1
|
Liu YY, Pang J, Zhang C, Zeng LT, Wang Y, Wang SB, Fan GQ, Zhang LQ, Shen T, Li XF, Li CB, Cao SY, Zhang TM, Cai JP, Cui J. Biofluid GPNMB/osteoactivin as a potential biomarker of ageing: A cross-sectional study. Heliyon 2024; 10:e36574. [PMID: 39263169 PMCID: PMC11388787 DOI: 10.1016/j.heliyon.2024.e36574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 07/08/2024] [Accepted: 08/19/2024] [Indexed: 09/13/2024] Open
Abstract
Background Glycoprotein non-metastatic melanoma B (GPNMB)/osteoactivin was first identified in the human melanoma cell lines. GPNMB plays a key role in the anti-inflammatory and antioxidative functions as well as osteoblast differentiation, cancer progression, and tissue regeneration. Recently, GPNMB was used as an anti-aging vaccine for mice. The present study aimed to investigate the potential of biofluid GPNMB as an aging biomarker in humans using serum and urine samples from an aging Chinese population. Methods We analyzed RNA-sequencing data (GSE132040) from 17 murine organs across different ages to assess the gene expression of potential ageing biomarkers. Spearman's correlation coefficients were used to evaluate the relationship between gene expression and age. Meanwhile, a cross-sectional population study was conducted, which included 473 participants (aged 25-91 years), a representative subset of participants from the Peng Zu Study on Healthy Ageing in China (Peng Zu Cohort). Biofluid GPNMB levels were measured by ELISA. The associations of serum and urine GPNMB levels with various clinical and anthropometrical indices were assessed using ANOVA, Kruskal-Wallis H test, and univariate and multivariate linear regression analyses. Results In mice, the Gpnmb mRNA expression levels showed a significant positive association with age in multiple organs in mice (P < 0.05). In Peng Zu Cohort, biofluid (both serum and urine) GPNMB levels showed a positive correlation with age (P < 0.05). Univariate linear regression analysis revealed that serum GPNMB levels were negatively associated with skeletal muscle mass index (SMI, P < 0.05) and insulin-like growth factor 1 (IGF-1, P < 0.05), and urine GPNMB levels showed a negative association with total bile acids (TBA, P < 0.05). Multivariate linear regression analysis further indicated that serum GPNMB levels negatively correlated with the systemic immune-inflammation index (SII, P < 0.05), and the urine GPNMB levels maintained a negative association with TBA (P < 0.05), additionally, urine GPNMB levels in men were significantly lower than in women (P < 0.05). Conclusions The biofluid GPNMB was a strong clinical biomarker candidate for estimating biological aging.
Collapse
Affiliation(s)
- Yuan-Yuan Liu
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Science, Beijing Hospital/National Center of Gerontology of National Health Commission, 1 Dahua Rd, Dongcheng District, Beijing, PR China
- Department of Rheumatology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, PR China
| | - Jing Pang
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Science, Beijing Hospital/National Center of Gerontology of National Health Commission, 1 Dahua Rd, Dongcheng District, Beijing, PR China
| | - Chi Zhang
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Science, Beijing Hospital/National Center of Gerontology of National Health Commission, 1 Dahua Rd, Dongcheng District, Beijing, PR China
| | - Lv-Tao Zeng
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Science, Beijing Hospital/National Center of Gerontology of National Health Commission, 1 Dahua Rd, Dongcheng District, Beijing, PR China
| | - Yao Wang
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Science, Beijing Hospital/National Center of Gerontology of National Health Commission, 1 Dahua Rd, Dongcheng District, Beijing, PR China
| | - Shi-Bo Wang
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Science, Beijing Hospital/National Center of Gerontology of National Health Commission, 1 Dahua Rd, Dongcheng District, Beijing, PR China
| | - Guo-Qing Fan
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Science, Beijing Hospital/National Center of Gerontology of National Health Commission, 1 Dahua Rd, Dongcheng District, Beijing, PR China
| | - Li-Qun Zhang
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Science, Beijing Hospital/National Center of Gerontology of National Health Commission, 1 Dahua Rd, Dongcheng District, Beijing, PR China
| | - Tao Shen
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Science, Beijing Hospital/National Center of Gerontology of National Health Commission, 1 Dahua Rd, Dongcheng District, Beijing, PR China
| | - Xue-Fei Li
- Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, PR China
| | - Chuan-Bao Li
- Department of Laboratory Medicine, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, PR China
| | - Su-Yan Cao
- Department of General Practice/VIP Medical Service, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, PR China
| | - Tie-Mei Zhang
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Science, Beijing Hospital/National Center of Gerontology of National Health Commission, 1 Dahua Rd, Dongcheng District, Beijing, PR China
| | - Jian-Ping Cai
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Science, Beijing Hospital/National Center of Gerontology of National Health Commission, 1 Dahua Rd, Dongcheng District, Beijing, PR China
| | - Ju Cui
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Science, Beijing Hospital/National Center of Gerontology of National Health Commission, 1 Dahua Rd, Dongcheng District, Beijing, PR China
| |
Collapse
|
2
|
Brito-de-Sousa JP, Lima-Silva ML, Costa-Rocha IAD, Júnior LRADO, Campi-Azevedo AC, Peruhype-Magalhães V, Quetz JDS, Coelho-Dos-Reis JGA, Costa-Pereira C, Garcia CC, Antonelli LRDV, Fonseca CT, Lemos JAC, Mambrini JVDM, Souza-Fagundes EM, Teixeira-Carvalho A, Faria AMDC, Gomes AO, Torres KCDL, Martins-Filho OA. Rhythmic profile of memory T and B-cells along childhood and adolescence. Sci Rep 2023; 13:20978. [PMID: 38017254 PMCID: PMC10684863 DOI: 10.1038/s41598-023-48115-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 11/22/2023] [Indexed: 11/30/2023] Open
Abstract
Immunobiography describes the life-long effects of exogenous or endogenous stimuli on remodeling of immune cell biology, including the development of memory T and B-cells. The present study aimed at investigating the rhythms of changes in phenotypic features of memory T and B-cells along childhood and adolescence. A descriptive-observational investigation was conducted including 812 healthy volunteers, clustered into six consecutive age groups (9Mths-1Yr; 2Yrs; 3-4Yrs; 5-7Yrs; 8-10Yrs; 11-18Yrs). Immunophenotypic analysis of memory T-cell (CD4+ and CD8+) and B-cell subsets were performed by flow cytometry. The results pointed out that memory-related biomarkers of T and B-cells displayed a bimodal profile along healthy childhood and adolescence, regardless of sex. The first stage of changes occurs around 2Yrs, with predominance of naive cells, while the second and more prominent wave occurs around the age 8-10Yrs, with the prevalence of memory phenotypes. The neighborhood connectivity profile analysis demonstrated that the number of correlations reaches a peak at 11-18Yrs and lower values along the childhood. Males presented higher and conserved number of correlations when compared to females. Altogether, our results provide new insights into immunobiography and a better understanding of interactions among the cellular subsets studied here during childhood and adolescence.
Collapse
Affiliation(s)
- Joaquim Pedro Brito-de-Sousa
- Programa de Pós-graduação em Imunologia e Parasitologia Aplicadas, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil
| | - Maria Luiza Lima-Silva
- Instituto René Rachou, Fundação Oswaldo Cruz (FIOCRUZ-Minas), Avenida Augusto de Lima, 1715, Barro Preto, Belo Horizonte, MG, 30190-002, Brazil
| | - Ismael Artur da Costa-Rocha
- Instituto René Rachou, Fundação Oswaldo Cruz (FIOCRUZ-Minas), Avenida Augusto de Lima, 1715, Barro Preto, Belo Horizonte, MG, 30190-002, Brazil
| | | | - Ana Carolina Campi-Azevedo
- Instituto René Rachou, Fundação Oswaldo Cruz (FIOCRUZ-Minas), Avenida Augusto de Lima, 1715, Barro Preto, Belo Horizonte, MG, 30190-002, Brazil
| | - Vanessa Peruhype-Magalhães
- Instituto René Rachou, Fundação Oswaldo Cruz (FIOCRUZ-Minas), Avenida Augusto de Lima, 1715, Barro Preto, Belo Horizonte, MG, 30190-002, Brazil
| | - Josiane da Silva Quetz
- Instituto René Rachou, Fundação Oswaldo Cruz (FIOCRUZ-Minas), Avenida Augusto de Lima, 1715, Barro Preto, Belo Horizonte, MG, 30190-002, Brazil
- Universidade Professor Edson Antônio Velano, UNIFENAS, Belo Horizonte, MG, Brazil
| | - Jordana Grazziela Alves Coelho-Dos-Reis
- Laboratório de Virologia Básica e Aplicada, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Christiane Costa-Pereira
- Instituto René Rachou, Fundação Oswaldo Cruz (FIOCRUZ-Minas), Avenida Augusto de Lima, 1715, Barro Preto, Belo Horizonte, MG, 30190-002, Brazil
| | - Cristiana Couto Garcia
- Instituto René Rachou, Fundação Oswaldo Cruz (FIOCRUZ-Minas), Avenida Augusto de Lima, 1715, Barro Preto, Belo Horizonte, MG, 30190-002, Brazil
| | - Lis Ribeiro do Vale Antonelli
- Instituto René Rachou, Fundação Oswaldo Cruz (FIOCRUZ-Minas), Avenida Augusto de Lima, 1715, Barro Preto, Belo Horizonte, MG, 30190-002, Brazil
| | - Cristina Toscano Fonseca
- Instituto René Rachou, Fundação Oswaldo Cruz (FIOCRUZ-Minas), Avenida Augusto de Lima, 1715, Barro Preto, Belo Horizonte, MG, 30190-002, Brazil
| | | | - Juliana Vaz de Melo Mambrini
- Instituto René Rachou, Fundação Oswaldo Cruz (FIOCRUZ-Minas), Avenida Augusto de Lima, 1715, Barro Preto, Belo Horizonte, MG, 30190-002, Brazil
| | - Elaine Maria Souza-Fagundes
- Laboratório de Virologia Básica e Aplicada, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Andréa Teixeira-Carvalho
- Instituto René Rachou, Fundação Oswaldo Cruz (FIOCRUZ-Minas), Avenida Augusto de Lima, 1715, Barro Preto, Belo Horizonte, MG, 30190-002, Brazil
| | - Ana Maria de Caetano Faria
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | | | - Karen Cecília de Lima Torres
- Instituto René Rachou, Fundação Oswaldo Cruz (FIOCRUZ-Minas), Avenida Augusto de Lima, 1715, Barro Preto, Belo Horizonte, MG, 30190-002, Brazil.
- Universidade Professor Edson Antônio Velano, UNIFENAS, Belo Horizonte, MG, Brazil.
| | - Olindo Assis Martins-Filho
- Programa de Pós-graduação em Imunologia e Parasitologia Aplicadas, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil.
- Instituto René Rachou, Fundação Oswaldo Cruz (FIOCRUZ-Minas), Avenida Augusto de Lima, 1715, Barro Preto, Belo Horizonte, MG, 30190-002, Brazil.
| |
Collapse
|
3
|
Naue J. Getting the chronological age out of DNA: using insights of age-dependent DNA methylation for forensic DNA applications. Genes Genomics 2023; 45:1239-1261. [PMID: 37253906 PMCID: PMC10504122 DOI: 10.1007/s13258-023-01392-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 04/15/2023] [Indexed: 06/01/2023]
Abstract
BACKGROUND DNA analysis for forensic investigations has a long tradition with important developments and optimizations since its first application. Traditionally, short tandem repeats analysis has been the most powerful method for the identification of individuals. However, in addition, epigenetic changes, i.e., DNA methylation, came into focus of forensic DNA research. Chronological age prediction is one promising application to allow for narrowing the pool of possible individuals who caused a trace, as well as to support the identification of unknown bodies and for age verification of living individuals. OBJECTIVE This review aims to provide an overview of the current knowledge, possibilities, and (current) limitations about DNA methylation-based chronological age prediction with emphasis on forensic application. METHODS The development, implementation and application of age prediction tools requires a deep understanding about the biological background, the analysis methods, the age-dependent DNA methylation markers, as well as the mathematical models for age prediction and their evaluation. Furthermore, additional influences can have an impact. Therefore, the literature was evaluated in respect to these diverse topics. CONCLUSION The numerous research efforts in recent years have led to a rapid change in our understanding of the application of DNA methylation for chronological age prediction, which is now on the way to implementation and validation. Knowledge of the various aspects leads to a better understanding and allows a more informed interpretation of DNAm quantification results, as well as the obtained results by the age prediction tools.
Collapse
Affiliation(s)
- Jana Naue
- Institute of Forensic Medicine, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
4
|
Jeong S, Cho S, Yang SK, Oh SA, Kang YK. Parallel shift of DNA methylation and gene expression toward the mean in mouse spleen with aging. Aging (Albany NY) 2023; 15:6690-6709. [PMID: 37494662 PMCID: PMC10415566 DOI: 10.18632/aging.204903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 07/06/2023] [Indexed: 07/28/2023]
Abstract
Age-associated DNA-methylation drift (AMD) manifests itself in two ways in mammals: global decrease (hypomethylation) and local increase of DNA methylation (hypermethylation). To comprehend the principle behind this bidirectional AMD, we studied methylation states of spatially clustered CpG dinucleotides in mouse splenic DNA using reduced-representation-bisulfite-sequencing (RRBS). The mean methylation levels of whole CpGs declined with age. Promoter-resident CpGs, generally weakly methylated (<5%) in young mice, became hypermethylated in old mice, whereas CpGs in gene-body and intergenic regions, initially moderately (~33%) and extensively (>80%) methylated, respectively, were hypomethylated in the old. Chromosome-wise analysis of methylation revealed that inter-individual heterogeneities increase with age. The density of nearby CpGs was used to classify individual CpGs, which found hypermethylation in CpG-rich regions and hypomethylation in CpG-poor regions. When genomic regions were grouped by methylation level, high-methylation regions tended to become hypomethylated whereas low-methylation regions tended to become hypermethylated, regardless of genomic structure/function. Data analysis revealed that while methylation level and CpG density were interdependent, methylation level was a better predictor of the AMD pattern representing a shift toward the mean. Further analysis of gene-expression data showed a decrease in the expression of highly-expressed genes and an increase in the expression of lowly-expressed genes with age. This shift towards the mean in gene-expression changes was correlated with that of methylation changes, indicating a potential link between the two age-associated changes. Our findings suggest that age-associated hyper- and hypomethylation events are stochastic and attributed to malfunctioning intrinsic mechanisms for methylation maintenance in low- and high-methylation regions, respectively.
Collapse
Affiliation(s)
- Sangkyun Jeong
- Medical Research Division, Korea Institute of Oriental Medicine (KIOM), Yuseong-gu, Daejeon 34054, South Korea
- Genomics Department, Keyomics Co. Ltd., Yuseong-gu, Daejeon 34013, South Korea
| | - Sunwha Cho
- Genomics Department, Keyomics Co. Ltd., Yuseong-gu, Daejeon 34013, South Korea
| | - Seung Kyoung Yang
- Genomics Department, Keyomics Co. Ltd., Yuseong-gu, Daejeon 34013, South Korea
| | - Soo A. Oh
- Medical Research Division, Korea Institute of Oriental Medicine (KIOM), Yuseong-gu, Daejeon 34054, South Korea
| | - Yong-Kook Kang
- Development and Differentiation Research Center, Aging Convergence Research Center (ACRC), Korea Research Institute of Bioscience Biotechnology (KRIBB), Yuseong-gu, Daejeon 34141, South Korea
| |
Collapse
|
5
|
Polcz VE, Barrios EL, Chapin B, Price C, Nagpal R, Chakrabarty P, Casadesus G, Foster T, Moldawer L, Efron PA. Sex, sepsis and the brain: defining the role of sexual dimorphism on neurocognitive outcomes after infection. Clin Sci (Lond) 2023; 137:963-978. [PMID: 37337946 PMCID: PMC10285043 DOI: 10.1042/cs20220555] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/30/2023] [Accepted: 06/07/2023] [Indexed: 06/21/2023]
Abstract
Sexual dimorphisms exist in multiple domains, from learning and memory to neurocognitive disease, and even in the immune system. Male sex has been associated with increased susceptibility to infection, as well as increased risk of adverse outcomes. Sepsis remains a major source of morbidity and mortality globally, and over half of septic patients admitted to intensive care are believed to suffer some degree of sepsis-associated encephalopathy (SAE). In the short term, SAE is associated with an increased risk of in-hospital mortality, and in the long term, has the potential for significant impairment of cognition, memory, and acceleration of neurocognitive disease. Despite increasing information regarding sexual dimorphism in neurologic and immunologic systems, research into these dimorphisms in sepsis-associated encephalopathy remains critically understudied. In this narrative review, we discuss how sex has been associated with brain morphology, chemistry, and disease, sexual dimorphism in immunity, and existing research into the effects of sex on SAE.
Collapse
Affiliation(s)
- Valerie E. Polcz
- Department of Surgery and Sepsis and Critical Illness Research Center, University of Florida College of Medicine, Gainesville, Florida, U.S.A
| | - Evan L. Barrios
- Department of Surgery and Sepsis and Critical Illness Research Center, University of Florida College of Medicine, Gainesville, Florida, U.S.A
| | - Benjamin Chapin
- Department of Neurology, University of Florida College of Medicine, Gainesville, Florida, U.S.A
| | - Catherine C. Price
- Department of Clinical and Health Psychology, University of Florida College of Public Health and Health Professions, Gainesville, Florida, U.S.A
| | - Ravinder Nagpal
- Florida State University College of Health and Human Sciences, Tallahassee, Florida, U.S.A
| | - Paramita Chakrabarty
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, Florida, U.S.A
| | - Gemma Casadesus
- Department of Pharmacology and Therapeutics, University of Florida College of Medicine, Gainesville, Florida, U.S.A
| | - Thomas Foster
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, Florida, U.S.A
| | - Lyle L. Moldawer
- Department of Surgery and Sepsis and Critical Illness Research Center, University of Florida College of Medicine, Gainesville, Florida, U.S.A
| | - Philip A. Efron
- Department of Surgery and Sepsis and Critical Illness Research Center, University of Florida College of Medicine, Gainesville, Florida, U.S.A
| |
Collapse
|
6
|
Ahuja SK, Manoharan MS, Lee GC, McKinnon LR, Meunier JA, Steri M, Harper N, Fiorillo E, Smith AM, Restrepo MI, Branum AP, Bottomley MJ, Orrù V, Jimenez F, Carrillo A, Pandranki L, Winter CA, Winter LA, Gaitan AA, Moreira AG, Walter EA, Silvestri G, King CL, Zheng YT, Zheng HY, Kimani J, Blake Ball T, Plummer FA, Fowke KR, Harden PN, Wood KJ, Ferris MT, Lund JM, Heise MT, Garrett N, Canady KR, Abdool Karim SS, Little SJ, Gianella S, Smith DM, Letendre S, Richman DD, Cucca F, Trinh H, Sanchez-Reilly S, Hecht JM, Cadena Zuluaga JA, Anzueto A, Pugh JA, Agan BK, Root-Bernstein R, Clark RA, Okulicz JF, He W. Immune resilience despite inflammatory stress promotes longevity and favorable health outcomes including resistance to infection. Nat Commun 2023; 14:3286. [PMID: 37311745 PMCID: PMC10264401 DOI: 10.1038/s41467-023-38238-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 04/17/2023] [Indexed: 06/15/2023] Open
Abstract
Some people remain healthier throughout life than others but the underlying reasons are poorly understood. Here we hypothesize this advantage is attributable in part to optimal immune resilience (IR), defined as the capacity to preserve and/or rapidly restore immune functions that promote disease resistance (immunocompetence) and control inflammation in infectious diseases as well as other causes of inflammatory stress. We gauge IR levels with two distinct peripheral blood metrics that quantify the balance between (i) CD8+ and CD4+ T-cell levels and (ii) gene expression signatures tracking longevity-associated immunocompetence and mortality-associated inflammation. Profiles of IR metrics in ~48,500 individuals collectively indicate that some persons resist degradation of IR both during aging and when challenged with varied inflammatory stressors. With this resistance, preservation of optimal IR tracked (i) a lower risk of HIV acquisition, AIDS development, symptomatic influenza infection, and recurrent skin cancer; (ii) survival during COVID-19 and sepsis; and (iii) longevity. IR degradation is potentially reversible by decreasing inflammatory stress. Overall, we show that optimal IR is a trait observed across the age spectrum, more common in females, and aligned with a specific immunocompetence-inflammation balance linked to favorable immunity-dependent health outcomes. IR metrics and mechanisms have utility both as biomarkers for measuring immune health and for improving health outcomes.
Collapse
Affiliation(s)
- Sunil K Ahuja
- VA Center for Personalized Medicine, South Texas Veterans Health Care System, San Antonio, TX, 78229, USA.
- Department of Microbiology, Immunology & Molecular Genetics, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA.
- South Texas Veterans Health Care System, San Antonio, TX, 78229, USA.
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA.
| | - Muthu Saravanan Manoharan
- VA Center for Personalized Medicine, South Texas Veterans Health Care System, San Antonio, TX, 78229, USA
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Grace C Lee
- VA Center for Personalized Medicine, South Texas Veterans Health Care System, San Antonio, TX, 78229, USA
- South Texas Veterans Health Care System, San Antonio, TX, 78229, USA
- Pharmacotherapy Education and Research Center, School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
- College of Pharmacy, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Lyle R McKinnon
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, 4001, South Africa
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - Justin A Meunier
- VA Center for Personalized Medicine, South Texas Veterans Health Care System, San Antonio, TX, 78229, USA
- The Foundation for Advancing Veterans' Health Research, San Antonio, TX, 78229, USA
| | - Maristella Steri
- Istituto di Ricerca Genetica e Biomedica (IRGB), CNR, Monserrato, 09042, Italy
| | - Nathan Harper
- VA Center for Personalized Medicine, South Texas Veterans Health Care System, San Antonio, TX, 78229, USA
- The Foundation for Advancing Veterans' Health Research, San Antonio, TX, 78229, USA
| | - Edoardo Fiorillo
- Istituto di Ricerca Genetica e Biomedica (IRGB), CNR, Monserrato, 09042, Italy
| | - Alisha M Smith
- VA Center for Personalized Medicine, South Texas Veterans Health Care System, San Antonio, TX, 78229, USA
- Department of Microbiology, Immunology & Molecular Genetics, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
- The Foundation for Advancing Veterans' Health Research, San Antonio, TX, 78229, USA
| | - Marcos I Restrepo
- VA Center for Personalized Medicine, South Texas Veterans Health Care System, San Antonio, TX, 78229, USA
- South Texas Veterans Health Care System, San Antonio, TX, 78229, USA
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Anne P Branum
- VA Center for Personalized Medicine, South Texas Veterans Health Care System, San Antonio, TX, 78229, USA
- The Foundation for Advancing Veterans' Health Research, San Antonio, TX, 78229, USA
| | - Matthew J Bottomley
- Transplantation Research Immunology Group, Nuffield Department of Surgical Sciences, University of Oxford, Oxford, OX1 2JD, UK
- Oxford Kidney Unit, Churchill Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, OX3 7LE, UK
| | - Valeria Orrù
- Istituto di Ricerca Genetica e Biomedica (IRGB), CNR, Monserrato, 09042, Italy
| | - Fabio Jimenez
- VA Center for Personalized Medicine, South Texas Veterans Health Care System, San Antonio, TX, 78229, USA
- The Foundation for Advancing Veterans' Health Research, San Antonio, TX, 78229, USA
| | - Andrew Carrillo
- VA Center for Personalized Medicine, South Texas Veterans Health Care System, San Antonio, TX, 78229, USA
- The Foundation for Advancing Veterans' Health Research, San Antonio, TX, 78229, USA
| | - Lavanya Pandranki
- VA Center for Personalized Medicine, South Texas Veterans Health Care System, San Antonio, TX, 78229, USA
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Caitlyn A Winter
- VA Center for Personalized Medicine, South Texas Veterans Health Care System, San Antonio, TX, 78229, USA
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
- The Foundation for Advancing Veterans' Health Research, San Antonio, TX, 78229, USA
- Department of Pediatrics, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Lauryn A Winter
- VA Center for Personalized Medicine, South Texas Veterans Health Care System, San Antonio, TX, 78229, USA
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
- The Foundation for Advancing Veterans' Health Research, San Antonio, TX, 78229, USA
- Department of Pediatrics, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Alvaro A Gaitan
- VA Center for Personalized Medicine, South Texas Veterans Health Care System, San Antonio, TX, 78229, USA
- The Foundation for Advancing Veterans' Health Research, San Antonio, TX, 78229, USA
| | - Alvaro G Moreira
- VA Center for Personalized Medicine, South Texas Veterans Health Care System, San Antonio, TX, 78229, USA
- Department of Pediatrics, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Elizabeth A Walter
- VA Center for Personalized Medicine, South Texas Veterans Health Care System, San Antonio, TX, 78229, USA
- South Texas Veterans Health Care System, San Antonio, TX, 78229, USA
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Guido Silvestri
- Department of Pathology, Emory University School of Medicine & Emory National Primate Research Center, Atlanta, GA, 30322, USA
| | - Christopher L King
- Center for Global Health and Diseases, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Yong-Tang Zheng
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
- National Resource Center for Non-Human Primates, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650107, China
| | - Hong-Yi Zheng
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
- National Resource Center for Non-Human Primates, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650107, China
| | - Joshua Kimani
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - T Blake Ball
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - Francis A Plummer
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - Keith R Fowke
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - Paul N Harden
- Oxford Kidney Unit, Churchill Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, OX3 7LE, UK
| | - Kathryn J Wood
- Transplantation Research Immunology Group, Nuffield Department of Surgical Sciences, University of Oxford, Oxford, OX1 2JD, UK
| | - Martin T Ferris
- Department of Genetics, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Jennifer M Lund
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA
- Department of Global Health, University of Washington, Seattle, WA, 98195, USA
| | - Mark T Heise
- Department of Genetics, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Nigel Garrett
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, 4001, South Africa
| | - Kristen R Canady
- VA Center for Personalized Medicine, South Texas Veterans Health Care System, San Antonio, TX, 78229, USA
| | - Salim S Abdool Karim
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, 4001, South Africa
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, 10032, USA
| | - Susan J Little
- Department of Medicine, University of California, La Jolla, CA, 92093, USA
- San Diego Center for AIDS Research, University of California San Diego, La Jolla, CA, 92093, USA
| | - Sara Gianella
- Department of Medicine, University of California, La Jolla, CA, 92093, USA
- San Diego Center for AIDS Research, University of California San Diego, La Jolla, CA, 92093, USA
| | - Davey M Smith
- Department of Medicine, University of California, La Jolla, CA, 92093, USA
- San Diego Center for AIDS Research, University of California San Diego, La Jolla, CA, 92093, USA
- Veterans Affairs San Diego Healthcare System, San Diego, CA, 92161, USA
| | - Scott Letendre
- Department of Medicine, University of California, La Jolla, CA, 92093, USA
| | - Douglas D Richman
- San Diego Center for AIDS Research, University of California San Diego, La Jolla, CA, 92093, USA
| | - Francesco Cucca
- Istituto di Ricerca Genetica e Biomedica (IRGB), CNR, Monserrato, 09042, Italy
- Dipartimento di Scienze Biomediche, Università di Sassari, Sassari, 07100, Italy
| | - Hanh Trinh
- South Texas Veterans Health Care System, San Antonio, TX, 78229, USA
| | - Sandra Sanchez-Reilly
- South Texas Veterans Health Care System, San Antonio, TX, 78229, USA
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Joan M Hecht
- South Texas Veterans Health Care System, San Antonio, TX, 78229, USA
- The Foundation for Advancing Veterans' Health Research, San Antonio, TX, 78229, USA
| | - Jose A Cadena Zuluaga
- South Texas Veterans Health Care System, San Antonio, TX, 78229, USA
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Antonio Anzueto
- South Texas Veterans Health Care System, San Antonio, TX, 78229, USA
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Jacqueline A Pugh
- VA Center for Personalized Medicine, South Texas Veterans Health Care System, San Antonio, TX, 78229, USA
- South Texas Veterans Health Care System, San Antonio, TX, 78229, USA
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Brian K Agan
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, 20817, USA
| | | | - Robert A Clark
- VA Center for Personalized Medicine, South Texas Veterans Health Care System, San Antonio, TX, 78229, USA
- Department of Microbiology, Immunology & Molecular Genetics, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
- South Texas Veterans Health Care System, San Antonio, TX, 78229, USA
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
- The Foundation for Advancing Veterans' Health Research, San Antonio, TX, 78229, USA
| | - Jason F Okulicz
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA
- Department of Medicine, Infectious Diseases Service, Brooke Army Medical Center, San Antonio, TX, 78234, USA
| | - Weijing He
- VA Center for Personalized Medicine, South Texas Veterans Health Care System, San Antonio, TX, 78229, USA
- The Foundation for Advancing Veterans' Health Research, San Antonio, TX, 78229, USA
| |
Collapse
|
7
|
Wang YR, Cui WQ, Wu HY, Xu XD, Xu XQ. The role of T cells in acute ischemic stroke. Brain Res Bull 2023; 196:20-33. [PMID: 36906042 DOI: 10.1016/j.brainresbull.2023.03.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 03/02/2023] [Accepted: 03/06/2023] [Indexed: 03/11/2023]
Abstract
Acute ischemic stroke (AIS) is associated with high rates of disability and mortality, exerting a substantial impact on overall survival and health-related quality of life. Treatment of AIS remains challenging given that the underlying pathologic mechanisms remain unclear. However, recent research has demonstrated that the immune system plays a key role in the development of AIS. Numerous studies have reported infiltration of T cells into ischemic brain tissue. While some types of T cells can promote the development of inflammatory responses and aggravate ischemic damage in patients with AIS, other T cells appear to exert neuroprotective effects via immunosuppression and other mechanisms. In this review, we discuss the recent findings regarding the infiltration of T cells into ischemic brain tissue, and the mechanisms governing how T cells can facilitate tissue injury or neuroprotection in AIS. Factors influencing the function of T cells, such as intestinal microflora and sex differences, are also discussed. We also explore the recent research on the effect of non-coding RNA on T cells after stroke, as well as the potential for specifically targeting T cells in the treatment of stroke patients.
Collapse
Affiliation(s)
- Yi-Ran Wang
- College of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Wen-Qiang Cui
- Department of Neurology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China; First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Hong-Yun Wu
- Department of Neurology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China; First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiang-Dong Xu
- Experimental Center, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiang-Qing Xu
- Department of Neurology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China; First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China.
| |
Collapse
|
8
|
Dodd KC, Menon M. Sex bias in lymphocytes: Implications for autoimmune diseases. Front Immunol 2022; 13:945762. [PMID: 36505451 PMCID: PMC9730535 DOI: 10.3389/fimmu.2022.945762] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 11/03/2022] [Indexed: 11/25/2022] Open
Abstract
Autoimmune diseases are characterized by a significant sex dimorphism, with women showing increased susceptibility to disease. This is, at least in part, due to sex-dependent differences in the immune system that are influenced by the complex interplay between sex hormones and sex chromosomes, with contribution from sociological factors, diet and gut microbiota. Sex differences are evident in the number and function of lymphocyte populations. Women mount a stronger pro-inflammatory response than males, with increased lymphocyte proliferation, activation and pro-inflammatory cytokine production, whereas men display expanded regulatory cell subsets. Ageing alters the immune landscape of men and women in differing ways, resulting in changes in autoimmune disease susceptibility. Here we review the current literature on sex differences in lymphocyte function, the factors that influence this, and the implications for autoimmune disease. We propose that improved understanding of sex bias in lymphocyte function can provide sex-specific tailoring of treatment strategies for better management of autoimmune diseases.
Collapse
Affiliation(s)
- Katherine C. Dodd
- Lydia Becker Institute of Immunology and Inflammation, Division of Immunology, Immunity to Infection and Respiratory Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom,Manchester Centre for Clinical Neurosciences, Salford Royal Hospital, Salford, United Kingdom
| | - Madhvi Menon
- Lydia Becker Institute of Immunology and Inflammation, Division of Immunology, Immunity to Infection and Respiratory Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom,*Correspondence: Madhvi Menon,
| |
Collapse
|
9
|
Dybska E, Nowak JK, Banaszkiewicz A, Szaflarska-Popławska A, Kierkuś J, Kwiecień J, Grzybowska-Chlebowczyk U, Walkowiak J. Methylation of RUNX3 Promoter 2 in the Whole Blood of Children with Ulcerative Colitis. Genes (Basel) 2022; 13:genes13091568. [PMID: 36140736 PMCID: PMC9498668 DOI: 10.3390/genes13091568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/22/2022] [Accepted: 08/30/2022] [Indexed: 12/03/2022] Open
Abstract
Ulcerative colitis (UC) results from a complex interplay between the environment, gut microbiota, host genetics, and immunity. Runt-related transcription factor 3 (RUNX3) regulates Th1/Th2 balance and, thus, the synthesis of cytokines and inflammation. We aimed to analyze the dependence of RUNX3 promoter 2 (P2) methylation level on: age, sex, body mass index (BMI), C-reactive protein (CRP), serum albumin, disease duration, Pediatric Ulcerative Colitis Activity Index (PUCAI), the Paris classification, and exposure to medications. This multicenter, cross-sectional study recruited hospitalized children with UC. Methylation of RUNX3 P2 was measured with methylation-sensitive restriction enzymes in the whole blood DNA. Sixty-four children were enrolled, with a mean age of 14.5 ± 2.8 years. Half of them were female (51.6%), and the average BMI Z-score was −0.44 ± 1.14. The mean methylation of RUNX3 P2 was 54.1 ± 13.3%. The methylation level of RUNX3 P2 did not correlate with age, sex, nutritional status, CRP, albumin, PUCAI, or the extent of colitis (Paris E1–E4). RUNX3 P2 methylation did not differ between patients recruited within two and a half months of diagnosis and children who had UC for at least a year. Current or past exposure to biologics, immunosuppressants, or steroids was not associated with RUNX3 P2 methylation. Methylation of RUNX3 promoter 2 in whole blood DNA does not seem to be associated with the characteristics of UC in children.
Collapse
Affiliation(s)
- Emilia Dybska
- Department of Pediatric Gastroenterology and Metabolic Diseases, Poznan University of Medical Sciences, 60-572 Poznan, Poland
| | - Jan Krzysztof Nowak
- Department of Pediatric Gastroenterology and Metabolic Diseases, Poznan University of Medical Sciences, 60-572 Poznan, Poland
| | - Aleksandra Banaszkiewicz
- Department of Pediatric Gastroenterology and Nutrition, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Anna Szaflarska-Popławska
- Department of Pediatric Endoscopy and Gastrointestinal Function Testing, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-094 Bydgoszcz, Poland
| | - Jarosław Kierkuś
- Department of Gastroenterology, Hepatology, Feeding Disorders and Pediatrics, The Children’s Memorial Health Institute, 04-730 Warsaw, Poland
| | - Jarosław Kwiecień
- Department of Pediatrics, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, 41-800 Zabrze, Poland
| | - Urszula Grzybowska-Chlebowczyk
- Department of Pediatrics, Faculty of Medical Sciences, Medical University of Silesia in Katowice, 40-752 Katowice, Poland
| | - Jarosław Walkowiak
- Department of Pediatric Gastroenterology and Metabolic Diseases, Poznan University of Medical Sciences, 60-572 Poznan, Poland
- Correspondence:
| |
Collapse
|
10
|
Shapiro JR, Morgan R, Leng SX, Klein SL. Roadmap for Sex-Responsive Influenza and COVID-19 Vaccine Research in Older Adults. FRONTIERS IN AGING 2022; 3:836642. [PMID: 35821800 PMCID: PMC9261334 DOI: 10.3389/fragi.2022.836642] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 01/19/2022] [Indexed: 01/06/2023]
Abstract
Sex differences in the immune system are dynamic throughout the lifespan and contribute to heterogeneity in the risk of infectious diseases and the response to vaccination in older adults. The importance of the intersection between sex and age in immunity to viral respiratory diseases is clearly demonstrated by the increased prevalence and severity of influenza and COVID-19 in older males compared to older females. Despite sex and age biases in the epidemiology and clinical manifestations of disease, these host factors are often ignored in vaccine research. Here, we review sex differences in the immunogenicity, effectiveness, and safety of the influenza and COVID-19 vaccines in older adults and the impact of sex-specific effects of age-related factors, including chronological age, frailty, and the presence of comorbidities. While a female bias in immunity to influenza vaccines has been consistently reported, understanding of sex differences in the response to COVID-19 vaccines in older adults is incomplete due to small sample sizes and failure to disaggregate clinical trial data by both sex and age. For both vaccines, a major gap in the literature is apparent, whereby very few studies investigate sex-specific effects of aging, frailty, or multimorbidity. By providing a roadmap for sex-responsive vaccine research, beyond influenza and COVID-19, we can leverage the heterogeneity in immunity among older adults to provide better protection against vaccine-preventable diseases.
Collapse
Affiliation(s)
- Janna R. Shapiro
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Rosemary Morgan
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Sean X. Leng
- Division of Geriatric Medicine and Gerontology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Sabra L. Klein
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| |
Collapse
|
11
|
A comparative proteomic analysis to define the influencing factors on gingival crevicular fluid using LC-MS/MS. J Proteomics 2022; 252:104421. [PMID: 34801745 DOI: 10.1016/j.jprot.2021.104421] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 10/28/2021] [Accepted: 11/04/2021] [Indexed: 12/18/2022]
Abstract
Gingival crevicular fluid (GCF) is a promising biofluid for disease identification and biomarker searching in periodontology. This study aimed to investigate the possible influencing factors, including tooth site, sex and age, on the normal GCF proteome. Forty periodontal healthy adults were randomly divided into a training group and a testing group. In the training group, GCF samples from 12 adults were analyzed using the iTRAQ 2D LC-MS/MS method. The influencing factors, tooth site (including periodontitis-susceptible and -insusceptible tooth sites), sex and age, and related differential proteins were defined and functionally annotated. The important differential proteins from 28 adults in the testing group were then validated by PRM analysis. An average of approximately 5 differential proteins were found between tooth sites of periodontitis-susceptible and -insusceptible sites. Eighty-five differentially expressed proteins were obtained between sexes in the young group, while only 7 sex-associated proteins were found in the old group. A total of 203 and 235 age-associated proteins were found in the male and female groups, respectively. The differential protein functional annotation showed that sex-related proteins were mainly related to immune function and metabolism, and age-related proteins were primarily associated with inflammation, lipid metabolism and immune function. In the testing group, a total of 4 sex-related proteins and 12 age-related proteins were validated by PRM analysis. SIGNIFICANCE: The influences of tooth site, sex and age in GCF proteomics in periodontal health were firstly analyzed using LC-MS/MS. Tooth site showed a small influence on the GCF proteome. The sex effect was significant in young adults, but its influence in old adults is small. Age is an important impact factor for the GCF proteome. These findings enrich the knowledge about the normal GCF proteome and might benefit future disease analyses.
Collapse
|
12
|
Ciarambino T, Ilardi A, Giannico OV, Maffettone A, Ciaburri F, Delli Paoli V, Fontanella A, Tirelli P, Bologna C, Gallucci F, Visconti M, Caruso D, Amitrano M, Giordano M, D'Avino M. Gender differences in COVID-19 patients: a regional survey among physicians of Internal Medicine Wards. ITALIAN JOURNAL OF MEDICINE 2021. [DOI: 10.4081/itjm.2021.1443] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) has infected millions of individuals around the World. Hypertension (HT), chronic heart disease (CHD), and diabetes mellitus (DM), particularly in the elderly, increase susceptibility to SARS-CoV-2 infection. However, conflicting results [such as coronavirus 2019 (COVID-19) disease vulnerability, case fatality, etc.] have been reported about the response to infection and COVID-19 outcomes in men and women. Therefore, understanding predictors of Intensive Care Unit (ICU) admission might help future planning and management of the disease. We conducted a multicenter survey about COVID-19 involving internists from Internal Medicine Wards. This survey indirectly allowed us to analyze the information of 2400 patients hospitalized in 35 wards of Internal Medicine of the Campania Region between July and October 2020. Our investigation has detected that the infection is more frequent in males, and the number of male patients hospitalized in ICU is also higher than females, with a large proportion of hypertensive patients. Extensive prospective studies are required to confirm this finding and explore the mechanisms for which hypertensive males are exposed to a higher proportion of admission to ICU and higher case fatality rates.
Collapse
|
13
|
Harder OE, Martinez M, Niewiesk S. Nonsteroidal anti-inflammatory drugs restore immune function to respiratory syncytial virus in geriatric cotton rats (Sigmodon hispidus). Virology 2021; 563:28-37. [PMID: 34411809 DOI: 10.1016/j.virol.2021.08.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 07/22/2021] [Accepted: 08/11/2021] [Indexed: 01/10/2023]
Abstract
Respiratory syncytial virus (RSV) infection is not only a childhood disease, but also a serious health risk for the elderly. We investigated in cotton rats how age affected viral clearance, immune responses, and whether pharmacological intervention was beneficial. Our results demonstrated that in geriatric animals, virus grew to similar titers, but with delayed clearance, compared to adult animals. After primary infection with RSV, geriatric animals were susceptible to secondary infection and results indicated a defective humoral immune response. Depletion of cytotoxic T lymphocytes (CTL) during primary infection delayed clearance, indicating the necessary role of CTL. Pharmacological intervention through nonsteroidal anti-inflammatory ibuprofen resulted in faster viral clearance and complete protection after immunization. In addition, the CTL response in the presence of ibuprofen seemed to be restored. It appears that in geriatric animals, immune functions are not as effective as in adult animals and that anti-inflammatory therapy may restore effective immune function.
Collapse
Affiliation(s)
- Olivia E Harder
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA.
| | - Margaret Martinez
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA
| | - Stefan Niewiesk
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
14
|
de Araújo Albuquerque LP, da Silva AM, de Araújo Batista FM, de Souza Sene I, Costa DL, Costa CHN. Influence of sex hormones on the immune response to leishmaniasis. Parasite Immunol 2021; 43:e12874. [PMID: 34309860 DOI: 10.1111/pim.12874] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 06/23/2021] [Accepted: 07/06/2021] [Indexed: 12/11/2022]
Abstract
The differences in morbidity and mortality patterns and life expectancy between the sexes are well established in different infectious and parasitic conditions, such as in leishmaniases, in which biological, genetic, sexual and hormonal variations can modulate the immune response indicating greater infectivity, prevalence and clinical severity in men. In this regard, in seeking the understanding of factors related to protection and susceptibility to infection, this review aimed to discuss the influence of sex hormones on the immune response to leishmaniases. In the literature, sex hormone variations promote differences in the innate, humoral and cell-mediated immune response, leading to greater susceptibility, mortality and complications in males. Epidemiological estimates confirm these results, showing a predominance of the disease, in its different clinical forms, in men and suggesting that sexual variations influence immunomodulatory mechanisms since the prevalence of cases comprises the post-puberty and adulthood period. In this perspective, the action of sex hormones has been investigated in different clinical models, highlighting the potential of testosterone in immunosuppression, given its association with greater susceptibility and poor control of parasite load and the induction of cell apoptosis and attenuation of pro-inflammatory signalling pathways. Therefore, hormonal variations influence the immune response among males and females against leishmaniases, in which androgens may present immunosuppressive potential, while steroids present immunomodulatory characteristics.
Collapse
Affiliation(s)
| | - Amanda Miranda da Silva
- Postgraduate Program in Biotechnology, Northeast Network of Biotechnology, Federal University of Piauí, Teresina, Brazil.,Leishmaniasis Laboratory, Federal University of Piauí, Teresina, Brazil
| | | | | | - Dorcas Lamounier Costa
- Maternal and Child Department, Federal University of Piauí and Intelligence Center in Emerging and Neglected Tropical Conditions (CIATEN, Teresina, Brazil
| | - Carlos Henrique Nery Costa
- Community Medicine Department, Federal University of Piauí and Intelligence Center in Emerging and Neglected Tropical Conditions (CIATEN, Teresina, Brazil
| |
Collapse
|
15
|
Harris KM, Clements MA, Kwilasz AJ, Watkins LR. T cell transgressions: Tales of T cell form and function in diverse disease states. Int Rev Immunol 2021; 41:475-516. [PMID: 34152881 PMCID: PMC8752099 DOI: 10.1080/08830185.2021.1921764] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/17/2021] [Accepted: 04/20/2021] [Indexed: 01/03/2023]
Abstract
Insights into T cell form, function, and dysfunction are rapidly evolving. T cells have remarkably varied effector functions including protecting the host from infection, activating cells of the innate immune system, releasing cytokines and chemokines, and heavily contributing to immunological memory. Under healthy conditions, T cells orchestrate a finely tuned attack on invading pathogens while minimizing damage to the host. The dark side of T cells is that they also exhibit autoreactivity and inflict harm to host cells, creating autoimmunity. The mechanisms of T cell autoreactivity are complex and dynamic. Emerging research is elucidating the mechanisms leading T cells to become autoreactive and how such responses cause or contribute to diverse disease states, both peripherally and within the central nervous system. This review provides foundational information on T cell development, differentiation, and functions. Key T cell subtypes, cytokines that create their effector roles, and sex differences are highlighted. Pathological T cell contributions to diverse peripheral and central disease states, arising from errors in reactivity, are highlighted, with a focus on multiple sclerosis, rheumatoid arthritis, osteoarthritis, neuropathic pain, and type 1 diabetes.
Collapse
Affiliation(s)
- Kevin M. Harris
- Department of Psychology and Neuroscience, Center for Neuroscience, University of Colorado, Boulder, CO U.S.A
| | - Madison A. Clements
- Department of Psychology and Neuroscience, Center for Neuroscience, University of Colorado, Boulder, CO U.S.A
| | - Andrew J. Kwilasz
- Department of Psychology and Neuroscience, Center for Neuroscience, University of Colorado, Boulder, CO U.S.A
| | - Linda R. Watkins
- Department of Psychology and Neuroscience, Center for Neuroscience, University of Colorado, Boulder, CO U.S.A
| |
Collapse
|
16
|
Yang J, Huang X, Zhang J, Fan R, Zhao W, Han T, Duan K, Li X, Zeng P, Deng J, Zhang J, Yang X. Sex-specific differences of humoral immunity and transcriptome diversification in older adults vaccinated with inactivated quadrivalent influenza vaccines. Aging (Albany NY) 2021; 13:9801-9819. [PMID: 33744852 PMCID: PMC8064175 DOI: 10.18632/aging.202733] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 02/16/2021] [Indexed: 11/25/2022]
Abstract
Clinical data showed sex variability in the immune response to influenza vaccination, this study aimed to investigate differentially expressed genes (DEGs) that contribute to sex-bias immunity to quadrivalent inactivated influenza vaccines (QIVs) in the elderly. 60 healthy adults aged 60-80 yrs were vaccinated with QIVs, and gene expression was analyzed before and after vaccination. The humoral immunity was analyzed by HAI assay, and the correlation of gene expression patterns of two sex groups with humoral immunity was analyzed. The DEGs involved in type I interferon signaling pathway and complement activation of classical pathway were upregulated within 3 days in females. At Day 28, the immune response showed a male-bias pattern associated with the regulation of protein processing and complement activation of classical pathway. A list of DEGs associated with variant responses to influenza vaccination between females and males were identified by biology-driven clustering. Old females have a greater immune response to QIVs but a rapid antibody decline, while old males have the advantages to sustain a durable response. In addition, we identified genes that may contribute to the sex variations toward influenza vaccination in the aged. Our findings highlight the importance of developing personalized seasonal influenza vaccines.
Collapse
Affiliation(s)
- Jing Yang
- National Institute of Engineering Technology Research in Combination Vaccine, Wuhan 430207, Hubei Province, China.,Wuhan Institute of Biological Products Co., Ltd., Wuhan 430207, Hubei Province, China
| | - Xiaoyuan Huang
- National Institute of Engineering Technology Research in Combination Vaccine, Wuhan 430207, Hubei Province, China.,Wuhan Institute of Biological Products Co., Ltd., Wuhan 430207, Hubei Province, China
| | - Jiayou Zhang
- National Institute of Engineering Technology Research in Combination Vaccine, Wuhan 430207, Hubei Province, China.,Wuhan Institute of Biological Products Co., Ltd., Wuhan 430207, Hubei Province, China
| | - Renfeng Fan
- Guangdong Province Institute of Biological Products and Materia Medica, Guangzhou 510440, Guangdong Province, China
| | - Wei Zhao
- National Institute of Engineering Technology Research in Combination Vaccine, Wuhan 430207, Hubei Province, China.,Wuhan Institute of Biological Products Co., Ltd., Wuhan 430207, Hubei Province, China
| | - Tian Han
- National Institute of Engineering Technology Research in Combination Vaccine, Wuhan 430207, Hubei Province, China.,Wuhan Institute of Biological Products Co., Ltd., Wuhan 430207, Hubei Province, China
| | - Kai Duan
- National Institute of Engineering Technology Research in Combination Vaccine, Wuhan 430207, Hubei Province, China.,Wuhan Institute of Biological Products Co., Ltd., Wuhan 430207, Hubei Province, China
| | - Xinguo Li
- National Institute of Engineering Technology Research in Combination Vaccine, Wuhan 430207, Hubei Province, China.,Wuhan Institute of Biological Products Co., Ltd., Wuhan 430207, Hubei Province, China
| | - Peiyu Zeng
- Gaozhou Center for Disease Control and Prevention, Maoming 525200, Guangdong Province, China
| | - Jinglong Deng
- Gaozhou Center for Disease Control and Prevention, Maoming 525200, Guangdong Province, China
| | - Jikai Zhang
- Guangdong Province Institute of Biological Products and Materia Medica, Guangzhou 510440, Guangdong Province, China
| | - Xiaoming Yang
- National Institute of Engineering Technology Research in Combination Vaccine, Wuhan 430207, Hubei Province, China.,China Biotechnology Co., Ltd., Peking 100029, China
| |
Collapse
|
17
|
Tornheim JA, Madugundu AK, Paradkar M, Fukutani KF, Queiroz ATL, Gupte N, Gupte AN, Kinikar A, Kulkarni V, Balasubramanian U, Sreenivasamurthy S, Raja R, Pradhan N, Shivakumar SVBY, Valvi C, Hanna LE, Andrade BB, Mave V, Pandey A, Gupta A. Transcriptomic Profiles of Confirmed Pediatric Tuberculosis Patients and Household Contacts Identifies Active Tuberculosis, Infection, and Treatment Response Among Indian Children. J Infect Dis 2021; 221:1647-1658. [PMID: 31796955 DOI: 10.1093/infdis/jiz639] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 12/03/2019] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Gene expression profiling is emerging as a tool for tuberculosis diagnosis and treatment response monitoring, but limited data specific to Indian children and incident tuberculosis infection (TBI) exist. METHODS Sixteen pediatric Indian tuberculosis cases were age- and sex-matched to 32 tuberculosis-exposed controls (13 developed incident TBI without subsequent active tuberculosis). Longitudinal samples were collected for ribonucleic acid sequencing. Differential expression analysis generated gene lists that identify tuberculosis diagnosis and tuberculosis treatment response. Data were compared with published gene lists. Population-specific risk score thresholds were calculated. RESULTS Seventy-one genes identified tuberculosis diagnosis and 25 treatment response. Within-group expression was partially explained by age, sex, and incident TBI. Transient changes in gene expression were identified after both infection and treatment. Application of 27 published gene lists to our data found variable performance for tuberculosis diagnosis (sensitivity 0.38-1.00, specificity 0.48-0.93) and treatment response (sensitivity 0.70-0.80, specificity 0.40-0.80). Our gene lists found similarly variable performance when applied to published datasets for diagnosis (sensitivity 0.56-0.85, specificity 0.50-0.85) and treatment response (sensitivity 0.49- 0.86, specificity 0.50-0.84). CONCLUSIONS Gene expression profiles among Indian children with confirmed tuberculosis were distinct from adult-derived gene lists, highlighting the importance of including distinct populations in differential gene expression models.
Collapse
Affiliation(s)
- Jeffrey A Tornheim
- Center for Clinical Global Health Education, Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Anil K Madugundu
- Institute of Bioinformatics, Bangalore, Karnataka, India.,Center for Molecular Medicine, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India.,Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, India.,Department of Laboratory Medicine and Pathology and Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Mandar Paradkar
- Byramjee Jeejeebhoy Government Medical College-Johns Hopkins University Clinical Research Site, Pune, Maharashtra, India
| | - Kiyoshi F Fukutani
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Brazil.,Multinational Organization Network Sponsoring Translational and Epidemiological Research (MONSTER) Initiative, Salvador, Brazil.,Faculdade de Tecnologia e Ciências (FTC), Salvador, Brazil
| | - Artur T L Queiroz
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Brazil.,Multinational Organization Network Sponsoring Translational and Epidemiological Research (MONSTER) Initiative, Salvador, Brazil
| | - Nikhil Gupte
- Center for Clinical Global Health Education, Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Byramjee Jeejeebhoy Government Medical College-Johns Hopkins University Clinical Research Site, Pune, Maharashtra, India
| | - Akshay N Gupte
- Center for Clinical Global Health Education, Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Aarti Kinikar
- Byramjee Jeejeebhoy Government Medical College, Pune, Maharashtra, India
| | - Vandana Kulkarni
- Byramjee Jeejeebhoy Government Medical College-Johns Hopkins University Clinical Research Site, Pune, Maharashtra, India
| | - Usha Balasubramanian
- Byramjee Jeejeebhoy Government Medical College-Johns Hopkins University Clinical Research Site, Pune, Maharashtra, India
| | - Sreelakshmi Sreenivasamurthy
- Institute of Bioinformatics, Bangalore, Karnataka, India.,Center for Molecular Medicine, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India.,McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Remya Raja
- Institute of Bioinformatics, Bangalore, Karnataka, India.,Center for Molecular Medicine, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India.,Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, India
| | - Neeta Pradhan
- Byramjee Jeejeebhoy Government Medical College-Johns Hopkins University Clinical Research Site, Pune, Maharashtra, India
| | | | - Chhaya Valvi
- Byramjee Jeejeebhoy Government Medical College, Pune, Maharashtra, India
| | | | - Bruno B Andrade
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Brazil.,Multinational Organization Network Sponsoring Translational and Epidemiological Research (MONSTER) Initiative, Salvador, Brazil.,Faculdade de Tecnologia e Ciências (FTC), Salvador, Brazil.,Universidade Salvador (UNIFACS), Laureate Universities, Salvador, Brazil.,Escola Bahiana de Medicina e Saúde Pública (EBMSP), Salvador, Brazil
| | - Vidya Mave
- Center for Clinical Global Health Education, Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Byramjee Jeejeebhoy Government Medical College-Johns Hopkins University Clinical Research Site, Pune, Maharashtra, India
| | - Akhilesh Pandey
- Institute of Bioinformatics, Bangalore, Karnataka, India.,Center for Molecular Medicine, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India.,Department of Laboratory Medicine and Pathology and Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota, USA.,McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Amita Gupta
- Center for Clinical Global Health Education, Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | | |
Collapse
|
18
|
Yusipov I, Bacalini MG, Kalyakulina A, Krivonosov M, Pirazzini C, Gensous N, Ravaioli F, Milazzo M, Giuliani C, Vedunova M, Fiorito G, Gagliardi A, Polidoro S, Garagnani P, Ivanchenko M, Franceschi C. Age-related DNA methylation changes are sex-specific: a comprehensive assessment. Aging (Albany NY) 2020; 12:24057-24080. [PMID: 33276343 PMCID: PMC7762479 DOI: 10.18632/aging.202251] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 10/19/2020] [Indexed: 12/18/2022]
Abstract
The existence of a sex gap in human health and longevity has been widely documented. Autosomal DNA methylation differences between males and females have been reported, but so far few studies have investigated if DNA methylation is differently affected by aging in males and females. We performed a meta-analysis of 4 large whole blood datasets, comparing 4 aspects of epigenetic age-dependent remodeling between the two sexes: differential methylation, variability, epimutations and entropy. We reported that a large fraction (43%) of sex-associated probes undergoes age-associated DNA methylation changes, and that a limited number of probes show age-by-sex interaction. We experimentally validated 2 regions mapping in FIGN and PRR4 genes and showed sex-specific deviations of their methylation patterns in models of decelerated (centenarians) and accelerated (Down syndrome) aging. While we did not find sex differences in the age-associated increase in epimutations and entropy, we showed that the number of probes having an age-related increase in methylation variability is 15 times higher in males compared to females. Our results can offer new epigenetic tools to study the interaction between aging and sex and can pave the way to the identification of molecular triggers of sex differences in longevity and age-related diseases prevalence.
Collapse
Affiliation(s)
- Igor Yusipov
- Institute of Information Technologies, Mathematics and Mechanics, Lobachevsky University, Nizhniy Novgorod, Russia.,Mathematics of Future Technologies Center, Lobachevsky University, Nizhniy Novgorod, Russia
| | | | - Alena Kalyakulina
- Institute of Information Technologies, Mathematics and Mechanics, Lobachevsky University, Nizhniy Novgorod, Russia
| | - Mikhail Krivonosov
- Institute of Information Technologies, Mathematics and Mechanics, Lobachevsky University, Nizhniy Novgorod, Russia
| | - Chiara Pirazzini
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Noémie Gensous
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), Alma Mater Studiorum – University of Bologna, Bologna, Italy
| | - Francesco Ravaioli
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), Alma Mater Studiorum – University of Bologna, Bologna, Italy
| | - Maddalena Milazzo
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), Alma Mater Studiorum – University of Bologna, Bologna, Italy
| | - Cristina Giuliani
- Department of Biological, Geological, and Environmental Sciences (BiGeA), Laboratory of Molecular Anthropology and Centre for Genome Biology, University of Bologna, Bologna, Italy.,School of Anthropology and Museum Ethnography, University of Oxford, Oxford, UK
| | - Maria Vedunova
- Institute of Biology and Biomedicine, National Research Lobachevsky State University of Nizhni Novgorod, Nizhni Novgorod, Russia
| | - Giovanni Fiorito
- Department of Biomedical Sciences, University of Sassari, Italy.,Department of Epidemiology and Public Health, MRC/HPA Centre for Environment and Health, School of Public Health, Imperial College London, Norfolk Place, London W2 1PG, UK
| | - Amedeo Gagliardi
- Italian Institute for Genomic Medicine (IIGM), Candiolo 10060, Italy.,Candiolo Cancer Institute, FPO-IRCCS, Candiolo 10060, Italy
| | - Silvia Polidoro
- Department of Epidemiology and Public Health, MRC/HPA Centre for Environment and Health, School of Public Health, Imperial College London, Norfolk Place, London W2 1PG, UK.,Italian Institute for Genomic Medicine (IIGM), Candiolo 10060, Italy.,Candiolo Cancer Institute, FPO-IRCCS, Candiolo 10060, Italy
| | - Paolo Garagnani
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), Alma Mater Studiorum – University of Bologna, Bologna, Italy.,Department of Laboratory Medicine, Clinical Chemistry, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden.,Applied Biomedical Research Center (CRBA), Policlinico S.Orsola-Malpighi Polyclinic, Bologna, Italy.,CNR Institute of Molecular Genetics “Luigi Luca Cavalli-Sforza", Unit of Bologna, Bologna, Italy
| | - Mikhail Ivanchenko
- Institute of Information Technologies, Mathematics and Mechanics, Lobachevsky University, Nizhniy Novgorod, Russia.,Mathematics of Future Technologies Center, Lobachevsky University, Nizhniy Novgorod, Russia
| | - Claudio Franceschi
- Institute of Information Technologies, Mathematics and Mechanics, Lobachevsky University, Nizhniy Novgorod, Russia
| |
Collapse
|
19
|
Rivero-Segura NA, Bello-Chavolla OY, Barrera-Vázquez OS, Gutierrez-Robledo LM, Gomez-Verjan JC. Promising biomarkers of human aging: In search of a multi-omics panel to understand the aging process from a multidimensional perspective. Ageing Res Rev 2020; 64:101164. [PMID: 32977058 DOI: 10.1016/j.arr.2020.101164] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 08/18/2020] [Accepted: 08/26/2020] [Indexed: 12/14/2022]
Abstract
The aging process has been linked to the occurrence of chronic diseases and functional impairments, including cancer, sarcopenia, frailty, metabolic, cardiovascular, and neurodegenerative diseases. Nonetheless, aging is highly variable and heterogeneous and represents a challenge for its characterization. In this sense, intrinsic capacity (IC) stands as a novel perspective by the World Health Organization, which integrates the individual wellbeing, environment, and risk factors to understand aging. However, there is a lack of quantitative and qualitative attributes to define it objectively. Therefore, in this review we attempt to summarize the most relevant and promising biomarkers described in clinical studies at date over different molecular levels, including epigenomics, transcriptomics, proteomics, metabolomics, and the microbiome. To aid gerontologists, geriatricians, and biomedical researchers to understand the aging process through the IC. Aging biomarkers reflect the physiological state of individuals and the underlying mechanisms related to homeostatic changes throughout an individual lifespan; they demonstrated that aging could be measured independently of time (that may explain its heterogeneity) and to be helpful to predict age-related syndromes and mortality. In summary, we highlight the areas of opportunity and gaps of knowledge that must be addressed to fully integrate biomedical findings into clinically useful tools and interventions.
Collapse
Affiliation(s)
| | - O Y Bello-Chavolla
- Dirección de Investigación, Instituto Nacional de Geriatría, Mexico; Department of Physiology, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - O S Barrera-Vázquez
- Departamento de Famacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | | | - J C Gomez-Verjan
- Dirección de Investigación, Instituto Nacional de Geriatría, Mexico.
| |
Collapse
|
20
|
Yang J, Li R, Shi Y, Jiang S, Liu J. Is serum complement C1q related to major depressive disorder? Indian J Psychiatry 2020; 62:659-663. [PMID: 33896970 PMCID: PMC8052891 DOI: 10.4103/psychiatry.indianjpsychiatry_394_19] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 12/25/2019] [Accepted: 04/20/2020] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Major depressive disorder (MDD) has a high global incidence. While the pathogenesis of depression remains unknown, accumulating evidence has implicated inflammatory changes. AIM The aim of the study is to compare the serum complement C1q levels in patients with MDD and healthy controls. SETTING AND DESIGN The design was a case-control study. MATERIALS AND METHODS Blood samples were collected from the patients with MDD and healthy controls to assess the serum C1q levels using an immunotransmission turbidimetric method. STATISTICAL ANALYSIS Differences in complement C1q levels between patients with MDD and the controls, as well as between sexes among patients with MDD and the controls, were assessed using Mann-Whitney U-test. Spearman correlations were obtained between complement C1q levels and age. RESULTS In total, 1016 participants (508 MDD and 508 controls) were recruited. Differences in the sex ratio (male/female among controls, 181/327; and MDD, 178/330) and age (controls, 47.0 ± 14.9 years; MDD, 46.5 ± 16.5 years) were not significant. The C1q level in the patients with MDD was significantly higher than that in the healthy controls (P < 0.05). In the MDD group, C1q level correlated significantly with age. CONCLUSION Elevation of the serum complement C1q levels in MDD may support the use of C1q as a potential biomarker for diagnosing depression, but further research is needed.
Collapse
Affiliation(s)
- Jing Yang
- Department of Clinical Psychology, Dalian Medical University, Dalian, China.,Department of Clinical Psychology, SuBei Hospital, Affiliated Hospitals of Yangzhou University, Yangzhou, China
| | - Ruibo Li
- Department of Clinical Psychology, Dalian Medical University, Dalian, China.,Department of Clinical Psychology, SuBei Hospital, Affiliated Hospitals of Yangzhou University, Yangzhou, China
| | - Yuanhong Shi
- Department of Clinical Psychology, SuBei Hospital, Affiliated Hospitals of Yangzhou University, Yangzhou, China
| | - Siyu Jiang
- Department of Clinical Psychology, Dalian Medical University, Dalian, China.,Department of Clinical Psychology, SuBei Hospital, Affiliated Hospitals of Yangzhou University, Yangzhou, China
| | - Jing Liu
- Department of Clinical Psychology, Dalian Medical University, Dalian, China.,Department of Clinical Psychology, SuBei Hospital, Affiliated Hospitals of Yangzhou University, Yangzhou, China
| |
Collapse
|
21
|
Buoso E, Masi M, Galbiati V, Maddalon A, Iulini M, Kenda M, Sollner Dolenc M, Marinovich M, Racchi M, Corsini E. Effect of estrogen-active compounds on the expression of RACK1 and immunological implications. Arch Toxicol 2020; 94:2081-2095. [PMID: 32328699 DOI: 10.1007/s00204-020-02756-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 04/16/2020] [Indexed: 12/24/2022]
Abstract
We previously demonstrated the existence of a balance among steroid hormones, i.e. glucocorticoids and androgens, in RACK1 (receptor for activated C kinase 1) expression and innate immunity activation, which may offer the opportunity to use RACK1 expression as marker to evaluate immunotoxicity of hormone-active substances. Because of the existence of close interconnections between the different steroid hormone receptors with overlapping ligand specificities and signaling pathways, in this study, we wanted to investigate a possible effect of estrogenic active compounds, namely 17β-estradiol, diethylstilbestrol, and zearalenone, on RACK-1 expression and innate immune responses using THP-1 cells as experimental model. All compounds increased RACK1 transcriptional activity as evaluated by reporter luciferase activity, mRNA expression as assessed by real time-PCR and protein expression by western blot analysis, which paralleled an increase in LPS-induced IL-8, TNF-α production, and CD86 expression, which we previously demonstrated to be dependent on RACK1/PKCβ activation. As the induction of RACK1 expression can be blocked by the antagonist G15, induced by the agonist G1 and by the non-cell permeable 17β-estradiol conjugated with BSA, a role of GPER (previously named GPR30) activation in estrogen-induced RACK1 expression could be demonstrated. In addition, a role of androgen receptor (AR) in RACK1 transcription was also demonstrated by the ability of flutamide, a nonsteroidal antiandrogen, to completely prevent diethylstilbestrol-induced RACK1 transcriptional activity and protein expression. Altogether, our data suggest that RACK1 may represent an interesting target of steroid-active compounds, and its evaluation may offer the opportunity to screen the immunotoxic potential of hormone-active substances.
Collapse
Affiliation(s)
- Erica Buoso
- Dipartimento di Scienze del Farmaco, Università Degli Studi di Pavia, Viale Taramelli 12/14, 27100, Pavia, Italy
| | - Mirco Masi
- Dipartimento di Scienze del Farmaco, Università Degli Studi di Pavia, Viale Taramelli 12/14, 27100, Pavia, Italy.,Scuola Universitaria Superiore IUSS, Pavia, Italy
| | - Valentina Galbiati
- Laboratory of Toxicology, Dipartimento di Scienze Politiche ed Ambientali, Università Degli Studi di Milano, Via Balzaretti 9, 20133, Milano, Italy
| | - Ambra Maddalon
- Laboratory of Toxicology, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università Degli Studi di Milano, Via Balzaretti 9, 20133, Milano, Italy
| | - Martina Iulini
- Laboratory of Toxicology, Dipartimento di Scienze Politiche ed Ambientali, Università Degli Studi di Milano, Via Balzaretti 9, 20133, Milano, Italy
| | - Maša Kenda
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, 1000, Ljubljana, Slovenia
| | - Marija Sollner Dolenc
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, 1000, Ljubljana, Slovenia
| | - Marina Marinovich
- Laboratory of Toxicology, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università Degli Studi di Milano, Via Balzaretti 9, 20133, Milano, Italy
| | - Marco Racchi
- Dipartimento di Scienze del Farmaco, Università Degli Studi di Pavia, Viale Taramelli 12/14, 27100, Pavia, Italy
| | - Emanuela Corsini
- Laboratory of Toxicology, Dipartimento di Scienze Politiche ed Ambientali, Università Degli Studi di Milano, Via Balzaretti 9, 20133, Milano, Italy.
| |
Collapse
|
22
|
Marttila S, Chatsirisupachai K, Palmer D, de Magalhães JP. Ageing-associated changes in the expression of lncRNAs in human tissues reflect a transcriptional modulation in ageing pathways. Mech Ageing Dev 2020; 185:111177. [PMID: 31706952 PMCID: PMC6961210 DOI: 10.1016/j.mad.2019.111177] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 11/04/2019] [Accepted: 11/05/2019] [Indexed: 12/18/2022]
Abstract
Ageing-associated changes in the protein coding transcriptome have been extensively characterised, but less attention has been paid to the non-coding portion of the human genome, especially to long non-coding RNAs (lncRNAs). Only a minority of known lncRNAs have been functionally characterised; however, a handful of these lncRNAs have already been linked to ageing-associated processes. To gain more information on the effects of ageing on lncRNAs, we identified from GTEx data lncRNAs that show ageing-associated expression patterns (age-lncRNAs) in 29 human tissues in 20-79-year-old individuals. The age-lncRNAs identified were highly tissue-specific, but the protein coding genes co-expressed with the age-lncRNAs and the functional categories associated with the age-lncRNAs showed significant overlap across tissues. Functions associated with the age-lncRNAs, including immune system processes and transcription, were similar to what has previously been reported for protein coding genes with ageing-associated expression pattern. As the tissue-specific age-lncRNAs were associated with shared functions across tissues, they may reflect the tissue-specific fine-tuning of the common ageing-associated processes. The present study can be utilised as a resource when selecting and prioritising lncRNAs for further functional analyses.
Collapse
Affiliation(s)
- Saara Marttila
- Integrative Genomics of Ageing Group, Institute of Ageing and Chronic Disease, University of Liverpool, William Henry Duncan Building, 6 West Derby Street, Liverpool, L7 8TX, UK.
| | - Kasit Chatsirisupachai
- Integrative Genomics of Ageing Group, Institute of Ageing and Chronic Disease, University of Liverpool, William Henry Duncan Building, 6 West Derby Street, Liverpool, L7 8TX, UK
| | - Daniel Palmer
- Integrative Genomics of Ageing Group, Institute of Ageing and Chronic Disease, University of Liverpool, William Henry Duncan Building, 6 West Derby Street, Liverpool, L7 8TX, UK
| | - João Pedro de Magalhães
- Integrative Genomics of Ageing Group, Institute of Ageing and Chronic Disease, University of Liverpool, William Henry Duncan Building, 6 West Derby Street, Liverpool, L7 8TX, UK
| |
Collapse
|
23
|
Stojić-Vukanić Z, Pilipović I, Bufan B, Stojanović M, Leposavić G. Age and sex determine CD4+ T cell stimulatory and polarizing capacity of rat splenic dendritic cells. Biogerontology 2019; 21:83-107. [PMID: 31646402 DOI: 10.1007/s10522-019-09845-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 10/14/2019] [Indexed: 12/21/2022]
Abstract
The study investigated influence of sex and age on splenic myeloid dendritic cells (DCs) from Dark Agouti rats. Freshly isolated DCs from young males exhibited less mature phenotype and greater endocytic capacity compared with those from age-matched females. Upon LPS stimulation in vitro they were less potent in stimulating allogeneic CD4+ cells in mixed leukocyte reaction (MLR), due to lower expression of MHC II, and greater NO and IL-10 production. In accordance with higher TGF-β production, young male rat DCs were less potent in stimulating IL-17 production in MLR than those from young females. Irrespective of sex, endocytic capacity and responsiveness of DCs to LPS stimulation in culture, judging by their allostimulatory capacity in MLR decreased with age, reflecting decline in MHC II surface density followed by their greater NO production; the effects more prominent in females. Additionally, compared with LPS-stimulated DCs from young rats, those from sex-matched aged rats were more potent in stimulating IL-10 production in MLR, whereas capacity of DCs from aged female and male rats to stimulate IL-17 production remained unaltered and decreased, respectively. This reflected age-related shift in IL-6/TGF-β production level ratio in LPS-stimulated DC cultures towards TGF-β, and sex-specific age-related remodeling CD4+ cell cytokine pathways. Additionally, compared with LPS-stimulated DCs from young rats, those cells from sex-matched aged rats were less potent in stimulating IFN-γ production in MLR, the effect particularly prominent in MLRs encompassing male rat DCs. The study showed that stimulatory and polarizing capacity of DCs depends on rat sex and age.
Collapse
Affiliation(s)
- Zorica Stojić-Vukanić
- Department of Microbiology and Immunology, Faculty of Pharmacy, University of Belgrade, 450 Vojvode Stepe, Belgrade, 11221, Serbia
| | - Ivan Pilipović
- Immunology Research Centre "Branislav Janković", Institute of Virology, Vaccines and Sera "Torlak", 458 Vojvode Stepe, Belgrade, 11221, Serbia
| | - Biljana Bufan
- Department of Microbiology and Immunology, Faculty of Pharmacy, University of Belgrade, 450 Vojvode Stepe, Belgrade, 11221, Serbia
| | - Marija Stojanović
- Department of Pathobiology, Faculty of Pharmacy, University of Belgrade, 450 Vojvode Stepe, Belgrade, 11221, Serbia
| | - Gordana Leposavić
- Department of Pathobiology, Faculty of Pharmacy, University of Belgrade, 450 Vojvode Stepe, Belgrade, 11221, Serbia.
| |
Collapse
|
24
|
Marzetti E, Picca A, Marini F, Biancolillo A, Coelho-Junior HJ, Gervasoni J, Bossola M, Cesari M, Onder G, Landi F, Bernabei R, Calvani R. Inflammatory signatures in older persons with physical frailty and sarcopenia: The frailty “cytokinome” at its core. Exp Gerontol 2019; 122:129-138. [DOI: 10.1016/j.exger.2019.04.019] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 04/09/2019] [Accepted: 04/29/2019] [Indexed: 10/26/2022]
|
25
|
Gender-specific association of body composition with inflammatory and adipose-related markers in healthy elderly Europeans from the NU-AGE study. Eur Radiol 2019; 29:4968-4979. [PMID: 30715588 PMCID: PMC6682581 DOI: 10.1007/s00330-018-5973-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 11/22/2018] [Accepted: 12/14/2018] [Indexed: 01/17/2023]
Abstract
Objectives The aim of this work was to examine the cross-sectional relationship between body composition (BC) markers for adipose and lean tissue and bone mass, and a wide range of specific inflammatory and adipose-related markers in healthy elderly Europeans. Methods A whole-body dual-energy X-ray absorptiometry (DXA) scan was made in 1121 healthy (65–79 years) women and men from five European countries of the “New dietary strategies addressing the specific needs of elderly population for a healthy aging in Europe” project (NCT01754012) cohort to measure markers of adipose and lean tissue and bone mass. Pro-inflammatory (IL-6, IL-6Rα, TNF-α, TNF-R1, TNF-R2, pentraxin 3, CRP, alpha-1-acid glycoprotein, albumin) and anti-inflammatory (IL-10, TGF-β1) molecules as well as adipose-related markers such as leptin, adiponectin, ghrelin, and resistin were measured by magnetic bead-based multiplex-specific immunoassays and biochemical assays. Results BC characteristics were different in elderly women and men, and more favorable BC markers were associated with a better adipose-related inflammatory profile, with the exception of skeletal muscle mass index. No correlation was found with the body composition markers and circulating levels of some standard pro- and anti-inflammatory markers like IL-6, pentraxin 3, IL-10, TGF-β1, TNF-α, IL-6Rα, glycoprotein 130, TNF-α-R1, and TNF-α-R2. Conclusions The association between BC and inflammatory and adipose-related biomarkers is crucial in decoding aging and pathophysiological processes, such as sarcopenia. DXA can help in understanding how the measurement of fat and muscle is important, making the way from research to clinical practice. Key Points • Body composition markers concordantly associated positively or negatively with adipose-related and inflammatory markers, with the exception of skeletal muscle mass index. • No correlation was found with the body composition markers and circulating levels of some standard pro- and anti-inflammatory markers like IL-6, pentraxin 3, IL-10, TGF-β1, TNF-α, IL-6Rα, gp130, TNF-α-R1, and TNF-α-R2. • Skeletal muscle mass index (SMI) shows a good correlation with inflammatory profile in age-related sarcopenia. Electronic supplementary material The online version of this article (10.1007/s00330-018-5973-2) contains supplementary material, which is available to authorized users.
Collapse
|
26
|
Konz T, Santoro A, Goulet L, Bazzocchi A, Battista G, Nicoletti C, Kadi F, Ostan R, Goy M, Monnard C, Martin FP, Feige JN, Franceschi C, Rezzi S. Sex-Specific Associations of Blood-Based Nutrient Profiling With Body Composition in the Elderly. Front Physiol 2019; 9:1935. [PMID: 30733685 PMCID: PMC6353856 DOI: 10.3389/fphys.2018.01935] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 12/21/2018] [Indexed: 12/12/2022] Open
Abstract
The intake of adequate amounts and types of nutrients is key for sustaining health and a good quality of life, particularly in the elderly population. There is considerable evidence suggesting that physiological changes related to age and sex modify nutritional needs, and this may be related to age-associated changes in body composition (BC), specifically in lean and fat body mass. However, there is a clear lack of understanding about the association of nutrients in blood and BC parameters in the elderly. This study investigated the relationships among blood nutrients (amino acids, fatty acids, major elements, trace-elements, and vitamins), BC and nutrient intake in a population of 176 healthy male and female Italian adults between the ages of 65 and 79 years. 89 blood markers, 77 BC parameters and dietary intake were evaluated. Multivariate data analysis was applied to infer relationships between datasets. As expected, the major variability between BC and the blood nutrient profile (BNP) observed was related to sex. Aside from clear sex-specific differences in BC, female subjects had higher BNP levels of copper, copper-to-zinc ratio, phosphorous and holotranscobalamin II and lower concentrations of branched-chain amino acids (BCAAs) and proline. Fat mass, percentage of fat mass, percentage of lean mass and the skeletal muscle index (SMI) correlated the most with BNP in both sexes. Our data showed positive correlations in male subjects among ethanolamine, glycine, albumin, and sulfur with SMI, while palmitoleic acid and oleic acid exhibited negative correlations. This differed in female subjects, where SMI was positively associated with albumin, folic acid and sulfur, while CRP, proline and cis-8,11,14-eicosatrienoic acid were negatively correlated. We investigated the influence of diet on the observed BNP and BC correlations. Intriguingly, most of the components of the BNP, except for folate, did not exhibit a correlation with nutrient intake data. An understanding of the physiological and biochemical processes underpinning the observed sex-specific correlations between BNP and BC could help in identifying nutritional strategies to manage BC-changes in aging. This would contribute to a deeper understanding of aging-associated nutritional needs with the aim of helping the elderly population to maintain metabolic health.
Collapse
Affiliation(s)
- Tobias Konz
- Nestlé Research, Vers-Chez-Les-Blanc, Lausanne, Switzerland
| | - Aurelia Santoro
- Department of Experimental, Diagnostic and Specialty Medicine, Alma Mater Studiorum, University of Bologna, Bologna, Italy
- C.I.G. Interdepartmental Centre “L. Galvani”, Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | | | - Alberto Bazzocchi
- Diagnostic and Interventional Radiology, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Giuseppe Battista
- Department of Experimental, Diagnostic and Specialty Medicine, Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Claudio Nicoletti
- Department of Experimental and Clinical Medicine, Section of Anatomy, University of Florence, Florence, Italy
- Gut Health Institute Strategic Programme, Quadram Institute Bioscience, Norwich, United Kingdom
| | - Fawzi Kadi
- School of Health and Medical Sciences, Örebro University, Örebro, Sweden
| | - Rita Ostan
- Department of Experimental, Diagnostic and Specialty Medicine, Alma Mater Studiorum, University of Bologna, Bologna, Italy
- C.I.G. Interdepartmental Centre “L. Galvani”, Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Michael Goy
- Nestlé Research, EPFL Innovation Park, Lausanne, Switzerland
| | | | | | - Jerome N. Feige
- Nestlé Research, EPFL Innovation Park, Lausanne, Switzerland
| | - Claudio Franceschi
- Department of Experimental, Diagnostic and Specialty Medicine, Alma Mater Studiorum, University of Bologna, Bologna, Italy
- Institute of Neurological Sciences (IRCCS), Bologna, Italy
| | - Serge Rezzi
- Nestlé Research, Vers-Chez-Les-Blanc, Lausanne, Switzerland
| |
Collapse
|
27
|
Sex-Related Differences in Immune Response and Symptomatic Manifestations to Infection with Leishmania Species. J Immunol Res 2019; 2019:4103819. [PMID: 30756088 PMCID: PMC6348913 DOI: 10.1155/2019/4103819] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 10/22/2018] [Accepted: 12/11/2018] [Indexed: 12/19/2022] Open
Abstract
Worldwide, an estimated 12 million people are infected with Leishmania spp. and an additional 350 million are at risk of infection. Leishmania are intracellular parasites that cause disease by suppressing macrophage microbicidal responses. Infection can remain asymptomatic or lead to a spectrum of diseases including cutaneous, mucocutaneous, and visceral leishmaniasis. Ultimately, the combination of both pathogen and host factors determines the outcome of infection. Leishmaniasis, as well as numerous other infectious diseases, exhibits sex-related differences that cannot be explained solely in terms of environmental exposure or healthcare access. Furthermore, transcriptomic evidence is revealing that biological sex is a variable impacting physiology, immune response, drug metabolism, and consequently, the progression of disease. Herein, we review the distribution, morbidity, and mortality among male and female leishmaniasis patients. Additionally, we discuss experimental findings and new avenues of research concerning sex-specific responses in cutaneous and visceral leishmaniasis. The limitations of current therapies and the emergence of drug-resistant parasites underscore the need for new treatments that could harness the host immune response. As such, understanding the mechanisms driving the differential immune response and disease outcome of males versus females is a necessary step in the development of safer and more effective treatments against leishmaniasis.
Collapse
|
28
|
Gomez-Verjan JC, Vazquez-Martinez ER, Rivero-Segura NA, Medina-Campos RH. The RNA world of human ageing. Hum Genet 2018; 137:865-879. [DOI: 10.1007/s00439-018-1955-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 10/29/2018] [Indexed: 12/15/2022]
|
29
|
Li X, Li W, Xu Y. Human Age Prediction Based on DNA Methylation Using a Gradient Boosting Regressor. Genes (Basel) 2018; 9:genes9090424. [PMID: 30134623 PMCID: PMC6162650 DOI: 10.3390/genes9090424] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 08/15/2018] [Accepted: 08/16/2018] [Indexed: 01/12/2023] Open
Abstract
All tissues of organisms will become old as time goes on. In recent years, epigenetic investigations have found that there is a close correlation between DNA methylation and aging. With the development of DNA methylation research, a quantitative statistical relationship between DNA methylation and different ages was established based on the change rule of methylation with age, it is then possible to predict the age of individuals. All the data in this work were retrieved from the Illumina HumanMethylation BeadChip platform (27K or 450K). We analyzed 16 sets of healthy samples and 9 sets of diseased samples. The healthy samples included a total of 1899 publicly available blood samples (0–103 years old) and the diseased samples included 2395 blood samples. Six age-related CpG sites were selected through calculating Pearson correlation coefficients between age and DNA methylation values. We built a gradient boosting regressor model for these age-related CpG sites. 70% of the data was randomly selected as training data and the other 30% as independent data in each dataset for 25 runs in total. In the training dataset, the healthy samples showed that the correlation between predicted age and DNA methylation was 0.97, and the mean absolute deviation (MAD) was 2.72 years. In the independent dataset, the MAD was 4.06 years. The proposed model was further tested using the diseased samples. The MAD was 5.44 years for the training dataset and 7.08 years for the independent dataset. Furthermore, our model worked well when it was applied to saliva samples. These results illustrated that the age prediction based on six DNA methylation markers is very effective using the gradient boosting regressor.
Collapse
Affiliation(s)
- Xingyan Li
- Department of Information and Computer Science, University of Science and Technology Beijing, Beijing 100083, China.
| | - Weidong Li
- Department of Information and Computer Science, University of Science and Technology Beijing, Beijing 100083, China.
| | - Yan Xu
- Department of Information and Computer Science, University of Science and Technology Beijing, Beijing 100083, China.
- Beijing Key Laboratory for Magneto-photoelectrical Composites and Interface Science, University of Science and Technology Beijing, Beijing 100083, China.
| |
Collapse
|
30
|
Zeng Y, Nie C, Min J, Chen H, Liu X, Ye R, Chen Z, Bai C, Xie E, Yin Z, Lv Y, Lu J, Li J, Ni T, Bolund L, Land KC, Yashin A, O’Rand AM, Sun L, Yang Z, Tao W, Gurinovich A, Franceschi C, Xie J, Gu J, Hou Y, Liu X, Xu X, Robine JM, Deelen J, Sebastiani P, Slagboom E, Perls T, Hauser E, Gottschalk W, Tan Q, Christensen K, Shi X, Lutz M, Tian XL, Yang H, Vaupel J. Sex Differences in Genetic Associations With Longevity. JAMA Netw Open 2018; 1:e181670. [PMID: 30294719 PMCID: PMC6173523 DOI: 10.1001/jamanetworkopen.2018.1670] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Accepted: 05/15/2018] [Indexed: 01/09/2023] Open
Abstract
IMPORTANCE Sex differences in genetic associations with human longevity remain largely unknown; investigations on this topic are important for individualized health care. OBJECTIVE To explore sex differences in genetic associations with longevity. DESIGN SETTING AND PARTICIPANTS This population-based case-control study used sex-specific genome-wide association study and polygenic risk score (PRS) analyses to examine sex differences in genetic associations with longevity. Five hundred sixty-four male and 1614 female participants older than 100 years were compared with a control group of 773 male and 1526 female individuals aged 40 to 64 years. All were Chinese Longitudinal Healthy Longevity Study participants with Han ethnicity who were recruited in 1998 and 2008 to 2014. MAIN OUTCOMES AND MEASURES Sex-specific loci and pathways associated with longevity and PRS measures of joint effects of sex-specific loci. RESULTS Eleven male-specific and 11 female-specific longevity loci (P < 10-5) and 35 male-specific and 25 female-specific longevity loci (10-5 ≤ P < 10-4) were identified. Each of these loci's associations with longevity were replicated in north and south regions of China in one sex but were not significant in the other sex (P = .13-.97), and loci-sex interaction effects were significant (P < .05). The associations of loci rs60210535 of the LINC00871 gene with longevity were replicated in Chinese women (P = 9.0 × 10-5) and US women (P = 4.6 × 10-5) but not significant in Chinese and US men. The associations of the loci rs2622624 of the ABCG2 gene were replicated in Chinese women (P = 6.8 × 10-5) and European women (P = .003) but not significant in both Chinese and European men. Eleven male-specific pathways (inflammation and immunity genes) and 34 female-specific pathways (tryptophan metabolism and PGC-1α induced) were significantly associated with longevity (P < .005; false discovery rate < 0.05). The PRS analyses demonstrated that sex-specific associations with longevity of the 4 exclusive groups of 11 male-specific and 11 female-specific loci (P < 10-5) and 35 male-specific and 25 female-specific loci (10-5 ≤P < 10-4) were jointly replicated across north and south discovery and target samples. Analyses using the combined data set of north and south showed that these 4 groups of sex-specific loci were jointly and significantly associated with longevity in one sex (P = 2.9 × 10-70 to 1.3 × 10-39) but not jointly significant in the other sex (P = .11 to .70), while interaction effects between PRS and sex were significant (P = 4.8 × 10-50 to 1.2 × 10-16). CONCLUSION AND RELEVANCE The sex differences in genetic associations with longevity are remarkable, but have been overlooked by previously published genome-wide association studies on longevity. This study contributes to filling this research gap and provides a scientific basis for further investigating effects of sex-specific genetic variants and their interactions with environment on healthy aging, which may substantially contribute to more effective and targeted individualized health care for male and female elderly individuals.
Collapse
Affiliation(s)
- Yi Zeng
- Center for the Study of Aging and Human Development, Medical School of Duke University, Durham, North Carolina
- Center for Healthy Aging and Development Studies, National School of Development, Raissun Institute for Advanced Studies, Peking University, Beijing, China
| | - Chao Nie
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, China
- BGI–Shenzhen, Shenzhen, China
| | - Junxia Min
- The First Affiliated Hospital, Institute of Translational Medicine, School of Medicine, Zhejiang University, Hangzhou, China
| | - Huashuai Chen
- Center for the Study of Aging and Human Development, Medical School of Duke University, Durham, North Carolina
- Business School of Xiangtan University, Xiangtan, China
| | | | - Rui Ye
- BGI–Shenzhen, Shenzhen, China
| | | | - Chen Bai
- Center for Healthy Aging and Development Studies, National School of Development, Raissun Institute for Advanced Studies, Peking University, Beijing, China
| | - Enjun Xie
- The First Affiliated Hospital, Institute of Translational Medicine, School of Medicine, Zhejiang University, Hangzhou, China
| | - Zhaoxue Yin
- Division of Non-Communicable Disease Control and Community Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yuebin Lv
- National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jiehua Lu
- Department of Sociology, Peking University, Beijing, China
| | - Jianxin Li
- Department of Sociology, Peking University, Beijing, China
| | - Ting Ni
- School of Life Sciences, Fudan University, Shanghai, China
| | - Lars Bolund
- BGI–Shenzhen, Shenzhen, China
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Kenneth C. Land
- Duke Population Research Institute, Duke University, Durham, North Carolina
| | - Anatoliy Yashin
- Duke Population Research Institute, Duke University, Durham, North Carolina
| | - Angela M. O’Rand
- Duke Population Research Institute, Duke University, Durham, North Carolina
| | - Liang Sun
- The MOH Key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, Beijing, China
| | - Ze Yang
- The MOH Key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, Beijing, China
| | - Wei Tao
- School of Life Sciences, Peking University, Beijing, China
| | | | | | - Jichun Xie
- Department of Biostatistics and Bioinformatics, Duke University, Durham, North Carolina
| | - Jun Gu
- School of Life Sciences, Peking University, Beijing, China
| | | | | | - Xun Xu
- BGI–Shenzhen, Shenzhen, China
| | - Jean-Marie Robine
- French National Institute on Health and Medical Research and Ecole Pratique des Hautes Etudes, University of Montpellier, Montpellier, France
| | - Joris Deelen
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | | | - Eline Slagboom
- Department of Molecular Epidemiology, Leiden University Medical Center, Leiden, the Netherlands
| | | | - Elizabeth Hauser
- Molecular Physiology Institute, Medical Center, Duke University, Durham, North Carolina
| | - William Gottschalk
- Department of Neurology, Medical Center, Duke University, Durham, North Carolina
| | - Qihua Tan
- University of Southern Denmark, Odense, Denmark
| | | | - Xiaoming Shi
- National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Mike Lutz
- Department of Neurology, Medical Center, Duke University, Durham, North Carolina
| | - Xiao-Li Tian
- Human Aging Research Institute and School of Life Science, Nanchang University, Jiangxi, China
| | - Huanming Yang
- BGI–Shenzhen, Shenzhen, China
- James D. Watson Institute of Genome Sciences, Hangzhou, China
| | - James Vaupel
- Max Planck Institute for Demographic Research, Rostock, Germany
| |
Collapse
|
31
|
Gubbels Bupp MR, Potluri T, Fink AL, Klein SL. The Confluence of Sex Hormones and Aging on Immunity. Front Immunol 2018; 9:1269. [PMID: 29915601 PMCID: PMC5994698 DOI: 10.3389/fimmu.2018.01269] [Citation(s) in RCA: 193] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 05/22/2018] [Indexed: 12/17/2022] Open
Abstract
The immune systems of post-pubescent males and females differ significantly with profound consequences to health and disease. In many cases, sex-specific differences in the immune responses of young adults are also apparent in aged men and women. Moreover, as in young adults, aged women develop several late-adult onset autoimmune conditions more frequently than do men, while aged men continue to develop many cancers to a greater extent than aged women. However, sex differences in the immune systems of aged individuals have not been extensively investigated and data addressing the effectiveness of vaccinations and immunotherapies in aged men and women are scarce. In this review, we evaluate age- and sex hormone-related changes to innate and adaptive immunity, with consideration about how this impacts age- and sex-associated changes in the incidence and pathogenesis of autoimmunity and cancer as well as the efficacy of vaccination and cancer immunotherapy. We conclude that future preclinical and clinical studies should consider age and sex to better understand the ways in which these characteristics intersect with immune function and the resulting consequences for autoimmunity, cancer, and therapeutic interventions.
Collapse
Affiliation(s)
| | - Tanvi Potluri
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States
| | - Ashley L Fink
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States
| | - Sabra L Klein
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States
| |
Collapse
|
32
|
Gut Microbial Changes, Interactions, and Their Implications on Human Lifecycle: An Ageing Perspective. BIOMED RESEARCH INTERNATIONAL 2018; 2018:4178607. [PMID: 29682542 PMCID: PMC5846367 DOI: 10.1155/2018/4178607] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 01/23/2018] [Indexed: 02/07/2023]
Abstract
Gut microbiota is established during birth and evolves with age, mostly maintaining the commensal relationship with the host. A growing body of clinical evidence suggests an intricate relationship between the gut microbiota and the immune system. With ageing, the gut microbiota develops significant imbalances in the major phyla such as the anaerobic Firmicutes and Bacteroidetes as well as a diverse range of facultative organisms, resulting in impaired immune responses. Antimicrobial therapy is commonly used for the treatment of infections; however, this may also result in the loss of normal gut flora. Advanced age, antibiotic use, underlying diseases, infections, hormonal differences, circadian rhythm, and malnutrition, either alone or in combination, contribute to the problem. This nonbeneficial gastrointestinal modulation may be reversed by judicious and controlled use of antibiotics and the appropriate use of prebiotics and probiotics. In certain persistent, recurrent settings, the option of faecal microbiota transplantation can be explored. The aim of the current review is to focus on the establishment and alteration of gut microbiota, with ageing. The review also discusses the potential role of gut microbiota in regulating the immune system, together with its function in healthy and diseased state.
Collapse
|
33
|
Zi Xu YX, Ande SR, Mishra S. Prohibitin: A new player in immunometabolism and in linking obesity and inflammation with cancer. Cancer Lett 2018; 415:208-216. [DOI: 10.1016/j.canlet.2017.12.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 11/30/2017] [Accepted: 12/01/2017] [Indexed: 12/13/2022]
|
34
|
Jylhävä J, Kananen L, Raitanen J, Marttila S, Nevalainen T, Hervonen A, Jylhä M, Hurme M. Methylomic predictors demonstrate the role of NF-κB in old-age mortality and are unrelated to the aging-associated epigenetic drift. Oncotarget 2017; 7:19228-41. [PMID: 27015559 PMCID: PMC4991378 DOI: 10.18632/oncotarget.8278] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 03/10/2016] [Indexed: 01/24/2023] Open
Abstract
Changes in the DNA methylation (DNAm) landscape have been implicated in aging and cellular senescence. To unravel the role of specific DNAm patterns in late-life survival, we performed genome-wide methylation profiling in nonagenarians (n=111) and determined the performance of the methylomic predictors and conventional risk markers in a longitudinal setting. The survival model containing only the methylomic markers was superior in terms of predictive accuracy compared with the model containing only the conventional predictors or the model containing conventional predictors combined with the methylomic markers. At the 2.55-year follow-up, we identified 19 mortality-associated (false-discovery rate <0.5) CpG sites that mapped to genes functionally clustering around the nuclear factor kappa B (NF-κB) complex. Interestingly, none of the mortality-associated CpG sites overlapped with the established aging-associated DNAm sites. Our results are in line with previous findings on the role of NF-κB in controlling animal life spans and demonstrate the role of this complex in human longevity.
Collapse
Affiliation(s)
- Juulia Jylhävä
- Department of Microbiology and Immunology, School of Medicine, University of Tampere, Tampere, Finland.,Gerontology Research Center, University of Tampere, Tampere, Finland
| | - Laura Kananen
- Department of Microbiology and Immunology, School of Medicine, University of Tampere, Tampere, Finland.,Gerontology Research Center, University of Tampere, Tampere, Finland
| | - Jani Raitanen
- School of Health Sciences, University of Tampere, Tampere, Finland.,UKK Institute for Health Promotion Research, Tampere, Finland
| | - Saara Marttila
- Department of Microbiology and Immunology, School of Medicine, University of Tampere, Tampere, Finland.,Gerontology Research Center, University of Tampere, Tampere, Finland
| | - Tapio Nevalainen
- Department of Microbiology and Immunology, School of Medicine, University of Tampere, Tampere, Finland.,Gerontology Research Center, University of Tampere, Tampere, Finland
| | - Antti Hervonen
- Gerontology Research Center, University of Tampere, Tampere, Finland.,School of Health Sciences, University of Tampere, Tampere, Finland
| | - Marja Jylhä
- Gerontology Research Center, University of Tampere, Tampere, Finland.,School of Health Sciences, University of Tampere, Tampere, Finland
| | - Mikko Hurme
- Department of Microbiology and Immunology, School of Medicine, University of Tampere, Tampere, Finland.,Gerontology Research Center, University of Tampere, Tampere, Finland.,Fimlab Laboratories, Tampere, Finland
| |
Collapse
|
35
|
Sutphin GL, Backer G, Sheehan S, Bean S, Corban C, Liu T, Peters MJ, van Meurs JBJ, Murabito JM, Johnson AD, Korstanje R. Caenorhabditis elegans orthologs of human genes differentially expressed with age are enriched for determinants of longevity. Aging Cell 2017; 16:672-682. [PMID: 28401650 PMCID: PMC5506438 DOI: 10.1111/acel.12595] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/05/2017] [Indexed: 12/21/2022] Open
Abstract
We report a systematic RNAi longevity screen of 82 Caenorhabditis elegans genes selected based on orthology to human genes differentially expressed with age. We find substantial enrichment in genes for which knockdown increased lifespan. This enrichment is markedly higher than published genomewide longevity screens in C. elegans and similar to screens that preselected candidates based on longevity‐correlated metrics (e.g., stress resistance). Of the 50 genes that affected lifespan, 46 were previously unreported. The five genes with the greatest impact on lifespan (>20% extension) encode the enzyme kynureninase (kynu‐1), a neuronal leucine‐rich repeat protein (iglr‐1), a tetraspanin (tsp‐3), a regulator of calcineurin (rcan‐1), and a voltage‐gated calcium channel subunit (unc‐36). Knockdown of each gene extended healthspan without impairing reproduction. kynu‐1(RNAi) alone delayed pathology in C. elegans models of Alzheimer's disease and Huntington's disease. Each gene displayed a distinct pattern of interaction with known aging pathways. In the context of published work, kynu‐1, tsp‐3, and rcan‐1 are of particular interest for immediate follow‐up. kynu‐1 is an understudied member of the kynurenine metabolic pathway with a mechanistically distinct impact on lifespan. Our data suggest that tsp‐3 is a novel modulator of hypoxic signaling and rcan‐1 is a context‐specific calcineurin regulator. Our results validate C. elegans as a comparative tool for prioritizing human candidate aging genes, confirm age‐associated gene expression data as valuable source of novel longevity determinants, and prioritize select genes for mechanistic follow‐up.
Collapse
Affiliation(s)
| | - Grant Backer
- The Jackson Laboratory; 600 Main Street Bar Harbor ME 04609 USA
| | - Susan Sheehan
- The Jackson Laboratory; 600 Main Street Bar Harbor ME 04609 USA
| | - Shannon Bean
- The Jackson Laboratory; 600 Main Street Bar Harbor ME 04609 USA
| | - Caroline Corban
- The Jackson Laboratory; 600 Main Street Bar Harbor ME 04609 USA
| | - Teresa Liu
- The Jackson Laboratory; 600 Main Street Bar Harbor ME 04609 USA
| | - Marjolein J. Peters
- Department of Internal Medicine; Erasmus Medical Center; Postbus 2040 3000 CA Rotterdam The Netherlands
| | - Joyce B. J. van Meurs
- Department of Internal Medicine; Erasmus Medical Center; Postbus 2040 3000 CA Rotterdam The Netherlands
| | - Joanne M. Murabito
- Section of General Internal Medicine; Boston University School of Medicine; 801 Massachusetts Ave, Crosstown Center Boston MA 02118 USA
- The National Heart, Lung, and Blood Institute's Framingham Heart Study; 73 Mt. Wayte Ave, Suite 2 Framingham MA 01702-5827 USA
| | - Andrew D. Johnson
- The National Heart, Lung, and Blood Institute's Framingham Heart Study; 73 Mt. Wayte Ave, Suite 2 Framingham MA 01702-5827 USA
- Population Sciences Branch; National Heart, Lung, and Blood Institute; Building 31, Room 5A52, 31 Center Drive MSC 2486 Bethesda MD 20892 USA
| | - Ron Korstanje
- The Jackson Laboratory; 600 Main Street Bar Harbor ME 04609 USA
| | | |
Collapse
|
36
|
Bravo-Alegria J, McCullough LD, Liu F. Sex differences in stroke across the lifespan: The role of T lymphocytes. Neurochem Int 2017; 107:127-137. [PMID: 28131898 PMCID: PMC5461203 DOI: 10.1016/j.neuint.2017.01.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 01/13/2017] [Accepted: 01/20/2017] [Indexed: 12/22/2022]
Abstract
Stroke is a sexually dimorphic disease. Ischemic sensitivity changes throughout the lifespan and outcomes depend largely on variables like age, sex, hormonal status, inflammation, and other existing risk factors. Immune responses after stroke play a central role in how these factors interact. Although the post-stroke immune response has been extensively studied, the contribution of lymphocytes to stroke is still not well understood. T cells participate in both innate and adaptive immune responses at both acute and chronic stages of stroke. T cell responses also change at different ages and are modulated by hormones and sex chromosome complement. T cells have also been implicated in the development of hypertension, one of the most important risk factors for vascular disease. In this review, we highlight recent literature on the lymphocytic responses to stroke in the context of age and sex, with a focus on T cell response and the interaction with important stroke risk factors.
Collapse
Affiliation(s)
- Javiera Bravo-Alegria
- Department of Neurology, Univeristy of Texas Health Science Center at Houston, Houston, TX, 77030, United States
| | - Louise D McCullough
- Department of Neurology, Univeristy of Texas Health Science Center at Houston, Houston, TX, 77030, United States
| | - Fudong Liu
- Department of Neurology, Univeristy of Texas Health Science Center at Houston, Houston, TX, 77030, United States.
| |
Collapse
|
37
|
Investigating the specific core genetic-and-epigenetic networks of cellular mechanisms involved in human aging in peripheral blood mononuclear cells. Oncotarget 2017; 7:8556-79. [PMID: 26895224 PMCID: PMC4890987 DOI: 10.18632/oncotarget.7388] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Accepted: 02/03/2016] [Indexed: 12/26/2022] Open
Abstract
Aging is an inevitable part of life for humans, and slowing down the aging process has become a main focus of human endeavor. Here, we applied a systems biology approach to construct protein-protein interaction networks, gene regulatory networks, and epigenetic networks, i.e. genetic and epigenetic networks (GENs), of elderly individuals and young controls. We then compared these GENs to extract aging mechanisms using microarray data in peripheral blood mononuclear cells, microRNA (miRNA) data, and database mining. The core GENs of elderly individuals and young controls were obtained by applying principal network projection to GENs based on Principal Component Analysis. By comparing the core networks, we identified that to overcome the accumulated mutation of genes in the aging process the transcription factor JUN can be activated by stress signals, including the MAPK signaling, T-cell receptor signaling, and neurotrophin signaling pathways through DNA methylation of BTG3, G0S2, and AP2B1 and the regulations of mir-223 let-7d, and mir-130a. We also address the aging mechanisms in old men and women. Furthermore, we proposed that drugs designed to target these DNA methylated genes or miRNAs may delay aging. A multiple drug combination comprising phenylalanine, cholesterol, and palbociclib was finally designed for delaying the aging process.
Collapse
|
38
|
Itaborahy RMR, de Medeiros SF. Influence of estrogen therapy on immune markers in postmenopausal women. Climacteric 2016; 19:496-500. [PMID: 27593223 DOI: 10.1080/13697137.2016.1212828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
OBJECTIVE To evaluate the impact of estrogen therapy on cellular and humoral immune markers in postmenopausal women. METHODS This prospective, controlled cohort study included 30 patients who used oral estradiol (1 mg) for 14-17 weeks and 28 patients who served as controls. Total leukocytes and leukocyte subtypes were counted and immunophenotyped by flow cytometry. The concentrations of immunoglobulins and pro- and anti-inflammatory cytokines were also measured in the peripheral blood before and after estrogen therapy. Immunoglobulin E level was measured by electrochemiluminescence, and levels of immunoglobulins A, G, and M were measured by nephelometry. Simultaneous quantification of multiple cytokines was performed by chemiluminescence to measure the serum concentrations of interferon gamma, interleukin (IL)-4, IL-6, IL-10, and IL-17. RESULTS Hematological cellular components were not significantly different before and after the use of estradiol (p = 0.332-0.984). Serum concentrations of immunoglobulins G, M, E, and A also remained stable (p = 0.248-0.845). Finally, cytokines were not modified throughout the 14-17 weeks of follow-up (p = 0.407-0.873). CONCLUSION Isolated estrogen therapy with 1 mg of estradiol for 14-17 weeks in postmenopausal women did not modify any of the cellular or humoral immune markers analyzed in this study.
Collapse
Affiliation(s)
- R M Ribeiro Itaborahy
- a Federal University of Mato Grosso, School of Medicine , Department of Obstetrics and Gynecology , Cuiabá , Brazil
| | - S Freitas de Medeiros
- a Federal University of Mato Grosso, School of Medicine , Department of Obstetrics and Gynecology , Cuiabá , Brazil
| |
Collapse
|
39
|
Mukhopadhyay D, Mukherjee S, Ghosh S, Roy S, Saha B, Das NK, Chatterjee M. A male preponderance in patients with Indian post kala-azar dermal leishmaniasis is associated with increased circulating levels of testosterone. Int J Dermatol 2015; 55:e250-5. [PMID: 26536363 DOI: 10.1111/ijd.13048] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 03/09/2015] [Accepted: 04/01/2015] [Indexed: 12/01/2022]
Abstract
BACKGROUND Post kala-azar dermal leishmaniasis (PKDL) is a neglected parasitic disease that occurs after apparent cure from visceral leishmaniasis (VL) and poses a challenge for elimination of VL, being its proposed reservoir. Several epidemiological studies have proposed that sex hormones may account for the increased susceptibility of males towards infectious diseases, including leishmaniasis; however, the role of testosterone and sex bias, if any, in PKDL has not been evaluated. METHODS The study population included 87 patients with PKDL and 39 with VL; levels of testosterone were measured by competitive enzyme-linked immunosorbent assay along with their levels of antileishmanial immunoglobulin and IgG. The association of testosterone, if any, was then correlated with age, gender, humoral response, lesional profile, disease duration, and lag period. RESULTS A male predominance was evident in PKDL, not in VL; importantly, this male bias was predominant postpubertal, strongly indicative of an association between sex hormone and disease progression. Male patients with PKDL had significantly higher levels of testosterone, which regressed significantly with miltefosine, not with sodium antimony gluconate. Additionally, a significant correlation was found between plasma testosterone and antileishmanial IgG. CONCLUSION Taken together, our study has established a male dominance in PKDL, which showed a strong association with testosterone. This information should be taken into consideration for disease monitoring and control.
Collapse
Affiliation(s)
- Debanjan Mukhopadhyay
- Department of Pharmacology, Institute of Post Graduate Medical Education and Research, Kolkata, India
| | - Shibabrata Mukherjee
- Department of Pharmacology, Institute of Post Graduate Medical Education and Research, Kolkata, India
| | - Susmita Ghosh
- Department of Pharmacology, Institute of Post Graduate Medical Education and Research, Kolkata, India
| | - Susmita Roy
- Department of Pharmacology, Institute of Post Graduate Medical Education and Research, Kolkata, India
| | - Bibhuti Saha
- Department of Tropical Medicine, Calcutta School of Tropical Medicine, Kolkata, India
| | - Nilay Kanti Das
- Department of Dermatology, Calcutta Medical College, Kolkata, India
| | - Mitali Chatterjee
- Department of Pharmacology, Institute of Post Graduate Medical Education and Research, Kolkata, India
| |
Collapse
|
40
|
Langelotz C, Mueller-Rau C, Terziyski S, Rau B, Krannich A, Gastmeier P, Geffers C. Gender-Specific Differences in Surgical Site Infections: An Analysis of 438,050 Surgical Procedures from the German National Nosocomial Infections Surveillance System. VISZERALMEDIZIN 2015; 30:114-7. [PMID: 26288585 PMCID: PMC4513817 DOI: 10.1159/000362100] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Background Surgical site infections (SSI) are among the most frequent healthcare-associated infections. They impose a substantial burden with increased morbidity and exceeding healthcare costs. Risk factors such as age, diabetes, and smoking status are commonly accounted for in the literature, but few studies address gender differences. Methods Data from the German Nosocomial Infections Surveillance System (Krankenhaus-Infektions-Surveillance-System (KISS)) from 2005 to 2010 were analysed for cardiac, vascular, visceral, and orthopaedic surgery, with a total of 438,050 surgical procedures and 8,639 SSI. Rates of SSI and isolated pathogens were analysed for gender. Results Women had a lower rate of SSI (SSI/100 procedures) in abdominal surgery than men (2.92 vs. 4.37; p < 0.001). No gender-specific differences were found in orthopaedic and vascular surgery, while women had a higher risk for SSI in cardiac surgery (5.50 vs. 3.02; p < 0.001). Isolated pathogens showed differences for sensitive Staphylococcus aureus and Pseudomonas aeruginosa, which were more frequent in women (both p = 0.007), while coagulase-negative staphylococci occurred more often in men (18.8 vs. 14.0%; p < 0.001). Conclusion Gender differences in SSI exist and are procedure-specific. The underlying mechanisms need to be further elucidated so that targeted measures for the prevention of SSI can be developed.
Collapse
Affiliation(s)
- Corinna Langelotz
- Klinik für Allgemein-, Viszeral-, Gefäß- und Thoraxchirurgie, Charité - Universitätsmedizin Berlin, Campus Mitte, Berlin, Germany
| | - Carolin Mueller-Rau
- Klinik für Allgemein-, Viszeral-, Gefäß- und Thoraxchirurgie, Charité - Universitätsmedizin Berlin, Campus Mitte, Berlin, Germany
| | - Stoil Terziyski
- Klinik für Allgemein-, Viszeral-, Gefäß- und Thoraxchirurgie, Charité - Universitätsmedizin Berlin, Campus Mitte, Berlin, Germany
| | - Beate Rau
- Klinik für Allgemein-, Viszeral-, Gefäß- und Thoraxchirurgie, Charité - Universitätsmedizin Berlin, Campus Mitte, Berlin, Germany
| | - Alexander Krannich
- Abteilung Biostatistik, Koordinierungszentrum für Klinische Studien, Charité - Universitätsmedizin Berlin, Campus Virchow, Berlin, Germany
| | - Petra Gastmeier
- Nationales Referenzzentrum für die Surveillance von nosokomialen Infektionen, Berlin, Germany ; Institut für Hygiene und Umweltmedizin, Charité - Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany
| | - Christine Geffers
- Nationales Referenzzentrum für die Surveillance von nosokomialen Infektionen, Berlin, Germany ; Institut für Hygiene und Umweltmedizin, Charité - Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany
| |
Collapse
|
41
|
Tserel L, Kolde R, Limbach M, Tretyakov K, Kasela S, Kisand K, Saare M, Vilo J, Metspalu A, Milani L, Peterson P. Age-related profiling of DNA methylation in CD8+ T cells reveals changes in immune response and transcriptional regulator genes. Sci Rep 2015; 5:13107. [PMID: 26286994 PMCID: PMC4541364 DOI: 10.1038/srep13107] [Citation(s) in RCA: 116] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 07/14/2015] [Indexed: 12/25/2022] Open
Abstract
Human ageing affects the immune system resulting in an overall decline in immunocompetence. Although all immune cells are affected during aging, the functional capacity of T cells is most influenced and is linked to decreased responsiveness to infections and impaired differentiation. We studied age-related changes in DNA methylation and gene expression in CD4+ and CD8+ T cells from younger and older individuals. We observed marked difference between T cell subsets, with increased number of methylation changes and higher methylome variation in CD8+ T cells with age. The majority of age-related hypermethylated sites were located at CpG islands of silent genes and enriched for repressive histone marks. Specifically, in CD8+ T cell subset we identified strong inverse correlation between methylation and expression levels in genes associated with T cell mediated immune response (LGALS1, IFNG, CCL5, GZMH, CCR7, CD27 and CD248) and differentiation (SATB1, TCF7, BCL11B and RUNX3). Our results thus suggest the link between age-related epigenetic changes and impaired T cell function.
Collapse
Affiliation(s)
- Liina Tserel
- Molecular Pathology, Institute of Biomedical and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Raivo Kolde
- Institute of Computer Science, University of Tartu, Tartu, Estonia
| | - Maia Limbach
- Molecular Pathology, Institute of Biomedical and Translational Medicine, University of Tartu, Tartu, Estonia
| | | | - Silva Kasela
- 1] Estonian Genome Center, University of Tartu, Tartu, Estonia [2] Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Kai Kisand
- Molecular Pathology, Institute of Biomedical and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Mario Saare
- Molecular Pathology, Institute of Biomedical and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Jaak Vilo
- Institute of Computer Science, University of Tartu, Tartu, Estonia
| | - Andres Metspalu
- 1] Estonian Genome Center, University of Tartu, Tartu, Estonia [2] Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Lili Milani
- Estonian Genome Center, University of Tartu, Tartu, Estonia
| | - Pärt Peterson
- Molecular Pathology, Institute of Biomedical and Translational Medicine, University of Tartu, Tartu, Estonia
| |
Collapse
|
42
|
Nevalainen T, Kananen L, Marttila S, Jylhä M, Hervonen A, Hurme M, Jylhävä J. Transcriptomic and epigenetic analyses reveal a gender difference in aging-associated inflammation: the Vitality 90+ study. AGE (DORDRECHT, NETHERLANDS) 2015; 37:9814. [PMID: 26188803 PMCID: PMC4506741 DOI: 10.1007/s11357-015-9814-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 07/06/2015] [Indexed: 06/01/2023]
Abstract
Aging is associated with a pro-inflammatory state, often referred to as inflammaging. The origin of the pro-inflammatory mediators and their role in the pathogenesis of the aging-associated diseases remain poorly understood. As aging is also associated with profound changes in the transcriptomic and epigenetic (e.g., DNA methylation) profiles of cells in the peripheral blood, we analyzed the correlation of these profiles with inflammaging using the "classical" marker interleukin-6 as an indicator. The analysis of the whole-genome peripheral blood mononuclear cell (PBMC) gene expression revealed 62 transcripts with expression levels that significantly correlated with the plasma interleukin-6 (IL-6) levels in men, whereas no correlations were observed in women. The Gene Ontology analysis of plasma IL-6-associated transcripts in men revealed processes that were linked to the inflammatory response. Additionally, an Ingenuity Pathway Analysis (IPA) pathway analysis identified Tec kinase signaling as an affected pathway and upstream regulator analysis predicted the activation of IL-10 transcript. DNA methylation was assessed using a HumanMethylation450 array. Seven genes with expression profiles that were associated with the plasma IL-6 levels in men were found to harbor CpG sites with methylation levels that were also associated with the IL-6 levels. Among these genes were IL1RN, CREB5, and FAIM3, which mapped to a network of inflammatory response genes. According to our results, inflammaging is manifested differently at the genomic level in nonagenarian men and women. Part of this difference seems to be of epigenetic origin. These differences point to the genomic regulation of inflammatory response and suggest that the gender-specific immune system dimorphism in older individuals could be accounted for, in part, by DNA methylation.
Collapse
Affiliation(s)
- T. Nevalainen
- />Department of Microbiology and Immunology, School of Medicine, University of Tampere, Tampere, Finland
- />Gerontology Research Center, Tampere, Finland
| | - L. Kananen
- />Department of Microbiology and Immunology, School of Medicine, University of Tampere, Tampere, Finland
- />Gerontology Research Center, Tampere, Finland
| | - S. Marttila
- />Department of Microbiology and Immunology, School of Medicine, University of Tampere, Tampere, Finland
- />Gerontology Research Center, Tampere, Finland
| | - M. Jylhä
- />Gerontology Research Center, Tampere, Finland
- />School of Health Sciences, University of Tampere, Tampere, Finland
| | - A. Hervonen
- />Gerontology Research Center, Tampere, Finland
- />School of Health Sciences, University of Tampere, Tampere, Finland
| | - M. Hurme
- />Department of Microbiology and Immunology, School of Medicine, University of Tampere, Tampere, Finland
- />Gerontology Research Center, Tampere, Finland
- />Fimlab Laboratories, Tampere, Finland
| | - J. Jylhävä
- />Department of Microbiology and Immunology, School of Medicine, University of Tampere, Tampere, Finland
- />Gerontology Research Center, Tampere, Finland
| |
Collapse
|
43
|
Developing Peripheral Blood Gene Expression-Based Diagnostic Tests for Coronary Artery Disease: a Review. J Cardiovasc Transl Res 2015; 8:372-80. [DOI: 10.1007/s12265-015-9641-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 06/10/2015] [Indexed: 12/16/2022]
|
44
|
Giefing-Kröll C, Berger P, Lepperdinger G, Grubeck-Loebenstein B. How sex and age affect immune responses, susceptibility to infections, and response to vaccination. Aging Cell 2015; 14:309-21. [PMID: 25720438 PMCID: PMC4406660 DOI: 10.1111/acel.12326] [Citation(s) in RCA: 505] [Impact Index Per Article: 50.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/16/2014] [Indexed: 12/13/2022] Open
Abstract
Do men die young and sick, or do women live long and healthy? By trying to explain the sexual dimorphism in life expectancy, both biological and environmental aspects are presently being addressed. Besides age-related changes, both the immune and the endocrine system exhibit significant sex-specific differences. This review deals with the aging immune system and its interplay with sex steroid hormones. Together, they impact on the etiopathology of many infectious diseases, which are still the major causes of morbidity and mortality in people at old age. Among men, susceptibilities toward many infectious diseases and the corresponding mortality rates are higher. Responses to various types of vaccination are often higher among women thereby also mounting stronger humoral responses. Women appear immune-privileged. The major sex steroid hormones exhibit opposing effects on cells of both the adaptive and the innate immune system: estradiol being mainly enhancing, testosterone by and large suppressive. However, levels of sex hormones change with age. At menopause transition, dropping estradiol potentially enhances immunosenescence effects posing postmenopausal women at additional, yet specific risks. Conclusively during aging, interventions, which distinctively consider the changing level of individual hormones, shall provide potent options in maintaining optimal immune functions.
Collapse
Affiliation(s)
- Carmen Giefing-Kröll
- Institute for Biomedical Aging Research of Innsbruck University; Innsbruck Austria
| | - Peter Berger
- Institute for Biomedical Aging Research of Innsbruck University; Innsbruck Austria
| | - Günter Lepperdinger
- Institute for Biomedical Aging Research of Innsbruck University; Innsbruck Austria
| | | |
Collapse
|
45
|
Reynolds LM, Ding J, Taylor JR, Lohman K, Soranzo N, de la Fuente A, Liu TF, Johnson C, Barr RG, Register TC, Donohue KM, Talor MV, Cihakova D, Gu C, Divers J, Siscovick D, Burke G, Post W, Shea S, Jacobs DR, Hoeschele I, McCall CE, Kritchevsky SB, Herrington D, Tracy RP, Liu Y. Transcriptomic profiles of aging in purified human immune cells. BMC Genomics 2015; 16:333. [PMID: 25898983 PMCID: PMC4417516 DOI: 10.1186/s12864-015-1522-4] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 04/10/2015] [Indexed: 01/08/2023] Open
Abstract
Background Transcriptomic studies hold great potential towards understanding the human aging process. Previous transcriptomic studies have identified many genes with age-associated expression levels; however, small samples sizes and mixed cell types often make these results difficult to interpret. Results Using transcriptomic profiles in CD14+ monocytes from 1,264 participants of the Multi-Ethnic Study of Atherosclerosis (aged 55–94 years), we identified 2,704 genes differentially expressed with chronological age (false discovery rate, FDR ≤ 0.001). We further identified six networks of co-expressed genes that included prominent genes from three pathways: protein synthesis (particularly mitochondrial ribosomal genes), oxidative phosphorylation, and autophagy, with expression patterns suggesting these pathways decline with age. Expression of several chromatin remodeler and transcriptional modifier genes strongly correlated with expression of oxidative phosphorylation and ribosomal protein synthesis genes. 17% of genes with age-associated expression harbored CpG sites whose degree of methylation significantly mediated the relationship between age and gene expression (p < 0.05). Lastly, 15 genes with age-associated expression were also associated (FDR ≤ 0.01) with pulse pressure independent of chronological age. Comparing transcriptomic profiles of CD14+ monocytes to CD4+ T cells from a subset (n = 423) of the population, we identified 30 age-associated (FDR < 0.01) genes in common, while larger sets of differentially expressed genes were unique to either T cells (188 genes) or monocytes (383 genes). At the pathway level, a decline in ribosomal protein synthesis machinery gene expression with age was detectable in both cell types. Conclusions An overall decline in expression of ribosomal protein synthesis genes with age was detected in CD14+ monocytes and CD4+ T cells, demonstrating that some patterns of aging are likely shared between different cell types. Our findings also support cell-specific effects of age on gene expression, illustrating the importance of using purified cell samples for future transcriptomic studies. Longitudinal work is required to establish the relationship between identified age-associated genes/pathways and aging-related diseases. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1522-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lindsay M Reynolds
- Department of Epidemiology and Prevention, Division of Public Health Sciences, Wake Forest School of Medicine, Winston-Salem, North Carolina, 27157, USA.
| | - Jingzhong Ding
- Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, 27157, USA.
| | - Jackson R Taylor
- Department of Gerontology and Geriatric Medicine, J. Paul Sticht Center on Aging, Wake Forest School of Medicine, Winston-Salem, North Carolina, 27157, USA.
| | - Kurt Lohman
- Department of Biostatistical Sciences, Division of Public Health Sciences, Wake Forest School of Medicine, Winston-Salem, North Carolina, 27157, USA.
| | | | - Alberto de la Fuente
- FBN, Leibniz Institute for Farm Animal Biology, Genetics and Biometry, Mecklenburg-Vorpommern, Germany.
| | - Tie Fu Liu
- Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, 27157, USA.
| | - Craig Johnson
- Departments of Medicine and Epidemiology, Cardiovascular Health Research Unit, University of Washington, Seattle, Washington, 98115, USA.
| | - R Graham Barr
- Departments of Medicine and Epidemiology, Columbia University, New York, New York, 10032, USA.
| | - Thomas C Register
- Department of Pathology, Wake Forest School of Medicine, Winston-Salem, North Carolina, 27157, USA.
| | - Kathleen M Donohue
- Departments of Medicine and Epidemiology, Columbia University, New York, New York, 10032, USA.
| | - Monica V Talor
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland, 21205, USA.
| | - Daniela Cihakova
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland, 21205, USA.
| | - Charles Gu
- Division of Biostatistics, Washington University School of Medicine, St. Louis, Missouri, 63110, USA.
| | - Jasmin Divers
- Department of Biostatistical Sciences, Division of Public Health Sciences, Wake Forest School of Medicine, Winston-Salem, North Carolina, 27157, USA.
| | - David Siscovick
- New York Academy of Medicine, New York, New York, 10029, USA.
| | - Gregory Burke
- Department of Epidemiology and Prevention, Division of Public Health Sciences, Wake Forest School of Medicine, Winston-Salem, North Carolina, 27157, USA.
| | - Wendy Post
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland, 21205, USA.
| | - Steven Shea
- Departments of Medicine and Epidemiology, Columbia University, New York, New York, 10032, USA.
| | - David R Jacobs
- Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minneapolis, Minnesota, 55454, USA.
| | - Ina Hoeschele
- Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, Virginia, 24061, USA.
| | - Charles E McCall
- Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, 27157, USA. .,Department of Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, 27157, USA.
| | - Stephen B Kritchevsky
- Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, 27157, USA. .,Department of Gerontology and Geriatric Medicine, J. Paul Sticht Center on Aging, Wake Forest School of Medicine, Winston-Salem, North Carolina, 27157, USA.
| | - David Herrington
- Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, 27157, USA.
| | - Russell P Tracy
- Department of Pathology, University of Vermont, Colchester, Vermont, 05446, USA.
| | - Yongmei Liu
- Department of Epidemiology and Prevention, Division of Public Health Sciences, Wake Forest School of Medicine, Winston-Salem, North Carolina, 27157, USA.
| |
Collapse
|
46
|
Marttila S, Kananen L, Häyrynen S, Jylhävä J, Nevalainen T, Hervonen A, Jylhä M, Nykter M, Hurme M. Ageing-associated changes in the human DNA methylome: genomic locations and effects on gene expression. BMC Genomics 2015; 16:179. [PMID: 25888029 PMCID: PMC4404609 DOI: 10.1186/s12864-015-1381-z] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Accepted: 02/21/2015] [Indexed: 01/11/2023] Open
Abstract
Background Changes in DNA methylation are among the mechanisms contributing to the ageing process. We sought to identify ageing-associated DNA methylation changes at single-CpG-site resolution in blood leukocytes and to ensure that the observed changes were not due to differences in the proportions of leukocytes. The association between DNA methylation changes and gene expression levels was also investigated in the same individuals. Results We identified 8540 high-confidence ageing-associated CpG sites, 46% of which were hypermethylated in nonagenarians. The hypermethylation-associated genes belonged to a common category: they were predicted to be regulated by a common group of transcription factors and were enriched in a related set of GO terms and canonical pathways. Conversely, for the hypomethylation-associated genes only a limited set of GO terms and canonical pathways were identified. Among the 8540 CpG sites associated with ageing, methylation level of 377 sites was also associated with gene expression levels. These genes were enriched in GO terms and canonical pathways associated with immune system functions, particularly phagocytosis. Conclusions We find that certain ageing-associated immune-system impairments may be mediated via changes in DNA methylation. The results also imply that ageing-associated hypo- and hypermethylation are distinct processes: hypermethylation could be caused by programmed changes, whereas hypomethylation could be the result of environmental and stochastic processes. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1381-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Saara Marttila
- Department of Microbiology and Immunology, School of Medicine, University of Tampere, Tampere, Finland. .,Gerontology Research Center, Tampere, Finland.
| | - Laura Kananen
- Department of Microbiology and Immunology, School of Medicine, University of Tampere, Tampere, Finland. .,Gerontology Research Center, Tampere, Finland.
| | - Sergei Häyrynen
- Institute of Biosciences and Medical Technology, University of Tampere, Tampere, Finland.
| | - Juulia Jylhävä
- Department of Microbiology and Immunology, School of Medicine, University of Tampere, Tampere, Finland. .,Gerontology Research Center, Tampere, Finland.
| | - Tapio Nevalainen
- Department of Microbiology and Immunology, School of Medicine, University of Tampere, Tampere, Finland. .,Gerontology Research Center, Tampere, Finland.
| | - Antti Hervonen
- Gerontology Research Center, Tampere, Finland. .,School of Health Sciences, University of Tampere, Tampere, Finland.
| | - Marja Jylhä
- Gerontology Research Center, Tampere, Finland. .,School of Health Sciences, University of Tampere, Tampere, Finland.
| | - Matti Nykter
- Institute of Biosciences and Medical Technology, University of Tampere, Tampere, Finland.
| | - Mikko Hurme
- Department of Microbiology and Immunology, School of Medicine, University of Tampere, Tampere, Finland. .,Gerontology Research Center, Tampere, Finland. .,Fimlab Laboratories, Tampere, Finland.
| |
Collapse
|
47
|
Identification of a prognostic signature for old-age mortality by integrating genome-wide transcriptomic data with the conventional predictors: the Vitality 90+ Study. BMC Med Genomics 2014; 7:54. [PMID: 25213707 PMCID: PMC4167306 DOI: 10.1186/1755-8794-7-54] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Accepted: 09/08/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Prediction models for old-age mortality have generally relied upon conventional markers such as plasma-based factors and biophysiological characteristics. However, it is unknown whether the existing markers are able to provide the most relevant information in terms of old-age survival or whether predictions could be improved through the integration of whole-genome expression profiles. METHODS We assessed the predictive abilities of survival models containing only conventional markers, only gene expression data or both types of data together in a Vitality 90+ study cohort consisting of n = 151 nonagenarians. The all-cause death rate was 32.5% (49 of 151 individuals), and the median follow-up time was 2.55 years. RESULTS Three different feature selection models, the penalized Lasso and Ridge regressions and the C-index boosting algorithm, were used to test the genomic data. The Ridge regression model incorporating both the conventional markers and transcripts outperformed the other models. The multivariate Cox regression model was used to adjust for the conventional mortality prediction markers, i.e., the body mass index, frailty index and cell-free DNA level, revealing that 331 transcripts were independently associated with survival. The final mortality-predicting transcriptomic signature derived from the Ridge regression model was mapped to a network that identified nuclear factor kappa beta (NF-κB) as a central node. CONCLUSIONS Together with the loss of physiological reserves, the transcriptomic predictors centered around NF-κB underscored the role of immunoinflammatory signaling, the control of the DNA damage response and cell cycle, and mitochondrial functions as the key determinants of old-age mortality.
Collapse
|
48
|
Markle JG, Fish EN. SeXX matters in immunity. Trends Immunol 2013; 35:97-104. [PMID: 24239225 DOI: 10.1016/j.it.2013.10.006] [Citation(s) in RCA: 263] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Revised: 10/10/2013] [Accepted: 10/14/2013] [Indexed: 11/19/2022]
Abstract
The significant contributions of sex to an immune response, specifically in the context of the sex bias observed in susceptibility to infectious and autoimmune diseases and their pathogenesis, have until recently, largely been ignored and understudied. This review highlights recent findings related to sex-specific factors that provide new insights into how sex determines the transcriptome, the microbiome, and the consequent immune cell functional profile to define an immune response. Unquestionably, accumulating data confirm that sex matters and must be a consideration when decisions around therapeutic intervention strategies are developed.
Collapse
Affiliation(s)
- J G Markle
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York NY, 10065, USA
| | - E N Fish
- Toronto General Research Institute, University Health Network, Toronto, Canada; Department of Immunology, University of Toronto, Toronto, Canada.
| |
Collapse
|