1
|
Zhou H, Chen M, Zhao C, Shao R, Xu Y, Zhao W. The Natural Product Secoemestrin C Inhibits Colorectal Cancer Stem Cells via p38-S100A8 Feed-Forward Regulatory Loop. Cells 2024; 13:620. [PMID: 38607060 PMCID: PMC11011747 DOI: 10.3390/cells13070620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 03/26/2024] [Accepted: 03/27/2024] [Indexed: 04/13/2024] Open
Abstract
Cancer stem cells (CSCs) are closely associated with tumor initiation, metastasis, chemoresistance, and recurrence, which represent some of the primary obstacles to cancer treatment. Targeting CSCs has become an important therapeutic approach to cancer care. Secoemestrin C (Sec C) is a natural compound with strong anti-tumor activity and low toxicity. Here, we report that Sec C effectively inhibited colorectal CSCs and non-CSCs concurrently, mainly by inhibiting proliferation, self-renewal, metastasis, and drug resistance. Mechanistically, RNA-seq analysis showed that the pro-inflammation pathway of the IL17 axis was enriched, and its effector S100A8 was dramatically decreased in Sec C-treated cells, whose roles in the stemness of CSCs have not been fully clarified. We found that the overexpression of S100A8 hindered the anti-CSCs effect of Sec C, and S100A8 deficiency attenuated the stemness traits of CSCs to enhance the Sec C killing activity on them. Meanwhile, the p38 signal pathway, belonging to the IL17 downstream axis, can also mediate CSCs and counter with Sec C. Notably, we found that S100A8 upregulation increased the p38 protein level, and p38, in turn, promoted S100A8 expression. This indicated that p38 may have a mutual feedback loop with S100A8. Our study discovered that Sec C was a powerful anti-colorectal CSC agent, and that the positive feedback loop of p38-S100A8 mediated Sec C activity. This showed that Sec C could act as a promising clinical candidate in colorectal cancer treatment, and S100A8 could be a prospective drug target.
Collapse
Affiliation(s)
- Huimin Zhou
- State Key Laboratory of Respiratory Health and Multimorbidity, Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; (H.Z.); (C.Z.); (R.S.)
| | - Minghua Chen
- NHC Key Laboratory of Biotechnology of Antibiotics, National Center for New Microbial Drug Screening, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, 1 Tiantan Xili, Beijing 100050, China;
| | - Cong Zhao
- State Key Laboratory of Respiratory Health and Multimorbidity, Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; (H.Z.); (C.Z.); (R.S.)
| | - Rongguang Shao
- State Key Laboratory of Respiratory Health and Multimorbidity, Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; (H.Z.); (C.Z.); (R.S.)
| | - Yanni Xu
- NHC Key Laboratory of Biotechnology of Antibiotics, National Center for New Microbial Drug Screening, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, 1 Tiantan Xili, Beijing 100050, China;
| | - Wuli Zhao
- State Key Laboratory of Respiratory Health and Multimorbidity, Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; (H.Z.); (C.Z.); (R.S.)
| |
Collapse
|
2
|
Yang IP, Yip KL, Chang YT, Chen YC, Huang CW, Tsai HL, Yeh YS, Wang JY. MicroRNAs as Predictive Biomarkers in Patients with Colorectal Cancer Receiving Chemotherapy or Chemoradiotherapy: A Narrative Literature Review. Cancers (Basel) 2023; 15:1358. [PMID: 36900159 PMCID: PMC10000071 DOI: 10.3390/cancers15051358] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/12/2023] [Accepted: 02/20/2023] [Indexed: 02/24/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most common malignancies and is associated with high mortality rates worldwide. The underlying mechanism of tumorigenesis in CRC is complex, involving genetic, lifestyle-related, and environmental factors. Although radical resection with adjuvant FOLFOX (5-fluorouracil, leucovorin, and oxaliplatin) chemotherapy and neoadjuvant chemoradiotherapy have remained mainstays of treatment for patients with stage III CRC and locally advanced rectal cancer, respectively, the oncological outcomes of these treatments are often unsatisfactory. To improve patients' chances of survival, researchers are actively searching for new biomarkers to facilitate the development of more effective treatment strategies for CRC and metastatic CRC (mCRC). MicroRNAs (miRs), small, single-stranded, noncoding RNAs, can post-transcriptionally regulate mRNA translation and trigger mRNA degradation. Recent studies have documented aberrant miR levels in patients with CRC or mCRC, and some miRs are reportedly associated with chemoresistance or radioresistance in CRC. Herein, we present a narrative review of the literature on the roles of oncogenic miRs (oncomiRs) and tumor suppressor miRs (anti-oncomiRs), some of which can be used to predict the responses of patients with CRC to chemotherapy or chemoradiotherapy. Moreover, miRs may serve as potential therapeutic targets because their functions can be manipulated using synthetic antagonists and miR mimics.
Collapse
Affiliation(s)
- I-Ping Yang
- Department of Nursing, Shu-Zen College of Medicine and Management, Kaohsiung 82144, Taiwan
| | - Kwan-Ling Yip
- Division of Colorectal Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Yu-Tang Chang
- Department of Surgery, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Division of Pediatric Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Yen-Cheng Chen
- Division of Colorectal Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Ching-Wen Huang
- Division of Colorectal Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Surgery, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Hsiang-Lin Tsai
- Division of Colorectal Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Surgery, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Yung-Sung Yeh
- Division of Trauma and Surgical Critical Care, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Emergency Medicine, Faculty of Post-Baccalaureate Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Graduate Institute of Injury Prevention and Control, College of Public Health, Taipei Medical University, Taipei 11031, Taiwan
| | - Jaw-Yuan Wang
- Division of Colorectal Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Surgery, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Pingtung Hospital, Ministry of Health and Welfare, Pingtung 90054, Taiwan
| |
Collapse
|
3
|
MicroRNA-Based Diagnosis and Therapy. Int J Mol Sci 2022; 23:ijms23137167. [PMID: 35806173 PMCID: PMC9266664 DOI: 10.3390/ijms23137167] [Citation(s) in RCA: 313] [Impact Index Per Article: 104.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 06/23/2022] [Accepted: 06/24/2022] [Indexed: 12/14/2022] Open
Abstract
MicroRNAs (miRNAs) are a group of endogenous non-coding RNAs that regulate gene expression. Alteration in miRNA expression results in changes in the profile of genes involving a range of biological processes, contributing to numerous human disorders. With high stability in human fluids, miRNAs in the circulation are considered as promising biomarkers for diagnosis, as well as prognosis of disease. In addition, the translation of miRNA-based therapy from a research setting to clinical application has huge potential. The aim of the current review is to: (i) discuss how miRNAs traffic intracellularly and extracellularly; (ii) emphasize the role of circulating miRNAs as attractive potential biomarkers for diagnosis and prognosis; (iii) describe how circulating microRNA can be measured, emphasizing technical problems that may influence their relative levels; (iv) highlight some of the circulating miRNA panels available for clinical use; (v) discuss how miRNAs could be utilized as novel therapeutics, and finally (v) update those miRNA-based therapeutics clinical trials that could potentially lead to a breakthrough in the treatment of different human pathologies.
Collapse
|
4
|
Tang S, Chen Y, Tian S, Wang Y. Predictive Nomogram for the Prediction of Early Recurrence of Colorectal Cancer. Int J Gen Med 2021; 14:4857-4866. [PMID: 34471379 PMCID: PMC8405163 DOI: 10.2147/ijgm.s321171] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 07/27/2021] [Indexed: 12/29/2022] Open
Abstract
Aim The prognosis of colorectal cancer (CRC) individuals after curative resection is not satisfactory due to the early recurrence. We sought to identify the affecting features of early recurrence in CRC patients. Methods A total of 3500 CRC patients underwent curative resection were retrospectively incorporated into our study. Among them, 246 patients exhibited tumor recurrence: 121 had early recurrence (≤1 year after operation) and 125 had late recurrence (>1 year after operation). A total of 246 CRC patients with recurrence were randomly assigned into the training group (N=177) or validation group (N=69) based on the ratio of 7:3. LASSO COX regression and support vector machine (SVM) were utilized to screen for the significant clinical indexes associated with the presence of early recurrence. Recurrent nomogram was created based on the above informative parameters to predict the probability of early recurrence. Results Proportion of advanced TNM stage, platelet count, systemic immune-inflammation index (SII), mean corpuscular hemoglobin concentration (MCHC), CA-199, CA-125, lactate dehydrogenase, total bile acid (TBA), urea nitrogen were significantly higher in early recurrence group compared with that in late recurrence group. Results from LASSO COX regression and support vector machine (SVM) revealed that TNM stage, CA-199, CA125, SII and TBA were strong predictors for the presence of early recurrence among postoperative CRC patients in the training group. The recurrent nomogram based on the five predictors exhibited good predictive performance as calculated by C-index (0.846, 95% CI 0.789-0.902 in the training group and 0.799, 95% CI 0.697-0.902 in the validation group) for the prediction of early recurrence. Moreover, the recurrent nomogram exhibited not only encouraging calibration ability, but also great clinical utility both in the training group and validation group. Conclusion TNM stage, CA-199, CA125, SII and TBA were closely correlated with the presence of early recurrence of CRC patients. The recurrent nomogram held well predictive ability for the identification of CRC patients with early recurrence.
Collapse
Affiliation(s)
- Shangjun Tang
- Department of Gastroenterology, Qianjiang Central Hospital of Chongqing Municipality, Chongqing, 409099, People's Republic of China
| | - Yongjun Chen
- Department of Gastroenterology, Qianjiang Central Hospital of Chongqing Municipality, Chongqing, 409099, People's Republic of China
| | - Shan Tian
- Department of Infectious Disease, Wuhan Union Hospital, Wuhan, 430030, People's Republic of China
| | - Yumei Wang
- Department of Gastroenterology, Qianjiang Central Hospital of Chongqing Municipality, Chongqing, 409099, People's Republic of China
| |
Collapse
|
5
|
Paciorek P, Żuberek M, Grzelak A. Rola miRNA w rozwoju wybranych nowotworów – potencjalne zastosowanie w diagnostyce*. POSTEP HIG MED DOSW 2021. [DOI: 10.5604/01.3001.0014.6578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Streszczenie
MikroRNA (miRNA) są małymi cząsteczkami kwasu rybonukleinowego, które mimo że nie podlegają procesowi translacji, pełnią ważną funkcję regulacyjną w komórkach eukariotycznych. Ich fizjologiczną funkcją jest utrzymywanie homeostazy komórek. Zaburzona ekspresja miRNA może spowodować rozwój wielu chorób, w tym chorób nowotworowych. Działanie miRNA polega na hamowaniu tworzenia się białek, w tym białek o właściwościach onkogennych i antyonkogennych. Mutacje w miejscach kodowania miRNA mogą prowadzić do nadmiernego lub zmniejszonego wytwarzania wspomnianych białek. Odkrycie miRNA i poznanie ich roli w komórce otworzyło nowe możliwości dla diagnostyki chorób nowotworowych. Zmiany poziomu odpowiednich miRNA, w krwiobiegu lub innych płynach ustrojowych, mogą być markerem diagnostycznym chorób. Diagnostyka onkologiczna mogłaby przebiegać na podstawie badań profilu miRNA pacjenta i porównania go z opracowanymi wcześniej profilami zmian miRNA powiązanymi z występowaniem danego rodzaju choroby nowotworowej. Informacja o zmianach profilu miRNA podstawowych w regulacji ekspresji genów związanych z procesami nowotworzenia, mogłaby się przyczynić do opracowania terapii eksperymentalnych opartych na przywróceniu pierwotnego poziomu miRNA w komórkach, a tym samym, na przywróceniu prawidłowej regulacji ekspresji genów. Coraz nowsze metody wyciszania i włączania ekspresji miRNA mogą w przyszłości zaowocować skutecznymi rozwiązaniami terapeutycznymi.
Collapse
Affiliation(s)
- Patrycja Paciorek
- Katedra Biofizyki Molekularnej, Wydział Biologii i Ochrony Środowiska , Uniwersytet Łódzki
| | - Mariusz Żuberek
- Katedra Biofizyki Molekularnej, Wydział Biologii i Ochrony Środowiska , Uniwersytet Łódzki
| | - Agnieszka Grzelak
- Katedra Biofizyki Molekularnej, Wydział Biologii i Ochrony Środowiska , Uniwersytet Łódzki
| |
Collapse
|
6
|
Abdul-Maksoud RS, Elsayed RS, Elsayed WSH, Sediq AM, Rashad NM, Shaker SE, Ahmed SM. Combined serum miR-29c and miR-149 expression analysis as diagnostic genetic markers for colorectal cancer. Biotechnol Appl Biochem 2020; 68:732-743. [PMID: 32678466 DOI: 10.1002/bab.1986] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 07/14/2020] [Indexed: 02/05/2023]
Abstract
Circulating miRNAs gathered much interest in cancer research as noninvasive biomarkers. The aim of this study was to analyze the expression of miR-29c and miR-149 among colorectal cancer (CRC) patients and to explore their diagnostic and prognostic potentials in relation to the clinical and pathological features. The expression levels of miR-29c and miR-149 were evaluated in the sera of 80 CRC patients, 80 colorectal adenoma (CRA) patients, and 80 healthy controls using quantitative real time polymerase chain reaction (PCR). Carcinoembryonic antigen serum levels were assayed using enzyme-linked immunosorbent assay. miR-29c and miR-149 were significantly downregulated among CRC patients compared with CRA and controls (miR-29c, 0.54 ± 0.19 vs. 0.86 ± 0.12, 0.99 ± 0.07, P < 0.001, respectively; miR-149, 0.46 ± 0.19 vs. 0.74 ± 0.012, 1.0 ± 0.22, P < 0.001, respectively). miR-29c and miR-149 significantly associated with advanced stages of CRC, tumor size, and lymphatic metastasis. By using receiver operating characteristic curve analysis, combined miR-29c and miR-149 revealed the highest diagnostic potential for CRA (area under the curve [AUC] = 0.967) from healthy controls as well as the diagnosis of CRC (AUC = 0.98) from CRA. Moreover, combined miRNAs revealed high diagnostic potential for the earlier stages of CRC compared with advanced stages (AUC = 0.96). In conclusion, combined serum miR-29c and miR-149 expression analysis established novel noninvasive biomarker for early CRC diagnosis.
Collapse
Affiliation(s)
- Rehab S Abdul-Maksoud
- Medical Biochemistry Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Rasha S Elsayed
- General Surgery Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Walid S H Elsayed
- Pathology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Amany Moheldin Sediq
- Clinical and Chemical pathology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Nearmeen M Rashad
- Internal Medicine Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Shady E Shaker
- Internal Medicine Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Sherweet M Ahmed
- Tropical Medicine Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
7
|
Shajari E, Mollasalehi H. Ribonucleic-acid-biomarker candidates for early-phase group detection of common cancers. Genomics 2020; 112:163-168. [DOI: 10.1016/j.ygeno.2018.08.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 08/06/2018] [Accepted: 08/31/2018] [Indexed: 02/08/2023]
|
8
|
A Novel Saliva-Based miRNA Signature for Colorectal Cancer Diagnosis. J Clin Med 2019; 8:jcm8122029. [PMID: 31757017 PMCID: PMC6947363 DOI: 10.3390/jcm8122029] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 11/12/2019] [Accepted: 11/18/2019] [Indexed: 12/24/2022] Open
Abstract
Salivary microRNAs (miRNAs) are of high interest as diagnostic biomarkers for non-oral cancer. However, little is known about their value for colorectal cancer (CRC) detection. Our study aims to characterize salivary miRNAs in order to identify non-invasive markers for CRC diagnosis. The screening of 754 miRNAs was performed in saliva samples from 14 CRC and 10 healthy controls. The differential expressed miRNAs were validated by RT-qPCR in 51 CRC, 19 adenomas and 37 healthy controls. Receiver operating characteristic (ROC) curves and logistic regression models were performed to analyze the clinical value of these miRNAs. Twenty-two salivary miRNAs were significantly deregulated in CRC patients vs. healthy individuals (p < 0.05) in the discovery phase. From those, five upregulated miRNAs (miR-186-5p, miR-29a-3p, miR-29c-3p, miR-766-3p, and miR-491-5p) were confirmed to be significantly higher in the CRC vs. healthy group (p < 0.05). This five-miRNA signature showed diagnostic value (72% sensitivity, 66.67% specificity, AUC = 0.754) to detect CRC, which was even higher in combination with carcinoembryonic antigen (CEA) levels. Overall, after the first global characterization of salivary miRNAs in CRC, a five-miRNA panel was identified as a promising tool to diagnose this malignancy, representing a novel approach to detect cancer-associated epigenetic alterations using a non-invasive strategy.
Collapse
|
9
|
Fang R, Huang Y, Xie J, Zhang J, Ji X. Downregulation of miR-29c-3p is associated with a poor prognosis in patients with laryngeal squamous cell carcinoma. Diagn Pathol 2019; 14:109. [PMID: 31615536 PMCID: PMC6792187 DOI: 10.1186/s13000-019-0893-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 09/18/2019] [Indexed: 12/12/2022] Open
Abstract
Background Laryngeal squamous cell carcinoma (LSCC) is considered to be a common malignancy of the head and neck with poor prognosis for its late diagnosis, metastasis and recurrence. Growing evidence demonstrates that the dysregulation of miR-29c-3p (microRNA-29c-3p) plays an important role in various tumor processes. Our study investigates the expression of miR-29c-3p in LSCC and analyzes the correlation of its dysregulation with clinicopathologic parameters and prognosis. Methods The expression of hsa-miR-29c-3p in LSCC tissues and the adjacent normal laryngeal tissues was detected in 96 LSCC formalin-fixed paraffin-embedded tissues by quantitative real-time PCR (qRT-PCR). The SPSS statistical software package (17.0) was used to analyze the associations between miR-29c-3p expressions and various clinicopathological characteristics. The overall survival (OS) was analyzed by the Kaplan-Meier method and log-rank test, and we analyzed the independent factor of prognosis by Cox proportional hazard analysis. Results A downregulation of miR-29c-3p expression in LSCC was significantly correlated with smoking index, tumor size, tumor site, differentiation, T classification, TNM stage, and lymph node metastasis (P < 0.05), but there was no correlation with age and alcohol consumption (P > 0.05). In the multivariate survival analysis, low miR-29c-3p expression was associated with shorter overall survival (P < 0.05). Furthermore, miR-29c expression was an independent prognostic factor for laryngeal cancer patients. Conclusions MiR-29c-3p has different expression levels at different stages of tumor progression, suggesting that miR-29c-3p may be a promising biomarker for evaluating the progression of LSCC and the prognosis of patients with LSCC. MiR-29c-3p can also be a novel molecular target for anti-laryngeal cancer therapy.
Collapse
Affiliation(s)
- Ruihua Fang
- Department of Otolaryngology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, 510180, Guangdong, People's Republic of China
| | - Yongjin Huang
- Department of Otolaryngology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, 510180, Guangdong, People's Republic of China
| | - Jinghua Xie
- Department of Otolaryngology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, 510180, Guangdong, People's Republic of China
| | - Jianzhong Zhang
- Department of Otolaryngology, The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 510700, People's Republic of China
| | - Xiaobin Ji
- Department of Otolaryngology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, 510180, Guangdong, People's Republic of China.
| |
Collapse
|
10
|
Gungormez C, Gumushan Aktas H, Dilsiz N, Borazan E. Novel miRNAs as potential biomarkers in stage II colon cancer: microarray analysis. Mol Biol Rep 2019; 46:4175-4183. [PMID: 31123908 DOI: 10.1007/s11033-019-04868-7] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 05/09/2019] [Indexed: 01/22/2023]
Abstract
The aim of this study was to determine oncogenic and tumor-suppressing miRNA profiles associated with the development and progression of cancer using tumor tissues from patients with colorectal cancer (stage II) that did not show nodal spread or advanced metastasis to identify potential biomarkers. A microarray system (GeneChip miRNA 4.0 Array chip, Affymetrix) was used to determine the microRNA profiles of five patients with stage II colon cancer based on normal and colon tumor tissues. Of 32 identified miRNAs, an increase in three microRNAs (hsa-miR-4745-5p, hsa-miR-6126, and hsa-miR-1469) was observed in tumor tissues relative to that in control tissues. Additionally, this study demonstrated for the first time that the expression of the 8 miRNAs (hsa-miR-378i, hsa-miR-378a-3p, hsa-miR-378c, hsa-miR-378d, hsa-miR-378e, hsa-miR-378f, hsa-miR-378a-5p, and hsa-miR-378g) from miR-378 members among the differentially expressed miRNAs is reduced. The target genes of these downregulated miRNAs were determined by using DIANA miRPath v3. The effect of identified genes on colon cancer stage II was determined the biological process and biological pathway using Funrich Gene Enrichment. It was revealed that these miRNAs were affected the signaling pathways which control cell proliferation, cell-cell interaction, and apoptosis in stage II colon cancer. In patients with early stage II colon cancer, miR-378 can be used as a biomarker of colorectal cancer. Thus, miR-378 can facilitate treatment with early diagnosis.
Collapse
Affiliation(s)
- Cigdem Gungormez
- Central Research Laboratory, Harran University, 63100, Şanlıurfa, Turkey. .,Biology Department, Faculty of Arts and Sciences, Harran University, Şanlıurfa, Turkey.
| | - Hatice Gumushan Aktas
- Biology Department, Faculty of Arts and Sciences, Harran University, Şanlıurfa, Turkey
| | - Nihat Dilsiz
- Molecular Biology and Genetics Department, Faculty of Engineering and Natural Sciences, Medeniyet University, Istanbul, Turkey
| | - Ersin Borazan
- General Surgery Department, Medical Faculty, Gaziantep University, Gaziantep, Turkey
| |
Collapse
|
11
|
Goel G. Molecular characterization and biomarker identification in colorectal cancer: Toward realization of the precision medicine dream. Cancer Manag Res 2018; 10:5895-5908. [PMID: 30510457 PMCID: PMC6250110 DOI: 10.2147/cmar.s162967] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Colorectal cancer (CRC) is a major public health problem, both in the USA and globally. Over the past 20 years, significant advances have been made in the treatment of patients with metastatic CRC (mCRC). Recent efforts in the field of biomarkers have focused on the development of molecular diagnostics to define the subset of patients with mCRC that is likely to derive most benefit from anti-EGFR therapy. Herein, we review the recent advancements in molecular stratification of CRC and the role of current as well as emerging biomarkers in this disease. It is now clear that the presence of activating mutations in the KRAS and NRAS genes serves as reliable predictive markers for resistance to anti-EGFR therapy in mCRC. It is also clear that further improvements in the survival of mCRC patients will probably be made possible only with identification of new predictive molecular biomarkers and their evaluation using rational and innovative clinical trials. The recent advances in DNA sequencing technology and "omics"-based approaches have provided promising new strategies for the development of novel molecular biomarkers in this disease.
Collapse
Affiliation(s)
- Gaurav Goel
- Division of Hematology-Oncology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA,
| |
Collapse
|
12
|
Site-specific associations between miRNA expression and survival in colorectal cancer cases. Oncotarget 2018; 7:60193-60205. [PMID: 27517623 PMCID: PMC5312378 DOI: 10.18632/oncotarget.11173] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Accepted: 07/23/2016] [Indexed: 12/15/2022] Open
Abstract
Background MicroRNAs (miRNA) are small non-coding RNA involved in cellular processes, including cell proliferation and angiogenesis. Thus, miRNA expression may alter survival after diagnosis with colorectal cancer (CRC). Results Individuals diagnosed with stage 1 or stage 2 rectal cancer had worse survival than colon cancer cases diagnosed at stage 1 or stage 2. After adjustment for multiple comparisons, no miRNAs were significantly associated with disease stage. Two miRNAs infrequently expressed in the population and not previously reported were associated with survival after diagnosis with colon cancer (miR-1 HR 2.17 95% CI 1.41, 3.36; and miR-101-3p HR 3.51 95% CI 1.72, 7.15). Among those diagnosed with rectal cancer, 201 miRNAs were associated with survival when the FDR q value was < 0.05. Assessment of 105 previously reported miRNAs associated with prognosis showed that four miRNAs influenced colon cancer survival and 17 influenced survival after a diagnosis with rectal cancer when raw p values were considered. Patients and Methods This study includes data from population-based studies of CRC conducted in Utah and the Kaiser Permanente Medical Care Program. A total of 1893 carcinoma and normal paired colorectal mucosa tissue samples were run using the Agilent Human miRNA Microarray V19.0. We assessed miRNA differential expression between paired carcinoma and normal colonic mucosa tissue with CRC- specific survival evaluating stage and site-specific associations after adjusting for age, sex, microsatellite instability tumor status, and AJCC stage. Conclusions MiRNAs dysregulated for both colon and rectal cancer had a greater impact on survival after a diagnosis with rectal cancer.
Collapse
|
13
|
Li Y, Sun Z, Liu B, Shan Y, Zhao L, Jia L. Tumor-suppressive miR-26a and miR-26b inhibit cell aggressiveness by regulating FUT4 in colorectal cancer. Cell Death Dis 2017. [PMID: 28640257 PMCID: PMC5520934 DOI: 10.1038/cddis.2017.281] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Metastasis is a multistep molecular network process, which is the major cause of death in patients with colorectal cancer (CRC). MicroRNAs (miRNAs) play pivotal roles in tumorigenesis as either tumor suppressors or oncogenes. Increased expression of fucosyltransferase4 (FUT4) has been reported to be associated with the invasive and metastatic properties of CRC. Here to identify potential key miRNAs and their target genes for colorectal cancer (CRC), we compared miRNA expression profiles between metastatic CRC cell SW620 and primary CRC cell SW480. Microarray analysis revealed that there were 85 differentially expressed miRNAs in SW620 cells with highly metastatic potential compared to SW480 cells with lowly metastatic potential. The expression of miR-26a and miR-26b were lower in SW620 cells than in SW480 cells, as well as downregulated in tumor tissues than in adjacent normal tissues of CRC patients. By applying bioinformatic approaches for the prediction of miRNA targeting 3'-UTR of FUT4, we identified FUT4 as one of the miR-26a/26b-targeted genes, while the expression of the target gene exhibited patterns opposite to that of miR-26a/26b in CRC cell lines, tumor tissues and corresponding adjacent tissues. Forced miR-26a/26b expression affected migratory behavior of CRC cells and FUT4 expression, while altered expression of FUT4 in CRC cell lines modulated progression upon transfection with miR-26a/26b mimic or inhibiter. FUT4 also regulated directly aggressiveness of SW620 and SW480 cells. Moreover, statistical analyses revealed that low miR-26a/26b levels and high expression of FUT4 were positively correlated with poor overall survival. The identified CRC-restricted miR-26a and miR-26b might be implicated in cancer progression via their target gene FUT4, suggesting their potential usage in CRC treatment.
Collapse
Affiliation(s)
- Yang Li
- College of Laboratory Medicine, Dalian Medical University, Liaoning Province, Dalian 116044, China
| | - Zheng Sun
- College of Laboratory Medicine, Dalian Medical University, Liaoning Province, Dalian 116044, China
| | - Bing Liu
- College of Laboratory Medicine, Dalian Medical University, Liaoning Province, Dalian 116044, China
| | - Yujia Shan
- College of Laboratory Medicine, Dalian Medical University, Liaoning Province, Dalian 116044, China
| | - Lifen Zhao
- College of Laboratory Medicine, Dalian Medical University, Liaoning Province, Dalian 116044, China
| | - Li Jia
- College of Laboratory Medicine, Dalian Medical University, Liaoning Province, Dalian 116044, China
| |
Collapse
|
14
|
Noncoding RNAs in the development, diagnosis, and prognosis of colorectal cancer. Transl Res 2017; 181:108-120. [PMID: 27810413 DOI: 10.1016/j.trsl.2016.10.001] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2016] [Revised: 09/29/2016] [Accepted: 10/06/2016] [Indexed: 12/17/2022]
Abstract
More than 90% of the human genome is actively transcribed, but less than 2% of the total genome encodes protein-coding RNA, and thus, noncoding RNA (ncRNA) is a major component of the human transcriptome. Recently, ncRNA was demonstrated to play important roles in multiple biological processes by directly or indirectly interfering with gene expression, and the dysregulation of ncRNA is associated with a variety of diseases, including cancer. In this review, we summarize the function and mechanism of miRNA, long intergenic ncRNA, and some other types of ncRNAs, such as small nucleolar RNA, circular ncRNA, pseudogene RNA, and even protein-coding mRNA, in the progression of colorectal cancer (CRC). We also presented their clinical application in the diagnosis and prognosis of CRC. The summary of the current state of ncRNA in CRC will contribute to our understanding of the complex processes of CRC initiation and development and will help in the discovery of novel biomarkers and therapeutic targets for CRC diagnosis and treatment.
Collapse
|
15
|
Wu K, Zhao Z, Ma J, Chen J, Peng J, Yang S, He Y. Deregulation of miR-193b affects the growth of colon cancer cells via transforming growth factor-β and regulation of the SMAD3 pathway. Oncol Lett 2017; 13:2557-2562. [PMID: 28454433 PMCID: PMC5403328 DOI: 10.3892/ol.2017.5763] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2015] [Accepted: 11/11/2016] [Indexed: 12/29/2022] Open
Abstract
MicroRNA-193b (miRNA-193b) is often differentially expressed and is an important regulator of gene expression in colon cancer. The aim of the present study was to determine whether miRNA-193b affects cell growth in colon cancer and to investigate the potential underlying mechanisms. Patients with colorectal cancer (CRC; n=20) and healthy volunteers (n=10) were enrolled from the Department of Gastrointestinal Surgery Center, First Affiliated Hospital of Sun Yat-Sen University (Guangzhou, China). Western blot analysis was used to evaluate the protein expression of SMAD3 and transforming growth factor-β (TGF-β) in the patient samples. It was determined that miRNA-193b expression was markedly elevated in the CRC tissue samples. Furthermore, silencing of miRNA-193bin SW620 CRC cells by specific inhibitors significantly reduced the cell proliferation and induced apoptosis. In addition, the downregulation of miRNA-193b significantly activated the protein expression of SMAD3 and TGF-β, and promoted caspase-3 activity in SW620 cells. The results of the present study suggested that the deregulation of miRNA-193b may affect cell growth in colon cancer via the TGF-β and SMAD3 signaling pathways.
Collapse
Affiliation(s)
- Kaiming Wu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Zhenxian Zhao
- Department of Pancreato-Biliary Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Jun Ma
- Department of Thoracic Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Jianhui Chen
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Jianjun Peng
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Shibin Yang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Yulong He
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, P.R. China
| |
Collapse
|
16
|
Zhao Y, Song Y, Yao L, Song G, Teng C. Circulating microRNAs: Promising Biomarkers Involved in Several Cancers and Other Diseases. DNA Cell Biol 2017; 36:77-94. [DOI: 10.1089/dna.2016.3426] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Affiliation(s)
- Yicheng Zhao
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Yuanyuan Song
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Li Yao
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Guangqi Song
- Junior Research Group of microRNA, Cluster of Excellence Rebirth, Hannover Medical School, Hannover, Germany
- Department of Gastroenterology and Hepatology, Shanghai Institute of Liver Disease, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Chunbo Teng
- College of Life Science, Northeast Forestry University, Harbin, China
| |
Collapse
|
17
|
Larrea E, Sole C, Manterola L, Goicoechea I, Armesto M, Arestin M, Caffarel MM, Araujo AM, Araiz M, Fernandez-Mercado M, Lawrie CH. New Concepts in Cancer Biomarkers: Circulating miRNAs in Liquid Biopsies. Int J Mol Sci 2016; 17:ijms17050627. [PMID: 27128908 PMCID: PMC4881453 DOI: 10.3390/ijms17050627] [Citation(s) in RCA: 184] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Revised: 04/18/2016] [Accepted: 04/18/2016] [Indexed: 12/19/2022] Open
Abstract
The effective and efficient management of cancer patients relies upon early diagnosis and/or the monitoring of treatment, something that is often difficult to achieve using standard tissue biopsy techniques. Biological fluids such as blood hold great possibilities as a source of non-invasive cancer biomarkers that can act as surrogate markers to biopsy-based sampling. The non-invasive nature of these “liquid biopsies” ultimately means that cancer detection may be earlier and that the ability to monitor disease progression and/or treatment response represents a paradigm shift in the treatment of cancer patients. Below, we review one of the most promising classes of circulating cancer biomarkers: microRNAs (miRNAs). In particular, we will consider their history, the controversy surrounding their origin and biology, and, most importantly, the hurdles that remain to be overcome if they are really to become part of future clinical practice.
Collapse
Affiliation(s)
- Erika Larrea
- Molecular Oncology, Biodonostia Research Institute, 20014 San Sebastián, Spain.
| | - Carla Sole
- Molecular Oncology, Biodonostia Research Institute, 20014 San Sebastián, Spain.
| | - Lorea Manterola
- Molecular Oncology, Biodonostia Research Institute, 20014 San Sebastián, Spain.
| | - Ibai Goicoechea
- Molecular Oncology, Biodonostia Research Institute, 20014 San Sebastián, Spain.
| | - María Armesto
- Molecular Oncology, Biodonostia Research Institute, 20014 San Sebastián, Spain.
| | - María Arestin
- Molecular Oncology, Biodonostia Research Institute, 20014 San Sebastián, Spain.
| | - María M Caffarel
- Molecular Oncology, Biodonostia Research Institute, 20014 San Sebastián, Spain.
- IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain.
| | - Angela M Araujo
- Molecular Oncology, Biodonostia Research Institute, 20014 San Sebastián, Spain.
| | - María Araiz
- Hematology Department, Donostia Hospital, 20014 San Sebastián, Spain.
| | | | - Charles H Lawrie
- Molecular Oncology, Biodonostia Research Institute, 20014 San Sebastián, Spain.
- IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain.
- Nuffield Department of Clinical Laboratory Sciences, University of Oxford, Oxford OX3 9DU, UK.
| |
Collapse
|
18
|
Cekaite L, Eide PW, Lind GE, Skotheim RI, Lothe RA. MicroRNAs as growth regulators, their function and biomarker status in colorectal cancer. Oncotarget 2016; 7:6476-505. [PMID: 26623728 PMCID: PMC4872728 DOI: 10.18632/oncotarget.6390] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 11/16/2015] [Indexed: 02/07/2023] Open
Abstract
Gene expression is in part regulated by microRNAs (miRNAs). This review summarizes the current knowledge of miRNAs in colorectal cancer (CRC); their role as growth regulators, the mechanisms that regulate the miRNAs themselves and the potential of miRNAs as biomarkers. Although thousands of tissue samples and bodily fluids from CRC patients have been investigated for biomarker potential of miRNAs (>160 papers presented in a comprehensive tables), none single miRNA nor miRNA expression signatures are in clinical use for this disease. More than 500 miRNA-target pairs have been identified in CRC and we discuss how these regulatory nodes interconnect and affect signaling pathways in CRC progression.
Collapse
Affiliation(s)
- Lina Cekaite
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- K.G.Jebsen Colorectal Cancer Research Centre, Oslo University Hospital, Oslo, Norway
| | - Peter W. Eide
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- K.G.Jebsen Colorectal Cancer Research Centre, Oslo University Hospital, Oslo, Norway
| | - Guro E. Lind
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- K.G.Jebsen Colorectal Cancer Research Centre, Oslo University Hospital, Oslo, Norway
| | - Rolf I. Skotheim
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- K.G.Jebsen Colorectal Cancer Research Centre, Oslo University Hospital, Oslo, Norway
| | - Ragnhild A. Lothe
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- K.G.Jebsen Colorectal Cancer Research Centre, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
19
|
Circulating cell-free microRNAs as biomarkers for colorectal cancer. Surg Today 2016; 46:13-24. [PMID: 25712224 DOI: 10.1007/s00595-015-1138-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 02/11/2015] [Indexed: 02/07/2023]
Abstract
MicroRNAs (miRNAs) are a class of small, endogenous, non-coding, single-stranded RNAs that act as post-transcriptional regulators. Their discovery has provided new avenues for the diagnosis and treatment of cancer. The expression of both oncogenic and tumor suppressor miRNAs can be aberrantly either up- or down-regulated in cancer cells. These miRNAs target mRNAs of genes that either promote or inhibit tumor growth, and are one of several epigenetic factors that control the initiation and progression of colorectal cancer (CRC) and other cancers. Investigations of miRNAs as CRC biomarkers have employed the expression profiling of traditional tissue samples and, more recently, non-invasive samples, such as feces and body fluids, have been analyzed. MiRNAs may also be able to predict responses to chemo- and radiotherapy, and may be manipulated to modify CRC characteristics. We herein discuss the use of circulating miRNAs as possible non-invasive biomarkers of early CRC onset, relapse, or response to treatment. We also discuss the obstacles that currently limit the routine use of epigenetic biomarkers in clinical settings.
Collapse
|
20
|
Xu H, Yao Y, Meng F, Qian X, Jiang X, Li X, Gao Z, Gao L. Predictive Value of Serum miR-10b, miR-29c, and miR-205 as Promising Biomarkers in Esophageal Squamous Cell Carcinoma Screening. Medicine (Baltimore) 2015; 94:e1558. [PMID: 26554762 PMCID: PMC4915863 DOI: 10.1097/md.0000000000001558] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) is a leading cause of cancer-related deaths worldwide. The high mortality of ESCC is mainly due to late diagnosis. Current detection methods have their own weakness, including high costs and invasive procedures. MicroRNA assays are shown to have great potential to be accurate and noninvasive methods for ESCC screening. In this study, we selected 3 microRNAs, miR-10b, miR-29c, and miR-205, to assess their diagnostic value in ESCC screening. Fifty ESCC patients and 50 healthy controls are recruited in our study. Blood samples are collected from the total 100 participants. MicroRNAs were extracted from serum and quantified by qRT-PCR, which their relative expressions were normalized by internal control, U6 snRNA. Statistical analyses were conducted to compare microRNAs level as well as other clinical characteristics between 2 groups. The levels of serum miR-29c and miR-205 were significantly downregulated in ESCC patients compared with healthy volunteers. In contrast, ESCC patients appeared to have a higher level of miR-10b than healthy controls. ROC curve analyses revealed that the AUC value for miR-10b, miR-29c, and miR-205 were 0.85 (95% CI: 0.79-0.93; sensitivity = 76%; specificity = 84%), 0.72 (95% CI: 0.62-0.82; sensitivity = 68%; specificity = 68%), and 0.72 (95% CI: 0.62-0.83; sensitivity = 70%; specificity = 64%), respectively, suggesting that miR-10b, miR-29c, and miR-205 have great potential to be noninvasive screening tools for ESCC detection.
Collapse
Affiliation(s)
- Hang Xu
- From the Department of Pharmacy, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, China (HX); School of Life Science and Technology, Harbin Institute of Technology, Harbin, China (YY); School of Public Health, Harbin Medical University, Harbin, China (FM); Department of Neuro-Oncology, U.T. M.D. Anderson Cancer Center, Houston, TX, USA (XQ); Department of Clinical Laboratory, the Fourth Affiliated Hospital of Harbin Medical University, Harbin, China (XJ, ZG); The Center of Metabolic Disease Research, Nanjing Medical University, Nanjing, China (XL, ZG); Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, USA (ZG); College of Life Sciences, Northeast Agricultural University, Harbin, China (LG); and Department of Pathology, University of Maryland School of Medicine, Baltimore, MD, USA (LG)
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Nonaka R, Miyake Y, Hata T, Kagawa Y, Kato T, Osawa H, Nishimura J, Ikenaga M, Murata K, Uemura M, Okuzaki D, Takemasa I, Mizushima T, Yamamoto H, Doki Y, Mori M. Circulating miR-103 and miR-720 as novel serum biomarkers for patients with colorectal cancer. Int J Oncol 2015; 47:1097-1102. [PMID: 26134152 DOI: 10.3892/ijo.2015.3064] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2015] [Accepted: 03/30/2015] [Indexed: 11/05/2022] Open
Abstract
Circulating microRNAs (miRNAs) have been reported as a biomarker for human malignancies, including colorectal cancer (CRC). The purpose of this study was to identify a novel biomarker for CRC through examination of serum miRNAs from the patients with CRC. Microarray analysis of miRNA expression was performed using paired pre- and post-operative serum from 10 CRC patients. miR-103 and miR-720 decreased significantly in the post-operative serum when compared to pre-operative serum. With an extended scale validation by qRT-PCR (quantitative real-time polymerase chain reaction) in 30 CRC patients, we confirmed that serum miR-103 and miR-720 decreased significantly after surgery (P=0.0004, and P=0.0274, respectively). Next, we examined serum miR-103 and miR-720 levels in 32 non-cancer patients and 84 CRC patients, and we found that expression of these two miRNAs was significantly higher in CRC patients than non-cancer patients. Furthermore, clinical and pathological survey indicated that high expression of miR-103 was significantly associated with histological differentiation grade, and lymphatic invasion and high expression of miR-720 was significantly associated with male gender and lymph node metastasis. Our data suggest that circulating miR-103 and miR-720 show potential as novel serum biomarkers for CRC.
Collapse
Affiliation(s)
- Ryoji Nonaka
- Department of Surgery, Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Yuichiro Miyake
- Department of Surgery, Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Taishi Hata
- Department of Surgery, Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | | | - Takeshi Kato
- Department of Surgery, Kansai Rosai Hospital, Hyogo, Japan
| | - Hideki Osawa
- Department of Surgery, Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Junichi Nishimura
- Department of Surgery, Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | | | - Kohei Murata
- Department of Surgery, Suita Municipal Hospital, Osaka, Japan
| | - Mamoru Uemura
- Department of Surgery, Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Daisuke Okuzaki
- Special Research Facilities DNA-chip Development Center for Infectious Diseases, Research Institute for Microbial Disease, Osaka University, Osaka, Japan
| | - Ichiro Takemasa
- Department of Surgery, Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Tsunekazu Mizushima
- Department of Surgery, Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Hirofumi Yamamoto
- Department of Surgery, Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Yuichiro Doki
- Department of Surgery, Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Masaki Mori
- Department of Surgery, Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| |
Collapse
|
22
|
Abstract
OBJECTIVE To identify candidate microRNAs (miRNAs) in the serum of patients with clear cell carcinomas in monitoring disease progression. MATERIALS AND METHODS The sera of patients with diagnosed ovarian clear cell carcinoma were collected from 2009 to 2012. Real-time quantitative polymerase chain reaction (PCR) analysis for 270 miRNAs was performed. To offset the potential extraction bias, an equal amount of Caenorhabditis elegans cel-miR-238 was added to each serum specimen before miRNA isolation. miRNA expression was analyzed using the ΔCt method, with cel-miR-238 as controls. RESULTS Twenty-one patients with clear cell carcinoma were included. In the discovery phase on four pairs of pre- and postoperative sera, 18 differentially expressed miRNAs were selected from 270 miRNAs. In the validation phase on an independent set of 11 pairs of pre- and postoperative sera, 4 miRNAs (hsa-miR-130a, hsa-miR-138, hsa-miR-187, and hsa-miR-202) were confirmed to be higher in the preoperative sera. In the application phase, hsa-miR-130a remained consistent with the different time points in seven of the 10 patients during clinical follow-up periods. More importantly, in three patients, hsa-miR-130a levels were elevated in early disease recurrences before CA125 was found to be elevated. CONCLUSION Hsa-miR-130a may be a useful serum biomarker for detecting recurrence of ovarian clear cell cancer, and warrants further studies.
Collapse
|
23
|
Ferracin M, Negrini M. Micromarkers 2.0: an update on the role of microRNAs in cancer diagnosis and prognosis. Expert Rev Mol Diagn 2015; 15:1369-81. [DOI: 10.1586/14737159.2015.1081058] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
24
|
Zhao X, Li J, Huang S, Wan X, Luo H, Wu D. MiRNA-29c regulates cell growth and invasion by targeting CDK6 in bladder cancer. Am J Transl Res 2015; 7:1382-1389. [PMID: 26396669 PMCID: PMC4568794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 07/31/2015] [Indexed: 06/05/2023]
Abstract
BACKGROUND MicroRNAs are a class of endogenous single strand non-coding RNAs that are involved in many important physiological and pathological processes. The purpose of this study was to investigate the expression levels of miR-29c in human bladder cancer and its potential role in disease pathogenesis. METHODS The expression level of miR-29c was measured in 40 bladder cancer specimens and adjacent normal breast tissues by quantitative polymerase chain reaction (qPCR). Over-expression of miR-29c was established by transfecting mimics into T24.MTT assays, colony formation assays, transwell assays and cell cycle assays were used to explore the potential function of miR-29c inT24 bladder cancer cells. Luciferase reporter assays were performed to analyze the regulation of putative target of miR-29c. The effects of modulating miR-29c on endogenous levels of this target were subsequently confirmed via qRT-PCR and Western blot. RESULTS The expression of miR-29c in bladder cancer specimens was lower than adjacent normal tissues (P<0.01). Overexpression of miR-29c inhibited cellular growth, suppressed cellular migration and caused an accumulation of cells in the G1 phase of the cell cycle, Dual-luciferase reporter assays showed that miR-29c binds the 3'-untranslated region (3'-UTR) of CDK6, suggesting that CDK6 is a direct target of miR-29c. Furthermore, through qPCR and Western blot assays confirmed that overexpression of miR-29c reduced CDK6 mRNA and protein levels. CONCLUSIONS miR-29c could inhibit the proliferation, migration and invasion of bladder cancer cells via regulating CDK6. in the future, it could be used as a therapeutic target for the treatment of bladder cancer.
Collapse
Affiliation(s)
- Xin Zhao
- Department of Urology, Tongji Hospital, Tongji University School of Medicine Shanghai 200433, People's Republic of China
| | - Junliang Li
- Department of Urology, Tongji Hospital, Tongji University School of Medicine Shanghai 200433, People's Republic of China
| | - Shengsong Huang
- Department of Urology, Tongji Hospital, Tongji University School of Medicine Shanghai 200433, People's Republic of China
| | - Xiaodong Wan
- Department of Urology, Tongji Hospital, Tongji University School of Medicine Shanghai 200433, People's Republic of China
| | - Huarong Luo
- Department of Urology, Tongji Hospital, Tongji University School of Medicine Shanghai 200433, People's Republic of China
| | - Denglong Wu
- Department of Urology, Tongji Hospital, Tongji University School of Medicine Shanghai 200433, People's Republic of China
| |
Collapse
|
25
|
Dumache R, Rogobete AF, Bedreag OH, Sarandan M, Cradigati AC, Papurica M, Dumbuleu CM, Nartita R, Sandesc D. Use of miRNAs as biomarkers in sepsis. Anal Cell Pathol (Amst) 2015; 2015:186716. [PMID: 26221578 PMCID: PMC4499375 DOI: 10.1155/2015/186716] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 06/15/2015] [Accepted: 06/21/2015] [Indexed: 12/19/2022] Open
Abstract
Sepsis is one of the most common causes of death in critical patients. Severe generalized inflammation, infections, and severe physiological imbalances significantly decrease the survival rate with more than 50%. Moreover, monitoring, evaluation, and therapy management often become extremely difficult for the clinician in this type of patients. Current methods of diagnosing sepsis vary based especially on the determination of biochemical-humoral markers, such as cytokines, components of the complement, and proinflammatory and anti-inflammatory compounds. Recent studies highlight the use of new biomarkers for sepsis, namely, miRNAs. miRNAs belong to a class of small, noncoding RNAs with an approximate content of 19-23 nucleotides. Following biochemical and physiological imbalances, the expression of miRNAs in blood or other body fluids changes significantly. Moreover, its stability, specificity, and selectivity make miRNAs ideal candidates for sepsis biomarkers. In conclusion, we can affirm that stable species of circulating miRNAs represent potential biomarkers for monitoring the evolution of sepsis.
Collapse
Affiliation(s)
- Raluca Dumache
- Department of Forensic Medicine, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Alexandru Florin Rogobete
- Clinic of Anaesthesia and Intensive Care, Emergency County Hospital “Pius Brinzeu”, 300736 Timisoara, Romania
- Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania
- Faculty of Chemistry, Biology, and Geography, West University of Timisoara, 300115 Timisoara, Romania
| | - Ovidiu Horea Bedreag
- Clinic of Anaesthesia and Intensive Care, Emergency County Hospital “Pius Brinzeu”, 300736 Timisoara, Romania
- Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Mirela Sarandan
- Clinic of Anaesthesia and Intensive Care “Casa Austria”, Emergency County Hospital “Pius Brinzeu”, 300736 Timisoara, Romania
| | - Alina Carmen Cradigati
- Clinic of Anaesthesia and Intensive Care “Casa Austria”, Emergency County Hospital “Pius Brinzeu”, 300736 Timisoara, Romania
| | - Marius Papurica
- Clinic of Anaesthesia and Intensive Care, Emergency County Hospital “Pius Brinzeu”, 300736 Timisoara, Romania
- Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Corina Maria Dumbuleu
- Clinic of Anaesthesia and Intensive Care, Emergency County Hospital “Pius Brinzeu”, 300736 Timisoara, Romania
| | - Radu Nartita
- Faculty of Chemistry, Biology, and Geography, West University of Timisoara, 300115 Timisoara, Romania
| | - Dorel Sandesc
- Clinic of Anaesthesia and Intensive Care, Emergency County Hospital “Pius Brinzeu”, 300736 Timisoara, Romania
- Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania
| |
Collapse
|
26
|
Fernandez-Mercado M, Manterola L, Larrea E, Goicoechea I, Arestin M, Armesto M, Otaegui D, Lawrie CH. The circulating transcriptome as a source of non-invasive cancer biomarkers: concepts and controversies of non-coding and coding RNA in body fluids. J Cell Mol Med 2015; 19:2307-23. [PMID: 26119132 PMCID: PMC4594673 DOI: 10.1111/jcmm.12625] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 05/07/2015] [Indexed: 12/12/2022] Open
Abstract
The gold standard for cancer diagnosis remains the histological examination of affected tissue, obtained either by surgical excision, or radiologically guided biopsy. Such procedures however are expensive, not without risk to the patient, and require consistent evaluation by expert pathologists. Consequently, the search for non-invasive tools for the diagnosis and management of cancer has led to great interest in the field of circulating nucleic acids in plasma and serum. An additional benefit of blood-based testing is the ability to carry out screening and repeat sampling on patients undergoing therapy, or monitoring disease progression allowing for the development of a personalized approach to cancer patient management. Despite having been discovered over 60 years ago, the clear clinical potential of circulating nucleic acids, with the notable exception of prenatal diagnostic testing, has yet to translate into the clinic. The recent discovery of non-coding (nc) RNA (in particular micro(mi)RNAs) in the blood has provided fresh impetuous for the field. In this review, we discuss the potential of the circulating transcriptome (coding and ncRNA), as novel cancer biomarkers, the controversy surrounding their origin and biology, and most importantly the hurdles that remain to be overcome if they are really to become part of future clinical practice.
Collapse
Affiliation(s)
| | - Lorea Manterola
- Oncology Area, Biodonostia Research Institute, San Sebastian, Spain
| | - Erika Larrea
- Oncology Area, Biodonostia Research Institute, San Sebastian, Spain
| | - Ibai Goicoechea
- Oncology Area, Biodonostia Research Institute, San Sebastian, Spain
| | - María Arestin
- Oncology Area, Biodonostia Research Institute, San Sebastian, Spain
| | - María Armesto
- Oncology Area, Biodonostia Research Institute, San Sebastian, Spain
| | - David Otaegui
- Multiple Sclerosis Group, Biodonostia Research Institute, San Sebastian, Spain
| | - Charles H Lawrie
- Oncology Area, Biodonostia Research Institute, San Sebastian, Spain.,Nuffield Division of Clinical Laboratory Sciences, University of Oxford, Oxford, UK.,IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|
27
|
KIF2A overexpression and its association with clinicopathologic characteristics and unfavorable prognosis in colorectal cancer. Tumour Biol 2015; 36:8895-902. [DOI: 10.1007/s13277-015-3603-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 05/20/2015] [Indexed: 12/13/2022] Open
|
28
|
Coghlin C, Murray GI. Biomarkers of colorectal cancer: Recent advances and future challenges. Proteomics Clin Appl 2015; 9:64-71. [DOI: 10.1002/prca.201400082] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 09/19/2014] [Accepted: 10/07/2014] [Indexed: 12/19/2022]
Affiliation(s)
- Caroline Coghlin
- Department of Pathology; Aberdeen Royal Infirmary; NHS Grampian; Aberdeen UK
| | - Graeme I. Murray
- Pathology Division of Applied Medicine; School of Medicine and Dentistry; University of Aberdeen; Aberdeen UK
| |
Collapse
|
29
|
Fesler A, Jiang J, Zhai H, Ju J. Circulating microRNA testing for the early diagnosis and follow-up of colorectal cancer patients. Mol Diagn Ther 2015; 18:303-8. [PMID: 24566942 DOI: 10.1007/s40291-014-0089-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Early detection of colorectal cancer (CRC) is key for prevention and the ability to impact long-term survival of CRC patients. However, the compliance rate of recommended colonoscopy for the population aged from 50 to 75 years is only 50-75 % in the US. A highly sensitive and specific non-invasive test is needed to enhance CRC management. As for late-stage patients, a non-invasive prognostic biomarker is also critical for improving patient treatment protocols. The discovery that non-coding microRNAs (miRNAs) are stable in body fluids such as plasma, serum and exosomes presents the opportunity to develop novel strategies, taking advantage of circulating miRNAs as early diagnostic biomarkers of CRC. The goal of using circulating miRNA-based prognostic biomarkers for CRC patients has been pursued extensively. In this review, we will try to cover the major recent advancements at the frontier of this research area.
Collapse
Affiliation(s)
- Andrew Fesler
- Translational Research Laboratory, Department of Pathology, BST, L-9, Room 185, Stony Brook Medicine, Stony Brook University, Stony Brook, NY, 11794, USA
| | | | | | | |
Collapse
|
30
|
Cheng G. Circulating miRNAs: roles in cancer diagnosis, prognosis and therapy. Adv Drug Deliv Rev 2015; 81:75-93. [PMID: 25220354 DOI: 10.1016/j.addr.2014.09.001] [Citation(s) in RCA: 251] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 08/28/2014] [Accepted: 09/03/2014] [Indexed: 12/12/2022]
Abstract
MicroRNAs (miRNAs) belong to a class of small non-coding RNAs that regulate numerous biological processes by targeting a broad set of messenger RNAs. Recently, miRNAs have been detected in remarkably stable forms in many types of body fluids. A comparison between cancer patients and healthy individuals has clearly shown that certain types of circulating miRNAs are associated with cancer initiation and progression. Research on miRNA-based biomarkers has witnessed phenomenal growth, owing to the non-invasive nature of miRNA-based screening assays and their sensitivity and specificity in detecting cancers. Consequently, a considerable effort has been devoted to identify suitable miRNAs for cancer diagnosis and also decode the information carried by circulating miRNAs. This review highlights the current studies that focus on the identification of circulating miRNA-based diagnostic and prognostic markers, for the most prevalent types of cancer. Additionally, the review also provides an insight into the putative functions of miRNAs, and attempts to delineate the mechanisms through which they are released into the bloodstream. Moreover, methodologies and strategies for identification of circulating miRNAs in cancers are summarized. Finally, potential strategies for circulating miRNA-based cancer therapies are proposed.
Collapse
|
31
|
Plasma microRNAs as potential noninvasive biomarkers for in-stent restenosis. PLoS One 2014; 9:e112043. [PMID: 25427155 PMCID: PMC4245195 DOI: 10.1371/journal.pone.0112043] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Accepted: 10/11/2014] [Indexed: 01/06/2023] Open
Abstract
OBJECTIVE To investigate whether microRNAs (miRs) can serve as novel biomarkers for in-stent restenosis (ISR). METHODS This retrospective, observational single-centre study was conducted at the cardiovascular department of a tertiary hospital centre in the north of China. Follow-up coronary angiography at 6 to 12 months was performed in 181 consecutive patients implanted with drug-eluting stents. Fifty-two healthy volunteers served as the control group. The plasma miRs levels were analyzed by quantitative real-time PCR. Receiver-operating characteristic curve (ROC) analysis was performed to investigate the characters of these miRs as potential biomarkers of ISR. RESULTS MiR-21 levels in ISR patients were significantly higher than those in non-ISR patients and healthy controls (P<0.05), while miR-100 (P<0.05), miR-143 (P<0.001) and miR-145 (P<0.0001) levels were significantly decreased in ISR patients. Further analysis showed that miR-21 levels were remarkably increased (P = 0.045), while miR-100 (P = 0.041), miR-143 (P = 0.029) and miR-145 (P<0.01) levels were dramatically decreased in patients with diffuse ISR compared to those with focal ISR. ROC analysis demonstrated that the area under curve of miR-145, miR-143, miR-100 and miR-21 were 0.880 (95% confidence interval; CI = 0.791-0.987, P<0.001), 0.818 (95% confidence interval; CI = 0.755-0.963, P<0.001), 0.608 (95% confidence interval; CI = 0.372-0.757, P<0.05) and 0.568 (95% confidence interval; CI = 0.372-0.757, P<0.05), with specificity of 83.1%, 80.1%, 68.9% and 68.6%, and sensitivity of 88.7%, 82.1%, 60.2% and 50.1%, respectively. CONCLUSIONS Circulating miR-143 and miR-145 levels are associated with the occurrence of ISR and can serve as novel noninvasive biomarkers for ISR.
Collapse
|
32
|
Dong Y, Yu J, Ng SS. MicroRNA dysregulation as a prognostic biomarker in colorectal cancer. Cancer Manag Res 2014; 6:405-22. [PMID: 25342918 PMCID: PMC4206254 DOI: 10.2147/cmar.s35164] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most potentially curable cancers, yet it remains the fourth most common overall cause of cancer death worldwide. The identification of robust molecular prognostic biomarkers can refine the conventional tumor–node–metastasis staging system, avoid understaging of tumor, and help pinpoint patients with early-stage CRC who may benefit from aggressive treatments. Recently, epigenetic studies have provided new molecular evidence to better categorize the CRC subtypes and predict clinical outcomes. In this review, we summarize recent findings concerning the prognostic potential of microRNAs (miRNAs) in CRC. We first discuss the prognostic value of three tissue miRNAs (miR-21-5p, miR-29-3p, miR-148-3p) that have been examined in multiple studies. We also summarize the dysregulation of miRNA processing machinery DICER in CRC and its association with risk for mortality. We also reviewe the potential application of miRNA-associated single-nucleotide polymorphisms as prognostic biomarkers for CRC, especially the miRNA-associated polymorphism in the KRAS gene. Last but not least, we discuss the microsatellite instability-related miRNA candidates. Among all these candidates, miR-21-5p is the most promising prognostic marker, yet further prospective validation studies are required before it can go into clinical usage.
Collapse
Affiliation(s)
- Yujuan Dong
- Division of Colorectal Surgery, Department of Surgery, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong ; Institute of Digestive Disease, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong
| | - Jun Yu
- Institute of Digestive Disease, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong
| | - Simon Sm Ng
- Division of Colorectal Surgery, Department of Surgery, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong ; Institute of Digestive Disease, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong
| |
Collapse
|
33
|
Zhang JX, Mai SJ, Huang XX, Wang FW, Liao YJ, Lin MC, Kung HF, Zeng YX, Xie D. MiR-29c mediates epithelial-to-mesenchymal transition in human colorectal carcinoma metastasis via PTP4A and GNA13 regulation of β-catenin signaling. Ann Oncol 2014; 25:2196-2204. [PMID: 25193986 DOI: 10.1093/annonc/mdu439] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Distant metastasis is the major cause of cancer-related death, and epithelial-to-mesenchymal transition (EMT) has a critical role in this process. Accumulating evidence indicates that EMT can be regulated by microRNAs (miRNAs). miR-29c has been implicated as a tumor suppressor in several human cancers. However, the role of miR-29c in the progression of colorectal cancer (CRC) metastasis remains largely unknown. PATIENTS AND METHODS The expression of miR-29c was examined by qRT-PCR in a cohort of primary CRC (PC) and distant liver metastasis (LM) tissues. A series of in vivo and in vitro assays were carried out in order to elucidate the functions of miR-29c and the molecular mechanisms underlying the pathogenesis of metastatic CRC. RESULTS miR-29c was markedly downregulated in PCs with distant metastasis and determined to be an independent predictor of shortened patient survival. But LM tissues showed higher levels of miR-29c than that in PC tissues. In CRC cells, miR-29c dramatically suppressed cell migration and invasion abilities in vitro and cancer metastasis in vivo. In addition, miR-29c inhibited EMT and negatively regulated Wnt/β-catenin signaling pathway. Guanine nucleotide binding protein alpha13 (GNA13) and protein tyrosine phosphatase type IVA (PTP4A) were identified as direct targets of miR-29c, which acted through ERK/GSK3β/β-catenin and AKT/GSK3β/β-catenin pathways, respectively, to regulate EMT. Furthermore, significant associations between miR-29c, its target genes (GNA13 and PTP4A) and EMT markers were validated in both PC and LM tissues. CONCLUSION Our findings highlight the important role of miR-29c in regulating CRC EMT via GSK-3β/β-catenin signaling by targeting GNA13 and PTP4A and provide new insights into the metastatic basis of CRC.
Collapse
Affiliation(s)
- J X Zhang
- The State Key Laboratory of Oncology in South China; Department of Pathology, Sun Yat-Sen University Cancer Center, Guangzhou
| | - S J Mai
- The State Key Laboratory of Oncology in South China
| | - X X Huang
- The State Key Laboratory of Oncology in South China
| | - F W Wang
- The State Key Laboratory of Oncology in South China
| | - Y J Liao
- The State Key Laboratory of Oncology in South China
| | - M C Lin
- The State Key Laboratory of Oncology in South China, The Chinese University of Hong Kong, Hong Kong, China
| | - H F Kung
- The State Key Laboratory of Oncology in South China; The State Key Laboratory of Oncology in South China, The Chinese University of Hong Kong, Hong Kong, China
| | - Y X Zeng
- The State Key Laboratory of Oncology in South China
| | - D Xie
- The State Key Laboratory of Oncology in South China; Department of Pathology, Sun Yat-Sen University Cancer Center, Guangzhou.
| |
Collapse
|
34
|
Kawamura M, Toiyama Y, Tanaka K, Inoue Y, Mohri Y, Kusunoki M. Can Circulating MicroRNAs Become the Test of Choice for Colorectal Cancer? CURRENT COLORECTAL CANCER REPORTS 2014. [DOI: 10.1007/s11888-014-0240-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
35
|
Buza T, Arick M, Wang H, Peterson DG. Computational prediction of disease microRNAs in domestic animals. BMC Res Notes 2014; 7:403. [PMID: 24970281 PMCID: PMC4091757 DOI: 10.1186/1756-0500-7-403] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 06/20/2014] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND The most important means of identifying diseases before symptoms appear is through the discovery of disease-associated biomarkers. Recently, microRNAs (miRNAs) have become highly useful biomarkers of infectious, genetic and metabolic diseases in human but they have not been well studied in domestic animals. It is probable that many of the animal homologs of human disease-associated miRNAs may be involved in domestic animal diseases. Here we describe a computational biology study in which human disease miRNAs were utilized to predict orthologous miRNAs in cow, chicken, pig, horse, and dog. RESULTS We identified 287 human disease-associated miRNAs which had at least one 100% identical animal homolog. The 287 miRNAs were associated with 359 human diseases referenced in 2,863 Pubmed articles. Multiple sequence analysis indicated that over 60% of known horse mature miRNAs found perfect matches in human disease-associated miRNAs, followed by dog (50%). As expected, chicken had the least number of perfect matches (5%). Phylogenetic analysis of miRNA precursors indicated that 85% of human disease pre-miRNAs were highly conserved in animals, showing less than 5% nucleotide substitution rates over evolutionary time. As an example we demonstrated conservation of human hsa-miR-143-3p which is associated with type 2 diabetes and targets AKT1 gene which is highly conserved in pig, horse and dog. Functional analysis of AKT1 gene using Gene Ontology (GO) showed that it is involved in glucose homeostasis, positive regulation of glucose import, positive regulation of glycogen biosynthetic process, glucose transport and response to food. CONCLUSIONS This data provides the animal and veterinary research community with a resource to assist in generating hypothesis-driven research for discovering animal disease-related miRNA from their datasets and expedite development of prophylactic and disease-treatment strategies and also influence research efforts to identify novel disease models in large animals. Integrated data is available for download at http://agbase.hpc.msstate.edu/cgi-bin/animal_mirna.cgi.
Collapse
Affiliation(s)
- Teresia Buza
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, P. O. Box 6100, Mississippi State 39762, USA
- Institute for Genomics, Biocomputing & Biotechnology, Mississippi State University, P. O. Box 9627, Mississippi State 39762, USA
| | - Mark Arick
- Institute for Genomics, Biocomputing & Biotechnology, Mississippi State University, P. O. Box 9627, Mississippi State 39762, USA
| | - Hui Wang
- Institute for Genomics, Biocomputing & Biotechnology, Mississippi State University, P. O. Box 9627, Mississippi State 39762, USA
| | - Daniel G Peterson
- Institute for Genomics, Biocomputing & Biotechnology, Mississippi State University, P. O. Box 9627, Mississippi State 39762, USA
| |
Collapse
|
36
|
Macha MA, Seshacharyulu P, Krishn SR, Pai P, Rachagani S, Jain M, Batra SK. MicroRNAs (miRNAs) as biomarker(s) for prognosis and diagnosis of gastrointestinal (GI) cancers. Curr Pharm Des 2014; 20:5287-97. [PMID: 24479799 DOI: 10.2174/1381612820666140128213117] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Accepted: 03/12/2014] [Indexed: 12/19/2022]
Abstract
Gastrointestinal (GI) cancers remain one of the most common malignancies and are the second common cause of cancer deaths worldwide. The limited effectiveness of therapy for patients with advanced stage and recurrent disease is a reflection of an incomplete understanding of the molecular basis of GI carcinogenesis. Major advancements have improved our understanding of pathology and pathogenesis of GI cancers, but high mortality rates, unfavorable prognosis and lack of clinical predictive biomarkers provide an impetus to investigate new sensitive and specific diagnostic and prognostic markers for GI cancers. MicroRNAs (miRNAs) are short (19-24 nucleotides) noncoding RNA molecules that regulate gene expression at the posttranscriptional level thus playing an important role in modulating various biological processes including, but not limited to developmental processes, proliferation, apoptosis, metabolism, differentiation, epithelial-mechenchymal transition and are involved in the initiation and progression of various human cancers. Unique miRNA expression profiles have been observed in various cancer types at different stages, suggesting their potential as diagnostic and prognostic biomarkers. Due to their tumor-specific and tissue-specific expression profiles, stability, robust clinical assays for detection in serum as well as in formalin-fixed tissue samples, miRNAs have emerged as attractive candidates for diagnostic and prognostic applications. This review summarizes recent research supporting the utility of miRNAs as novel diagnostic and prognostic tools for GI cancers.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, 68198-5870, USA
| |
Collapse
|
37
|
Deb S, Fox SB. Molecular profiling in colorectal cancer: current state of play and future directions. COLORECTAL CANCER 2014. [DOI: 10.2217/crc.13.82] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
SUMMARY In the era of molecular scientific discovery, there is a continuing gap between our growing scientific knowledge and its utility at the bedside. This phenomenon probably occurs more frequently in colorectal cancer than in other cancer streams, with thousands of scientific studies having produced only a handful of molecular interventions. This review examines our current practices of molecular profiling in colorectal cancer and the scientific research that may impact on this area in the future.
Collapse
Affiliation(s)
- Siddhartha Deb
- Department of Anatomical Pathology, Peter MacCallum Cancer Centre, East Melbourne 3002, Australia
- Department of Pathology, University of Melbourne, Parkville 3052, Australia
| | - Stephen B Fox
- Department of Pathology, University of Melbourne, Parkville 3052, Australia
- Department of Anatomical Pathology, Peter MacCallum Cancer Centre, East Melbourne 3002, Australia.
| |
Collapse
|
38
|
Igaz I, Topa L. Significance of microRNA expression in body fluids in the diagnosis of gastrointestinal tumors. Orv Hetil 2014; 155:11-5. [DOI: 10.1556/oh.2014.29789] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
MicroRNAs are small, non-coding, single strained RNAs that regulate gene expression at the posttranscriptional level. They are involved in all major aspects of cellular functions, such as cell cycle, differentiation, migration, apoptosis etc. The role of microRNAs as potential biomarkers of several malignant diseases is being intensively investigated, since they can be found in the body fluids, too, besides their usual intracellular localisation. MicroRNAs have been detected in blood, saliva, stool, breast milk, urine, bile etc. In this review the authors discuss recent findings in the field of microRNAs in stool, bile and saliva, underlying their potential significance in the diagnosis of gastrointestinal tumors. Orv. Hetil., 2014, 155(1), 11–15.
Collapse
Affiliation(s)
- Iván Igaz
- Szent Imre Egyetemi Oktatókórház Gasztroenterológia Profil Budapest Tétényi út 12–16. 1115
| | - Lajos Topa
- Szent Imre Egyetemi Oktatókórház Gasztroenterológia Profil Budapest Tétényi út 12–16. 1115
| |
Collapse
|