1
|
Li J, Wu J, You D, Igarashi Y, Luo F, Chang P. Optimized electroporation for efficient evaluation of genetic elements in Dichomitus squalens. World J Microbiol Biotechnol 2025; 41:107. [PMID: 40148669 DOI: 10.1007/s11274-025-04320-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Accepted: 03/08/2025] [Indexed: 03/29/2025]
Abstract
Dichomitus squalens, a promising white-rot basidiomycete for industrial enzyme production, necessitates efficient genetic manipulation systems to fully leverage its biotechnological potential. Although established methods such as protoplast-mediated and Agrobacterium tumefaciens-mediated transformations are effective in D. squalens, they are complex and time-consuming. This study introduces the electroporation transformation system for D. squalens, which is simpler and timesaving. By optimizing electroporation parameters, we obtained 77 ± 11 transformants per μg of DNA. Furthermore, we validated the suitability of the Nourseothricin N-acetyl transferase gene as a selectable marker and the NanoLuciferase gene as a bioluminescent reporter in D. squalens using our refined electroporation protocol. This study expands the toolkit for genetic engineering in D. squalens, offering greater flexibility for future molecular investigations. The development of this electroporation system not only enhances the ease of genetic manipulation in D. squalens but also provides a foundation for further exploration of its enzymatic capabilities and potential applications in biotechnology. The streamlined protocol allows for more efficient and rapid genetic engineering, facilitating the study of gene function and the development of improved strains for industrial purposes.
Collapse
Affiliation(s)
- Jing Li
- Chongqing Key Laboratory for Innovative Application of Genetic Technology, College of Resources and Environment, Southwest University, Beibei, Chongqing, 400715, China
| | - Jie Wu
- Chongqing Key Laboratory for Innovative Application of Genetic Technology, College of Resources and Environment, Southwest University, Beibei, Chongqing, 400715, China
| | - Dongrui You
- PUROTON Gene Medical Institute Co., Ltd., Chongqing, China
| | - Yasuo Igarashi
- Chongqing Key Laboratory for Innovative Application of Genetic Technology, College of Resources and Environment, Southwest University, Beibei, Chongqing, 400715, China
| | - Feng Luo
- Chongqing Key Laboratory for Innovative Application of Genetic Technology, College of Resources and Environment, Southwest University, Beibei, Chongqing, 400715, China
| | - Peng Chang
- Chongqing Key Laboratory for Innovative Application of Genetic Technology, College of Resources and Environment, Southwest University, Beibei, Chongqing, 400715, China.
- PUROTON Gene Medical Institute Co., Ltd., Chongqing, China.
| |
Collapse
|
2
|
Franck E, Crofts TS. History of the streptothricin antibiotics and evidence for the neglect of the streptothricin resistome. NPJ ANTIMICROBIALS AND RESISTANCE 2024; 2:3. [PMID: 39843956 PMCID: PMC11702664 DOI: 10.1038/s44259-023-00020-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 12/20/2023] [Indexed: 01/24/2025]
Abstract
The streptothricin antibiotics were among the first antibiotics to be discovered from the environment and remain some of the most recovered antimicrobials in natural product screens. Increasing rates of antibiotic resistance and recognition that streptothricin antibiotics may play a role in countering so-called super-bugs has led to the re-evaluation of their clinical potential. Here we will review the current state of knowledge of streptothricins and their resistance in bacteria, with a focus on the potential for new resistance mechanisms and determinants to emerge in the context of potential widespread clinical adoption of this antibiotic class.
Collapse
Affiliation(s)
- Ezabelle Franck
- Department of Biomedical Sciences, Florida State University, Tallahassee, FL, USA
| | - Terence S Crofts
- Department of Biomedical Sciences, Florida State University, Tallahassee, FL, USA.
| |
Collapse
|
3
|
Wild T, Budzowska M, Hellmuth S, Eibes S, Karemore G, Barisic M, Stemmann O, Choudhary C. Deletion of APC7 or APC16 Allows Proliferation of Human Cells without the Spindle Assembly Checkpoint. Cell Rep 2019; 25:2317-2328.e5. [PMID: 30485802 PMCID: PMC6289045 DOI: 10.1016/j.celrep.2018.10.104] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 09/07/2018] [Accepted: 10/29/2018] [Indexed: 11/17/2022] Open
Abstract
The multisubunit ubiquitin ligase APC/C (anaphase-promoting complex/cyclosome) is essential for mitosis by promoting timely degradation of cyclin B1. APC/C is tightly regulated by the spindle assembly checkpoint (SAC), which involves MPS1 and MAD2-dependent temporal inhibition of APC/C. We analyzed the contribution of the APC/C subunits APC7 and APC16 to APC/C composition and function in human cells. APC16 is required for APC7 assembly into APC/C, whereas APC16 assembles independently of APC7. APC7 and APC16 knockout cells display no major defects in mitotic progression, cyclin B1 degradation, or SAC response, but APC/C lacking these two subunits shows reduced ubiquitylation activity in vitro. Strikingly, deletion of APC7 or APC16 is sufficient to provide synthetic viability to MAD2 deletion. ΔAPC7ΔMAD2 cells display accelerated mitosis and require SAC-independent MPS1 function for genome stability. These findings reveal that the composition of APC/C critically influences the importance of the SAC in humans. APC16 is required for in vivo assembly of APC7 into APC/C APC7 or APC16 deletion has no major effect on mitosis Deletion of APC7 or APC16 provides synthetic viability to MAD2 deletion
Collapse
Affiliation(s)
- Thomas Wild
- Proteomics Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Magda Budzowska
- Proteomics Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark; Center for Chromosome Stability (CCS), Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Susanne Hellmuth
- Chair of Genetics, University of Bayreuth, Universitätsstraße 30, 95440 Bayreuth, Germany
| | - Susana Eibes
- Danish Cancer Society Research Center, Cell Division Laboratory, Strandboulevarden 49, 2100 Copenhagen, Denmark
| | - Gopal Karemore
- Protein Imaging Platform, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Marin Barisic
- Danish Cancer Society Research Center, Cell Division Laboratory, Strandboulevarden 49, 2100 Copenhagen, Denmark; Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Olaf Stemmann
- Chair of Genetics, University of Bayreuth, Universitätsstraße 30, 95440 Bayreuth, Germany
| | - Chunaram Choudhary
- Proteomics Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark.
| |
Collapse
|
4
|
Soga A, Shirozu T, Ko-Ketsu M, Fukumoto S. Improvement of an in vitro drug selection method for generating transgenic Plasmodium berghei parasites. Malar J 2019; 18:215. [PMID: 31238932 PMCID: PMC6593524 DOI: 10.1186/s12936-019-2851-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 06/19/2019] [Indexed: 11/20/2022] Open
Abstract
Background Reverse genetics approaches have become powerful tools to dissect the biology of malaria parasites. In a previous study, development of an in vitro drug selection method for generating transgenic parasite of Plasmodium berghei was reported. Using this method, two novel and independent selection markers using the P. berghei heat shock protein 70 promoter was previously established. While the approach permits the easy and flexible genetic manipulation of P. berghei, shortcomings include a low variety in promoter options to drive marker gene expression and increased complexity of the selection procedure. In this study, addressing these issues was attempted. Methods To secure a variety of promoters, the use of a P. berghei elongation factor-1α promoter for marker gene expression was attempted. To simplify the procedure of in vitro selection, the establishment of a two cell-cycle culture method and its application for drug selection were attempted. Results The P. berghei elongation factor-1α (pbef-1α) promoter, which is commonly used to drive marker gene expression, was successfully applied as an alternative promoter model for marker gene expression, using the parasite’s codon-optimized marker sequence. To simplify the in vitro selection method, a two cell-cycle culture method in which the merozoite was released by filtration of the culture containing matured schizont-infected erythrocytes was also developed and successfully applied for drug selection. Conclusion The pbef-1α promoter was successfully applied in an in vitro selection system. The in vitro selection procedure also could be simplified for practical use using a two cell-cycle culture method. These improvements provide a more versatile platform for the genetic manipulation of P. berghei.
Collapse
Affiliation(s)
- Akira Soga
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido, 080-8555, Japan
| | - Takahiro Shirozu
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido, 080-8555, Japan
| | - Mami Ko-Ketsu
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido, 080-8555, Japan
| | - Shinya Fukumoto
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido, 080-8555, Japan.
| |
Collapse
|
5
|
Suárez-Moreno ZR, Vinchira-Villarraga DM, Vergara-Morales DI, Castellanos L, Ramos FA, Guarnaccia C, Degrassi G, Venturi V, Moreno-Sarmiento N. Plant-Growth Promotion and Biocontrol Properties of Three Streptomyces spp. Isolates to Control Bacterial Rice Pathogens. Front Microbiol 2019; 10:290. [PMID: 30858835 PMCID: PMC6398372 DOI: 10.3389/fmicb.2019.00290] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 02/04/2019] [Indexed: 11/23/2022] Open
Abstract
Bacterial Panicle Blight caused by Burkholderia glumae is a major disease of rice, which has dramatically affected rice production around the world in the last years. In this study we describe the assessment of three Streptomyces isolates as biocontrol agents for B. glumae. Additionally, the presence of other plant-growth promoting abilities and their possible beneficial effects upon their inoculation on rice plants was evaluated as an ecological analysis for their future inoculation in rice crops. Two isolates (A20 and 5.1) inhibited growth of virulent B. glumae strains, as well as a wide range of bacterial and fungal species, while a third strain (7.1) showed only antifungal activity. In vitro tests demonstrated the ability of these strains to produce siderophores, Indoleacetic acid (IAA), extracellular enzymes and solubilizing phosphate. Greenhouse experiments with two rice cultivars indicated that Streptomyces A20 is able to colonize rice plants and promote plant growth in both cultivars. Furthermore, an egfp tagged mutant was generated and colonization experiments were performed, indicating that Streptomyces A20 –GFP was strongly associated with root hairs, which may be related to the plant growth promotion observed in the gnotobiotic experiments. In order to characterize the antimicrobial compounds produced by strain A20 bacteria, mass spectrometry analyses were performed. This technique indicated that A20 produced several antimicrobial compounds with sizes below 3 kDa and three of these molecules were identified as Streptotricins D, E and F. These findings indicate the potential of Streptomyces A20 as a biocontrol inoculant to protect rice plants against bacterial diseases.
Collapse
Affiliation(s)
| | | | | | | | - Freddy A Ramos
- Departamento de Química. Universidad Nacional de Colombia, Bogotá, Colombia
| | - Corrado Guarnaccia
- Biotechnology Development Unit, International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Giuliano Degrassi
- Bacteriology and Plant Bacteriology Group, International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Vittorio Venturi
- Bacteriology and Plant Bacteriology Group, International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | | |
Collapse
|
6
|
Yang X, Peng J, Pan J. Nourseothricin N-acetyl transferase (NAT), a new selectable marker for nuclear gene expression in Chlamydomonas. PLANT METHODS 2019; 15:140. [PMID: 31827577 PMCID: PMC6862857 DOI: 10.1186/s13007-019-0526-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 11/13/2019] [Indexed: 05/16/2023]
Abstract
BACKGROUND Chlamydomonas reinhardtii is a unicellular green alga, which is a most commonly used model organism for basic research and biotechnological applications. Generation of transgenic strains, which usually requires selectable markers, is instrumental in such studies/applications. Compared to other organisms, the number of selectable markers is limited in this organism. Nourseothricin (NTC) N-acetyl transferase (NAT) has been reported as a selectable marker in a variety of organisms but not including C. reinhardtii. Thus, we investigated whether NAT was useful and effective for selection of transgenic strains in C. reinhardtii. The successful use of NAT would provide alterative choice for selectable markers in this organism and likely in other microalgae. RESULTS C. reinhardtii was sensitive to NTC at concentrations as low as 5 µg/ml. There was no cross-resistance to nourseothricin in strains that had been transformed with hygromycin B and/or paromomycin resistance genes. A codon-optimized NAT from Streptomyces noursei was synthesized and assembled into different expression vectors followed by transformation into Chlamydomonas. Around 500 transformants could be obtained by using 50 ng DNA on selection with 10 µg/ml NTC. The transformants exhibited normal growth rate and were stable at least for 10 months on conditions even without selection. We successfully tested that NAT could be used as a selectable marker for ectopic expression of IFT54-HA in strains with paromomycin and hygromycin B resistance markers. We further showed that the selection rate for IFT54-HA positive clones was greatly increased by fusing IFT54-HA to NAT and processing with the FMDV 2A peptide. CONCLUSIONS This work represents the first demonstration of stable expression of NAT in the nuclear genome of C. reinhardtii and provides evidence that NAT can be used as an effective selectable marker for transgenic strains. It provides alterative choice for selectable markers in C. reinhardtii. NAT is compatible with paromomycin and hygromycin B resistance genes, which allows for multiple selections.
Collapse
Affiliation(s)
- Xinjia Yang
- MOE Key Laboratory of Protein Sciences, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084 China
| | - Jialin Peng
- MOE Key Laboratory of Protein Sciences, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084 China
| | - Junmin Pan
- MOE Key Laboratory of Protein Sciences, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084 China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266000 Shandong China
| |
Collapse
|
7
|
Willis NA, Panday A, Duffey EE, Scully R. Rad51 recruitment and exclusion of non-homologous end joining during homologous recombination at a Tus/Ter mammalian replication fork barrier. PLoS Genet 2018; 14:e1007486. [PMID: 30024881 PMCID: PMC6067765 DOI: 10.1371/journal.pgen.1007486] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 07/31/2018] [Accepted: 06/13/2018] [Indexed: 11/19/2022] Open
Abstract
Classical non-homologous end joining (C-NHEJ) and homologous recombination (HR) compete to repair mammalian chromosomal double strand breaks (DSBs). However, C-NHEJ has no impact on HR induced by DNA nicking enzymes. In this case, the replication fork is thought to convert the DNA nick into a one-ended DSB, which lacks a readily available partner for C-NHEJ. Whether C-NHEJ competes with HR at a non-enzymatic mammalian replication fork barrier (RFB) remains unknown. We previously showed that conservative "short tract" gene conversion (STGC) induced by a chromosomal Tus/Ter RFB is a product of bidirectional replication fork stalling. This finding raises the possibility that Tus/Ter-induced STGC proceeds via a two-ended DSB intermediate. If so, Tus/Ter-induced STGC might be subject to competition by C-NHEJ. However, in contrast to the DSB response, where genetic ablation of C-NHEJ stimulates HR, we report here that Tus/Ter-induced HR is unaffected by deletion of either of two C-NHEJ genes, Xrcc4 or Ku70. These results show that Tus/Ter-induced HR does not entail the formation of a two-ended DSB to which C-NHEJ has competitive access. We found no evidence that the alternative end-joining factor, DNA polymerase θ, competes with Tus/Ter-induced HR. We used chromatin-immunoprecipitation to compare Rad51 recruitment to a Tus/Ter RFB and to a neighboring site-specific DSB. Rad51 accumulation at Tus/Ter was more intense and more sustained than at a DSB. In contrast to the DSB response, Rad51 accumulation at Tus/Ter was restricted to within a few hundred base pairs of the RFB. Taken together, these findings suggest that the major DNA structures that bind Rad51 at a Tus/Ter RFB are not conventional DSBs. We propose that Rad51 acts as an "early responder" at stalled forks, binding single stranded daughter strand gaps on the arrested lagging strand, and that Rad51-mediated fork remodeling generates HR intermediates that are incapable of Ku binding and therefore invisible to the C-NHEJ machinery.
Collapse
Affiliation(s)
- Nicholas A. Willis
- Department of Medicine, Division of Hematology-Oncology and Cancer Research Institute, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Arvind Panday
- Department of Medicine, Division of Hematology-Oncology and Cancer Research Institute, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Erin E. Duffey
- Department of Medicine, Division of Hematology-Oncology and Cancer Research Institute, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Ralph Scully
- Department of Medicine, Division of Hematology-Oncology and Cancer Research Institute, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, United States of America
| |
Collapse
|
8
|
Obinata H, Sugimoto A, Niwa S. Streptothricin acetyl transferase 2 (Sat2): A dominant selection marker for Caenorhabditis elegans genome editing. PLoS One 2018; 13:e0197128. [PMID: 29742140 PMCID: PMC5942822 DOI: 10.1371/journal.pone.0197128] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 04/26/2018] [Indexed: 11/20/2022] Open
Abstract
Studies on Caenorhabditis elegans would benefit from the introduction of new selectable markers to allow more complex types of experiments to be conducted with this model animal. We established a new antibiotic selection marker for C. elegans transformation based on nourseothricin (NTC) and its resistance-encoding gene, streptothricin-acetyl transferase 2 (Sat2). NTC was able to efficiently prevent worm development at very low concentrations, and the worms expressing Sat2 were able to survive on the selection plates without any developmental defects. Using CRISPR/Cas9 and NTC selection, we were able to easily insert a 13-kb expression cassette into a defined locus in C. elegans. The structure and spectrum of NTC differs from other antibiotics like hygromycin B and geneticin, making it possible to use NTC alongside them. Indeed, we confirmed NTC-sat2 selection could work with the hygromycin B selection system simultaneously. Thus, the new NTC–Sat2 system can act as a useful dominant marker for gene transfer and genome editing in C. elegans.
Collapse
Affiliation(s)
- Hiroyuki Obinata
- Division of Developmental Dynamics, Graduate School of Life Science Tohoku University, Aoba-ku, Sendai, Japan
| | - Asako Sugimoto
- Division of Developmental Dynamics, Graduate School of Life Science Tohoku University, Aoba-ku, Sendai, Japan
| | - Shinsuke Niwa
- Division of Developmental Dynamics, Graduate School of Life Science Tohoku University, Aoba-ku, Sendai, Japan
- Frontier Research Institute for Interdisciplinary Sciences (FRIS), Tohoku University, Aoba-ku, Sendai, Japan
- * E-mail:
| |
Collapse
|
9
|
Monis WJ, Faundez V, Pazour GJ. BLOC-1 is required for selective membrane protein trafficking from endosomes to primary cilia. J Cell Biol 2017; 216:2131-2150. [PMID: 28576874 PMCID: PMC5496619 DOI: 10.1083/jcb.201611138] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 03/24/2017] [Accepted: 05/03/2017] [Indexed: 11/30/2022] Open
Abstract
Primary cilia perceive the extracellular environment through receptors localized in the ciliary membrane, but mechanisms directing specific proteins to this domain are poorly understood. To address this question, we knocked down proteins potentially important for ciliary membrane targeting and determined how this affects the ciliary trafficking of fibrocystin, polycystin-2, and smoothened. Our analysis showed that fibrocystin and polycystin-2 are dependent on IFT20, GMAP210, and the exocyst complex, while smoothened delivery is largely independent of these components. In addition, we found that polycystin-2, but not smoothened or fibrocystin, requires the biogenesis of lysosome-related organelles complex-1 (BLOC-1) for ciliary delivery. Consistent with the role of BLOC-1 in sorting from the endosome, we find that disrupting the recycling endosome reduces ciliary polycystin-2 and causes its accumulation in the recycling endosome. This is the first demonstration of a role for BLOC-1 in ciliary assembly and highlights the complexity of pathways taken to the cilium.
Collapse
Affiliation(s)
- William J Monis
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA
| | - Victor Faundez
- Department of Cell Biology, Emory University, Atlanta, GA
| | - Gregory J Pazour
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA
| |
Collapse
|
10
|
Kochupurakkal BS, Wang ZC, Hua T, Culhane AC, Rodig SJ, Rajkovic-Molek K, Lazaro JB, Richardson AL, Biswas DK, Iglehart JD. RelA-Induced Interferon Response Negatively Regulates Proliferation. PLoS One 2015; 10:e0140243. [PMID: 26460486 PMCID: PMC4604146 DOI: 10.1371/journal.pone.0140243] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 09/23/2015] [Indexed: 12/21/2022] Open
Abstract
Both oncogenic and tumor-suppressor activities are attributed to the Nuclear Factor kappa B (NF-kB) pathway. Moreover, NF-kB may positively or negatively regulate proliferation. The molecular determinants of these opposing roles of NF-kB are unclear. Using primary human mammary epithelial cells (HMEC) as a model, we show that increased RelA levels and consequent increase in basal transcriptional activity of RelA induces IRF1, a target gene. Induced IRF1 upregulates STAT1 and IRF7, and in consort, these factors induce the expression of interferon response genes. Activation of the interferon pathway down-regulates CDK4 and up-regulates p27 resulting in Rb hypo-phosphorylation and cell cycle arrest. Stimulation of HMEC with IFN-γ elicits similar phenotypic and molecular changes suggesting that basal activity of RelA and IFN-γ converge on IRF1 to regulate proliferation. The anti-proliferative RelA-IRF1-CDK4 signaling axis is retained in ER+/HER2- breast tumors analyzed by The Cancer Genome Atlas (TCGA). Using immuno-histochemical analysis of breast tumors, we confirm the negative correlation between RelA levels and proliferation rate in ER+/HER2- breast tumors. These findings attribute an anti-proliferative tumor-suppressor role to basal RelA activity. Inactivation of Rb, down-regulation of RelA or IRF1, or upregulation of CDK4 or IRF2 rescues the RelA-IRF1-CDK4 induced proliferation arrest in HMEC and are points of disruption in aggressive tumors. Activity of the RelA-IRF1-CDK4 axis may explain favorable response to CDK4/6 inhibition observed in patients with ER+ Rb competent tumors.
Collapse
Affiliation(s)
- Bose S. Kochupurakkal
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
- * E-mail: (JDI); (BSK)
| | - Zhigang C. Wang
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
| | - Tony Hua
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
| | - Aedin C. Culhane
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
| | - Scott J. Rodig
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts, United States of America
| | | | - Jean-Bernard Lazaro
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
| | - Andrea L. Richardson
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts, United States of America
| | - Debajit K. Biswas
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
| | - J. Dirk Iglehart
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
- Department of Surgery, Brigham and Women's Hospital, Boston, Massachusetts, United States of America
- * E-mail: (JDI); (BSK)
| |
Collapse
|
11
|
Fernando ATP, Andrabi S, Cizmecioglu O, Zhu C, Livingston DM, Higgins JM, Schaffhausen BS, Roberts TM. Polyoma small T antigen triggers cell death via mitotic catastrophe. Oncogene 2015; 34:2483-92. [PMID: 24998850 PMCID: PMC4286542 DOI: 10.1038/onc.2014.192] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Revised: 05/16/2014] [Accepted: 05/28/2014] [Indexed: 12/25/2022]
Abstract
Polyoma small T antigen (PyST), an early gene product of the polyoma virus, has been shown to cause cell death in a number of mammalian cells in a protein phosphatase 2A (PP2A)-dependent manner. In the current study, using a cell line featuring regulated expression of PyST, we found that PyST arrests cells in mitosis. Live-cell and immunofluorescence studies showed that the majority of the PyST expressing cells were arrested in prometaphase with almost no cells progressing beyond metaphase. These cells exhibited defects in chromosomal congression, sister chromatid cohesion and spindle positioning, thereby resulting in the activation of the spindle assembly checkpoint. Prolonged mitotic arrest then led to cell death via mitotic catastrophe. Cell cycle inhibitors that block cells in G1/S prevented PyST-induced death. PyST-induced cell death that occurs during M is not dependent on p53 status. These data suggested, and our results confirmed, that PP2A inhibition could be used to preferentially kill cancer cells with p53 mutations that proliferate normally in the presence of cell cycle inhibitors.
Collapse
Affiliation(s)
- Arun T Pores Fernando
- Department of Cancer Biology, Dana-Farber Cancer Institute
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts
| | - Shaida Andrabi
- Department of Cancer Biology, Dana-Farber Cancer Institute
| | - Onur Cizmecioglu
- Department of Cancer Biology, Dana-Farber Cancer Institute
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts
| | - Cailei Zhu
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital
| | | | - Jonathan M.G Higgins
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle-upon-Tyne, United Kingdom
| | - Brian S Schaffhausen
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts
| | - Thomas M Roberts
- Department of Cancer Biology, Dana-Farber Cancer Institute
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
12
|
Abstract
Here we describe biosensors that provide readouts for protein stability in the cytosolic compartment of prokaryotes. These biosensors consist of tripartite sandwich fusions that link the in vitro stability or aggregation susceptibility of guest proteins to the in vivo resistance of host cells to the antibiotics kanamycin, spectinomycin, and nourseothricin. These selectable markers confer antibiotic resistance in a wide range of hosts and are easily quantifiable. We show that mutations within guest proteins that affect their stability alter the antibiotic resistances of the cells expressing the biosensors in a manner that is related to the in vitro stabilities of the mutant guest proteins. In addition, we find that polyglutamine tracts of increasing length are associated with an increased tendency to form amyloids in vivo and, in our sandwich fusion system, with decreased resistance to aminoglycoside antibiotics. We demonstrate that our approach allows the in vivo analysis of protein stability in the cytosolic compartment without the need for prior structural and functional knowledge.
Collapse
|