1
|
Shimizu R, Sakamoto J, Adhitama N, Fujikawa M, Religia P, Kamei Y, Watanabe H, Kato Y. Spatiotemporal control of transgene expression using an infrared laser in the crustacean Daphnia magna. Sci Rep 2024; 14:25696. [PMID: 39465323 PMCID: PMC11514169 DOI: 10.1038/s41598-024-77458-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 10/22/2024] [Indexed: 10/29/2024] Open
Abstract
The crustacean Daphnia magna is an emerging model for ecological and toxicological genomics. However, the lack of methods for spatial and temporal control of gene expression has impaired the elucidation of molecular mechanisms underlying responses to environments in vivo. Here we report local activation of the hsp70 promoter-driven gene cassette in D. magna by the infrared laser-evoked gene operator (IR-LEGO), a method for heating the target cells with infrared irradiation. We identified the heat-inducible promoter upstream of the D. magna hsp70-A gene. Using this promoter, we generated a transgenic Daphnia harboring the heat-shock responsive GFP reporter gene and confirmed that the GFP gene responds to heat treatment not only in juveniles and adults but also in embryos. We collected embryos from the reporter line and irradiated four different regions of interest in the embryos: a proximal region of the third thoracic segment, a part of the midline, a second maxilla, and a distal region of the endopodite of the second antenna, all of which increased GFP fluorescence with an infrared laser. Our results suggest that the IR-LEGO method is useful for spatial and temporal control of gene expression and would advance the functional genomics in D. magna.
Collapse
Grants
- 22NIBB505, 21-405, 20-509, 19-511 NIBB Collaborative Research Project for Integrative Imaging
- 23K21753, 21H03602 Japan Society for the Promotion of Science
- 24H01367 , 23K23964, 23K18048, 22H05598, 22H02701, 20H04923, 19H05423 Japan Society for the Promotion of Science
Collapse
Affiliation(s)
- Rina Shimizu
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, Japan
| | - Joe Sakamoto
- Optics and Imaging Facility, National Institute for Basic Biology, Okazaki, Japan
- Biophotonics Research Group, Exploratory Research Center on Life and Living Systems (ExCELLS), Okazaki, Aichi, Japan
- Division of Biophotonics, National Institute for Physiological Sciences, Okazaki, Aichi, Japan
| | - Nikko Adhitama
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, Japan
- Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Suita, Osaka, Japan
| | - Mana Fujikawa
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, Japan
| | - Pijar Religia
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, Japan
| | - Yasuhiro Kamei
- Optics and Imaging Facility, National Institute for Basic Biology, Okazaki, Japan
| | - Hajime Watanabe
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, Japan
- Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Suita, Osaka, Japan
| | - Yasuhiko Kato
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, Japan.
- Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Suita, Osaka, Japan.
| |
Collapse
|
2
|
Folgueira M, Clarke JDW. Telencephalic eversion in embryos and early larvae of four teleost species. Evol Dev 2024; 26:e12474. [PMID: 38425004 DOI: 10.1111/ede.12474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/13/2024] [Accepted: 02/15/2024] [Indexed: 03/02/2024]
Abstract
The telencephalon of ray-finned fishes undergoes eversion, which is very different to the evagination that occurs in most other vertebrates. Ventricle morphogenesis is key to build an everted telencephalon. Thus, here we use the apical marker zona occludens 1 to understand ventricle morphology, extension of the tela choroidea and the eversion process during early telencephalon development of four teleost species: giant danio (Devario aequipinnatus), blind cavefish (Astyanax mexicanus), medaka (Oryzias latipes), and paradise fish (Macroposus opercularis). In addition, by using immunohistochemistry against tubulin and calcium-binding proteins, we analyze the general morphology of the telencephalon, showing changes in the location and extension of the olfactory bulb and other telencephalic regions from 2 to 5 days of development. We also analyze the impact of abnormal eye and telencephalon morphogenesis on eversion, showing that cyclops mutants do undergo eversion despite very dramatic abnormal eye morphology. We discuss how the formation of the telencephalic ventricle in teleost fish, with its characteristic shape, is a crucial event during eversion.
Collapse
Affiliation(s)
- Mónica Folgueira
- Departamento de Bioloxía, Facultade de Ciencias, Centro Interdisciplinar de Química e Bioloxía (CICA), Universidade da Coruña, A Coruña, Spain
| | - Jonathan D W Clarke
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, UK
| |
Collapse
|
3
|
Kayo D, Kimura S, Yamazaki T, Naruse K, Takeuchi H, Ansai S. Spatio-temporal control of targeted gene expression in combination with CRISPR/Cas and Tet-On systems in Medaka. Genesis 2024; 62:e23519. [PMID: 37226848 DOI: 10.1002/dvg.23519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/13/2023] [Accepted: 05/08/2023] [Indexed: 05/26/2023]
Abstract
Spatial and temporal control of transgene expression is a powerful approach to understand gene functions in specific cells and tissues. The Tet-On system is a robust tool for controlling transgene expression spatially and temporally; however, few studies have examined whether this system can be applied to postembryonic stages of Medaka (Oryzias latipes) or other fishes. Here, we first improved a basal promoter sequence on the donor vector for a nonhomologous end joining (NHEJ)-based knock-in (KI) system. Next, using transgenic Medaka for establishing the Tet-On system by KI, we demonstrated that doxycycline administration for four or more days by feeding can be a stable and efficient method to achieve expression of the transduced reporter gene in adult fish. From these analyses, we propose an optimized approach for a spatio-temporal gene-expression system in the adult stage of Medaka and other small fishes.
Collapse
Affiliation(s)
- Daichi Kayo
- Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi, Japan
| | - Sayaka Kimura
- Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi, Japan
| | - Touko Yamazaki
- Laboratory of Bioresources, National Institute for Basic Biology, Okazaki, Aichi, Japan
| | - Kiyoshi Naruse
- Laboratory of Bioresources, National Institute for Basic Biology, Okazaki, Aichi, Japan
| | - Hideaki Takeuchi
- Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi, Japan
| | - Satoshi Ansai
- Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi, Japan
- Laboratory of Bioresources, National Institute for Basic Biology, Okazaki, Aichi, Japan
| |
Collapse
|
4
|
Watanabe Y, Katsumura E, Domon T, Ishikawa Y, Oguri R, Takashima M, Meng Q, Kinoshita M, Hashimoto H, Hitomi K. Establishment of transgenic epithelium-specific Cre-recombinase driving medaka (Oryzias latipes) by homology repair mediated knock-in. Biosci Biotechnol Biochem 2023; 87:1285-1294. [PMID: 37607777 DOI: 10.1093/bbb/zbad116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 08/17/2023] [Indexed: 08/24/2023]
Abstract
Deletion of gene expression in the target tissues and cells is an effective strategy for elucidating the physiological functions of the protein of interest. For tissue-specific and/or inducible gene deletion, the Cre-loxP system has been widely used in various model organisms including medaka (Oryzias latipes). The epithelium is the key tissue, locating at the outermost area and playing a role in barrier to external stimuli. Despite a large genetic toolbox developed in medaka, there is no available Cre-driver line that works in an epithelium-specific manner. Here, we established epithelium-specific Cre-driver lines in medaka using a homology-directed repair mediated knock-in approach with CRISPR/Cas9, targeting each of periplakin and keratin genes. We show that Cre-recombinase is expressed exclusively in the epithelium in the knock-in lines and that it efficiently and specifically induces recombination in the tissues. These Cre-driver lines are useful for studying the functions of proteins expressed in the epithelium.
Collapse
Affiliation(s)
- Yuko Watanabe
- Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Japan
| | - Eri Katsumura
- Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Japan
| | - Tatsuki Domon
- Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Japan
| | - Yuta Ishikawa
- Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Japan
| | - Rina Oguri
- Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Japan
| | - Minami Takashima
- Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Japan
| | - Qi Meng
- Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Japan
| | | | | | - Kiyotaka Hitomi
- Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Japan
| |
Collapse
|
5
|
Kawasaki T, Fujimori KE, Imada J, Yuba S. Analysis of medaka GAP43 gene promoter activity in transgenic lines. Gene 2023:147590. [PMID: 37364694 DOI: 10.1016/j.gene.2023.147590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 06/03/2023] [Accepted: 06/21/2023] [Indexed: 06/28/2023]
Abstract
We produced transgenic medaka fish lines that mimicked the expression of the GAP43 gene. Fish lines with the proximal 2-kilobase (kb) 5'-untranslated region (UTR) as the expression promoter specifically expressed enhanced green fluorescent protein (EGFP) in neural tissues, such as the brain, spinal cord, and peripheral nerves, and its expression decreased with growth, but persisted until adulthood. A functional analysis of the promoter using partially deleted UTRs revealed that functions related to neural tissue-specific promoter activity were widely distributed in the region upstream of the proximal 400-b. Furthermore, the distal half of the 2-kb UTR contributed to expression throughout the brain, while the region 400-b upstream of the proximal 600-b was strongly associated with expression in specific areas, such as the telencephalon. In addition, a region from 957 to 557 b upstream of the translation initiation site was important for the long-term maintenance of promoter activity into adulthood. Among the transcription factors with recognition sequences in this region, Sp1 and CREB1 have been suggested to play important roles in the GAP43 promoter expression characteristics, such as strong expression in the telencephalon and long-term maintenance of expression.
Collapse
Affiliation(s)
- Takashi Kawasaki
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Midorigaoka, Ikeda, Osaka, 563-8577, Japan
| | - Kazuhiro E Fujimori
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Higashi, Tsukuba, Ibaraki 305-0046, Japan.
| | - Junko Imada
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Midorigaoka, Ikeda, Osaka, 563-8577, Japan
| | - Shunsuke Yuba
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Midorigaoka, Ikeda, Osaka, 563-8577, Japan.
| |
Collapse
|
6
|
Suzuki M, Nukazuka A, Kamei Y, Yuba S, Oda Y, Takagi S. Mosaic gene expression analysis of semaphorin-plexin interactions in Caenorhabditis elegans using the IR-LEGO single-cell gene induction system. Dev Growth Differ 2022; 64:230-242. [PMID: 35596523 DOI: 10.1111/dgd.12793] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 02/17/2022] [Accepted: 03/14/2022] [Indexed: 12/16/2022]
Abstract
Genetic mosaic analysis is a powerful means of addressing the sites of gene action in multicellular organisms. In conventional genetic analysis, the generation of desired mosaic patterns is difficult to control due to the randomness of generating the genetic mosaic which often renders the analysis laborious and time consuming. The infrared laser-evoked gene operator (IR-LEGO) microscope system facilitates genetic mosaic analysis by enabling gene induction in targeted single cells in a living organism. However, the level of gene induction is not controllable due to the usage of a heat-shock promoter. Here, we applied IR-LEGO to examine the cell-cell interactions mediated by semaphoring-plexin signaling in Caenorhabditis elegans by inducing wild-type semaphorin/plexin in single cells within the population of mutant cells lacking the relevant proteins. We found that the cell contact-dependent termination of the extension of vulval precursor cells is elicited by the forward signaling mediated by the semaphorin receptor, PLX-1, but not by the reverse signaling via the transmembrane semaphorin, SMP-1. By utilizing Cre/loxP recombination coupled with the IR-LEGO system to induce SMP-1 at a physiological level, we found that SMP-1 interacts with PLX-1 only in trans upon contact between vulval precursor cells. In contrast, when overexpressed, SMP-1 exhibits the ability to cis-interact with PLX-1 on a single cell. These results indicate that mosaic analysis with IR-LEGO, especially when combined with an in vivo recombination system, efficiently complements conventional methods.
Collapse
Affiliation(s)
- Motoshi Suzuki
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Aichi, Japan
| | - Akira Nukazuka
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Aichi, Japan
| | - Yasuhiro Kamei
- Laboratory for Biothermology, National Institute of Basic Biology, Okazaki, Aichi, Japan
| | - Shunsuke Yuba
- Research Institute for Cell Engineering, National Institute of Advanced and Industrial Science and Technology, Ikeda, Osaka, Japan
| | - Yoichi Oda
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Aichi, Japan
| | - Shin Takagi
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Aichi, Japan
| |
Collapse
|
7
|
Chowdhury K, Lin S, Lai SL. Comparative Study in Zebrafish and Medaka Unravels the Mechanisms of Tissue Regeneration. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.783818] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Tissue regeneration has been in the spotlight of research for its fascinating nature and potential applications in human diseases. The trait of regenerative capacity occurs diversely across species and tissue contexts, while it seems to decline over evolution. Organisms with variable regenerative capacity are usually distinct in phylogeny, anatomy, and physiology. This phenomenon hinders the feasibility of studying tissue regeneration by directly comparing regenerative with non-regenerative animals, such as zebrafish (Danio rerio) and mice (Mus musculus). Medaka (Oryzias latipes) is a fish model with a complete reference genome and shares a common ancestor with zebrafish approximately 110–200 million years ago (compared to 650 million years with mice). Medaka shares similar features with zebrafish, including size, diet, organ system, gross anatomy, and living environment. However, while zebrafish regenerate almost every organ upon experimental injury, medaka shows uneven regenerative capacity. Their common and distinct biological features make them a unique platform for reciprocal analyses to understand the mechanisms of tissue regeneration. Here we summarize current knowledge about tissue regeneration in these fish models in terms of injured tissues, repairing mechanisms, available materials, and established technologies. We further highlight the concept of inter-species and inter-organ comparisons, which may reveal mechanistic insights and hint at therapeutic strategies for human diseases.
Collapse
|
8
|
Kawasaki T, Shimizu Y. Carcinogenesis Models Using Small Fish. Chem Pharm Bull (Tokyo) 2021; 69:962-969. [PMID: 34602577 DOI: 10.1248/cpb.c21-00295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Experimental animals are indispensable in life science-related research, including cancer studies. After rats and mice, small fishes, such as zebrafish and medaka, are the second most frequently used model species. Fish models have some advantageous physical characteristics that make them suitable for research, including their small size, some transparency, genetic manipulability, ease of handling, and highly ortholog correspondence with humans. This review introduces technological advances in carcinogenesis model production using small fish. Carcinogenesis model production begins with chemical carcinogenesis, followed by mutagenesis. Gene transfer technology has made it possible to incorporate various mechanisms that act on cancer-related genes in individuals. For example, scientists may now spatiotemporally control gene expression in a single fish through methods including the localization of an expression site via a tissue-specific promoter and expression control using light, heat, or a chemical substance. In addition, genome editing technology is realizing more specific and more efficient gene disruption than conventional mutagenesis, in which the disruption of the gene of interest depends on chance. These technological advances have improved animal models and will soon create carcinogenesis models that better mimic human pathology. We conclude by discussing future expectations for cancer research using small fish.
Collapse
Affiliation(s)
- Takashi Kawasaki
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST)
| | - Yuki Shimizu
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST)
| |
Collapse
|
9
|
Hosoya O, Chung M, Ansai S, Takeuchi H, Miyaji M. A modified Tet-ON system minimizing leaky expression for cell-type specific gene induction in medaka fish. Dev Growth Differ 2021; 63:397-405. [PMID: 34375435 DOI: 10.1111/dgd.12743] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/28/2021] [Accepted: 07/27/2021] [Indexed: 12/18/2022]
Abstract
The Tet-ON system is an important molecular tool for temporally and spatially-controlled inducible gene expression. Here, we developed a Tet-ON system to induce transgene expression specifically in the rod photoreceptors of medaka fish. Our modified reverse tetracycline-controlled transcriptional transactivator (rtTAm) with 5 amino acid substitutions dramatically improved the leakiness of the transgene in medaka fish. We generated a transgenic line carrying a self-reporting vector with the rtTAm gene driven by the Xenopus rhodopsin promoter and a tetracycline response element (TRE) followed by the green fluorescent protein (GFP) gene. We demonstrated that GFP fluorescence was restricted to the rod photoreceptors in the presence of doxycycline in larval fish (9 days post-fertilization). The GFP fluorescence intensity was enhanced with longer durations of doxycycline treatment up to 72 h and in a dose-dependent manner (5-45 μg/ml). These findings demonstrate that the Tet-ON system using rtTAm allows for spatiotemporal control of transgene expression, at least in the rod photoreceptors, in medaka fish.
Collapse
Affiliation(s)
- Osamu Hosoya
- Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Myung Chung
- Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, Japan.,Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| | - Satoshi Ansai
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Hideaki Takeuchi
- Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan.,Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Mary Miyaji
- Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| |
Collapse
|
10
|
Takanezawa S, Saitou T, Imamura T. Wide field light-sheet microscopy with lens-axicon controlled two-photon Bessel beam illumination. Nat Commun 2021; 12:2979. [PMID: 34016994 PMCID: PMC8137944 DOI: 10.1038/s41467-021-23249-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 04/08/2021] [Indexed: 11/09/2022] Open
Abstract
Two-photon excitation can lower phototoxicity and improve penetration depth, but its narrow excitation range restricts its applications in light-sheet microscopy. Here, we propose simple illumination optics, a lens-axicon triplet composed of an axicon and two convex lenses, to generate longer extent Bessel beams. This unit can stretch the beam full width at half maximum of 600-1000 μm with less than a 4-μm waist when using a 10× illumination lens. A two-photon excitation digital scanned light-sheet microscope possessing this range of field of view and ~2-3-μm axial resolution is constructed and used to analyze the cellular dynamics over the whole body of medaka fish. We demonstrate long-term time-lapse observations over several days and high-speed recording with ~3 mm3 volume per 4 s of the embryos. Our system is minimal and suppresses laser power loss, which can broaden applications of two-photon excitation in light-sheet microscopy.
Collapse
Affiliation(s)
- Sota Takanezawa
- Department of Molecular Medicine for Pathogenesis, Graduate School of Medicine, Ehime University, Matsuyama, Japan
| | - Takashi Saitou
- Department of Molecular Medicine for Pathogenesis, Graduate School of Medicine, Ehime University, Matsuyama, Japan.
- Translational Research Center, Ehime University Hospital, Toon, Japan.
| | - Takeshi Imamura
- Department of Molecular Medicine for Pathogenesis, Graduate School of Medicine, Ehime University, Matsuyama, Japan
- Translational Research Center, Ehime University Hospital, Toon, Japan
| |
Collapse
|
11
|
He S, Tian Y, Feng S, Wu Y, Shen X, Chen K, He Y, Sun Q, Li X, Xu J, Wen Z, Qu JY. In vivo single-cell lineage tracing in zebrafish using high-resolution infrared laser-mediated gene induction microscopy. eLife 2020; 9:e52024. [PMID: 31904340 PMCID: PMC7018510 DOI: 10.7554/elife.52024] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 01/04/2020] [Indexed: 12/15/2022] Open
Abstract
Heterogeneity broadly exists in various cell types both during development and at homeostasis. Investigating heterogeneity is crucial for comprehensively understanding the complexity of ontogeny, dynamics, and function of specific cell types. Traditional bulk-labeling techniques are incompetent to dissect heterogeneity within cell population, while the new single-cell lineage tracing methodologies invented in the last decade can hardly achieve high-fidelity single-cell labeling and long-term in-vivo observation simultaneously. In this work, we developed a high-precision infrared laser-evoked gene operator heat-shock system, which uses laser-induced CreERT2 combined with loxP-DsRedx-loxP-GFP reporter to achieve precise single-cell labeling and tracing. In vivo study indicated that this system can precisely label single cell in brain, muscle and hematopoietic system in zebrafish embryo. Using this system, we traced the hematopoietic potential of hemogenic endothelium (HE) in the posterior blood island (PBI) of zebrafish embryo and found that HEs in the PBI are heterogeneous, which contains at least myeloid unipotent and myeloid-lymphoid bipotent subtypes.
Collapse
Affiliation(s)
- Sicong He
- Department of Electronic and Computer EngineeringThe Hong Kong University of Science and TechnologyKowloonChina
- State Key Laboratory of Molecular NeuroscienceThe Hong Kong University of Science and TechnologyKowloonChina
- Center of Systems Biology and Human HealthThe Hong Kong University of Science and TechnologyKowloonChina
| | - Ye Tian
- State Key Laboratory of Molecular NeuroscienceThe Hong Kong University of Science and TechnologyKowloonChina
- Center of Systems Biology and Human HealthThe Hong Kong University of Science and TechnologyKowloonChina
- Division of Life ScienceThe Hong Kong University of Science and TechnologyKowloonChina
| | - Shachuan Feng
- State Key Laboratory of Molecular NeuroscienceThe Hong Kong University of Science and TechnologyKowloonChina
- Center of Systems Biology and Human HealthThe Hong Kong University of Science and TechnologyKowloonChina
- Division of Life ScienceThe Hong Kong University of Science and TechnologyKowloonChina
| | - Yi Wu
- State Key Laboratory of Molecular NeuroscienceThe Hong Kong University of Science and TechnologyKowloonChina
- Center of Systems Biology and Human HealthThe Hong Kong University of Science and TechnologyKowloonChina
- Division of Life ScienceThe Hong Kong University of Science and TechnologyKowloonChina
| | - Xinwei Shen
- Department of MathematicsThe Hong Kong University of Science and TechnologyKowloonChina
| | - Kani Chen
- Department of MathematicsThe Hong Kong University of Science and TechnologyKowloonChina
| | - Yingzhu He
- Department of Electronic and Computer EngineeringThe Hong Kong University of Science and TechnologyKowloonChina
- State Key Laboratory of Molecular NeuroscienceThe Hong Kong University of Science and TechnologyKowloonChina
- Center of Systems Biology and Human HealthThe Hong Kong University of Science and TechnologyKowloonChina
| | - Qiqi Sun
- Department of Electronic and Computer EngineeringThe Hong Kong University of Science and TechnologyKowloonChina
- State Key Laboratory of Molecular NeuroscienceThe Hong Kong University of Science and TechnologyKowloonChina
- Center of Systems Biology and Human HealthThe Hong Kong University of Science and TechnologyKowloonChina
| | - Xuesong Li
- Department of Electronic and Computer EngineeringThe Hong Kong University of Science and TechnologyKowloonChina
- State Key Laboratory of Molecular NeuroscienceThe Hong Kong University of Science and TechnologyKowloonChina
- Center of Systems Biology and Human HealthThe Hong Kong University of Science and TechnologyKowloonChina
| | - Jin Xu
- Division of Cell, Developmental and Integrative Biology, School of MedicineSouth China University of TechnologyGuangzhouChina
| | - Zilong Wen
- State Key Laboratory of Molecular NeuroscienceThe Hong Kong University of Science and TechnologyKowloonChina
- Center of Systems Biology and Human HealthThe Hong Kong University of Science and TechnologyKowloonChina
- Division of Life ScienceThe Hong Kong University of Science and TechnologyKowloonChina
| | - Jianan Y Qu
- Department of Electronic and Computer EngineeringThe Hong Kong University of Science and TechnologyKowloonChina
- State Key Laboratory of Molecular NeuroscienceThe Hong Kong University of Science and TechnologyKowloonChina
- Center of Systems Biology and Human HealthThe Hong Kong University of Science and TechnologyKowloonChina
| |
Collapse
|
12
|
Tonoyama Y, Tsukada M, Imai Y, Sanada M, Aota S, Oka G, Sugiura S, Hori N, Kawachi H, Shimizu Y, Shimizu N. Establishment of a quantitative in vivo method for estimating adipose tissue volumes and the effects of dietary soy sauce oil on adipogenesis in medaka, Oryzias latipes. PLoS One 2018; 13:e0205888. [PMID: 30335858 PMCID: PMC6193695 DOI: 10.1371/journal.pone.0205888] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 10/03/2018] [Indexed: 11/25/2022] Open
Abstract
Adipose tissue, which is conserved in higher eukaryotes, plays central roles in controlling the body’s energy balance, including excess energy storage and energy expenditure during starvation. In adipogenesis, intranuclear receptor, peroxisome proliferator–activated receptor gamma (PPARγ) is a key molecule, and PPARγ agonists can promote adipogenesis. Many studies on the in vitro screening of PPARγ agonists with compounds derived from various materials have been reported; however, in vivo assays for quick examination of these feeding effects have not been established. In this study, we developed a technique using a lipophilic fluorescent reagent, Nile red to quantitatively estimate the adipose tissue volumes by using Japanese rice fish, medaka (Oryzias latipes) and studied effects of dietary soy sauce oil (SSO), which is a discarded by-product from Japanese traditional food and is known to have PPARγ-agonistic activity, on adipogenesis. We found that SSO feeding increased the adipose tissue volumes, and the expression levels of adipogenesis-related genes increased in these medaka larvae. These results suggest that SSO feeding increases the adipose tissue volumes through adipogenesis promotion by PPARγ-agonistic activity in medaka, and medaka is a powerful model for studying adipogenesis. Furthermore, our study also demonstrates the availability of SSO as a dietary additive for farmed fish.
Collapse
Affiliation(s)
- Yasuhiro Tonoyama
- Graduate School of Bioscience, Nagahama Institute for Bioscience and Technology, Nagahama, Shiga, Japan
- * E-mail: (YT); (HK)
| | - Masaki Tsukada
- Graduate School of Bioscience, Nagahama Institute for Bioscience and Technology, Nagahama, Shiga, Japan
| | - Yoshimasa Imai
- Graduate School of Bioscience, Nagahama Institute for Bioscience and Technology, Nagahama, Shiga, Japan
| | - Matoki Sanada
- Graduate School of Bioscience, Nagahama Institute for Bioscience and Technology, Nagahama, Shiga, Japan
| | - Syota Aota
- Graduate School of Bioscience, Nagahama Institute for Bioscience and Technology, Nagahama, Shiga, Japan
| | - Gouhei Oka
- Division of admission Center, Nagahama Institute for Bioscience and Technology, Nagahama, Shiga, Japan
| | - Shozo Sugiura
- School of Environmental Sciences, The University of Shiga Prefecture, Hikone, Shiga, Japan
| | - Nobuaki Hori
- Division of Research Management and External Cooperation, Nagahama Institute for Bioscience and Technology, Nagahama, Shiga, Japan
| | - Hiroyuki Kawachi
- Graduate School of Bioscience, Nagahama Institute for Bioscience and Technology, Nagahama, Shiga, Japan
- * E-mail: (YT); (HK)
| | - Yoshiko Shimizu
- Faculty of Health Sciences, Kyorin University, Mitaka, Tokyo, Japan
| | - Nobuyoshi Shimizu
- Graduate School of Bioscience, Nagahama Institute for Bioscience and Technology, Nagahama, Shiga, Japan
| |
Collapse
|
13
|
A Collection of Transgenic Medaka Strains for Efficient Site-Directed Transgenesis Mediated by phiC31 Integrase. G3-GENES GENOMES GENETICS 2018; 8:2585-2593. [PMID: 29848622 PMCID: PMC6071608 DOI: 10.1534/g3.118.200130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Genetic analysis is facilitated by the efficient production of transgenic strains expressing a DNA of interest as a single copy at a designated chromosomal location. However, technical progress toward this goal in medaka fish (Oryzias latipes), a vertebrate model organism, has been slow. It is well known that phiC31 integrase enables efficient site-directed transgenesis by catalyzing the recombination of an attP DNA motif in a host genome with an attB motif in a targeting vector. This system was pioneered in medaka using the Sleeping Beauty transposon system, and the attP site was established at three chromosomal locations. However, this number appeared insufficient with regard to genetic linkage between the attP-landing site and a genetically modified locus of interest. Here, to establish a collection of transgenic strains of medaka, we introduced an attP motif into the medaka genome using the Ac/Ds maize transposon system and established 12 independent transgenic strains harboring a single copy of the attP motif in at least 11 of the 24 medaka chromosomes. We designed an attB-targeting vector that was integrated efficiently and precisely into the attP-landing site, and with which the DNA of interest was efficiently transmitted to germline cells. Extraneous sequences in the integrants derived from the bacterial backbone of the attB-targeting vector as well as a transgenic fluorescence marker present in the attP-landing site were removable through flippase-mediated recombination. Further, an advanced targeting vector with a heart-specific recombination marker served as a useful tool for easily screening phiC31 integrase-mediated recombinant G0 embryos, leading to the efficient establishment of transgenic strains. Thus, our resources advance genetic research in medaka.
Collapse
|
14
|
Li WJ, Xu C, Wang K, Li TY, Wang XN, Yang H, Xing T, Li WX, Chen YH, Gao H, Ding L. Severe Intestinal Inflammation in the Small Intestine of Mice Induced by Controllable Deletion of Claudin-7. Dig Dis Sci 2018; 63:1200-1209. [PMID: 29488037 PMCID: PMC5897149 DOI: 10.1007/s10620-018-4973-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 02/07/2018] [Indexed: 02/05/2023]
Abstract
BACKGROUND As a potential tumor suppressor gene, Claudin-7 (Cldn7), which is a component of tight junctions, may play an important role in colorectal cancer occurrence and development. AIMS To generate a knockout mouse model of inducible conditional Cldn7 in the intestine and analyze the phenotype of the mice after induction with tamoxifen. METHODS We constructed Cldn7-flox transgenic mice and crossed them with Villin-CreERT2 mice. The Cldn7 inducible conditional knockout mice appeared normal and were well developed at birth. We induced Cldn7 gene deletion by injecting different dosages of tamoxifen into the mice and then conducted a further phenotypic analysis. RESULTS After induction for 5 days in succession at a dose of 200 µl tamoxifen in sunflower oil at 10 mg/ml per mouse every time, the mice appeared dehydrated, had a lower temperature, and displayed inactivity or death. The results of hematoxylin-eosin staining showed that the intestines of the Cldn7 inducible conditional knockout mice had severe intestinal defects that included epithelial cell sloughing, necrosis, inflammation and hyperplasia. Owing to the death of ICKO mice, we adjusted the dose of tamoxifen to a dose of 100 µl in sunflower oil at 10 mg/ml per mouse (aged more than 8 weeks old) every 4 days. And we could induce atypical hyperplasia and adenoma in the intestine. Immunofluorescent staining indicated that the intestinal epithelial structure was destroyed. Electron microscopy experimental analysis indicated that the intercellular gap along the basolateral membrane of Cldn7 inducible conditional knockout mice in the intestine was increased and that contact between the cells and matrix was loosened. CONCLUSIONS We generated a model of intestinal Cldn7 inducible conditional knockout mice. Intestinal Cldn7 deletion induced by tamoxifen initiated inflammation and hyperplasia in mice.
Collapse
Affiliation(s)
- Wen-Jing Li
- The Cancer Center of Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China
| | - Chang Xu
- The Cancer Center of Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China
| | - Kun Wang
- The Cancer Center of Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China
| | - Teng-Yan Li
- Liangxiang Hospital, Fangshan District, Beijing, 102401, China
| | - Xiao-Nan Wang
- Liangxiang Hospital, Fangshan District, Beijing, 102401, China
| | - Hui Yang
- The Cancer Center of Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China
| | - Tiaosi Xing
- Department of Anatomy and Cell Biology, Brody School of Medicine, East Carolina University, Greenville, NC, 27834, USA
| | - Wen-Xia Li
- The Cancer Center of Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China
| | - Yan-Hua Chen
- Department of Anatomy and Cell Biology, Brody School of Medicine, East Carolina University, Greenville, NC, 27834, USA.
| | - Hong Gao
- The Cancer Center of Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China.
| | - Lei Ding
- The Cancer Center of Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China.
| |
Collapse
|
15
|
Matsuda K, Yoshida M, Kawakami K, Hibi M, Shimizu T. Granule cells control recovery from classical conditioned fear responses in the zebrafish cerebellum. Sci Rep 2017; 7:11865. [PMID: 28928404 PMCID: PMC5605521 DOI: 10.1038/s41598-017-10794-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 08/15/2017] [Indexed: 01/06/2023] Open
Abstract
Although previous studies show that the cerebellum is involved in classical fear conditioning, it is not clear which components in the cerebellum control it or how. We addressed this issue using a delayed fear-conditioning paradigm with late-stage zebrafish larvae, with the light extinguishment as the conditioned stimulus (CS) and an electric shock as the unconditioned stimulus (US). The US induced bradycardia in the restrained larvae. After paired-associate conditioning with the CS and US, a substantial population of the larvae displayed CS-evoked bradycardia responses. To investigate the roles of the zebrafish cerebellum in classical fear conditioning, we expressed botulinum toxin or the Ca2+ indicator GCaMP7a in cerebellar neurons. The botulinum-toxin-dependent inhibition of granule-cell transmissions in the corpus cerebelli (CCe, the medial lobe) did not suppress the CS-evoked bradycardia response, but rather prolonged the response. We identified cerebellar neurons with elevated CS-evoked activity after the conditioning. The CS-evoked activity of these neurons was progressively upregulated during the conditioning and was downregulated with repetition of the unpaired CS. Some of these neurons were activated immediately upon the CS presentation, whereas others were activated after a delay. Our findings indicate that granule cells control the recovery from conditioned fear responses in zebrafish.
Collapse
Affiliation(s)
- Koji Matsuda
- Graduate School of Science, Nagoya University, Nagoya, Aichi, 464-8602, Japan
- Laboratory of Organogenesis and Organ Function, Bioscience and Biotechnology Center, Nagoya University, Nagoya Aichi, 464-8601, Japan
| | - Masayuki Yoshida
- Graduate School of Biosphere Science, Hiroshima University, Higashihiroshima, Hiroshima, 739-8528, Japan
| | - Koichi Kawakami
- Division of Molecular and Developmental Biology, National Institute of Genetics, and Department of Genetics, SOKENDAI (The Graduate University of Advanced Studies), Mishima, Shizuoka, 411-8540, Japan
| | - Masahiko Hibi
- Graduate School of Science, Nagoya University, Nagoya, Aichi, 464-8602, Japan.
- Laboratory of Organogenesis and Organ Function, Bioscience and Biotechnology Center, Nagoya University, Nagoya Aichi, 464-8601, Japan.
| | - Takashi Shimizu
- Graduate School of Science, Nagoya University, Nagoya, Aichi, 464-8602, Japan
- Laboratory of Organogenesis and Organ Function, Bioscience and Biotechnology Center, Nagoya University, Nagoya Aichi, 464-8601, Japan
| |
Collapse
|
16
|
Murakami Y, Ansai S, Yonemura A, Kinoshita M. An efficient system for homology-dependent targeted gene integration in medaka ( Oryzias latipes). ZOOLOGICAL LETTERS 2017; 3:10. [PMID: 28694996 PMCID: PMC5500998 DOI: 10.1186/s40851-017-0071-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 06/28/2017] [Indexed: 06/01/2023]
Abstract
BACKGROUND The CRISPR/Cas system is a powerful genome editing tool that enables targeted genome modifications in various organisms. In medaka (Oryzias latipes), targeted mutagenesis with small insertions and deletions using this system have become a robust technique and are now widely used. However, to date there have been only a small number of reports on targeted gene integration using this system. We thus sought in the present study to identify factors that enhance the efficiency of targeted gene integration events in medaka. RESULTS We show that longer homology arms (ca. 500 bp) and linearization of circular donor plasmids by cleavage with bait sequences enhances the efficiency of targeted integration of plasmids in embryos. A new bait sequence, BaitD, which we designed and selected by in silico screening, achieved the highest efficiency of the targeted gene integration in vivo. Using this system, donor plasmids integrated precisely at target sites and were efficiently transmitted to progeny. We also report that the genotype of F2 siblings, obtained by mating of individuals harboring two different colors of fluorescent protein genes (e.g. GFP and RFP) in the same locus, can be easily and rapidly determined non-invasively by visual observations alone. CONCLUSION We report that the efficiency of targeted gene integration can be enhanced by using donor vectors with longer homologous arms and linearization using a highly active bait system in medaka. These findings may contribute to the establishment of more efficient systems for targeted gene integration in medaka and other fish species.
Collapse
Affiliation(s)
- Yu Murakami
- Division of Applied Bioscience, Graduate School of Agriculture, Kyoto University, Kitashirakawa-Oiwake-cho, Sakyo-ku, Kyoto, 606-8502 Japan
| | - Satoshi Ansai
- Division of Applied Bioscience, Graduate School of Agriculture, Kyoto University, Kitashirakawa-Oiwake-cho, Sakyo-ku, Kyoto, 606-8502 Japan
- Present address: Division of Ecological Genetics, Department of Population Genetics, National Institute of Genetics, Yata 1111, Mishima, Shizuoka, 411-8540 Japan
| | - Akari Yonemura
- Division of Applied Bioscience, Graduate School of Agriculture, Kyoto University, Kitashirakawa-Oiwake-cho, Sakyo-ku, Kyoto, 606-8502 Japan
| | - Masato Kinoshita
- Division of Applied Bioscience, Graduate School of Agriculture, Kyoto University, Kitashirakawa-Oiwake-cho, Sakyo-ku, Kyoto, 606-8502 Japan
| |
Collapse
|
17
|
Okuyama T, Yokoi S, Takeuchi H. Molecular basis of social competence in medaka fish. Dev Growth Differ 2017; 59:211-218. [DOI: 10.1111/dgd.12359] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 04/06/2017] [Accepted: 04/07/2017] [Indexed: 11/30/2022]
Affiliation(s)
- Teruhiro Okuyama
- RIKEN-MIT Center for Neural Circuit Genetics at the Picower Institute for Learning and Memory; Department of Biology and Department of Brain and Cognitive Sciences; Massachusetts Institute of Technology (MIT); Cambridge MA 02139 USA
| | - Saori Yokoi
- Laboratory of Bioresources; National Institute for Basic Biology; Nishigonaka 38 Myodaiji Okazaki 444-8585 Aichi Japan
| | - Hideaki Takeuchi
- Graduate School of Natural Science and Technology; Okayama University; Tsushimanaka 3-1-1 Kita-ku Okayama-shi Okayama 700-8530 Japan
| |
Collapse
|
18
|
Ansai S, Hosokawa H, Maegawa S, Kinoshita M. Chronic fluoxetine treatment induces anxiolytic responses and altered social behaviors in medaka, Oryzias latipes. Behav Brain Res 2016; 303:126-36. [PMID: 26821288 DOI: 10.1016/j.bbr.2016.01.050] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 12/17/2015] [Accepted: 01/22/2016] [Indexed: 12/13/2022]
Abstract
Medaka (Oryzias latipes) is a small freshwater teleost that is an emerging model system for neurobehavioral research and toxicological testing. The selective serotonin reuptake inhibitor class of antidepressants such as fluoxetine is one of the widely prescribed drugs, but little is known about the effects of these drugs on medaka behaviors. To assess the behavioral effects of fluoxetine, we chronically administrated fluoxetine to medaka adult fish and analyzed the anxiety-related and social behaviors using five behavioral paradigms (diving, open-field, light-dark transition, mirror-biting, and social interaction) with an automated behavioral testing system. Fish chronically treated with fluoxetine exhibited anxiolytic responses such as an overall increased time spent in the top area in the diving test and an increased time spent in center area in the open-field test. Analysis of socially evoked behavior showed that chronic fluoxetine administration decreased the number of mirror biting times in the mirror-biting test and increased latency to first contact in the social interaction test. Additionally, chronic fluoxetine administration reduced the horizontal locomotor activity in the open-field test but not the vertical activity in the diving test. These investigations are mostly consistent with previous reports in the other teleost species and rodent models. These results indicate that behavioral assessment in medaka adult fish will become useful for screening of effects of pharmaceutical and toxicological compounds in animal behaviors.
Collapse
Affiliation(s)
- Satoshi Ansai
- Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa-Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan.
| | - Hiroshi Hosokawa
- Department of Intelligence Science and Technology, Graduate School of Informatics, Kyoto University, Yoshida-Honmachi, Sakyo-ku, Kyoto 606-8501, Japan.
| | - Shingo Maegawa
- Department of Intelligence Science and Technology, Graduate School of Informatics, Kyoto University, Yoshida-Honmachi, Sakyo-ku, Kyoto 606-8501, Japan
| | - Masato Kinoshita
- Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa-Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
| |
Collapse
|
19
|
Abstract
The Japanese medaka, Oryzias latipes, is a vertebrate teleost model with a long history of genetic research. A number of unique features and established resources distinguish medaka from other vertebrate model systems. A large number of laboratory strains from different locations are available. Due to a high tolerance to inbreeding, many highly inbred strains have been established, thus providing a rich resource for genetic studies. Furthermore, closely related species native to different habitats in Southeast Asia permit comparative evolutionary studies. The transparency of embryos, larvae, and juveniles allows a detailed in vivo analysis of development. New tools to study diverse aspects of medaka biology are constantly being generated. Thus, medaka has become an important vertebrate model organism to study development, behavior, and physiology. In this review, we provide a comprehensive overview of established genetic and molecular-genetic tools that render medaka fish a full-fledged vertebrate system.
Collapse
|
20
|
Kawasumi-Kita A, Hayashi T, Kobayashi T, Nagayama C, Hayashi S, Kamei Y, Morishita Y, Takeuchi T, Tamura K, Yokoyama H. Application of local gene induction by infrared laser-mediated microscope and temperature stimulator to amphibian regeneration study. Dev Growth Differ 2015; 57:601-13. [DOI: 10.1111/dgd.12241] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2015] [Revised: 09/02/2015] [Accepted: 09/03/2015] [Indexed: 12/13/2022]
Affiliation(s)
- Aiko Kawasumi-Kita
- Department of Developmental Biology and Neurosciences; Graduate School of Life Sciences; Tohoku University; Aramaki-Aza-Aoba 6-3, Aoba-ku Sendai Miyagi 980-8578 Japan
- Laboratory for Developmental Morphogeometry; RIKEN Quantitative Biology Center; Kobe Hyogo 650-0047 Japan
| | - Toshinori Hayashi
- School of Life Science; Faculty of Medicine; Tottori University; Yonago Tottori 683-8503 Japan
| | - Takuya Kobayashi
- Department of Developmental Biology and Neurosciences; Graduate School of Life Sciences; Tohoku University; Aramaki-Aza-Aoba 6-3, Aoba-ku Sendai Miyagi 980-8578 Japan
| | - Chikashi Nagayama
- Department of Developmental Biology and Neurosciences; Graduate School of Life Sciences; Tohoku University; Aramaki-Aza-Aoba 6-3, Aoba-ku Sendai Miyagi 980-8578 Japan
| | - Shinichi Hayashi
- Department of Developmental Biology and Neurosciences; Graduate School of Life Sciences; Tohoku University; Aramaki-Aza-Aoba 6-3, Aoba-ku Sendai Miyagi 980-8578 Japan
| | - Yasuhiro Kamei
- Spectrography and Bioimaging Facility; National Institute for Basic Biology; Myodaiji Okazaki Aichi 445-8585 Japan
- Department of Basic Biology in the School of Life Science of the Graduate University for Advanced Studies (SOKENDAI); Okazaki Aichi 445-8585 Japan
| | - Yoshihiro Morishita
- Laboratory for Developmental Morphogeometry; RIKEN Quantitative Biology Center; Kobe Hyogo 650-0047 Japan
| | - Takashi Takeuchi
- School of Life Science; Faculty of Medicine; Tottori University; Yonago Tottori 683-8503 Japan
| | - Koji Tamura
- Department of Developmental Biology and Neurosciences; Graduate School of Life Sciences; Tohoku University; Aramaki-Aza-Aoba 6-3, Aoba-ku Sendai Miyagi 980-8578 Japan
| | - Hitoshi Yokoyama
- Department of Developmental Biology and Neurosciences; Graduate School of Life Sciences; Tohoku University; Aramaki-Aza-Aoba 6-3, Aoba-ku Sendai Miyagi 980-8578 Japan
- Department of Biochemistry and Molecular Biology; Faculty of Agriculture and Life Science; Hirosaki University; Hirosaki Aomori 036-8561 Japan
| |
Collapse
|
21
|
Yokoi S, Okuyama T, Kamei Y, Naruse K, Taniguchi Y, Ansai S, Kinoshita M, Young LJ, Takemori N, Kubo T, Takeuchi H. An essential role of the arginine vasotocin system in mate-guarding behaviors in triadic relationships of medaka fish (Oryzias latipes). PLoS Genet 2015; 11:e1005009. [PMID: 25719383 PMCID: PMC4342251 DOI: 10.1371/journal.pgen.1005009] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Accepted: 01/15/2015] [Indexed: 12/26/2022] Open
Abstract
To increase individual male fitness, males of various species remain near a (potential) mating partner and repel their rivals (mate-guarding). Mate-guarding is assumed to be mediated by two different types of motivation: sexual motivation toward the opposite sex and competitive motivation toward the same sex. The genetic/molecular mechanisms underlying how mate presence affects male competitive motivation in a triadic relationship has remained largely unknown. Here we showed that male medaka fish prominently exhibit mate-guarding behavior. The presence of a female robustly triggers male-male competition for the female in a triadic relationship (2 males and 1 female). The male-male competition resulted in one male occupying a dominant position near the female while interfering with the other male's approach of the female. Paternity testing revealed that the dominant male had a significantly higher mating success rate than the other male in a triadic relationship. We next generated medaka mutants of arginine-vasotocin (avt) and its receptors (V1a1, V1a2) and revealed that two genes, avt and V1a2, are required for normal mate-guarding behavior. In addition, behavioral analysis of courtship behaviors in a dyadic relationship and aggressive behaviors within a male group revealed that avt mutant males displayed decreased sexual motivation but showed normal aggression. In contrast, heterozygote V1a2 mutant males displayed decreased aggression, but normal mate-guarding and courtship behavior. Thus, impaired mate-guarding in avt and V1a2 homozygote mutants may be due to the loss of sexual motivation toward the opposite sex, and not to the loss of competitive motivation toward rival males. The different behavioral phenotypes between avt, V1a2 heterozygote, and V1a2 homozygote mutants suggest that there are redundant systems to activate V1a2 and that endogenous ligands activating the receptor may differ according to the social context.
Collapse
Affiliation(s)
- Saori Yokoi
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Teruhiro Okuyama
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
- Laboratory of Bioresources, National Institute for Basic Biology, Okazaki, Aichi, Japan
| | - Yasuhiro Kamei
- Department of Basic Biology, School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), Okazaki, Japan
- The Spectrography and Bioimaging Facility, National Institute for Basic Biology, Okazaki, Aichi, Japan
| | - Kiyoshi Naruse
- Laboratory of Bioresources, National Institute for Basic Biology, Okazaki, Aichi, Japan
- Department of Basic Biology, School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), Okazaki, Japan
- NIBB Center of the Interuniversity Bio-Backup Project, National Institute for Basic Biology, Okazaki, Aichi, Japan
| | - Yoshihito Taniguchi
- Department of Public Health and Preventive Medicine, Kyorin University, School of Medicine, Mitaka, Tokyo, Japan
| | - Satoshi Ansai
- Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Masato Kinoshita
- Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Larry J. Young
- Center for Translational Social Neuroscience, Department of Psychiatry and Behavioral Sciences, Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
| | - Nobuaki Takemori
- Proteo-Science Center, Division of Proteomics Research, Ehime University, Toon City, Ehime, Japan
| | - Takeo Kubo
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Hideaki Takeuchi
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
- * E-mail:
| |
Collapse
|
22
|
Li TY, Wang XN, Li WJ, Gao H, Ding L. Generation of an inducible Claudin-7 conditional knockout mouse line. Shijie Huaren Xiaohua Zazhi 2015; 23:5017. [DOI: 10.11569/wcjd.v23.i31.5017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
23
|
Tsuboko S, Kimura T, Shinya M, Suehiro Y, Okuyama T, Shimada A, Takeda H, Naruse K, Kubo T, Takeuchi H. Genetic control of startle behavior in medaka fish. PLoS One 2014; 9:e112527. [PMID: 25393539 PMCID: PMC4231031 DOI: 10.1371/journal.pone.0112527] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 10/06/2014] [Indexed: 11/24/2022] Open
Abstract
Genetic polymorphisms are thought to generate intraspecific behavioral diversities, both within and among populations. The mechanisms underlying genetic control of behavioral properties, however, remain unclear in wild-type vertebrates, including humans. To explore this issue, we used diverse inbred strains of medaka fish (Oryzias latipes) established from the same and different local populations. Medaka exhibit a startle response to a visual stimulus (extinction of illumination) by rapidly bending their bodies (C-start) 20-ms after the stimulus presentation. We measured the rates of the response to repeated stimuli (1-s interval, 40 times) among four inbred strains, HNI-I, HNI-II, HO5, and Hd-rR-II1, and quantified two properties of the startle response: sensitivity (response rate to the first stimulus) and attenuation of the response probability with repeated stimulus presentation. Among the four strains, the greatest differences in these properties were detected between HNI-II and Hd-rR-II1. HNI-II exhibited high sensitivity (approximately 80%) and no attenuation, while Hd-rR-II1 exhibited low sensitivity (approximately 50%) and almost complete attenuation after only five stimulus presentations. Our findings suggested behavioral diversity of the startle response within a local population as well as among different populations. Linkage analysis with F2 progeny between HNI-II and Hd-rR-II1 detected quantitative trait loci (QTL) highly related to attenuation, but not to sensitivity, with a maximum logarithm of odds score of 11.82 on linkage group 16. The three genotypes (homozygous for HNI-II and Hd-rR-II1 alleles, and heterozygous) at the marker nearest the QTL correlated with attenuation. Our findings are the first to suggest that a single genomic region might be sufficient to generate individual differences in startle behavior between wild-type strains. Further identification of genetic polymorphisms that define the behavioral trait will contribute to our understanding of the neural mechanisms underlying behavioral diversity, allowing us to investigate the adaptive significance of intraspecific behavioral polymorphisms of the startle response.
Collapse
Affiliation(s)
- Satomi Tsuboko
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo, Tokyo, Japan
| | - Tetsuaki Kimura
- Laboratory of Bioresources, National Institute for Basic Biology, Okazaki, Aichi, Japan
- National Institute for Basic Biology Center of the Interuniversity Bio-Backup Project, National Institute for Basic Biology, Okazaki, Aichi, Japan
| | - Minori Shinya
- Model Fish Genomics Resource, Genetic Strains Research Center, National Institute of Genetics, Mishima, Shizuoka, Japan
- Department of Biology, Keio University, Yokohama, Kanagawa, Japan
| | - Yuji Suehiro
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo, Tokyo, Japan
- Department of Physiology, Tokyo Women's Medical University School of Medicine, Shinjuku, Tokyo, Japan
| | - Teruhiro Okuyama
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo, Tokyo, Japan
- Laboratory of Bioresources, National Institute for Basic Biology, Okazaki, Aichi, Japan
| | - Atsuko Shimada
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo, Tokyo, Japan
| | - Hiroyuki Takeda
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo, Tokyo, Japan
| | - Kiyoshi Naruse
- Laboratory of Bioresources, National Institute for Basic Biology, Okazaki, Aichi, Japan
- National Institute for Basic Biology Center of the Interuniversity Bio-Backup Project, National Institute for Basic Biology, Okazaki, Aichi, Japan
| | - Takeo Kubo
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo, Tokyo, Japan
| | - Hideaki Takeuchi
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo, Tokyo, Japan
- * E-mail:
| |
Collapse
|