas J Webster
- Department of Chemical Engineering, Northeastern University, Boston, MA, USA.,Nanomedicine Science and Technology Center, Northeastern University, Boston, MA, USA
| | - Mohammad Ali Mahjoub
- Department of Pharmaceutics, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Masoumeh Rashedi
- Student Research Committee, School of Medicine, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Hamed Barabadi
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
20
|
Wang YP, Liu IJ, Chung MJ, Wu HC. Novel anti-EGFR scFv human antibody-conjugated immunoliposomes enhance chemotherapeutic efficacy in squamous cell carcinoma of head and neck. Oral Oncol 2020; 106:104689. [PMID: 32330686 DOI: 10.1016/j.oraloncology.2020.104689] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 02/23/2020] [Accepted: 04/05/2020] [Indexed: 01/12/2023]
Abstract
BACKGROUND AND OBJECTIVES Squamous cell carcinoma of head and neck (SCCHN) is the fifth most prevalent cancer worldwide. Because the anatomical complexity of this region, complete surgical resection is often not achievable and conventional chemotherapy would aid locoregional control and mitigate distant metastasis. Nonetheless, the nonspecific cytotoxicity and short in vivo half-life of conventional chemotherapeutic drugs limit their effects. Given the high frequency of overexpression of wild type epidermal growth factor receptor (EGFR), we exploit EGFR as a homing beacon for drug delivery system with cytotoxic payloads. MATERIALS AND METHODS We generated fully human anti-EGFR single chain variable fragment (scFv)-conjugated immunoliposomes (IL) containing doxorubicin and vinorelbine and tested their anti-neoplastic efficacy in vitro and in vivo. RESULT Our IL enhanced endocytosis and significantly reduced the half maximal inhibitory concentrations of the therapeutic payloads when compared to non-targeting liposomal counterparts in various cell lines of SCCHN. Furthermore, median survival time was significantly prolonged in subcutaneous and orthotopic SCCHN xenograft murine models treated with our IL formulations than those treated with non-targeting counterparts (94 days versus 60 days and 72 days versus 56 days, respectively) without evident increased systemic toxicity. CONCLUSION The therapeutic index of the chemotherapeutic payloads was augmented by our EFGR-targeting IL formulation and they are warranted for further development and preclinical trial.
Collapse
Affiliation(s)
- Yi-Ping Wang
- Faculty of Dentistry, School of Dentistry, National Taiwan University, Taipei, Taiwan; Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan; Department of Dentistry, National Taiwan University Hospital, Taipei, Taiwan.
| | - I-Ju Liu
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Meng-Jhe Chung
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Han-Chung Wu
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan; Graduate Institute of Oral Biology, School of Dentistry, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
21
|
Kim B, Shin J, Wu J, Omstead DT, Kiziltepe T, Littlepage LE, Bilgicer B. Engineering peptide-targeted liposomal nanoparticles optimized for improved selectivity for HER2-positive breast cancer cells to achieve enhanced in vivo efficacy. J Control Release 2020; 322:530-541. [PMID: 32276005 DOI: 10.1016/j.jconrel.2020.04.010] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 04/03/2020] [Accepted: 04/05/2020] [Indexed: 01/08/2023]
Abstract
Here, we report rationally engineered peptide-targeted liposomal doxorubicin nanoparticles that have an enhanced selectivity for HER2-positive breast tumor cells with high purity, reproducibility, and precision in controlling stoichiometry of targeting peptides. To increase HER2-positive tumor cell selective drug delivery, we optimized the two most important design parameters, peptide density and linker length, via systematic evaluations of their effects on both in vitro cellular uptake and in vivo tumor accumulation and cellular uptake. The optimally designed nanoparticles were finally evaluated for their tumor inhibition efficacy using in vivo MMTV-neu transplantation mouse model. In vitro, we demonstrated that ~1% peptide density and EG8 linker were optimal parameters for targeted nanoparticle formulations to enhance HER2-positive cancer cellular uptake while preventing non-selectivity. In vivo results demonstrated that at 0.5% peptide density, enhancement of tumor cell uptake over non-targeted nanoparticles was ~2.7 fold and ~3.4 fold higher for targeted nanoparticles with EG8 and EG18 linker, respectively, while their accumulation levels at tumor tissue were similar to the non-targeted nanoparticles. These results were consistent with in vivo efficacy outcomes that ~90% tumor growth inhibition was achieved by Dox-loaded HER2 receptor targeted nanoparticles, TNPHER2pep, over control while all nanoparticle formulations minimized overall systemic toxicity relative to free Dox. This study highlights the significance of understanding and optimizing the effects of liposomal nanoparticle design parameters for enhancement of tumor selectivity to achieve improved in vivo therapeutic outcomes.
Collapse
Affiliation(s)
- Baksun Kim
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556, United States of America
| | - Jaeho Shin
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556, United States of America
| | - Junmin Wu
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, United States of America; Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556, United States of America
| | - David T Omstead
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556, United States of America
| | - Tanyel Kiziltepe
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556, United States of America; Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556, United States of America; Advanced Diagnostics and Therapeutics, University of Notre Dame, Notre Dame, IN 46556, United States of America
| | - Laurie E Littlepage
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, United States of America; Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556, United States of America.
| | - Basar Bilgicer
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556, United States of America; Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556, United States of America; Advanced Diagnostics and Therapeutics, University of Notre Dame, Notre Dame, IN 46556, United States of America.
| |
Collapse
|
22
|
Lo WL, Liang CH, Chen LC, Lee SY, Lo SN, Chen MW, Lu RM, Liu IJ, Wu HC, Chang CH. Imaging and biodistribution of radiolabeled SP90 peptide in BT-483 tumor bearing mice. Appl Radiat Isot 2020; 161:109162. [PMID: 32561130 DOI: 10.1016/j.apradiso.2020.109162] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 03/22/2020] [Accepted: 03/27/2020] [Indexed: 01/01/2023]
Abstract
The objective of this study was to evaluate radiolabeled DOTA-SP90 as a radiotracer for breast cancer. The in vitro competition assay showed that radiolabeled DOTA-SP90 had significant binding affinity to BT-483 cancer cells. Biodistribution, nanoSPECT/CT and nanoPET/CT imaging results indicated that radiolabeled DOTA-SP90 can accumulate in tumors. In addition, radiolabeled DOTA-SP90 peptides can also detect metastatic tumors. Therefore, radiolabeled SP90 peptide may provide the potential capability as diagnostic agent for breast cancer patients.
Collapse
Affiliation(s)
- Wei-Lin Lo
- Isotope Application Division, Institute of Nuclear Energy Research, Taoyuan, Taiwan
| | - Chen-Hsien Liang
- Isotope Application Division, Institute of Nuclear Energy Research, Taoyuan, Taiwan
| | - Liang-Cheng Chen
- Isotope Application Division, Institute of Nuclear Energy Research, Taoyuan, Taiwan
| | - Shih-Ying Lee
- Isotope Application Division, Institute of Nuclear Energy Research, Taoyuan, Taiwan
| | - Sheng-Nan Lo
- Isotope Application Division, Institute of Nuclear Energy Research, Taoyuan, Taiwan
| | - Ming-Wei Chen
- Isotope Application Division, Institute of Nuclear Energy Research, Taoyuan, Taiwan
| | - Ruei-Min Lu
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - I-Ju Liu
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Han-Chung Wu
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Chih-Hsien Chang
- Isotope Application Division, Institute of Nuclear Energy Research, Taoyuan, Taiwan.
| |
Collapse
|
23
|
Wang H, Ding Y, Zhang W, Wei K, Pei Y, Zou C, Zhang C, Ding J, Fang H, Tan S. Oxymatrine Liposomes for Intervertebral Disc Treatment: Formulation, in vitro and vivo Assessments. DRUG DESIGN DEVELOPMENT AND THERAPY 2020; 14:921-931. [PMID: 32184561 PMCID: PMC7053530 DOI: 10.2147/dddt.s242493] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 02/17/2020] [Indexed: 12/29/2022]
Abstract
Purpose Intervertebral disc degeneration (IVDD) is the main cause of modern low back pain, leading to high societal economic costs. To find an effective medical treatment for this disease, oxymatrine liposomes (OMT-LIP) were prepared with the pH-gradient method. Materials and Methods Nucleus pulposus (NP) cells from Sprague–Dawley rats were used for the cell experiments. Kunming mice were used for in vivo imaging. LIP were employed to deliver OMT, and the particle size, ζ-potential, morphology, in vitro stability and in vitro release characteristics were evaluated. The OMT-LIP targeting effect was measured by in vivo imaging. Cell Counting Kit-8 assays were used to detect the cytotoxicity of OMT and OMT-LIP on NP cells. Therapeutic efficacy was measured by Western blot, real-time quantitative polymerase chain reaction, and apoptosis assays. Radiologic analysis was performed to evaluate the therapeutic effects in vivo. Results Orthogonal test results revealed that the mass ratio of egg yolk phosphatidylcholine to cholesterol was the key factor to effectively trap OMT in LIP. Optimal OMT-LIP showed multivesicular structure with entrapment efficiency of 73.4 ± 4.1%, particle size of 178.1 ± 2.9 nm, and ζ-potential of –13.30 ± 2.34 mV. OMT-LIP manifested excellent stability in vitro and presented significantly longer sustained release compared to OMT solution in phosphate-buffered saline (pH 7.4). OMT-LIP conspicuously increased OMT accumulation in the degenerative disc, attenuated NP cell apoptosis, reduced the expression of matrix metalloproteinases 3/9 and interleukin-6, and decreased degradation of type II collagen. In in vivo study, X-ray demonstrated that OMT-LIP inhibited IVDD. Conclusion OMT-LIP may be a useful treatment to alleviate disc inflammation and IVDD.
Collapse
Affiliation(s)
- Huan Wang
- Department of Orthopaedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Yifan Ding
- Department of Orthopaedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Wei Zhang
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Kang Wei
- Department of Orthopaedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Yaping Pei
- Department of Orthopaedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Chenming Zou
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Chong Zhang
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Jiahui Ding
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Huang Fang
- Department of Orthopaedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Songwei Tan
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| |
Collapse
|
24
|
Enabling Combinatorial siRNA Delivery against Apoptosis-Related Proteins with Linoleic Acid and α-Linoleic Acid Substituted Low Molecular Weight Polyethylenimines. Pharm Res 2020; 37:46. [PMID: 32016611 DOI: 10.1007/s11095-020-2770-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Accepted: 01/23/2020] [Indexed: 12/11/2022]
Abstract
PURPOSE Short interfering RNA (siRNA) therapy promises a new era in treatment of breast cancers but effective delivery systems are needed for clinical use. Since silencing complementary targets may offer improved efficacy, this study was undertaken to identify non-viral carriers for combinatorial siRNA delivery for more effective therapy. METHODS A library of lipid-substituted polymers from low molecular weight polyethyleneimine (PEI), linoleic acid (LA) and α-linoleic acid (αLA) with amide or thioester linkages was prepared and investigated for delivering Mcl-1, survivin and STAT5A siRNAs in breast cancer cells. RESULTS The effective polymers formed 80-190 nm particles with similar zeta-potentials, but the serum stability was greater for complexes formed with amide-linked lipid conjugates. The LA and αLA substitutions, with the low molecular weight PEI (1.2 kDa and 2.0 kDa) were able to deliver siRNA effectively to cells and retarded the growth of breast cancer cells. The amide-linked lipid substituents showed higher cellular delivery of siRNA as compared to thioester linkages. Upon combinational delivery of siRNAs, growth of MCF-7 cells was inhibited to a greater extent with 2.0PEI-LA9 mediated delivery of Mcl-1 combined survivin siRNAs as compared to individual siRNAs. The qRT-PCR analysis confirmed the decrease in mRNA levels of target genes with specific siRNAs and 2.0PEI-LA9 was the most effective polymer for delivering siRNAs (either single or in combination). CONCLUSIONS This study yielded effective siRNA carriers for combinational delivery of siRNAs. Careful choice of siRNA combinations will be critical since targeting individual genes might alter the expression of other critical mediators.
Collapse
|
25
|
Beltrán-Gracia E, López-Camacho A, Higuera-Ciapara I, Velázquez-Fernández JB, Vallejo-Cardona AA. Nanomedicine review: clinical developments in liposomal applications. Cancer Nanotechnol 2019. [DOI: 10.1186/s12645-019-0055-y] [Citation(s) in RCA: 286] [Impact Index Per Article: 47.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Abstract
Background
In recent years, disease treatment has evolved strategies that require increase in pharmaceutical agent’s efficacy and selectivity while decreasing their toxicity in normal tissues. These requirements have led to the development of nanoscale liposome systems for drug release. This review focuses on lipid features, pharmacological properties of liposomal formulations and the clinical studies of their application.
Main body
Several lipids are available, but their properties could affect pharmacological or clinical efficiency of drug formulations. Many liposomal formulations have been developed and are currently on the market. Proper selection of lipid is essential for the pharmacological effect to be improved. Most of the formulations use mainly zwitterionic, cationic or anionic lipids, PEG and/or cholesterol, which have different effects on stability, pharmacokinetics and delivery of the drug formulation. Clinical trials have shown that liposomes are pharmacologically and pharmacokinetically more efficient than drug-alone formulations in treating acute myeloid leukemia, hepatitis A, pain management, ovary, gastric breast and lung cancer, among others.
Conclusion
Liposomal formulations are less toxic than drugs alone and have better pharmacological parameters. Although they seem to be the first choice for drug delivery systems for various diseases, further research about dosage regimen regarding dose and time needs to be carried out.
Collapse
|
26
|
Lu RM, Chiu CY, Liu IJ, Chang YL, Liu YJ, Wu HC. Novel human Ab against vascular endothelial growth factor receptor 2 shows therapeutic potential for leukemia and prostate cancer. Cancer Sci 2019; 110:3773-3787. [PMID: 31578782 PMCID: PMC6890446 DOI: 10.1111/cas.14208] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 09/25/2019] [Accepted: 09/25/2019] [Indexed: 12/15/2022] Open
Abstract
Vascular endothelial growth factor receptor 2 (VEGFR2) is highly expressed in tumor‐associated endothelial cells, where it modulates tumor‐promoting angiogenesis, and it is also found on the surface of tumor cells. Currently, there are no Ab therapeutics targeting VEGFR2 approved for the treatment of prostate cancer or leukemia. Therefore, development of novel efficacious anti‐VEGFR2 Abs will benefit cancer patients. We used the Institute of Cellular and Organismic Biology human Ab library and affinity maturation to develop a fully human Ab, anti‐VEGFR2‐AF, which shows excellent VEGFR2 binding activity. Anti‐VEGFR2‐AF bound Ig‐like domain 3 of VEGFR2 extracellular region to disrupt the interaction between VEGF‐A and VEGFR2, neutralizing downstream signaling of the receptor. Moreover, anti‐VEGFR2‐AF inhibited capillary structure formation and exerted Ab‐dependent cell‐mediated cytotoxicity and complement‐dependent cytotoxicity in vitro. We found that VEGFR2 is expressed in PC‐3 human prostate cancer cell line and associated with malignancy and metastasis of human prostate cancer. In a PC‐3 xenograft mouse model, treatment with anti‐VEGFR2‐AF repressed tumor growth and angiogenesis as effectively and safely as US FDA‐approved anti‐VEGFR2 therapeutic, ramucirumab. We also report for the first time that addition of anti‐VEGFR2 Ab can enhance the efficacy of docetaxel in the treatment of a prostate cancer mouse model. In HL‐60 human leukemia‐xenografted mice, anti‐VEGFR2‐AF showed better efficacy than ramucirumab with prolonged survival and reduced metastasis of leukemia cells to ovaries and lymph nodes. Our findings suggest that anti‐VEGFR2‐AF has strong potential as a cancer therapy that could directly target VEGFR2‐expressing tumor cells in addition to its anti‐angiogenic action.
Collapse
Affiliation(s)
- Ruei-Min Lu
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Chiung-Yi Chiu
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - I-Ju Liu
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Yu-Ling Chang
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Yaw-Jen Liu
- Research and Development Center, United Biopharma Inc., Hsinshu, Taiwan
| | - Han-Chung Wu
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
27
|
Rajitha B, Malla RR, Vadde R, Kasa P, Prasad GLV, Farran B, Kumari S, Pavitra E, Kamal MA, Raju GSR, Peela S, Nagaraju GP. Horizons of nanotechnology applications in female specific cancers. Semin Cancer Biol 2019; 69:376-390. [PMID: 31301361 DOI: 10.1016/j.semcancer.2019.07.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 06/23/2019] [Accepted: 07/04/2019] [Indexed: 12/20/2022]
Abstract
Female-specific cancers are the most common cancers in women worldwide. Early detection methods remain unavailable for most of these cancers, signifying that most of them are diagnosed at later stages. Furthermore, current treatment options for most female-specific cancers are surgery, radiation and chemotherapy. Although important milestones in molecularly targeted approaches have been achieved lately, current therapeutic strategies for female-specific cancers remain limited, ineffective and plagued by the emergence of chemoresistance, which aggravates prognosis. Recently, the application of nanotechnology to the medical field has allowed the development of novel nano-based approaches for the management and treatment of cancers, including female-specific cancers. These approaches promise to improve patient survival rates by reducing side effects, enabling selective delivery of drugs to tumor tissues and enhancing the uptake of therapeutic compounds, thus increasing anti-tumor activity. In this review, we focus on the application of nano-based technologies to the design of novel and innovative diagnostic and therapeutic strategies in the context of female-specific cancers, highlighting their potential uses and limitations.
Collapse
Affiliation(s)
- Balney Rajitha
- Department of Pathology, WellStar Hospital, Marietta, GA, 30060, USA
| | - Rama Rao Malla
- Department of Biochemistry, GITAM Institute of Science, GITAM University, Visakhapatnam, AP, 530045, India
| | - Ramakrishna Vadde
- Department of Biotechnology and Bioinformatics, Yogi Vemana University, Kadapa, AP, 516003, India
| | - Prameswari Kasa
- Dr. LV Prasad Diagnostics and Research Laboratory, Khairtabad, Hyderabad, TS, 500004, India
| | | | - Batoul Farran
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, GA, 30322, USA
| | - Seema Kumari
- Department of Biochemistry, GITAM Institute of Science, GITAM University, Visakhapatnam, AP, 530045, India
| | - Eluri Pavitra
- Department of Biological Engineering, Biohybrid Systems Research Center (BSRC), Inha University, 100, Inha-ro, Incheon 22212, Republic of Korea
| | - Mohammad Amjad Kamal
- King Fahd Medical Research Center, King Abdulaziz University, P. O. Box 80216, Jeddah 21589, Saudi Arabia; Enzymoics, 7 Peterlee Place, Hebersham, NSW 2770, Australia; Novel Global Community Educational Foundation, Australia
| | - Ganji Seeta Rama Raju
- Department of Energy and Materials Engineering, Dongguk University-Seoul, Seoul 04620, Republic of Korea
| | - Sujatha Peela
- Department of Biotechnology, Dr. B.R. Ambedkar University, Srikakulam, AP, 532410, India
| | - Ganji Purnachandra Nagaraju
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, GA, 30322, USA.
| |
Collapse
|
28
|
Zhao J, Chen H, Tang Y, Chen H, Chen G, Yin Y, Li G. Research progresses on the functional polypeptides in the detection and imaging of breast cancer. J Mater Chem B 2018; 6:2510-2523. [DOI: 10.1039/c7tb02541f] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Polypeptides as functional groups continue to garner significant interest in the detection and imaging of breast cancer, working as recognition elements, signal sources, building blocks and therapeutic reagents, etc.
Collapse
Affiliation(s)
- Jing Zhao
- Center for Molecular Recognition and Biosensing
- School of Life Sciences
- Shanghai University
- Shanghai 200444
- China
| | - Huinan Chen
- Center for Molecular Recognition and Biosensing
- School of Life Sciences
- Shanghai University
- Shanghai 200444
- China
| | - Yingying Tang
- Center for Molecular Recognition and Biosensing
- School of Life Sciences
- Shanghai University
- Shanghai 200444
- China
| | - Hong Chen
- Center for Molecular Recognition and Biosensing
- School of Life Sciences
- Shanghai University
- Shanghai 200444
- China
| | - Guifang Chen
- Center for Molecular Recognition and Biosensing
- School of Life Sciences
- Shanghai University
- Shanghai 200444
- China
| | - Yongmei Yin
- Department of Oncology
- The First Affiliated Hospital of Nanjing Medical University
- Nanjing 210029
- China
| | - Genxi Li
- Center for Molecular Recognition and Biosensing
- School of Life Sciences
- Shanghai University
- Shanghai 200444
- China
| |
Collapse
|
29
|
Bakhshinejad B, Nasiri H. Identification of a Novel Tumor-Binding Peptide for Lung Cancer Through in-vitro Panning. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2018; 17:396-407. [PMID: 29755570 PMCID: PMC5937109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Tumor-targeted therapies are playing growing roles in cancer research. The exploitation of these powerful therapeutic modalities largely depends on the discovery of tumor-targeting ligands. Phage display has proven a promising high throughput screening tool for the identification of novel specific peptides with high binding affinity to cancer cells. In the present study, we describe the use of phage display to isolate peptide ligands binding specifically to human lung cancer cells. Towards this goal, we screened a phage display library of 7-mer random peptides in-vitro on non-small cell lung carcinoma (A549) as the target cell. Following selection rounds, there was a highly considerable enrichment of lung cancer-binding phages and a significant increase - 170 fold - of the phage recovery efficiency. After three rounds of in-vitro panning, a group of peptides with different frequencies were obtained. The binding efficiency and selectivity of these peptides for target and control cells were studied. The results of cellular binding assay and cell ELISA (enzyme-linked immunosorbent assay) revealed that LCP1 (Lung Cancer Peptide1) with the displayed sequence AWRTHTP is the most effective peptide in binding to lung cancer cells compared with normal lung epithelial cells and different non-lung tumor cells. In conclusion, our findings suggest that LCP1 may represent a novel peptide that binds specifically to lung cancer cells and further studies can pave the way for its application as a potential targeting moiety in the targeted delivery of diagnostic and therapeutic agents into lung malignant cells.
Collapse
Affiliation(s)
- Babak Bakhshinejad
- Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Habib Nasiri
- Department of Medical Genetics, Nika Center of Health Promotion and Preventive Medicine, Tehran, Iran.,Corresponding author: E-mail:
| |
Collapse
|
30
|
Babu A, Amreddy N, Muralidharan R, Pathuri G, Gali H, Chen A, Zhao YD, Munshi A, Ramesh R. Chemodrug delivery using integrin-targeted PLGA-Chitosan nanoparticle for lung cancer therapy. Sci Rep 2017; 7:14674. [PMID: 29116098 PMCID: PMC5676784 DOI: 10.1038/s41598-017-15012-5] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 10/16/2017] [Indexed: 12/19/2022] Open
Abstract
In this study, we report the efficacy of RGD (arginine-glycine-aspartic acid) peptide-modified polylactic acid-co-glycolic acid (PLGA)-Chitosan nanoparticle (CSNP) for integrin αvβ3 receptor targeted paclitaxel (PTX) delivery in lung cancer cells and its impact on normal cells. RGD peptide-modified chitosan was synthesized and then coated onto PTX-PLGA nanoparticles prepared by emulsion-solvent evaporation. PTX-PLGA-CSNP-RGD displayed favorable physicochemical properties for a targeted drug delivery system. The PTX-PLGA-CSNP-RGD system showed increased uptake via integrin receptor mediated endocytosis, triggered enhanced apoptosis, and induced G2/M cell cycle arrest and more overall cytotoxicity than its non-targeted counterpart in cancer cells. PTX-PLGA-CSNP-RGD showed less toxicity in lung fibroblasts than in cancer cells, may be attributed to low drug sensitivity, nevertheless the study invited close attention to their transient overexpression of integrin αvβ3 and cautioned against corresponding uptake of toxic drugs, if any at all. Whereas, normal human bronchial epithelial (NHBE) cells with poor integrin αvβ3 expression showed negligible toxicity to PTX-PLGA-CSNP-RGD, at equivalent drug concentrations used in cancer cells. Further, the nanoparticle demonstrated its capacity in targeted delivery of Cisplatin (CDDP), a drug having physicochemical properties different to PTX. Taken together, our study demonstrates that PLGA-CSNP-RGD is a promising nanoplatform for integrin targeted chemotherapeutic delivery to lung cancer.
Collapse
Affiliation(s)
- Anish Babu
- Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, 73104, USA.,Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, 73104, USA
| | - Narsireddy Amreddy
- Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, 73104, USA.,Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, 73104, USA
| | - Ranganayaki Muralidharan
- Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, 73104, USA.,Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, 73104, USA
| | - Gopal Pathuri
- Department of Pharmaceutical Sciences, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, 73104, USA.,Department of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, 73104, USA
| | - Hariprasad Gali
- Department of Pharmaceutical Sciences, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, 73104, USA.,Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, 73104, USA
| | - Allshine Chen
- Department of Biostatistics and Epidemiology, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, 73104, USA.,Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, 73104, USA
| | - Yan D Zhao
- Department of Biostatistics and Epidemiology, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, 73104, USA.,Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, 73104, USA
| | - Anupama Munshi
- Department of Radiation Oncology, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, 73104, USA.,Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, 73104, USA
| | - Rajagopal Ramesh
- Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, 73104, USA. .,Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, 73104, USA. .,Graduate Program in Biomedical Sciences, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, 73104, USA.
| |
Collapse
|
31
|
Abstract
Breast cancer is one of the most common cancers affecting women worldwide. The controlled release of drugs to the precise site of the disease using a nanocarrier vehicle increases the therapeutic efficiency of the drugs. Nanotechnology-based approaches used to endorse clinical improvement from a disease also help to understand the interaction of malignant cells with their microenvironment. Receptor-based targeting is another approach for drug delivery which is undergoing clinical trials. Nanoparticles (NPs) delivery has been proven to promise high loading capacity, less toxicity, and stability of the drugs or biomolecules compared to traditional chemotherapeutic drugs. The goal of this review is to present the current problems of breast cancer therapy and discuss the NP-based targeting to overcome the hurdles of conventional drug therapy approach.
Collapse
Affiliation(s)
- Santosh Kumar Singh
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA, USA
| | - Shriti Singh
- Department of Kriya Sharir, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - James W Lillard
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA, USA
| | - Rajesh Singh
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA, USA
| |
Collapse
|
32
|
Interaction between C18 fatty acids and DOPE PEG2000 in Langmuir monolayers: effect of degree of unsaturation. J Biol Phys 2017; 43:397-414. [PMID: 28752254 DOI: 10.1007/s10867-017-9459-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 06/01/2017] [Indexed: 12/31/2022] Open
Abstract
In this study, we address the effect of the cis-double bond in 1,2-dioleoyl-sn-glycero-3-phosphoethanolamide-N-[methoxy(polyethylene glycol)-2000, DOPE PEG2000 (DP), on the Langmuir monolayer of C18 fatty acids-namely, stearic acid (SA), oleic acid (L1), linoleic acid (L2), and linolenic acid (L3)-with the same head group but different degrees of saturation on their hydrocarbon chains. Negative values of Gibbs free energy of mixing (ΔG mix) were obtained throughout the investigated ranges of the unsaturated C18 fatty-acid (L1, L2 and L3) mixed systems, indicating that very strong attractions occurred between molecules in the monolayers. The bend and kink effects from the cis-double bond(s) in the hydrocarbon chain affected the membrane fluidity and molecular packing in the monolayers, which resulted in a greater interaction between unsaturated C18 fatty acids and DP. The most thermodynamically stable mole composition of unsaturated C18 fatty acids to DP was observed at 50:1; this ratio is suggested to be the best mole ratio and will be subsequently used to prepare DP-C18 fatty-acid nanoliposomes. The presence of cis-double bonds in both hydrocarbon chains of DOPE in DP also created an imperfection in the membrane structure of lipid-drug delivery systems, which is expected to enhance lipid-based systems for antibody conjugation and drug encapsulation.
Collapse
|
33
|
Kuang H, Ku SH, Kokkoli E. The design of peptide-amphiphiles as functional ligands for liposomal anticancer drug and gene delivery. Adv Drug Deliv Rev 2017; 110-111:80-101. [PMID: 27539561 DOI: 10.1016/j.addr.2016.08.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 07/12/2016] [Accepted: 08/05/2016] [Indexed: 12/25/2022]
Abstract
Liposomal nanomedicine has led to clinically useful cancer therapeutics like Doxil and DaunoXome. In addition, peptide-functionalized liposomes represent an effective drug and gene delivery vehicle with increased cancer cell specificity, enhanced tumor-penetrating ability and high tumor growth inhibition. The goal of this article is to review the recently published literature of the peptide-amphiphiles that were used to functionalize liposomes, to highlight successful designs that improved drug and gene delivery to cancer cells in vitro, and cancer tumors in vivo, and to discuss the current challenges of designing these peptide-decorated liposomes for effective cancer treatment.
Collapse
|
34
|
Sabzichi M, Mohammadian J, Yari Khosroushahi A, Bazzaz R, Hamishehkar H. Folate-Targeted Nanostructured Lipid Carriers (NLCs) Enhance (Letrozol) Efficacy in MCF-7 Breast Cancer Cells. Asian Pac J Cancer Prev 2016; 17:5185-5188. [PMID: 28124885 PMCID: PMC5454656 DOI: 10.22034/apjcp.2016.17.12.5185] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Objective: Targeted-drug-delivery based lipid nanoparticles has emerged as a new and effective approach in cancer chemotherapy. Here, we investigated the ability of folate-modified nanostructured lipid carriers (NLCs) to enhance letrozol (LTZ) efficacy in MCF-7 breast cancer cells. Methods: New formulations were evaluated regarding to particle size and scanning electron microscope (SEM) features. Anti-proliferative effects of LTZ loaded nanoparticles were examined by MTT assay. To understand molecular mechanisms of apoptosis and cell cycle progression, flow cytometric assays were applied. Results: Optimum size of nanoparticles was obtained in mean average of 98 ± 7 nm with a poly dispersity index (PDI) of 0.165. The IC50 value was achieved for LTZ was 2.2 ± 0.2 µM. Folate-NLC-LTZ increased the percentage of apoptotic cells from 24.6% to 42.2% compared LTZ alone (p<0.05). Furthermore, LTZ loaded folate targeted NLCs caused marked accumulation of cells in the subG1 phase. Conclusion: Taken together, our results concluded that folate targeted LTZ can be considered as potential delivery system which may overcome limitations of clinical application of LTZ and improve drug efficacy in tumor tissue.
Collapse
Affiliation(s)
- Mehdi Sabzichi
- Drug Applied Research Center, and Department of Medical Biotechnology, Tabriz University of Medical Sciences, Tabriz, Iran.
| | | | | | | | | |
Collapse
|
35
|
O'Sullivan L, Buttimer C, McAuliffe O, Bolton D, Coffey A. Bacteriophage-based tools: recent advances and novel applications. F1000Res 2016; 5:2782. [PMID: 27990274 PMCID: PMC5133683 DOI: 10.12688/f1000research.9705.1] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/21/2016] [Indexed: 01/21/2023] Open
Abstract
Bacteriophages (phages) are viruses that infect bacterial hosts, and since their discovery over a century ago they have been primarily exploited to control bacterial populations and to serve as tools in molecular biology. In this commentary, we highlight recent diverse advances in the field of phage research, going beyond bacterial control using whole phage, to areas including biocontrol using phage-derived enzybiotics, diagnostics, drug discovery, novel drug delivery systems and bionanotechnology.
Collapse
Affiliation(s)
- Lisa O'Sullivan
- Department of Biological Sciences, Cork Institute of Technology, County Cork, Ireland
| | - Colin Buttimer
- Department of Biological Sciences, Cork Institute of Technology, County Cork, Ireland
| | - Olivia McAuliffe
- Biotechnology Department, Teagasc, Moorepark Food Research Centre, Fermoy, County Cork, Ireland
| | - Declan Bolton
- Division of Food Safety, Teagasc, Food Research Centre, Ashtown, County Dublin, Ireland
| | - Aidan Coffey
- Department of Biological Sciences, Cork Institute of Technology, County Cork, Ireland
| |
Collapse
|
36
|
Carbone EJ, Rajpura K, Allen BN, Cheng E, Ulery BD, Lo KWH. Osteotropic nanoscale drug delivery systems based on small molecule bone-targeting moieties. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2016; 13:37-47. [PMID: 27562211 DOI: 10.1016/j.nano.2016.08.015] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2015] [Revised: 08/02/2016] [Accepted: 08/05/2016] [Indexed: 12/22/2022]
Abstract
Bone-targeted drug delivery is an active research area because successful clinical applications of this technology can significantly advance the treatment of bone injuries and disorders. Molecules with bone-targeting potential have been actively investigated as promising moieties in targeted drug delivery systems. In general, bone-targeting molecules are characterized by their high affinity for bone and their predisposition to persist in bone tissue for prolonged periods, while maintaining low systemic concentrations. Proteins, such as monoclonal antibodies, have shown promise as bone-targeting molecules; however, they suffer from several limitations including large molecular size, high production cost, and undesirable immune responses. A viable alternative associated with significantly less side effects is the use of small molecule-based targeting moieties. This review provides a summary of recent findings regarding small molecule compounds with bone-targeting capacity, as well as nanoscale targeted drug delivery approaches employing these molecules.
Collapse
Affiliation(s)
- Erica J Carbone
- Institute for Regenerative Engineering, University of Connecticut Health Center, School of Medicine, Farmington, CT, USA; The Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, University of Connecticut Health Center, School of Medicine, Farmington, CT, USA; Division of Endocrinology, Department of Medicine, University of Connecticut Health Center, School of Medicine, Farmington, CT, USA; UConn Stem Cell Institute, University of Connecticut Health Center, Farmington, CT, USA
| | - Komal Rajpura
- Institute for Regenerative Engineering, University of Connecticut Health Center, School of Medicine, Farmington, CT, USA; The Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, University of Connecticut Health Center, School of Medicine, Farmington, CT, USA; Connecticut Institute for Clinical and Translational Science, University of Connecticut Health Center, Farmington, CT, USA
| | - Brittany N Allen
- Department of Bioengineering, University of Missouri, Columbia, MO, USA
| | - Emily Cheng
- Department of Chemical Engineering, University of Missouri, Columbia, MO, USA
| | - Bret D Ulery
- Department of Chemical Engineering, University of Missouri, Columbia, MO, USA
| | - Kevin W-H Lo
- Institute for Regenerative Engineering, University of Connecticut Health Center, School of Medicine, Farmington, CT, USA; The Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, University of Connecticut Health Center, School of Medicine, Farmington, CT, USA; Division of Endocrinology, Department of Medicine, University of Connecticut Health Center, School of Medicine, Farmington, CT, USA; UConn Stem Cell Institute, University of Connecticut Health Center, Farmington, CT, USA; Department of Biomedical Engineering, University of Connecticut, School of Engineering, Storrs, CT, USA; Connecticut Institute for Clinical and Translational Science, University of Connecticut Health Center, Farmington, CT, USA.
| |
Collapse
|
37
|
Silva VL, Ferreira D, Nobrega FL, Martins IM, Kluskens LD, Rodrigues LR. Selection of Novel Peptides Homing the 4T1 CELL Line: Exploring Alternative Targets for Triple Negative Breast Cancer. PLoS One 2016; 11:e0161290. [PMID: 27548261 PMCID: PMC4993384 DOI: 10.1371/journal.pone.0161290] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 06/27/2016] [Indexed: 11/30/2022] Open
Abstract
The use of bacteriophages to select novel ligands has been widely explored for cancer therapy. Their application is most warranted in cancer subtypes lacking knowledge on how to target the cancer cells in question, such as the triple negative breast cancer, eventually leading to the development of alternative nanomedicines for cancer therapeutics. Therefore, the following study aimed to select and characterize novel peptides for a triple negative breast cancer murine mammary carcinoma cell line– 4T1. Using phage display, 7 and 12 amino acid random peptide libraries were screened against the 4T1 cell line. A total of four rounds, plus a counter-selection round using the 3T3 murine fibroblast cell line, was performed. The enriched selective peptides were characterized and their binding capacity towards 4T1 tissue samples was confirmed by immunofluorescence and flow cytometry analysis. The selected peptides (4T1pep1 –CPTASNTSC and 4T1pep2—EVQSSKFPAHVS) were enriched over few rounds of selection and exhibited specific binding to the 4T1 cell line. Interestingly, affinity to the human MDA-MB-231 cell line was also observed for both peptides, promoting the translational application of these novel ligands between species. Additionally, bioinformatics analysis suggested that both peptides target human Mucin-16. This protein has been implicated in different types of cancer, as it is involved in many important cellular functions. This study strongly supports the need of finding alternative targeting systems for TNBC and the peptides herein selected exhibit promising future application as novel homing peptides for breast cancer therapy.
Collapse
Affiliation(s)
- Vera L. Silva
- CEB—Centre of Biological Engineering, Universidade do Minho, Campus de Gualtar, Braga, Portugal
| | - Debora Ferreira
- CEB—Centre of Biological Engineering, Universidade do Minho, Campus de Gualtar, Braga, Portugal
| | - Franklin L. Nobrega
- CEB—Centre of Biological Engineering, Universidade do Minho, Campus de Gualtar, Braga, Portugal
| | - Ivone M. Martins
- CEB—Centre of Biological Engineering, Universidade do Minho, Campus de Gualtar, Braga, Portugal
| | - Leon D. Kluskens
- CEB—Centre of Biological Engineering, Universidade do Minho, Campus de Gualtar, Braga, Portugal
| | - Ligia R. Rodrigues
- CEB—Centre of Biological Engineering, Universidade do Minho, Campus de Gualtar, Braga, Portugal
- * E-mail:
| |
Collapse
|
38
|
Yeh CY, Hsiao JK, Wang YP, Lan CH, Wu HC. Peptide-conjugated nanoparticles for targeted imaging and therapy of prostate cancer. Biomaterials 2016; 99:1-15. [DOI: 10.1016/j.biomaterials.2016.05.015] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 05/09/2016] [Accepted: 05/09/2016] [Indexed: 12/16/2022]
|
39
|
Wu CH, Liu IJ, Lu RM, Wu HC. Advancement and applications of peptide phage display technology in biomedical science. J Biomed Sci 2016; 23:8. [PMID: 26786672 PMCID: PMC4717660 DOI: 10.1186/s12929-016-0223-x] [Citation(s) in RCA: 228] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2015] [Accepted: 01/11/2016] [Indexed: 12/25/2022] Open
Abstract
Combinatorial phage library is a powerful research tool for high-throughput screening of protein interactions. Of all available molecular display techniques, phage display has proven to be the most popular approach. Screening phage-displayed random peptide libraries is an effective means of identifying peptides that can bind target molecules and regulate their function. Phage-displayed peptide libraries can be used for (i) B-cell and T-cell epitope mapping, (ii) selection of bioactive peptides bound to receptors or proteins, disease-specific antigen mimics, peptides bound to non-protein targets, cell-specific peptides, or organ-specific peptides, and (iii) development of peptide-mediated drug delivery systems and other applications. Targeting peptides identified using phage display technology may be useful for basic research and translational medicine. In this review article, we summarize the latest technological advancements in the application of phage-displayed peptide libraries to applied biomedical sciences.
Collapse
Affiliation(s)
- Chien-Hsun Wu
- Institute of Cellular and Organismic Biology, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei, 11529, Taiwan
| | - I-Ju Liu
- Institute of Cellular and Organismic Biology, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei, 11529, Taiwan
| | - Ruei-Min Lu
- Institute of Cellular and Organismic Biology, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei, 11529, Taiwan
| | - Han-Chung Wu
- Institute of Cellular and Organismic Biology, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei, 11529, Taiwan.
| |
Collapse
|
40
|
Rostami I, Zhao Z, Wang Z, Zhang W, Zhong Y, Zeng Q, Jia X, Hu Z. Peptide-conjugated PEGylated PAMAM as a highly affinitive nanocarrier towards HER2-overexpressing cancer cells. RSC Adv 2016. [DOI: 10.1039/c6ra19552k] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Efficient drug delivery to the tumor cells was carried out with HER2 targeting peptide-conjugated PEGlyted PAMAM.
Collapse
Affiliation(s)
- Iman Rostami
- CAS Center for Excellents for Nanoscience
- National Center for Nanoscience and Technology
- Beijing 100190
- China
- University of Chinese Academy of Sciences
| | - ZiJian Zhao
- CAS Center for Excellents for Nanoscience
- National Center for Nanoscience and Technology
- Beijing 100190
- China
- University of Chinese Academy of Sciences
| | - ZiHua Wang
- CAS Center for Excellents for Nanoscience
- National Center for Nanoscience and Technology
- Beijing 100190
- China
- University of Chinese Academy of Sciences
| | - WeiKai Zhang
- CAS Center for Excellents for Nanoscience
- National Center for Nanoscience and Technology
- Beijing 100190
- China
- Henan University of Science & Technology
| | - Yeteng Zhong
- CAS Center for Excellents for Nanoscience
- National Center for Nanoscience and Technology
- Beijing 100190
- China
| | - Qiang Zeng
- Health Management Institute
- Chinese PLA General Hospital
- China
| | - XinRu Jia
- Department of Polymer Science and Engineering and Key Laboratory of Polymer Chemistry and Physics of the Ministry of Education
- College of Chemistry and Molecular Engineering
- Peking University
- Beijing
- China
| | - ZhiYuan Hu
- CAS Center for Excellents for Nanoscience
- National Center for Nanoscience and Technology
- Beijing 100190
- China
- Institute for Systems Biology
| |
Collapse
|
41
|
Samadi FY, Mohammadi Z, Yousefi M, Majdejabbari S. Synthesis of raloxifene–chitosan conjugate: A novel chitosan derivative as a potential targeting vehicle. Int J Biol Macromol 2016; 82:599-606. [DOI: 10.1016/j.ijbiomac.2015.10.041] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 09/21/2015] [Accepted: 10/13/2015] [Indexed: 11/29/2022]
|
42
|
Khan DR, Webb MN, Cadotte TH, Gavette MN. Use of Targeted Liposome-based Chemotherapeutics to Treat Breast Cancer. BREAST CANCER-BASIC AND CLINICAL RESEARCH 2015; 9:1-5. [PMID: 26309409 PMCID: PMC4533644 DOI: 10.4137/bcbcr.s29421] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 07/13/2015] [Accepted: 07/14/2015] [Indexed: 11/05/2022]
Abstract
The use of nanocarriers such as liposomes to deliver anticancer drugs to tumors can significantly enhance the therapeutic index of otherwise unencapsulated cytotoxic agents. This is in part because of the fact that the phospholipid bilayer can protect healthy sensitive tissue from the damaging effects of these types of drugs. Furthermore, the ease with which the phospholipid bilayer surface can be modified to allow for polyethylene glycol incorporation resulting in pegylated liposomes allow for increased circulation times in vivo, and thus an overall increase in the concentration of the drug delivered to the tumor site. This explains the clinical success of the liposomal-based drug Doxil, which has proven to be quite efficacious in the treatment of breast cancer. However, significant challenges remain involving poor drug transfer between the liposome and tumor cells with this type of nontargeted drug delivery system. Thus, future work involves the development of "smart" drugs, or targeted drug delivery intended for improved colocalization between the drug and cancerous cells. While it is not possible to entirely discuss such a rapidly growing field of study involving many different types of chemotherapeutics here, in this review, we discuss some of the recent advancements involving the development of targeted liposome-based chemotherapeutics to treat breast cancer.
Collapse
Affiliation(s)
- David R Khan
- Department of Mathematics, Chemistry and Physics, West Texas A&M University, Canyon, TX, USA
| | - Maggie N Webb
- Department of Mathematics, Chemistry and Physics, West Texas A&M University, Canyon, TX, USA
| | - Thomas H Cadotte
- Department of Mathematics, Chemistry and Physics, West Texas A&M University, Canyon, TX, USA
| | - Madison N Gavette
- Department of Mathematics, Chemistry and Physics, West Texas A&M University, Canyon, TX, USA
| |
Collapse
|
43
|
Targeting delivery of lipocalin 2-engineered mesenchymal stem cells to colon cancer in order to inhibit liver metastasis in nude mice. Tumour Biol 2015; 36:6011-8. [PMID: 25740061 DOI: 10.1007/s13277-015-3277-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Accepted: 02/18/2015] [Indexed: 01/05/2023] Open
Abstract
One of the major obstacles in cancer therapy is the lack of anticancer agent specificity to tumor tissues. The strategy of cell-based therapy is a promising therapeutic option for cancer treatment. The specific tumor-oriented migration of mesenchymal stem cells (MSCs) makes them a useful vehicle to deliver anticancer agents. In this study, we genetically manipulated bone marrow-derived mesenchymal stem cells with their lipocalin 2 (Lcn2) in order to inhibit liver metastasis of colon cancer in nude mice. Lcn2 was successfully overexpressed in transfected MSCs. The PCR results of SRY gene confirmed the presence of MSCs in cancer liver tissue. This study showed that Lcn2-engineered MSCs (MSC-Lcn2) not only inhibited liver metastasis of colon cancer but also downregulated the expression of vascular endothelial growth factor (VEGF) in the liver. Overall, MSCs by innate tropism toward cancer cells can deliver the therapeutic agent, Lcn2, and inhibit cancer metastasis. Hence, it could be a new modality for efficient targeted delivery of anticancer agent to liver metastasis.
Collapse
|
44
|
Subtype-specific binding peptides enhance the therapeutic efficacy of nanomedicine in the treatment of ovarian cancer. Cancer Lett 2015; 360:39-47. [PMID: 25661733 DOI: 10.1016/j.canlet.2015.01.042] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Revised: 12/31/2014] [Accepted: 01/29/2015] [Indexed: 01/15/2023]
Abstract
Currently, epithelial ovarian cancer is viewed as a heterogeneous disease with five major histological subtypes. Clear cell carcinoma represents a specific histological subtype of epithelial ovarian cancer that demonstrates more aggressive clinical behavior and drug resistance compared with other subtypes. Nevertheless, clear cell carcinoma is treated in the same manner as the other subtypes without any particular consideration to its unique clinical characteristics. To improve the therapeutic efficacy of the current liposomal doxorubicin approach for the treatment of clear cell carcinoma, we aimed to develop a novel peptide-conjugated liposomal doxorubicin to actively target this subtype. Two phage clones (OC-6 and OC-26) that specifically bound to clear cell carcinoma were isolated from a phage peptide display library after biopanning procedures. The peptide sequences were translated and aligned (OCSP-6 for OC-6, and OCSP-26 for OC-26, respectively). Peptide-conjugated nanoparticles demonstrated better tumor endocytosis and time-dependent gradual increase of intracellular drug uptake than non-targeting liposomal nanoparticles. Furthermore, peptide-conjugated liposomal doxorubicin better controlled tumors than did non-targeting liposomal doxorubicin. The current work may pave a new way for the development of drugs that target each subtype of epithelial ovarian cancer in the future.
Collapse
|
45
|
Sherwani MA, Tufail S, Khan AA, Owais M. Dendrimer-PLGA based multifunctional immuno-nanocomposite mediated synchronous and tumor selective delivery of siRNA and cisplatin: potential in treatment of hepatocellular carcinoma. RSC Adv 2015. [DOI: 10.1039/c5ra03651h] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The in-house synthesized PLK-1 siRNA and cisplatin loaded innovative dendrimer-PLGA immuno-nanocomposite bears the capacity of delivering both the cargos simultaneously to the same liver cancer cell in a targeted manner.
Collapse
Affiliation(s)
| | - Saba Tufail
- Interdisciplinary Biotechnology Unit
- Aligarh Muslim University
- Aligarh
- India
| | - Aijaz Ahmed Khan
- Department of Anatomy
- Jawaharlal Nehru Medical College
- Faculty of Medicine
- Aligarh Muslim University
- Aligarh
| | - Mohammad Owais
- Interdisciplinary Biotechnology Unit
- Aligarh Muslim University
- Aligarh
- India
| |
Collapse
|
46
|
Jiang T, Yu X, Carbone EJ, Nelson C, Kan HM, Lo KWH. Poly aspartic acid peptide-linked PLGA based nanoscale particles: Potential for bone-targeting drug delivery applications. Int J Pharm 2014; 475:547-57. [DOI: 10.1016/j.ijpharm.2014.08.067] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 08/24/2014] [Accepted: 08/27/2014] [Indexed: 12/25/2022]
|
47
|
Gehrmann M, Stangl S, Foulds GA, Oellinger R, Breuninger S, Rad R, Pockley AG, Multhoff G. Tumor imaging and targeting potential of an Hsp70-derived 14-mer peptide. PLoS One 2014; 9:e105344. [PMID: 25165986 PMCID: PMC4148261 DOI: 10.1371/journal.pone.0105344] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Accepted: 07/21/2014] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND We have previously used a unique mouse monoclonal antibody cmHsp70.1 to demonstrate the selective presence of a membrane-bound form of Hsp70 (memHsp70) on a variety of leukemia cells and on single cell suspensions derived from solid tumors of different entities, but not on non-transformed cells or cells from corresponding 'healthy' tissue. This antibody can be used to image tumors in vivo and target them for antibody-dependent cellular cytotoxicity. Tumor-specific expression of memHsp70 therefore has the potential to be exploited for theranostic purposes. Given the advantages of peptides as imaging and targeting agents, this study assessed whether a 14-mer tumor penetrating peptide (TPP; TKDNNLLGRFELSG), the sequence of which is derived from the oligomerization domain of Hsp70 which is expressed on the cell surface of tumor cells, can also be used for targeting membrane Hsp70 positive (memHsp70+) tumor cells, in vitro. METHODOLOGY/PRINCIPAL FINDINGS The specificity of carboxy-fluorescein (CF-) labeled TPP (TPP) to Hsp70 was proven in an Hsp70 knockout mammary tumor cell system. TPP specifically binds to different memHsp70+ mouse and human tumor cell lines and is rapidly taken up via endosomes. Two to four-fold higher levels of CF-labeled TPP were detected in MCF7 (82% memHsp70+) and MDA-MB-231 (75% memHsp70+) cells compared to T47D cells (29% memHsp70+) that exhibit a lower Hsp70 membrane positivity. After 90 min incubation, TPP co-localized with mitochondrial membranes in memHsp70+ tumors. Although there was no evidence that any given vesicle population was specifically localized, fluorophore-labeled cmHsp70.1 antibody and TPP preferentially accumulated in the proximity of the adherent surface of cultured cells. These findings suggest a potential association between membrane Hsp70 expression and cytoskeletal elements that are involved in adherence, the establishment of intercellular synapses and/or membrane reorganization. CONCLUSIONS/SIGNIFICANCE This study demonstrates the specific binding and rapid internalization of TPP by tumor cells with a memHsp70+ phenotype. TPP might therefore have potential for targeting and imaging the large proportion of tumors (∼50%) that express memHsp70.
Collapse
Affiliation(s)
- Mathias Gehrmann
- Department of Radiation Oncology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Stefan Stangl
- Department of Radiation Oncology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Gemma A. Foulds
- John van Geest Cancer Research Centre, Nottingham Trent University, Nottingham, United Kingdom
| | - Rupert Oellinger
- Medical Department II, Translational Gastroenterological Oncology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Stephanie Breuninger
- Department of Radiation Oncology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Roland Rad
- Medical Department II, Translational Gastroenterological Oncology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Alan G. Pockley
- John van Geest Cancer Research Centre, Nottingham Trent University, Nottingham, United Kingdom
| | - Gabriele Multhoff
- Department of Radiation Oncology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
- Clinical Cooperation Group (CCG) ‘‘Innate Immunity in Tumor Biology’’, Helmholtz Zentrum München, Deutsches Forschungszentrum für Gesundheit und Umwelt, Munich, Germany
| |
Collapse
|
48
|
Delgado Y, Morales-Cruz M, Hernández-Román J, Martínez Y, Griebenow K. Chemical glycosylation of cytochrome c improves physical and chemical protein stability. BMC BIOCHEMISTRY 2014; 15:16. [PMID: 25095792 PMCID: PMC4137108 DOI: 10.1186/1471-2091-15-16] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Accepted: 08/01/2014] [Indexed: 11/14/2022]
Abstract
Background Cytochrome c (Cyt c) is an apoptosis-initiating protein when released into the cytoplasm of eukaryotic cells and therefore a possible cancer drug candidate. Although proteins have been increasingly important as pharmaceutical agents, their chemical and physical instability during production, storage, and delivery remains a problem. Chemical glycosylation has been devised as a method to increase protein stability and thus enhance their long-lasting bioavailability. Results Three different molecular weight glycans (lactose and two dextrans with 1 kD and 10 kD) were chemically coupled to surface exposed Cyt c lysine (Lys) residues using succinimidyl chemistry via amide bonds. Five neo-glycoconjugates were synthesized, Lac4-Cyt-c, Lac9-Cyt-c, Dex5(10kD)-Cyt-c, Dex8(10kD)-Cyt-c, and Dex3(1kD)-Cyt-c. Subsequently, we investigated glycoconjugate structure, activity, and stability. Circular dichroism (CD) spectra demonstrated that Cyt c glycosylation did not cause significant changes to the secondary structure, while high glycosylation levels caused some minor tertiary structure perturbations. Functionality of the Cyt c glycoconjugates was determined by performing cell-free caspase 3 and caspase 9 induction assays and by measuring the peroxidase-like pseudo enzyme activity. The glycoconjugates showed ≥94% residual enzyme activity and 86 ± 3 to 95 ± 1% relative caspase 3 activation compared to non-modified Cyt c. Caspase 9 activation by the glycoconjugates was with 92 ± 7% to 96 ± 4% within the error the same as the caspase 3 activation. There were no major changes in Cyt c activity upon glycosylation. Incubation of Dex3(1 kD)-Cyt c with mercaptoethanol caused significant loss in the tertiary structure and a drop in caspase 3 and 9 activation to only 24 ± 8% and 26 ± 6%, respectively. This demonstrates that tertiary structure intactness of Cyt c was essential for apoptosis induction. Furthermore, glycosylation protected Cyt c from detrimental effects by some stresses (i.e., elevated temperature and humidity) and from proteolytic degradation. In addition, non-modified Cyt c was more susceptible to denaturation by a water-organic solvent interface than its glycoconjugates, important for the formulation in polymers. Conclusion The results demonstrate that chemical glycosylation is a potentially valuable method to increase Cyt c stability during formulation and storage and potentially during its application after administration.
Collapse
Affiliation(s)
| | | | | | | | - Kai Griebenow
- Department of Biology, University of Puerto Rico, Río Piedras Campus, P,O, Box 70377, San Juan, Puerto Rico 00931-3346, USA.
| |
Collapse
|
49
|
Momtazi L, Bagherifam S, Singh G, Hofgaard A, Hakkarainen M, Glomm WR, Roos N, Mælandsmo GM, Griffiths G, Nyström B. Synthesis, characterization, and cellular uptake of magnetic nanocarriers for cancer drug delivery. J Colloid Interface Sci 2014; 433:76-85. [PMID: 25112915 DOI: 10.1016/j.jcis.2014.07.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 07/07/2014] [Accepted: 07/08/2014] [Indexed: 01/22/2023]
Abstract
HYPOTHESIS The absence of targetability is the primary inadequacy of conventional chemotherapy. Targeted drug delivery systems are conceptualized to overcome this challenge. We have designed a targetable magnetic nanocarrier consisting of a superparamagnetic iron oxide (SPIO) core and biocompatible and biodegradable poly(sebacic anhydride)-block-methyl ether poly(ethylene glycol) (PSA-mPEG) polymer shell. The idea is that this type of carriers should facilitate the targeting of cancer cells. EXPERIMENTS PSA-mPEG was synthesized with poly-condensation and the in vitro degradation rate of the polymer was monitored by gel permeation chromatography (GPC). The magnetic nanocarriers were fabricated devoid of any surfactants and were capable of carrying high payload of hydrophobic dye. The successful encapsulation of SPIO within the polymer shell was confirmed by TEM. The results we obtained from measuring the size of SPIO loaded in polymeric NPs (SPIO-PNP) by dynamic light scattering (DLS) and iron content measurement of these particles by ICP-MS, indicate that SPIO is the most suitable carrier for cancer drug delivery applications. FINDINGS Measuring the hydrodynamic radii of SPIO-PNPs by DLS over one month revealed the high stability of these particles at both body and room temperature. We further investigated the cell viability and cellular uptake of SPIO-PNPs in vitro with MDA-MB-231 breast cancer cells. We found that SPIO-PNPs induce negligible toxicity within a concentration range of 1-2μg/ml. The TEM micrographs of thin cross-sectioned MDA-MBA-231 cells showed internalization of SPIO-PNPs within size range of 150-200nm after 24h. This study has provided a foundation for eventually loading these nanoparticles with anti-cancer drugs for targeted cancer therapy using an external magnetic field.
Collapse
Affiliation(s)
- Leva Momtazi
- Department of Chemistry, University of Oslo, P.O. Box 1033, Blindern, N-0315 Oslo, Norway.
| | - Shahla Bagherifam
- Department of Chemistry, University of Oslo, P.O. Box 1033, Blindern, N-0315 Oslo, Norway; Department of Biology, University of Oslo, Blindernveien 31, 0316 Oslo, Norway.
| | - Gurvinder Singh
- Department of Chemical Engineering, Norwegian University of Science and Technology, 7491 Trondheim, Norway.
| | - Antje Hofgaard
- Department of Biology, University of Oslo, Blindernveien 31, 0316 Oslo, Norway.
| | - Minna Hakkarainen
- Department of Fiber and Polymer Technology, KTH Royal Institute of Technology, Teknikringen 56-58, 10044 Stockholm, Sweden.
| | - Wilhelm R Glomm
- Biotechnology and Nanomedicine Sector, SINTEF Materials and Chemistry, Sem Sælands vei 2A, N-7034 Trondheim, Norway.
| | - Norbert Roos
- Department of Biology, University of Oslo, Blindernveien 31, 0316 Oslo, Norway.
| | - Gunhild M Mælandsmo
- Department of Tumor Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway.
| | - Gareth Griffiths
- Department of Biology, University of Oslo, Blindernveien 31, 0316 Oslo, Norway.
| | - Bo Nyström
- Department of Chemistry, University of Oslo, P.O. Box 1033, Blindern, N-0315 Oslo, Norway.
| |
Collapse
|
50
|
Targeting of BRAF resistant melanoma via extracellular matrix metalloproteinase inducer receptor. J Surg Res 2014; 190:111-8. [PMID: 24655664 DOI: 10.1016/j.jss.2014.02.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Revised: 02/03/2014] [Accepted: 02/14/2014] [Indexed: 12/30/2022]
Abstract
BACKGROUND The BRAF inhibitor vemurafenib (PLX) has shown promise in treating metastatic melanoma, but most patients develop resistance to treatment after 6 mo. We identified a transmembrane protein, extracellular matrix metalloproteinase inducer (EMMPRIN) as a cell surface receptor highly expressed by PLX-resistant melanoma. Using an S100A9 ligand, we created an EMMPRIN targeted probe and liposome that binds to melanoma cells in vivo, thus designing a novel drug delivery vehicle. METHODS PLX-resistant cells were established through continuous treatment with PLX-4032 over the course of 1 y. Both PLX-resistant and sensitive melanoma cell lines were evaluated for the expression of unique cell surface proteins, which identified EMMPRIN as an overexpressed protein in PLX0-resistant cells and S100A9 is a ligand for EMMPRIN. To design a probe for EMMPRIN, S100A9 ligand was conjugated to a CF-750 near-infrared (NIR) dye. EMMPRIN targeted liposomes were created to encapsulate CF-750 NIR dye. Liposomes were characterized by scanning electron microscopy, flow cytometry, and in vivo analysis. A2058PLX and A2058 cells were subcutaneously injected into athymic mice. S100A9 liposomes were intravenously injected and tumor accumulation was evaluated using NIR fluorescent imaging. RESULTS Western blot and flow cytometry demonstrated that PLX sensitive and resistant A2058 and A375 melanoma cells highly express EMMPRIN. S100A9 liposomes were 200 nm diameter and uniformly sized. Flow cytometry demonstrated 100X more intracellular dye uptake by A2058 cells treated with S100A9 liposomes compared with untargeted liposomes. In vivo accumulation of S100A9 liposomes within subcutaneous A2058 and A2058PLX tumors was observed from 6-48 h, with A2058PLX accumulating significantly higher levels (P = 0.001626). CONCLUSIONS EMMPRIN-targeted liposomes via an S100A9 ligand are a novel, targeted delivery system which could provide improved EMMPRIN specific drug delivery to a tumor.
Collapse
|