1
|
Dong Y, Elgerbi A, Xie B, Choy JS, Sivasankar S. Actomyosin forces trigger a conformational change in desmoplakin within desmosomes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.11.19.624364. [PMID: 39605443 PMCID: PMC11601634 DOI: 10.1101/2024.11.19.624364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Desmosomes are essential cell-cell adhesion organelles that enable tension-prone tissue, like the skin and heart, to withstand mechanical stress. Desmosomal anomalies are associated with numerous epidermal disorders and cardiomyopathies. Despite their critical role in maintaining tissue resilience, an understanding of how desmosomes sense and respond to mechanical stimuli is lacking. Here, we use a combination of super-resolution imaging, FRET-based tension sensors, atomistic computer simulations, and biochemical assays to demonstrate that actomyosin forces induce a conformational change in desmoplakin, a critical cytoplasmic desmosomal protein. We show that in human breast cancer MCF7 cells, actomyosin contractility reorients keratin intermediate filaments and directs force to desmoplakin along the keratin filament backbone. These forces induce a conformational change in the N-terminal plakin domain of desmoplakin, converting this domain from a folded (closed) to an extended (open) conformation. Our findings establish that desmoplakin is mechanosensitive and responds to changes in cellular load by undergoing a force-induced conformational change.
Collapse
|
2
|
Petitjean II, Tran QD, Goutou A, Kabir Z, Wiche G, Leduc C, Koenderink GH. Reconstitution of cytolinker-mediated crosstalk between actin and vimentin. Eur J Cell Biol 2024; 103:151403. [PMID: 38503131 DOI: 10.1016/j.ejcb.2024.151403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 03/06/2024] [Accepted: 03/06/2024] [Indexed: 03/21/2024] Open
Abstract
Cell shape and motility are determined by the cytoskeleton, an interpenetrating network of actin filaments, microtubules, and intermediate filaments. The biophysical properties of each filament type individually have been studied extensively by cell-free reconstitution. By contrast, the interactions between the three cytoskeletal networks are relatively unexplored. They are coupled via crosslinkers of the plakin family such as plectin. These are challenging proteins for reconstitution because of their giant size and multidomain structure. Here we engineer a recombinant actin-vimentin crosslinker protein called 'ACTIF' that provides a minimal model system for plectin, recapitulating its modular design with actin-binding and intermediate filament-binding domains separated by a coiled-coil linker for dimerisation. We show by fluorescence and electron microscopy that ACTIF has a high binding affinity for vimentin and actin and creates mixed actin-vimentin bundles. Rheology measurements show that ACTIF-mediated crosslinking strongly stiffens actin-vimentin composites. Finally, we demonstrate the modularity of this approach by creating an ACTIF variant with the intermediate filament binding domain of Adenomatous Polyposis Coli. Our protein engineering approach provides a new cell-free system for the biophysical characterization of intermediate filament-binding crosslinkers and for understanding the mechanical synergy between actin and vimentin in mesenchymal cells.
Collapse
Affiliation(s)
- Irene Istúriz Petitjean
- Department of Bionanoscience & Kavli Institute of Nanoscience, Delft University of Technology, 2629 HZ, Delft, the Netherlands
| | - Quang D Tran
- CNRS, Institut Jacques Monod, Université Paris Cité, Paris F-75013, France
| | - Angeliki Goutou
- Department of Bionanoscience & Kavli Institute of Nanoscience, Delft University of Technology, 2629 HZ, Delft, the Netherlands
| | - Zima Kabir
- Department of Bionanoscience & Kavli Institute of Nanoscience, Delft University of Technology, 2629 HZ, Delft, the Netherlands
| | - Gerhard Wiche
- Max Perutz Laboratories, Department of Biochemistry and Cell Biology, University of Vienna, Vienna, Austria
| | - Cécile Leduc
- CNRS, Institut Jacques Monod, Université Paris Cité, Paris F-75013, France.
| | - Gijsje H Koenderink
- Department of Bionanoscience & Kavli Institute of Nanoscience, Delft University of Technology, 2629 HZ, Delft, the Netherlands.
| |
Collapse
|
3
|
Dean WF, Mattheyses AL. Defining domain-specific orientational order in the desmosomal cadherins. Biophys J 2022; 121:4325-4341. [PMID: 36225113 PMCID: PMC9703042 DOI: 10.1016/j.bpj.2022.10.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 09/12/2022] [Accepted: 10/06/2022] [Indexed: 01/25/2023] Open
Abstract
Desmosomes are large, macromolecular protein assemblies that mechanically couple the intermediate filament cytoskeleton to sites of cadherin-mediated cell adhesion, thereby providing structural integrity to tissues that routinely experience large forces. Proper desmosomal adhesion is necessary for the normal development and maintenance of vertebrate tissues, such as epithelia and cardiac muscle, while dysfunction can lead to severe disease of the heart and skin. Therefore, it is important to understand the relationship between desmosomal adhesion and the architecture of the molecules that form the adhesive interface, the desmosomal cadherins (DCs). However, desmosomes are embedded in two plasma membranes and are linked to the cytoskeletal networks of two cells, imposing extreme difficulty on traditional structural studies of DC architecture, which have yielded conflicting results. Consequently, the relationship between DC architecture and adhesive function remains unclear. To overcome these challenges, we utilized excitation-resolved fluorescence polarization microscopy to quantify the orientational order of the extracellular and intracellular domains of three DC isoforms: desmoglein 2, desmocollin 2, and desmoglein 3. We found that DC ectodomains were significantly more ordered than their cytoplasmic counterparts, indicating a drastic difference in DC architecture between opposing sides of the plasma membrane. This difference was conserved among all DCs tested, suggesting that it may be an important feature of desmosomal architecture. Moreover, our findings suggest that the organization of DC ectodomains is predominantly the result of extracellular adhesive interactions. We employed azimuthal orientation mapping to show that DC ectodomains are arranged with rotational symmetry about the membrane normal. Finally, we performed a series of mathematical simulations to test the feasibility of a recently proposed antiparallel arrangement of DC ectodomains, finding that it is supported by our experimental data. Importantly, the strategies employed here have the potential to elucidate molecular mechanisms for diseases that result from defective desmosome architecture.
Collapse
Affiliation(s)
- William F Dean
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Alexa L Mattheyses
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama.
| |
Collapse
|
4
|
Beggs RR, Rao TC, Dean WF, Kowalczyk AP, Mattheyses AL. Desmosomes undergo dynamic architectural changes during assembly and maturation. Tissue Barriers 2022; 10:2017225. [PMID: 34983311 PMCID: PMC9621066 DOI: 10.1080/21688370.2021.2017225] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Desmosomes are macromolecular cell-cell junctions critical for maintaining adhesion and resisting mechanical stress in epithelial tissue. Desmosome assembly and the relationship between maturity and molecular architecture are not well understood. To address this, we employed a calcium switch assay to synchronize assembly followed by quantification of desmosome nanoscale organization using direct Stochastic Optical Reconstruction Microscopy (dSTORM). We found that the organization of the desmoplakin rod/C-terminal junction changed over the course of maturation, as indicated by a decrease in the plaque-to-plaque distance, while the plaque length increased. In contrast, the desmoplakin N-terminal domain and plakoglobin organization (plaque-to-plaque distance) were constant throughout maturation. This structural rearrangement of desmoplakin was concurrent with desmosome maturation measured by E-cadherin exclusion and increased adhesive strength. Using two-color dSTORM, we showed that while the number of individual E-cadherin containing junctions went down with the increasing time in high Ca2+, they maintained a wider desmoplakin rod/C-terminal plaque-to-plaque distance. This indicates that the maturation state of individual desmosomes can be identified by their architectural organization. We confirmed these architectural changes in another model of desmosome assembly, cell migration. Desmosomes in migrating cells, closest to the scratch where they are assembling, were shorter, E-cadherin enriched, and had wider desmoplakin rod/C-terminal plaque-to-plaque distances compared to desmosomes away from the wound edge. Key results were demonstrated in three cell lines representing simple, transitional, and stratified epithelia. Together, these data suggest that there is a set of architectural programs for desmosome maturation, and we hypothesize that desmoplakin architecture may be a contributing mechanism to regulating adhesive strength.
Collapse
Affiliation(s)
- Reena R Beggs
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Tejeshwar C Rao
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - William F Dean
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Andrew P Kowalczyk
- Departments of Dermatology and Cellular and Molecular Physiology, Pennsylvania State College of Medicine, Hershey, PA, USA
| | - Alexa L Mattheyses
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
5
|
Mohammed F, Chidgey M. Desmosomal protein structure and function and the impact of disease-causing mutations. J Struct Biol 2021; 213:107749. [PMID: 34033898 DOI: 10.1016/j.jsb.2021.107749] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 05/19/2021] [Accepted: 05/20/2021] [Indexed: 11/26/2022]
Abstract
In this graphical review we focus on the structural characteristics of desmosomal proteins, their interactions with each other and with the intermediate filament cytoskeleton. The wealth of structural information that is now available allows predictions to be made about the pathogenic effect of disease-causing mutations. We have selected representative examples of missense mutations that are buried, semi-buried or surface exposed, and demonstrate how such variants could affect the structural fold of desmosomal proteins that are expressed in the heart. We explain how such alterations could compromise desmosomal adhesion, resulting in life threatening diseases including arrhythmogenic right ventricular cardiomyopathy.
Collapse
Affiliation(s)
- Fiyaz Mohammed
- Institute for Immunology and Immunotherapy, University of Birmingham, Birmingham B15 2TT, UK.
| | - Martyn Chidgey
- Institute of Clinical Sciences, University of Birmingham, Birmingham B15 2TT, UK.
| |
Collapse
|
6
|
Eldirany SA, Lomakin IB, Ho M, Bunick CG. Recent insight into intermediate filament structure. Curr Opin Cell Biol 2020; 68:132-143. [PMID: 33190098 DOI: 10.1016/j.ceb.2020.10.001] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 09/22/2020] [Accepted: 10/05/2020] [Indexed: 12/17/2022]
Abstract
Intermediate filaments (IFs) are key players in multiple cellular processes throughout human tissues. Their biochemical and structural properties are important for understanding filament assembly mechanisms, for interactions between IFs and binding partners, and for developing pharmacological agents that target IFs. IF proteins share a conserved coiled-coil central-rod domain flanked by variable N-terminal 'head' and C-terminal 'tail' domains. There have been several recent advances in our understanding of IF structure from the study of keratins, glial fibrillary acidic protein, and lamin. These include discoveries of (i) a knob-pocket tetramer assembly mechanism in coil 1B; (ii) a lamin-specific coil 1B insert providing a one-half superhelix turn; (iii) helical, yet flexible, linkers within the rod domain; and (iv) the identification of coil 2B residues required for mature filament assembly. Furthermore, the head and tail domains of some IFs contain low-complexity aromatic-rich kinked segments, and structures of IFs with binding partners show electrostatic surfaces are a major contributor to complex formation. These new data advance the connection between IF structure, pathologic mutations, and clinical diseases in humans.
Collapse
Affiliation(s)
- Sherif A Eldirany
- Department of Dermatology, Yale University, New Haven, CT, 06520, USA
| | - Ivan B Lomakin
- Department of Dermatology, Yale University, New Haven, CT, 06520, USA
| | - Minh Ho
- Department of Dermatology, Yale University, New Haven, CT, 06520, USA
| | - Christopher G Bunick
- Department of Dermatology, Yale University, New Haven, CT, 06520, USA; Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA.
| |
Collapse
|
7
|
Daday C, Kolšek K, Gräter F. The mechano-sensing role of the unique SH3 insertion in plakin domains revealed by Molecular Dynamics simulations. Sci Rep 2017; 7:11669. [PMID: 28916774 PMCID: PMC5601466 DOI: 10.1038/s41598-017-11017-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 08/17/2017] [Indexed: 02/02/2023] Open
Abstract
The plakin family of proteins, important actors in cross-linking force-bearing structures in the cell, contain a curious SH3 domain insertion in their chain of spectrin repeats (SRs). While SH3 domains are known to mediate protein-protein interactions, here, its canonical binding site is autoinhibited by the preceding SR. Under force, however, this SH3 domain could be released, and possibly launch a signaling cascade. We performed large-scale force-probe molecular dynamics simulations, across two orders of magnitude of loading rates, to test this hypothesis, on two prominent members of the plakin family: desmoplakin and plectin, obligate proteins at desmosomes and hemidesmosomes, respectively. Our simulations show that force unravels the SRs and abolishes the autoinhibition of the SH3 domain, an event well separated from the unfolding of this domain. The SH3 domain is free and fully functional for a significant portion of the unfolding trajectories. The rupture forces required for the two proteins significantly decrease when the SH3 domain is removed, which implies that the SH3 domain also stabilizes this junction. Our results persist across all simulations, and support a force-sensing as well as a stabilizing role of the unique SH3 insertion, putting forward this protein family as a new class of mechano-sensors.
Collapse
Affiliation(s)
- Csaba Daday
- Interdisciplinary Center for Scientific Computing (IWR), Heidelberg University, Mathematikon, INF 205, 69120, Heidelberg, Germany.,Heidelberg Institute for Theoretical Studies, Schloß-Wolfsbrunnenweg 35, 69118, Heidelberg, Germany
| | - Katra Kolšek
- Heidelberg Institute for Theoretical Studies, Schloß-Wolfsbrunnenweg 35, 69118, Heidelberg, Germany
| | - Frauke Gräter
- Interdisciplinary Center for Scientific Computing (IWR), Heidelberg University, Mathematikon, INF 205, 69120, Heidelberg, Germany. .,Heidelberg Institute for Theoretical Studies, Schloß-Wolfsbrunnenweg 35, 69118, Heidelberg, Germany.
| |
Collapse
|
8
|
Ortega E, Manso JA, Buey RM, Carballido AM, Carabias A, Sonnenberg A, de Pereda JM. The Structure of the Plakin Domain of Plectin Reveals an Extended Rod-like Shape. J Biol Chem 2016; 291:18643-62. [PMID: 27413182 DOI: 10.1074/jbc.m116.732909] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Indexed: 11/06/2022] Open
Abstract
Plakins are large multi-domain proteins that interconnect cytoskeletal structures. Plectin is a prototypical plakin that tethers intermediate filaments to membrane-associated complexes. Most plakins contain a plakin domain formed by up to nine spectrin repeats (SR1-SR9) and an SH3 domain. The plakin domains of plectin and other plakins harbor binding sites for junctional proteins. We have combined x-ray crystallography with small angle x-ray scattering (SAXS) to elucidate the structure of the plakin domain of plectin, extending our previous analysis of the SR1 to SR5 region. Two crystal structures of the SR5-SR6 region allowed us to characterize its uniquely wide inter-repeat conformational variability. We also report the crystal structures of the SR7-SR8 region, refined to 1.8 Å, and the SR7-SR9 at lower resolution. The SR7-SR9 region, which is conserved in all other plakin domains, forms a rigid segment stabilized by uniquely extensive inter-repeat contacts mediated by unusually long helices in SR8 and SR9. Using SAXS we show that in solution the SR3-SR6 and SR7-SR9 regions are rod-like segments and that SR3-SR9 of plectin has an extended shape with a small central kink. Other plakins, such as bullous pemphigoid antigen 1 and microtubule and actin cross-linking factor 1, are likely to have similar extended plakin domains. In contrast, desmoplakin has a two-segment structure with a central flexible hinge. The continuous versus segmented structures of the plakin domains of plectin and desmoplakin give insight into how different plakins might respond to tension and transmit mechanical signals.
Collapse
Affiliation(s)
- Esther Ortega
- From the Instituto de Biología Molecular y Celular del Cancer, Consejo Superior de Investigaciones Científicas, University of Salamanca, 37007 Salamanca, Spain
| | - José A Manso
- From the Instituto de Biología Molecular y Celular del Cancer, Consejo Superior de Investigaciones Científicas, University of Salamanca, 37007 Salamanca, Spain
| | - Rubén M Buey
- From the Instituto de Biología Molecular y Celular del Cancer, Consejo Superior de Investigaciones Científicas, University of Salamanca, 37007 Salamanca, Spain, the Metabolic Engineering Group, Department of Microbiology and Genetics, University of Salamanca, Salamanca, 37007, Spain, and
| | - Ana M Carballido
- From the Instituto de Biología Molecular y Celular del Cancer, Consejo Superior de Investigaciones Científicas, University of Salamanca, 37007 Salamanca, Spain
| | - Arturo Carabias
- From the Instituto de Biología Molecular y Celular del Cancer, Consejo Superior de Investigaciones Científicas, University of Salamanca, 37007 Salamanca, Spain
| | - Arnoud Sonnenberg
- the Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - José M de Pereda
- From the Instituto de Biología Molecular y Celular del Cancer, Consejo Superior de Investigaciones Científicas, University of Salamanca, 37007 Salamanca, Spain,
| |
Collapse
|
9
|
Mechanism of intermediate filament recognition by plakin repeat domains revealed by envoplakin targeting of vimentin. Nat Commun 2016; 7:10827. [PMID: 26935805 PMCID: PMC4782060 DOI: 10.1038/ncomms10827] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Accepted: 01/23/2016] [Indexed: 01/14/2023] Open
Abstract
Plakin proteins form critical connections between cell junctions and the cytoskeleton; their disruption within epithelial and cardiac muscle cells cause skin-blistering diseases and cardiomyopathies. Envoplakin has a single plakin repeat domain (PRD) which recognizes intermediate filaments through an unresolved mechanism. Herein we report the crystal structure of envoplakin's complete PRD fold, revealing binding determinants within its electropositive binding groove. Four of its five internal repeats recognize negatively charged patches within vimentin via five basic determinants that are identified by nuclear magnetic resonance spectroscopy. Mutations of the Lys1901 or Arg1914 binding determinants delocalize heterodimeric envoplakin from intracellular vimentin and keratin filaments in cultured cells. Recognition of vimentin is abolished when its residues Asp112 or Asp119 are mutated. The latter slot intermediate filament rods into basic PRD domain grooves through electrosteric complementarity in a widely applicable mechanism. Together this reveals how plakin family members form dynamic linkages with cytoskeletal frameworks. Plakin proteins link cell junctions to cytoskeletal frameworks, and their disruption within epithelial and cardiac muscle cells cause skin blistering diseases and cardiomyopathies. Here the authors use structural biology approaches to reveal the mechanism that allows plakins to recognize intermediate filaments within the cytoskeleton.
Collapse
|
10
|
|
11
|
Künzli K, Favre B, Chofflon M, Borradori L. One gene but different proteins and diseases: the complexity of dystonin and bullous pemphigoid antigen 1. Exp Dermatol 2015; 25:10-6. [DOI: 10.1111/exd.12877] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/13/2015] [Indexed: 12/16/2022]
Affiliation(s)
- Kseniia Künzli
- Department of Dermatology; Inselspital; Bern University Hospital; Bern Switzerland
| | - Bertrand Favre
- Department of Dermatology; Inselspital; Bern University Hospital; Bern Switzerland
| | - Michel Chofflon
- Department of Clinical Neurosciences; Geneva University Hospitals; Geneva Switzerland
| | - Luca Borradori
- Department of Dermatology; Inselspital; Bern University Hospital; Bern Switzerland
| |
Collapse
|
12
|
Tan J, He W, Luo G, Wu J. iTRAQ-based proteomic profiling reveals different protein expression between normal skin and hypertrophic scar tissue. BURNS & TRAUMA 2015; 3:13. [PMID: 27574659 PMCID: PMC4964291 DOI: 10.1186/s41038-015-0016-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 08/14/2015] [Indexed: 02/06/2023]
Abstract
BACKGROUND A hypertrophic scar is a unique fibrotic disease that only exists in humans. Despite advances in burn care and rehabilitation, as well as progress in the management during these decades, the hypertrophic scar remains hard to cure following surgical methods and drugs for treatment. In this study, we are looking forward to finding the multitude of possible traumatic mechanisms and the underlying molecular signal ways in the formation of the hypertrophic scar. METHODS We used isobaric tags for relative and absolute quantitation (iTRAQ) labeling technology, followed by high-throughput 2D LC-MS/MS, to determine relative quantitative differential proteins between the hypertrophic scar and normal skin tissue. RESULTS A total of 3166 proteins were identified with a high confidence (≥95 % confidence). And, a total of 89 proteins were identified as the differential proteins between the hypertrophic scar and normal skin, among which 41 proteins were up-regulated and 48 proteins were down-regulated in the hypertrophic scar. GO-Analysis indicated the up-regulated proteins were involved in extracellular matrix, whereas the down-regulated proteins were involved in dynamic junction and structural molecule activity. CONCLUSIONS In our study, we demonstrate 89 proteins present differently in the hypertrophic scar compared to normal skin by iTRAQ technology, which might indicate the pathologic process of hypertrophic scar formation and guide us to propose new strategies against the hypertrophic scar.
Collapse
Affiliation(s)
- Jianglin Tan
- Institute of Burn Research, State Key Laboratory of Trauma, Burns and Combined Injuries, Chongqing Key Laboratory for Disease Proteomics, Southwest Hospital, Third Military Medical University, Chongqing, 400038 China
| | - Weifeng He
- Institute of Burn Research, State Key Laboratory of Trauma, Burns and Combined Injuries, Chongqing Key Laboratory for Disease Proteomics, Southwest Hospital, Third Military Medical University, Chongqing, 400038 China
| | - Gaoxing Luo
- Institute of Burn Research, State Key Laboratory of Trauma, Burns and Combined Injuries, Chongqing Key Laboratory for Disease Proteomics, Southwest Hospital, Third Military Medical University, Chongqing, 400038 China
| | - Jun Wu
- Institute of Burn Research, State Key Laboratory of Trauma, Burns and Combined Injuries, Chongqing Key Laboratory for Disease Proteomics, Southwest Hospital, Third Military Medical University, Chongqing, 400038 China
| |
Collapse
|
13
|
Avantaggiato A, Girardi A, Palmieri A, Pascali M, Carinci F. Bio-Revitalization: Effects of NASHA on Genes Involving Tissue Remodeling. Aesthetic Plast Surg 2015; 39:459-64. [PMID: 26085225 DOI: 10.1007/s00266-015-0514-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 05/31/2015] [Indexed: 11/30/2022]
Abstract
BACKGROUND The "non-animal stabilized hyaluronic acid" (NASHA) is a widely used product in bio-revitalization injective procedures in esthetic medicine. The present research aimed to quantitatively evaluate the therapeutic effect of one of the more used bio-revitalization products on cultured dermal fibroblasts. RT-PCR was used for gene expression profiling of some proteins known to be relevant in skin homeostasis. METHODS Human dermal fibroblasts were seeded on a culture medium enriched with a product for dermal bio-revitalization, consisting of stabilized hyaluronic acid gel 20 mg/ml. After 24, 48, and 72 h of exposure, the cDNA was amplified by real-time PCR. Gene expression was quantified with the delta/delta calculation method. RESULTS In this study, the gene of metalloproteinase (MMP)-13 is strongly expressed after NASHA incubation. The MMP-2 encoding gene instead is less expressed, but both evidence the same temporal trend, being progressively up-regulated after 24 and 48 h, thereafter the expression decreases, whereas MMP-3 maintains the same up-regulation at 72 h. Hyaluronan synthase 1 and desmoplakin are progressively up-regulated and increase at 24, 48, and 72 h. Hyaluronidase 1 and neutrophil elastase genes are overexpressed, but at 72 h they both exhibit the same behavior as the other degradative enzymes MMP-13 and MMP-2. CONCLUSIONS Skin bio-revitalization by injecting the tested NASHA gel produces an enhancement in the expression of some genes involved in extracellular matrix degradation and organization. In this study, a time-dependent behavior, different for genes encoding degradative compared to synthesis proteins, was demonstrated.
Collapse
Affiliation(s)
- A Avantaggiato
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | | | | | | | | |
Collapse
|
14
|
Functional Analysis of Periplakin and Envoplakin, Cytoskeletal Linkers, and Cornified Envelope Precursor Proteins. Methods Enzymol 2015; 569:309-29. [PMID: 26778565 DOI: 10.1016/bs.mie.2015.06.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Envoplakin and periplakin are the two smallest plakin family cytoskeletal linker proteins that connect intermediate filaments to cellular junctions and other membrane locations. These two plakins have a structural role in the assembly of the cornified envelope (CE), the terminal stage of epidermal differentiation. Analysis of gene-targeted mice lacking both these plakins and the third initial CE scaffold protein, involucrin, demonstrate the importance of the structural integrity of CE for a proper epidermal barrier function. It has emerged that periplakin, which also has a wider tissue distribution than envoplakin, has additional, independent roles. Periplakin participates in the cytoskeletal organization also in other tissues and interacts with a wide range of membrane-associated proteins such as kazrin and butyrophilin BTN3A1. This review covers methods used to understand periplakin and envoplakin functions in cell culture models, including siRNA ablation of periplakin expression and the use of tagged protein domain constructs to study localization and interactions. In addition, assays that can be used to analyze CEs and epidermal barrier function in gene-targeted mice are described and discussed.
Collapse
|
15
|
Rhodes DA, Chen HC, Price AJ, Keeble AH, Davey MS, James LC, Eberl M, Trowsdale J. Activation of human γδ T cells by cytosolic interactions of BTN3A1 with soluble phosphoantigens and the cytoskeletal adaptor periplakin. THE JOURNAL OF IMMUNOLOGY 2015; 194:2390-8. [PMID: 25637025 PMCID: PMC4337483 DOI: 10.4049/jimmunol.1401064] [Citation(s) in RCA: 120] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The three butyrophilin BTN3A molecules, BTN3A1, BTN3A2, and BTN3A3, are members of the B7/butyrophilin-like group of Ig superfamily receptors, which modulate the function of T cells. BTN3A1 controls activation of human Vγ9/Vδ2 T cells by direct or indirect presentation of self and nonself phosphoantigens (pAg). We show that the microbial metabolite (E)-4-hydroxy-3-methyl-but-2-enyl pyrophosphate binds to the intracellular B30.2 domain of BTN3A1 with an affinity of 1.1 μM, whereas the endogenous pAg isopentenyl pyrophosphate binds with an affinity of 627 μM. Coculture experiments using knockdown cell lines showed that in addition to BTN3A1, BTN3A2 and BTN3A3 transmit activation signals to human γδ T cells in response to (E)-4-hydroxy-3-methyl-but-2-enyl pyrophosphate and the aminobisphosphonate drug zoledronate that causes intracellular accumulation of isopentenyl pyrophosphate. The plakin family member periplakin, identified in yeast two-hybrid assays, interacted with a membrane-proximal di-leucine motif, located proximal to the B30.2 domain in the BTN3A1 cytoplasmic tail. Periplakin did not interact with BTN3A2 or BTN3A3, which do not contain the di-leucine motif. Re-expression into a BTN3A1 knockdown line of wild-type BTN3A1, but not of a variant lacking the periplakin binding motif, BTN3A1Δexon5, restored γδ T cell responses, demonstrating a functional role for periplakin interaction. These data, together with the widespread expression in epithelial cells, tumor tissues, and macrophages detected using BTN3A antiserum, are consistent with complex functions for BTN3A molecules in tissue immune surveillance and infection, linking the cell cytoskeleton to γδ T cell activation by indirectly presenting pAg to the Vγ9/Vδ2 TCR.
Collapse
Affiliation(s)
- David A Rhodes
- Immunology Division, Department of Pathology, University of Cambridge, Cambridge Institute for Medical Research, Cambridge CB2 0XY, United Kingdom;
| | - Hung-Chang Chen
- Cardiff Institute of Infection & Immunity, School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, United Kingdom; and
| | - Amanda J Price
- Protein and Nucleic Acid Chemistry Division, Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
| | - Anthony H Keeble
- Protein and Nucleic Acid Chemistry Division, Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
| | - Martin S Davey
- Cardiff Institute of Infection & Immunity, School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, United Kingdom; and
| | - Leo C James
- Protein and Nucleic Acid Chemistry Division, Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
| | - Matthias Eberl
- Cardiff Institute of Infection & Immunity, School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, United Kingdom; and
| | - John Trowsdale
- Immunology Division, Department of Pathology, University of Cambridge, Cambridge Institute for Medical Research, Cambridge CB2 0XY, United Kingdom
| |
Collapse
|
16
|
Comparative transcriptomic analysis to identify differentially expressed genes in fat tissue of adult Berkshire and Jeju Native Pig using RNA-seq. Mol Biol Rep 2014; 41:6305-15. [PMID: 25008993 DOI: 10.1007/s11033-014-3513-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Accepted: 06/19/2014] [Indexed: 10/25/2022]
Abstract
Pork is a major source of animal protein for humans. The subcutaneous, intermuscular and the intramuscular fat are the factors responsible for meat quality. RNA-seq is rapidly adopted for the profiling of the transcriptomes in the studies related to gene regulation. The discovery of differentially expressed genes (DEGs) between adult animals of Jeju Native Pig (JNP) and Berkshire breeds are of particular interest for the current study. RNA-seq was used to investigate the transcriptome profiling in the fat tissue. Sequence reads were obtained from Ilumina HiSeq2000 and mapped to the pig genome using Tophat2. Total 153 DEGs were identified and 71 among the annotated genes, have BLAST matches in the non- redundant database. Metabolic, immune response and protein binding are enriched pathways in the fat tissue. In our study, biological adhesion, cellular, developmental and multicellular organismal processes in fat were up-regulated in JNP as compare to Berkshire. Multicellular organismal process, developmental process, embryonic morphogenesis and skeletal system development were the most significantly enriched terms in fat of JNP and Berkshire breeds (p = 1.17E-04, 0.044, 3.47E-04 and 4.48E-04 respectively). COL10A1, COL11A2, PDK4 and PNPLA3 genes responsible for skeletal system morphogenesis and body growth were down regulated in JNP. This study is the first statistical analysis for the detection of DEGs from RNA-seq data generated from fat tissue sample. This analysis can be used as stepping stone to understand the difference in the genetic mechanisms that might influence the identification of novel transcripts, sequence polymorphisms, isoforms and noncoding RNAs.
Collapse
|
17
|
Guyonnet B, Egge N, Cornwall GA. Functional amyloids in the mouse sperm acrosome. Mol Cell Biol 2014; 34:2624-34. [PMID: 24797071 PMCID: PMC4097662 DOI: 10.1128/mcb.00073-14] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Revised: 03/06/2014] [Accepted: 04/25/2014] [Indexed: 12/14/2022] Open
Abstract
The acrosomal matrix (AM) is an insoluble structure within the sperm acrosome that serves as a scaffold controlling the release of AM-associated proteins during the sperm acrosome reaction. The AM also interacts with the zona pellucida (ZP) that surrounds the oocyte, suggesting a remarkable stability that allows its survival despite being surrounded by proteolytic and hydrolytic enzymes released during the acrosome reaction. To date, the mechanism responsible for the stability of the AM is not known. Our studies demonstrate that amyloids are present within the sperm AM and contribute to the formation of an SDS- and formic-acid-resistant core. The AM core contained several known amyloidogenic proteins, as well as many proteins predicted to form amyloid, including several ZP binding proteins, suggesting a functional role for the amyloid core in sperm-ZP interactions. While stable at pH 3, at pH 7, the sperm AM rapidly destabilized. The pH-dependent dispersion of the AM correlated with a change in amyloid structure leading to a loss of mature forms and a gain of immature forms, suggesting that the reversal of amyloid is integral to AM dispersion.
Collapse
|
18
|
Al-Jassar C, Bikker H, Overduin M, Chidgey M. Mechanistic basis of desmosome-targeted diseases. J Mol Biol 2013; 425:4006-22. [PMID: 23911551 PMCID: PMC3807649 DOI: 10.1016/j.jmb.2013.07.035] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Revised: 07/23/2013] [Accepted: 07/24/2013] [Indexed: 11/21/2022]
Abstract
Desmosomes are dynamic junctions between cells that maintain the structural integrity of skin and heart tissues by withstanding shear forces. Mutations in component genes cause life-threatening conditions including arrhythmogenic right ventricular cardiomyopathy, and desmosomal proteins are targeted by pathogenic autoantibodies in skin blistering diseases such as pemphigus. Here, we review a set of newly discovered pathogenic alterations and discuss the structural repercussions of debilitating mutations on desmosomal proteins. The architectures of native desmosomal assemblies have been visualized by cryo-electron microscopy and cryo-electron tomography, and the network of protein domain interactions is becoming apparent. Plakophilin and desmoplakin mutations have been discovered to alter binding interfaces, structures, and stabilities of folded domains that have been resolved by X-ray crystallography and NMR spectroscopy. The flexibility within desmoplakin has been revealed by small-angle X-ray scattering and fluorescence assays, explaining how mechanical stresses are accommodated. These studies have shown that the structural and functional consequences of desmosomal mutations can now begin to be understood at multiple levels of spatial and temporal resolution. This review discusses the recent structural insights and raises the possibility of using modeling for mechanism-based diagnosis of how deleterious mutations alter the integrity of solid tissues.
Collapse
Affiliation(s)
- Caezar Al-Jassar
- School of Cancer Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | | | | | | |
Collapse
|