1
|
Dasgupta M, Paul R, Chowdhury P, Mondal S, Ahmed J, Mukherjee C, Das S, Tribedi P. Management of Enterococcus faecalis biofilms: a combinatorial approach with phytochemical. Braz J Microbiol 2025; 56:1131-1143. [PMID: 40205253 PMCID: PMC12095760 DOI: 10.1007/s42770-025-01665-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 03/26/2025] [Indexed: 04/11/2025] Open
Abstract
The rapid emergence of antimicrobial resistance in Enterococcus faecalis infections was primarily due to their robust biofilm formation, highlighting the urgent need for meaningful strategies. Since combinatorial application of natural phytochemical often offer promising outcomes in dealing with microbial infections, present study indicated the pharmacological, antimicrobial and antibiofilm potential of combinatorial strategies of natural phytochemical involving cuminaldehyde and thymoquinone against E. faecalis. Towards this direction, in silico analysis suggested that both compounds could show favourable oral bioavailability and high GI absorption, with a considerable solubility and drug-likeness profiles. Furthermore, in vitro antimicrobial assay indicated that the minimum inhibitory concentrations (MIC) of cuminaldehyde and thymoquinone were found to be 500 µg/mL and 30 µg/mL, respectively against E. faecalis. Thereafter, the fractional inhibitory concentration (FIC) index score of 0.73 indicated an additive effect prevailed between cuminaldehyde and thymoquinone, enhancing their antimicrobial potential. Thereafter, sub-MIC doses of cuminaldehyde (40 µg/mL) and thymoquinone (8 µg/mL) were selected to assess their antibiofilm potential. Though the compounds were able to show antibiofilm activity separately, their combination was significantly more effective, reduced biofilm formation by approximately 80%, and decreased production of extracellular polymeric substance (EPS) and protein content by ~ 76% and ~ 70%, respectively. Further studies revealed that the antibiofilm activity of the test compounds could likely to be attributed to the accumulation of reactive oxygen species (ROS) and enhancement of membrane permeability. Taken together, all this experimental observation revealed that combination of these natural compounds could potentially improve the treatment outcomes of biofilm-borne infections of E. faecalis.
Collapse
Affiliation(s)
- Monikankana Dasgupta
- Microbial Ecology Research Laboratory, Department of Biotechnology, The Neotia University, Sarisha, West Bengal, 743368, India
| | - Rupsha Paul
- Microbial Ecology Research Laboratory, Department of Biotechnology, The Neotia University, Sarisha, West Bengal, 743368, India
| | - Parichaya Chowdhury
- Microbial Ecology Research Laboratory, Department of Biotechnology, The Neotia University, Sarisha, West Bengal, 743368, India
| | - Souvik Mondal
- Microbial Ecology Research Laboratory, Department of Biotechnology, The Neotia University, Sarisha, West Bengal, 743368, India
| | - Junaid Ahmed
- Microbial Ecology Research Laboratory, Department of Biotechnology, The Neotia University, Sarisha, West Bengal, 743368, India
| | - Chandra Mukherjee
- Department of Basic Science, The Neotia University, Sarisha, West Bengal, 743368, India
| | - Sharmistha Das
- Microbial Ecology Research Laboratory, Department of Biotechnology, The Neotia University, Sarisha, West Bengal, 743368, India.
| | - Prosun Tribedi
- Microbial Ecology Research Laboratory, Department of Biotechnology, The Neotia University, Sarisha, West Bengal, 743368, India.
| |
Collapse
|
2
|
Malik M, Das S, Paul P, Chakraborty P, Roy R, Maity A, Das A, Dasgupta M, Trivedi S, Tribedi P. Cuminaldehyde in combination with tetracycline shows promising antibiofilm activity against drug-resistant Pseudomonas aeruginosa. BIOFOULING 2024; 40:862-881. [PMID: 39494810 DOI: 10.1080/08927014.2024.2422874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 10/18/2024] [Accepted: 10/24/2024] [Indexed: 11/05/2024]
Abstract
Pseudomonas aeruginosa, an opportunistic pathogen often causes biofilm-linked infections. A combinatorial approach involving tetracycline (antibiotic) and cuminaldehyde (phytochemical) was explored to combat this infectious pathogen. The results showed that both tetracycline and cuminaldehyde individually demonstrated antibacterial effects. However, when the compounds were applied together, there was a significant increase in their antimicrobial potential. The determined fractional inhibitory concentration index of 0.43 indicated a synergistic interaction between the two compounds. Furthermore, a series of experiments demonstrated that the combined application of cuminaldehyde and tetracycline could lead to a significant enhancement of their antibiofilm potential. This enhanced antibiofilm potential was attributed to the accumulation of reactive oxygen species and increased cell membrane permeability. Besides, this combinatorial application reduced the secretion of various virulence factors from P. aeruginosa. Therefore, this combined approach holds promise for effectively treating P. aeruginosa biofilms.
Collapse
Affiliation(s)
- Moumita Malik
- Microbial Ecology Research Laboratory, Department of Biotechnology, The Neotia University, Sarisha, India
| | - Sharmistha Das
- Microbial Ecology Research Laboratory, Department of Biotechnology, The Neotia University, Sarisha, India
| | - Payel Paul
- Microbial Ecology Research Laboratory, Department of Biotechnology, The Neotia University, Sarisha, India
| | - Poulomi Chakraborty
- Microbial Ecology Research Laboratory, Department of Biotechnology, The Neotia University, Sarisha, India
| | - Ritwik Roy
- Microbial Ecology Research Laboratory, Department of Biotechnology, The Neotia University, Sarisha, India
| | - Alakesh Maity
- Microbial Ecology Research Laboratory, Department of Biotechnology, The Neotia University, Sarisha, India
| | - Awantika Das
- Microbiology Department, Suraksha Diagnostic Pvt. Ltd. Newtown, Kolkata, India
| | - Monikankana Dasgupta
- Microbial Ecology Research Laboratory, Department of Biotechnology, The Neotia University, Sarisha, India
| | - Saranya Trivedi
- Microbial Ecology Research Laboratory, Department of Biotechnology, The Neotia University, Sarisha, India
| | - Prosun Tribedi
- Microbial Ecology Research Laboratory, Department of Biotechnology, The Neotia University, Sarisha, India
| |
Collapse
|
3
|
Chatterjee S, Paul P, Chakraborty P, Das S, Das Gupta A, Roy R, Malik M, Sarkar S, Sarker RK, Tribedi P. Combinatorial application of cuminaldehyde and gentamicin shows enhanced antimicrobial and antibiofilm action on Pseudomonas aeruginosa. Folia Microbiol (Praha) 2024; 69:823-834. [PMID: 38133854 DOI: 10.1007/s12223-023-01121-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 12/05/2023] [Indexed: 12/23/2023]
Abstract
The emergence of biofilm-induced drug tolerance poses a critical challenge to public healthcare management. Pseudomonas aeruginosa, a gram-negative opportunistic bacterium, is involved in various biofilm-associated infections in human hosts. Towards this direction, in the present study, a combinatorial approach has been explored as it is a demonstrably effective strategy for managing microbial infections. Thus, P. aeruginosa has been treated with cuminaldehyde (a naturally occurring phytochemical) and gentamicin (an aminoglycoside antibiotic) in connection to the effective management of the biofilm challenges. It was also observed that the test molecules could show increased antimicrobial activity against P. aeruginosa. A fractional inhibitory concentration index (FICI) of 0.65 suggested an additive interaction between cuminaldehyde and gentamicin. Besides, a series of experiments such as crystal violet assay, estimation of extracellular polymeric substance (EPS), and microscopic images indicated that an enhanced antibiofilm activity was obtained when the selected compounds were applied together on P. aeruginosa. Furthermore, the combination of the selected compounds was found to reduce the secretion of virulence factors from P. aeruginosa. Taken together, this study suggested that the combinatorial application of cuminaldehyde and gentamicin could be considered an effective approach towards the control of biofilm-linked infections caused by P. aeruginosa.
Collapse
Affiliation(s)
- Sudipta Chatterjee
- Microbial Ecology Research Laboratory, Department of Biotechnology, The Neotia University, Bengal-743368, Sarisha, West, India
| | - Payel Paul
- Microbial Ecology Research Laboratory, Department of Biotechnology, The Neotia University, Bengal-743368, Sarisha, West, India
| | - Poulomi Chakraborty
- Microbial Ecology Research Laboratory, Department of Biotechnology, The Neotia University, Bengal-743368, Sarisha, West, India
| | - Sharmistha Das
- Microbial Ecology Research Laboratory, Department of Biotechnology, The Neotia University, Bengal-743368, Sarisha, West, India
| | - Anirban Das Gupta
- Microbial Ecology Research Laboratory, Department of Biotechnology, The Neotia University, Bengal-743368, Sarisha, West, India
| | - Ritwik Roy
- Microbial Ecology Research Laboratory, Department of Biotechnology, The Neotia University, Bengal-743368, Sarisha, West, India
| | - Moumita Malik
- Microbial Ecology Research Laboratory, Department of Biotechnology, The Neotia University, Bengal-743368, Sarisha, West, India
| | - Sarita Sarkar
- Microbial Ecology Research Laboratory, Department of Biotechnology, The Neotia University, Bengal-743368, Sarisha, West, India
| | - Ranojit Kumar Sarker
- Microbial Ecology Research Laboratory, Department of Biotechnology, The Neotia University, Bengal-743368, Sarisha, West, India
| | - Prosun Tribedi
- Microbial Ecology Research Laboratory, Department of Biotechnology, The Neotia University, Bengal-743368, Sarisha, West, India.
| |
Collapse
|
4
|
Jung HS, Park YJ, Gu BH, Han G, Ji W, Hwang SM, Kim M. Coumarin derivatives ameliorate the intestinal inflammation and pathogenic gut microbiome changes in the model of infectious colitis through antibacterial activity. Front Cell Infect Microbiol 2024; 14:1362773. [PMID: 39081865 PMCID: PMC11287663 DOI: 10.3389/fcimb.2024.1362773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 06/24/2024] [Indexed: 08/02/2024] Open
Abstract
Coumarin, a phenolic compound, is a secondary metabolite produced by plants such as Tanga and Lime. Coumarin derivatives were prepared via Pechmann condensation. In this study, we performed in vitro and in vivo experiments to determine the antimicrobial and gut immune-regulatory functions of coumarin derivatives. For the in vitro antimicrobial activity assay, coumarin derivatives C1 and C2 were selected based on their pathogen-killing activity against various pathogenic microbes. We further demonstrated that the selected coumarin derivatives disrupted bacterial cell membranes. Next, we examined the regulatory function of the coumarin derivatives in gut inflammation using an infectious colitis model. In an in vivo infectious colitis model, administration of selected C1 coumarin derivatives reduced pathogen loads, the number of inflammatory immune cells (Th1 cells and Th17 cells), and inflammatory cytokine levels (IL-6 and IL-1b) in the intestinal tissue after pathogen infection. In addition, we found that the administration of C1 coumarin derivatives minimized abnormal gut microbiome shift-driven pathogen infection. Potential pathogenic gut microbes, such as Enterobacteriaceae and Staphylococcaceae, were increased by pathogen infection. However, this pathogenic microbial expansion was minimized and beneficial bacteria, such as Ligilactobacillus and Limosilactobacillus, increased with C1 coumarin derivative treatment. Functional gene enrichment assessment revealed that the relative abundance of genes associated with lipid and nucleotide metabolism was reduced by pathogen infection; however, this phenomenon was not observed in C1 coumarin derivative-treated animals. Collectively, our data suggest that C1 coumarin derivative is effective antibacterial agents that minimize pathogen-induced gut inflammation and abnormal gut microbiome modulation through their antibacterial activity.
Collapse
Affiliation(s)
- Hui-su Jung
- Laboratory of Animal Immunology, Department of Animal Science, College of Natural Resource & Life Science, Pusan National University, Miryang, Republic of Korea
| | - Yei Ju Park
- R & D Center, EyeGene, Goyang, Republic of Korea
| | - Bon-Hee Gu
- Life and Industry Convergence Research Institute, Pusan National University, Miryang, Republic of Korea
| | - Goeun Han
- Laboratory of Animal Immunology, Department of Animal Science, College of Natural Resource & Life Science, Pusan National University, Miryang, Republic of Korea
- Future Earth Research Institute, PNU JYS Science Academy, Pusan National University, Busan, Republic of Korea
| | - Woonhak Ji
- Laboratory of Animal Immunology, Department of Animal Science, College of Natural Resource & Life Science, Pusan National University, Miryang, Republic of Korea
| | - Su mi Hwang
- Department of Biomedical Laboratory Science, College of Health and Medical Science, Sangji University, Wonju, Republic of Korea
| | - Myunghoo Kim
- Laboratory of Animal Immunology, Department of Animal Science, College of Natural Resource & Life Science, Pusan National University, Miryang, Republic of Korea
- Future Earth Research Institute, PNU JYS Science Academy, Pusan National University, Busan, Republic of Korea
| |
Collapse
|
5
|
Palande A, Patil S, Veeram A, Sahoo SS, Lodhiya T, Maurya P, Muralikrishnan B, Chugh J, Mukherjee R. Proteomic Analysis of the Mycobacterium tuberculosis Outer Membrane for Potential Implications in Uptake of Small Molecules. ACS Infect Dis 2024; 10:890-906. [PMID: 38400924 DOI: 10.1021/acsinfecdis.3c00517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2024]
Abstract
Increased resistance to current antimycobacterial agents and a potential bias toward relatively hydrophobic chemical entities highlight an urgent need to understand how current anti-TB drugs enter the tubercle bacilli. While inner membrane proteins are well-studied, how small molecules cross the impenetrable outer membrane remains unknown. Here, we employed mass spectrometry-based proteomics to show that octyl-β-d-glucopyranoside selectively extracts the outer membrane proteins of Mycobacterium tuberculosis. Differentially expressed proteins between nutrient-replete and nutrient-depleted conditions were enriched to identify proteins involved in nutrient uptake. We demonstrate cell surface localization of seven new proteins using immunofluorescence and show that overexpression of the proteins LpqY and ProX leads to hypersensitivity toward streptomycin, while overexpression of SubI, SpmT, and Rv2041 exhibited higher membrane permeability, assessed through an EtBr accumulation assay. Further, proton NMR metabolomics suggests the role of six outer membrane proteins in glycerol uptake. This study identifies several outer membrane proteins that are involved in the permeation of small hydrophilic molecules and are potential targets for enhancing the uptake and efficacy of anti-TB drugs.
Collapse
Affiliation(s)
- Aseem Palande
- Department of Biology, Indian Institute of Science Education and Research Tirupati, Tirupati 517507, India
| | - Saniya Patil
- Department of Biology, Indian Institute of Science Education and Research Tirupati, Tirupati 517507, India
| | - Anjali Veeram
- Department of Biology, Indian Institute of Science Education and Research Tirupati, Tirupati 517507, India
| | - Soumya Swastik Sahoo
- Department of Chemistry, Indian Institute of Science Education and Research Pune, Pune 411008, India
| | - Tejan Lodhiya
- Department of Biology, Indian Institute of Science Education and Research Tirupati, Tirupati 517507, India
| | - Pankaj Maurya
- Department of Biology, Indian Institute of Science Education and Research Tirupati, Tirupati 517507, India
| | - Balaji Muralikrishnan
- Department of Biology, Indian Institute of Science Education and Research Tirupati, Tirupati 517507, India
| | - Jeetender Chugh
- Department of Chemistry, Indian Institute of Science Education and Research Pune, Pune 411008, India
| | - Raju Mukherjee
- Department of Biology, Indian Institute of Science Education and Research Tirupati, Tirupati 517507, India
| |
Collapse
|
6
|
Das S, Roy R, Paul P, Chakraborty P, Chatterjee S, Malik M, Sarkar S, Das Gupta A, Maiti D, Tribedi P. Piperine, a Plant Alkaloid, Exhibits Efficient Disintegration of the Pre-existing Biofilm of Staphylococcus aureus: a Step Towards Effective Management of Biofilm Threats. Appl Biochem Biotechnol 2024; 196:1272-1291. [PMID: 37389724 DOI: 10.1007/s12010-023-04610-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/19/2023] [Indexed: 07/01/2023]
Abstract
Staphylococcus aureus causes a range of chronic infections in humans by exploiting its biofilm machinery and drug-tolerance property. Although several strategies have been proposed to eradicate biofilm-linked issues, here, we have explored whether piperine, a bioactive plant alkaloid, can disintegrate an already existing Staphylococcal biofilm. Towards this direction, the cells of S. aureus were allowed to develop biofilm first followed by treatment with the test concentrations (8 and 16 µg/mL) of piperine. In this connection, several assays such as total protein recovery assay, crystal violet assay, extracellular polymeric substances (EPS) measurement assay, fluorescein diacetate hydrolysis assay, and fluorescence microscopic image analysis confirmed the biofilm-disintegrating property of piperine against S. aureus. Piperine reduced the cellular auto-aggregation by decreasing the cell surface hydrophobicity. On further investigation, we observed that piperine could down regulate the dltA gene expression that might reduce the cell surface hydrophobicity of S. aureus. It was also observed that the piperine-induced accumulation of reactive oxygen species (ROS) could enhance biofilm disintegration by decreasing the cell surface hydrophobicity of the test organism. Together, all the observations suggested that piperine could be used as a potential molecule for the effective management of the pre-existing biofilm of S. aureus.
Collapse
Affiliation(s)
- Sharmistha Das
- Microbial Ecology Research Laboratory, Department of Biotechnology, The Neotia University, Sarisha, West Bengal, 743368, India
| | - Ritwik Roy
- Microbial Ecology Research Laboratory, Department of Biotechnology, The Neotia University, Sarisha, West Bengal, 743368, India
| | - Payel Paul
- Microbial Ecology Research Laboratory, Department of Biotechnology, The Neotia University, Sarisha, West Bengal, 743368, India
| | - Poulomi Chakraborty
- Microbial Ecology Research Laboratory, Department of Biotechnology, The Neotia University, Sarisha, West Bengal, 743368, India
| | - Sudipta Chatterjee
- Microbial Ecology Research Laboratory, Department of Biotechnology, The Neotia University, Sarisha, West Bengal, 743368, India
| | - Moumita Malik
- Microbial Ecology Research Laboratory, Department of Biotechnology, The Neotia University, Sarisha, West Bengal, 743368, India
| | - Sarita Sarkar
- Microbial Ecology Research Laboratory, Department of Biotechnology, The Neotia University, Sarisha, West Bengal, 743368, India
| | - Anirban Das Gupta
- Microbial Ecology Research Laboratory, Department of Biotechnology, The Neotia University, Sarisha, West Bengal, 743368, India
| | - Debasish Maiti
- Department of Human Physiology, Tripura University, Suryamaninagar, Agartala, Tripura, 799022, India
| | - Prosun Tribedi
- Microbial Ecology Research Laboratory, Department of Biotechnology, The Neotia University, Sarisha, West Bengal, 743368, India.
| |
Collapse
|
7
|
Mason S, Vornhagen J, Smith SN, Mike LA, Mobley HLT, Bachman MA. The Klebsiella pneumoniae ter Operon Enhances Stress Tolerance. Infect Immun 2023; 91:e0055922. [PMID: 36651775 PMCID: PMC9933665 DOI: 10.1128/iai.00559-22] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 12/21/2022] [Indexed: 01/19/2023] Open
Abstract
Healthcare-acquired infections are a leading cause of disease in patients that are hospitalized or in long-term-care facilities. Klebsiella pneumoniae (Kp) is a leading cause of bacteremia, pneumonia, and urinary tract infections in these settings. Previous studies have established that the ter operon, a genetic locus that confers tellurite oxide (K2TeO3) resistance, is associated with infection in colonized patients. Rather than enhancing fitness during infection, the ter operon increases Kp fitness during gut colonization; however, the biologically relevant function of this operon is unknown. First, using a murine model of urinary tract infection, we demonstrate a novel role for the ter operon protein TerC as a bladder fitness factor. To further characterize TerC, we explored a variety of functions, including resistance to metal-induced stress, resistance to radical oxygen species-induced stress, and growth on specific sugars, all of which were independent of TerC. Then, using well-defined experimental guidelines, we determined that TerC is necessary for tolerance to ofloxacin, polymyxin B, and cetylpyridinium chloride. We used an ordered transposon library constructed in a Kp strain lacking the ter operon to identify the genes that are required to resist K2TeO3-induced and polymyxin B-induced stress, which suggested that K2TeO3-induced stress is experienced at the bacterial cell envelope. Finally, we confirmed that K2TeO3 disrupts the Kp cell envelope, though these effects are independent of ter. Collectively, the results from these studies indicate a novel role for the ter operon as a stress tolerance factor, thereby explaining its role in enhancing fitness in the gut and bladder.
Collapse
Affiliation(s)
- Sophia Mason
- Department of Pathology, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Jay Vornhagen
- Department of Pathology, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
- Department of Microbiology & Immunology, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Sara N. Smith
- Department of Microbiology & Immunology, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Laura A. Mike
- Department of Medical Microbiology & Immunology, University of Toledo, Toledo, Ohio, USA
| | - Harry L. T. Mobley
- Department of Microbiology & Immunology, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Michael A. Bachman
- Department of Pathology, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
- Department of Microbiology & Immunology, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
8
|
Richard CSM, Dey H, Øyen F, Maqsood M, Blencke HM. Outer Membrane Integrity-Dependent Fluorescence of the Japanese Eel UnaG Protein in Live Escherichia coli Cells. BIOSENSORS 2023; 13:232. [PMID: 36831998 PMCID: PMC9953992 DOI: 10.3390/bios13020232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/28/2023] [Accepted: 02/03/2023] [Indexed: 06/18/2023]
Abstract
Reporter genes are important tools in many biological disciplines. The discovery of novel reporter genes is relatively rare. However, known reporter genes are constantly applied to novel applications. This study reports the performance of the bilirubin-dependent fluorescent protein UnaG from the Japanese eel Anguilla japonicas in live Escherichia coli cells in response to the disruption of outer membrane (OM) integrity at low bilirubin (BR) concentrations. Using the E. coli wild-type strain MC4100, its isogenic OM-deficient mutant strain NR698, and different OM-active compounds, we show that BR uptake and UnaG fluorescence depend on a leaky OM at concentrations of 10 µM BR and below, while fluorescence is mostly OM integrity-independent at concentrations above 50 µM BR. We suggest that these properties of the UnaG-BR couple might be applied as a biosensor as an alternative to the OM integrity assays currently in use.
Collapse
|
9
|
Chatterjee S, Das S, Paul P, Chakraborty P, Sarkar S, Das A, Tribedi P. Synergistic interaction of cuminaldehyde and tobramycin: a potential strategy for the efficient management of biofilm caused by Pseudomonas aeruginosa. Folia Microbiol (Praha) 2023; 68:151-163. [PMID: 36192618 DOI: 10.1007/s12223-022-01005-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 09/19/2022] [Indexed: 11/04/2022]
Abstract
Pseudomonas aeruginosa, an opportunistic pathogen, has been found to cause several chronic and acute infections in human. Moreover, it often shows drug-tolerance and poses a severe threat to public healthcare through biofilm formation. In this scenario, two molecules, namely, cuminaldehyde and tobramycin, were used separately and in combination for the efficient management of biofilm challenge. The minimum inhibitory concentration (MIC) of cuminaldehyde and tobramycin was found to be 150 µg/mL and 1 µg/mL, respectively, against Pseudomonas aeruginosa. The checkerboard assay revealed that the fractional inhibitory concentration (FIC) index of cuminaldehyde and tobramycin was 0.36 suggesting a synergistic association between them. The sub-MIC dose of cuminaldehyde (60 µg/mL) or tobramycin (0.06 µg/mL) individually did not show any effect on the microbial growth curve. However, the same combinations could affect microbial growth curve of Pseudomonas aeruginosa efficiently. In connection to biofilm management, it was observed that the synergistic interaction between cuminaldehyde and tobramycin could inhibit biofilm formation more efficiently than their single use (p < 0.01). Further investigation revealed that the combinations of cuminaldehyde and tobramycin could generate reactive oxygen species (ROS) that resulted in the increase of membrane permeability of bacterial cells leading to the efficient inhibition of microbial biofilm formation. Besides, the synergistic interaction between cuminaldehyde (20 µg/mL) and tobramycin (0.03 µg/mL) also showed significant biofilm dispersal of the test microorganism (p < 0.01). Hence, the results suggested that synergistic action of cuminaldehyde and tobramycin could be applied for the efficient management of microbial biofilm.
Collapse
Affiliation(s)
- Sudipta Chatterjee
- Department of Biotechnology, The Neotia University, Sarisha, West Bengal, 743368, India
| | - Sharmistha Das
- Department of Biotechnology, The Neotia University, Sarisha, West Bengal, 743368, India
| | - Payel Paul
- Department of Biotechnology, The Neotia University, Sarisha, West Bengal, 743368, India
| | - Poulomi Chakraborty
- Department of Biotechnology, The Neotia University, Sarisha, West Bengal, 743368, India
| | - Sarita Sarkar
- Department of Biotechnology, The Neotia University, Sarisha, West Bengal, 743368, India
| | - Amlan Das
- National Institute of Biomedical Genomics, Kalyani, West Bengal, 741251, India
| | - Prosun Tribedi
- Department of Biotechnology, The Neotia University, Sarisha, West Bengal, 743368, India.
| |
Collapse
|
10
|
Ojo BA, Alake SE, Kaur A, Wong SY, Keirns B, Ritchey JW, Chowanadisai W, Lin D, Clarke S, Smith BJ, Lucas EA. Supplemental wheat germ modulates phosphorylation of STAT3 in the gut and NF-κBp65 in the adipose tissue of mice fed a Western diet. Curr Dev Nutr 2023; 7:100023. [PMID: 37181127 PMCID: PMC10100941 DOI: 10.1016/j.cdnut.2022.100023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 11/16/2022] [Accepted: 11/27/2022] [Indexed: 12/24/2022] Open
Abstract
Background Commensal gut bacteria, including Lactobacillus, can produce metabolites that stimulate the release of gut antimicrobial peptides (AMPs) via the signal transducer and activator of transcription (STAT)3 pathway and prevent obesity-associated leaky gut and chronic inflammation. We have previously reported that wheat germ (WG) selectively increased cecal Lactobacillus in obese mice. Objectives This study investigated the effects of WG on gut STAT3 activation and AMPs (Reg3γ and Reg3β) as well as the potential of WG to inhibit nuclear Nf-κB-activation and immune cell infiltration in the visceral adipose tissue (VAT) of mice fed a Western diet (i.e., high-fat and sucrose diet [HFS]). Methods Six-wk-old male C57BL/6 mice were randomly assigned to 4 groups (n = 12/group): control (C, 10% fat and sucrose kcal) or HFS (45% fat and 26% sucrose kcal) diet with or without 10% WG (wt/wt) for 12 wk. Assessments include serum metabolic parameters jejunal AMPs genes, inflammatory markers, and phosphorylation of STAT3 as well as VAT NF-κBp65. Independent and interaction effects of HFS and WG were analyzed with a 2-factor ANOVA. Results WG significantly improved markers of insulin resistance and upregulated jejunal Il10 and Il22 genes. The HFS + WG group had a 15-fold increase in jejunal pSTAT3 compared with the HFS group. Consequently, WG significantly upregulated jejunal mRNA expression of Reg3γ and Reg3β. The HFS group had a significantly higher VAT NF-κBp65 phosphorylation than the C group, while the HFS + WG group suppressed this to the level of C. Moreover, VAT Il6 and Lbp genes were downregulated in the HFS + WG group compared with HFS. Genes related to macrophage infiltration in the VAT were repressed in the WG-fed mice. Conclusion These findings show the potential of WG to influence vital regulatory pathways in the gut and adipose tissue which may reduce the chronic inflammatory burden on these tissues that are important targets in obesity and insulin resistance.
Collapse
Affiliation(s)
- Babajide A. Ojo
- Division of Pediatric Gastroenterology, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Sanmi E. Alake
- Nutritional Sciences Department, Oklahoma State University, Stillwater, OK, USA
| | - Amritpal Kaur
- Nutritional Sciences Department, Oklahoma State University, Stillwater, OK, USA
| | - Siau Yen Wong
- Nutritional Sciences Department, Oklahoma State University, Stillwater, OK, USA
| | - Bryant Keirns
- Nutritional Sciences Department, Oklahoma State University, Stillwater, OK, USA
| | - Jerry W. Ritchey
- Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK, USA
| | - Winyoo Chowanadisai
- Nutritional Sciences Department, Oklahoma State University, Stillwater, OK, USA
| | - Dingbo Lin
- Nutritional Sciences Department, Oklahoma State University, Stillwater, OK, USA
| | - Stephen Clarke
- Nutritional Sciences Department, Oklahoma State University, Stillwater, OK, USA
| | - Brenda J. Smith
- Department of Obstetrics and Gynecology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Edralin A. Lucas
- Nutritional Sciences Department, Oklahoma State University, Stillwater, OK, USA
| |
Collapse
|
11
|
Chai WC, Whittall JJ, Polyak SW, Foo K, Li X, Dutschke CJ, Ogunniyi AD, Ma S, Sykes MJ, Semple SJ, Venter H. Cinnamaldehyde derivatives act as antimicrobial agents against Acinetobacter baumannii through the inhibition of cell division. Front Microbiol 2022; 13:967949. [PMID: 36106080 PMCID: PMC9465178 DOI: 10.3389/fmicb.2022.967949] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 08/05/2022] [Indexed: 11/13/2022] Open
Abstract
Acinetobacter baumannii is a pathogen with high intrinsic antimicrobial resistance while multidrug resistant (MDR) and extensively drug resistant (XDR) strains of this pathogen are emerging. Treatment options for infections by these strains are very limited, hence new therapies are urgently needed. The bacterial cell division protein, FtsZ, is a promising drug target for the development of novel antimicrobial agents. We have previously reported limited activity of cinnamaldehyde analogs against Escherichia coli. In this study, we have determined the antimicrobial activity of six cinnamaldehyde analogs for antimicrobial activity against A. baumannii. Microscopic analysis was performed to determine if the compounds inhibit cell division. The on-target effect of the compounds was assessed by analyzing their effect on polymerization and on the GTPase activity of purified FtsZ from A. baumannii. In silico docking was used to assess the binding of cinnamaldehyde analogs. Finally, in vivo and in vitro safety assays were performed. All six compounds displayed antibacterial activity against the critical priority pathogen A. baumannii, with 4-bromophenyl-substituted 4 displaying the most potent antimicrobial activity (MIC 32 μg/mL). Bioactivity was significantly increased in the presence of an efflux pump inhibitor for A. baumannii ATCC 19606 (up to 32-fold) and significantly, for extensively drug resistant UW 5075 (greater than 4-fold), suggesting that efflux contributes to the intrinsic resistance of A. baumannii against these agents. The compounds inhibited cell division in A. baumannii as observed by the elongated phenotype and targeted the FtsZ protein as seen from the inhibition of polymerization and GTPase activity. In silico docking predicted that the compounds bind in the interdomain cleft adjacent to the H7 core helix. Di-chlorinated 6 was devoid of hemolytic activity and cytotoxicity against mammalian cells in vitro, as well as adverse activity in a Caenorhabditis elegans nematode model in vivo. Together, these findings present halogenated analogs 4 and 6 as promising candidates for further development as antimicrobial agents aimed at combating A. baumannii. This is also the first report of FtsZ-targeting compounds with activity against an XDR A. baumannii strain.
Collapse
Affiliation(s)
- Wern Chern Chai
- Health and Biomedical Innovation, Clinical and Health Sciences, University of South Australia, Adelaide, SA, Australia
| | - Jonathan J. Whittall
- Health and Biomedical Innovation, Clinical and Health Sciences, University of South Australia, Adelaide, SA, Australia
| | - Steven W. Polyak
- Health and Biomedical Innovation, Clinical and Health Sciences, University of South Australia, Adelaide, SA, Australia
| | - Klyie Foo
- Health and Biomedical Innovation, Clinical and Health Sciences, University of South Australia, Adelaide, SA, Australia
| | - Xin Li
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Cameron J. Dutschke
- Health and Biomedical Innovation, Clinical and Health Sciences, University of South Australia, Adelaide, SA, Australia
| | - Abiodun D. Ogunniyi
- Australian Centre for Antimicrobial Resistance Ecology, School of Animal and Veterinary Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Shutao Ma
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Matthew J. Sykes
- Health and Biomedical Innovation, Clinical and Health Sciences, University of South Australia, Adelaide, SA, Australia
| | - Susan J. Semple
- Health and Biomedical Innovation, Clinical and Health Sciences, University of South Australia, Adelaide, SA, Australia
- Quality Use of Medicines and Pharmacy Research Centre, Clinical and Health Sciences, University of South Australia, Adelaide, SA, Australia
| | - Henrietta Venter
- Health and Biomedical Innovation, Clinical and Health Sciences, University of South Australia, Adelaide, SA, Australia
| |
Collapse
|
12
|
Lactoferrin as a Human Genome “Guardian”—An Overall Point of View. Int J Mol Sci 2022; 23:ijms23095248. [PMID: 35563638 PMCID: PMC9105968 DOI: 10.3390/ijms23095248] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/06/2022] [Accepted: 05/06/2022] [Indexed: 11/22/2022] Open
Abstract
Structural abnormalities causing DNA modifications of the ethene and propanoadducts can lead to mutations and permanent damage to human genetic material. Such changes may cause premature aging and cell degeneration and death as well as severe impairment of tissue and organ function. This may lead to the development of various diseases, including cancer. In response to a damage, cells have developed defense mechanisms aimed at preventing disease and repairing damaged genetic material or diverting it into apoptosis. All of the mechanisms described above are part of the repertoire of action of Lactoferrin—an endogenous protein that contains iron in its structure, which gives it numerous antibacterial, antiviral, antifungal and anticancer properties. The aim of the article is to synthetically present the new and innovative role of lactoferrin in the protection of human genetic material against internal and external damage, described by the modulation mechanisms of the cell cycle at all its levels and the mechanisms of its repair.
Collapse
|
13
|
Extracellular production of an anti-HER2 single-chain variable antibody fragment in Escherichia coli. Process Biochem 2021. [DOI: 10.1016/j.procbio.2021.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
14
|
Bai J, Bai J, Yang M. Interleukin-22 Attenuates Acute Pancreatitis-Associated Intestinal Mucosa Injury in Mice via STAT3 Activation. Gut Liver 2021; 15:771-781. [PMID: 33495423 PMCID: PMC8444107 DOI: 10.5009/gnl20210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 10/26/2020] [Accepted: 11/06/2020] [Indexed: 11/04/2022] Open
Abstract
Background/Aims Interleukin-22 (IL-22) is an important cytokine maintaining homeostasis at barrier surfaces. In this study, the role of IL-22 in acute pancreatitis-associated intestinal injury was further explored. Methods Severe acute pancreatitis (SAP) was induced by administration of L-arginine in Balb/c mice at different time gradients. Histopathological examinations were made in both the pancreas and small intestine. Furthermore, recombinant murine IL-22 (rIL-22) was administrated to L-arginine-induced SAP mice by intraperitoneal injection. The mRNA levels of IL-22R1, Reg-IIIβ, Reg-IIIγ, Bcl-2, and Bcl-xL were detected in the small intestine by real-time polymerase chain reaction, and protein levels of total and phosphorylated STAT3 were assessed via Western blot. Results Compared with normal control group, 72 hours of L-arginine exposure induced the most characteristic histopathological changes of SAP, evidenced by pathological changes and serum amylase levels. Meanwhile, significant pancreatitis-associated intestinal mucosa injury was also observed. The gene expression levels of antimicrobial proteins Reg-IIIβ, Reg-IIIγ and anti-apoptosis proteins Bcl-2, Bcl-xL were downregulated in small intestine. Furthermore, Larginine- induced SAP was attenuated by rIL-22 treatment. Importantly, pancreatitis-associated intestinal mucosa injury was also ameliorated, reflected by improved pathological changes and significant increase in gene expression levels of Reg-IIIβ, Reg-IIIγ, Bcl-2 and Bcl-xL. Consistently, serum amylase levels and mortality were decreased in mice treated with rIL-22. Mechanistically, the upregulated expressions of these protective genes were achieved by activating STAT3. Conclusions Exogenous rIL-22 attenuates L-arginine-induced acute pancreatitis and intestinal mucosa injury in mice, via activating STAT3 signaling pathway and enhancing the expression of antimicrobial peptides and antiapoptotic genes.
Collapse
Affiliation(s)
- Jinxia Bai
- Department of Emergency and Critical Care Medicine, Shanghai Pudong New Area People’s Hospital, Shanghai, China
| | - Jinyun Bai
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China
- Fudan Institute for Metabolic Diseases, Shanghai, China
| | - Meng Yang
- Dayi Primary Education Group, Shanghai, China
| |
Collapse
|
15
|
Chettri D, Boro M, Sarkar L, Verma AK. Lectins: Biological significance to biotechnological application. Carbohydr Res 2021; 506:108367. [PMID: 34130214 DOI: 10.1016/j.carres.2021.108367] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 05/31/2021] [Indexed: 10/21/2022]
Abstract
Lectins are a set of non-enzymatic carbohydrate binding proteins appearing in all domains of life. They function to recognize, interact and bring about reversible binding of a specific sugar moiety present in a molecule. Since glycans are ubiquitous in nature and are an essential part of various biological process, the lectins are been investigated to understand the profile of these versatile but complex glycan molecule. The knowledge gained can be used to explore and streamline the various mechanisms involving glycans and their conjugates. Thus, lectins have gained importance in carbohydrate-protein interactions contributing to the development in the field of glycobiology. This has led to a deeper understanding of the importance of saccharide recognition in life. Since their discovery, the lectins have become a great choice of research in the field of glycobiology and their biological significances have recently received considerable attention in the biocontrol field as well as medical sectors.
Collapse
Affiliation(s)
| | - Manswama Boro
- Department of Microbiology, Sikkim University, India.
| | - Lija Sarkar
- Department of Microbiology, Sikkim University, India.
| | | |
Collapse
|
16
|
Gaudet RG, Zhu S, Halder A, Kim BH, Bradfield CJ, Huang S, Xu D, Mamiñska A, Nguyen TN, Lazarou M, Karatekin E, Gupta K, MacMicking JD. A human apolipoprotein L with detergent-like activity kills intracellular pathogens. Science 2021; 373:eabf8113. [PMID: 34437126 PMCID: PMC8422858 DOI: 10.1126/science.abf8113] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 04/29/2021] [Accepted: 06/03/2021] [Indexed: 12/11/2022]
Abstract
Activation of cell-autonomous defense by the immune cytokine interferon-γ (IFN-γ) is critical to the control of life-threatening infections in humans. IFN-γ induces the expression of hundreds of host proteins in all nucleated cells and tissues, yet many of these proteins remain uncharacterized. We screened 19,050 human genes by CRISPR-Cas9 mutagenesis and identified IFN-γ-induced apolipoprotein L3 (APOL3) as a potent bactericidal agent protecting multiple non-immune barrier cell types against infection. Canonical apolipoproteins typically solubilize mammalian lipids for extracellular transport; APOL3 instead targeted cytosol-invasive bacteria to dissolve their anionic membranes into human-bacterial lipoprotein nanodiscs detected by native mass spectrometry and visualized by single-particle cryo-electron microscopy. Thus, humans have harnessed the detergent-like properties of extracellular apolipoproteins to fashion an intracellular lysin, thereby endowing resident nonimmune cells with a mechanism to achieve sterilizing immunity.
Collapse
Affiliation(s)
- Ryan G Gaudet
- Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06510, USA
- Yale Systems Biology Institute, West Haven, CT 06477, USA
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06510, USA
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Shiwei Zhu
- Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06510, USA
- Yale Systems Biology Institute, West Haven, CT 06477, USA
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06510, USA
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Anushka Halder
- Yale Nanobiology Institute, West Haven, CT 06477, USA
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Bae-Hoon Kim
- Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06510, USA
- Yale Systems Biology Institute, West Haven, CT 06477, USA
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06510, USA
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Clinton J Bradfield
- Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06510, USA
- Yale Systems Biology Institute, West Haven, CT 06477, USA
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06510, USA
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Shuai Huang
- Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06510, USA
- Yale Systems Biology Institute, West Haven, CT 06477, USA
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06510, USA
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Dijin Xu
- Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06510, USA
- Yale Systems Biology Institute, West Haven, CT 06477, USA
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06510, USA
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Agnieszka Mamiñska
- Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06510, USA
- Yale Systems Biology Institute, West Haven, CT 06477, USA
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06510, USA
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Thanh Ngoc Nguyen
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Melbourne 3800, Australia
| | - Michael Lazarou
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Melbourne 3800, Australia
| | - Erdem Karatekin
- Yale Nanobiology Institute, West Haven, CT 06477, USA
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06510, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06510, USA
- Saints-Pères Paris Institute for the Neurosciences, Centre National de la Recherche Scientifique (CNRS), Université de Paris, F-75006 Paris, France
| | - Kallol Gupta
- Yale Nanobiology Institute, West Haven, CT 06477, USA
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - John D MacMicking
- Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06510, USA.
- Yale Systems Biology Institute, West Haven, CT 06477, USA
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06510, USA
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06510, USA
| |
Collapse
|
17
|
Behera M, Ghorai SM, De S, Kaur H. Understanding eco-immunology of bacterial zoonoses and alternative therapeutics toward "One Health". INTERNATIONAL JOURNAL OF ONE HEALTH 2021. [DOI: 10.14202/ijoh.2021.104-115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The current review identifies key bacterial zoonoses, the understanding of comparative immunology, evolutionary trade-offs between emerging bacterial pathogens and their dynamics on both arms of immunity. The several gaps in the literature limit our understanding of spread of prominent bacterial zoonotic diseases and the host-pathogen interactions that may change in response to environmental and social factors. Gaining a more comprehensive understanding of how anthropogenic activities affects the spread of emerging zoonotic diseases, is essential for predicting and mitigating future disease emergence through fine-tuning of surveillance and control measures with respect to different pathogens. This review highlights the urgent need to increase understanding of the comparative immunity of animal reservoirs, design of vaccines according to the homology in host-pathogen interactions, and the alternative strategies to counter the risk of bacterial pathogenic spillover to humans with eventual spread of zoonotic diseases.
Collapse
Affiliation(s)
- Manisha Behera
- Animal Biotechnology Center, National Dairy Research Institute, Karnal, Haryana, India; Department of Zoology, Hindu College, University of Delhi, Delhi, India
| | | | - Sachinandan De
- Animal Biotechnology Center, National Dairy Research Institute, Karnal, Haryana, India
| | - Hardeep Kaur
- Department of Zoology, Ramjas College, University of Delhi, Delhi, India
| |
Collapse
|
18
|
Peptide Extracts from Native Lactic Acid Bacteria Generate Ghost Cells and Spheroplasts upon Interaction with Salmonella enterica, as Promising Food Antimicrobials. BIOMED RESEARCH INTERNATIONAL 2020; 2020:6152356. [PMID: 33083475 PMCID: PMC7559518 DOI: 10.1155/2020/6152356] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 09/18/2020] [Accepted: 09/23/2020] [Indexed: 01/08/2023]
Abstract
Protecting foods from contamination applying peptides produced by lactic acid bacteria is a promising strategy to increase the food quality and safety. Interacting with the pathogen membranes might produce visible changes in shape or cell wall damage. Previously, we showed that the peptides produced by Lactobacillus plantarum UTNGt2, Lactobacillus plantarum UTNCys5-4, and Lactococcus lactis subsp. lactis UTNGt28 exhibit a broad spectrum of antibacterial activity against several foodborne pathogens in vitro. In this study, their possible mode of action against the commensal microorganism Salmonella enterica subsp. enterica ATCC51741 was investigated. The target membrane permeability was determined by detection of beta-galactosidase release from ONPG (o-nitro-phenyl-L-D-galactoside) substrate and changes in the whole protein profile indicating that the peptide extracts destroy the membrane integrity and may induce breaks in membrane proteins to some extent. The release of aromatic molecules such as DNA/RNA was detected after the interaction of Salmonella with the peptide extract. Transmission electronic microscopy (TEM) micrographs depicted at least four simultaneous secondary events after the peptide extract treatment underlying their antimicrobial actions, including morphological alterations of the membrane. Spheroplast and filament formation, vacuolation, and DNA relaxation were identified as the principal events from the Gt2 and Cys5-4 peptide extracts, while Gt28 induced the formation of ghost cells by release of cytoplasmic content, filaments, and separation of cell envelope layers. Gel retarding assays indicate that the Gt2 and Gt28 peptide extracts are clearly binding the Salmonella DNA, while Cys5-4 partially interacted with Salmonella genomic DNA. These results increased our knowledge about the inhibitory mechanism employed by several peptide extracts from native lactic acid bacteria against Salmonella. Further, we shall develop peptide-based formulation and evaluate their biocontrol effect in the food chains.
Collapse
|
19
|
Twin-Arginine Translocation System Is Involved in Citrobacter rodentium Fitness in the Intestinal Tract. Infect Immun 2020; 88:IAI.00892-19. [PMID: 31818958 DOI: 10.1128/iai.00892-19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 11/27/2019] [Indexed: 01/16/2023] Open
Abstract
The twin-arginine translocation (Tat) system is involved in not only a wide array of cellular processes but also pathogenesis in many bacterial pathogens; thus, this system is expected to become a novel therapeutic target to treat infections. To the best of our knowledge, involvement of the Tat system has not been reported in the gut infection caused by Citrobacter rodentium Here, we studied the role of Tat in C. rodentium gut infection, which resembles human infection with enterohemorrhagic Escherichia coli (EHEC) and enteropathogenic E. coli (EPEC). A C. rodentium Tat loss-of-function mutant displayed prolonged gut colonization, which was explained by reduced inflammatory responses and, particularly, neutrophil infiltration. Further, the Tat mutant had colonization defects upon coinfection with the wild-type strain of C. rodentium The Tat mutant also became hypersensitive to bile acids, and an increase in fecal bile acids fostered C. rodentium clearance from the gut lumen. Finally, we show that the chain form of C. rodentium cells, induced by a Tat-dependent cell division defect, exhibits impaired resistance to bile acids. Our findings indicate that the Tat system is involved in gut colonization by C. rodentium, which is associated with neutrophil infiltration and resistance to bile acids. Interventions that target the Tat system, as well as luminal bile acids, might thus be promising therapeutic strategies to treat human EHEC and EPEC infections.
Collapse
|
20
|
Intestinal epithelial NAIP/NLRC4 restricts systemic dissemination of the adapted pathogen Salmonella Typhimurium due to site-specific bacterial PAMP expression. Mucosal Immunol 2020; 13:530-544. [PMID: 31953493 PMCID: PMC7181392 DOI: 10.1038/s41385-019-0247-0] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 11/18/2019] [Accepted: 12/10/2019] [Indexed: 02/07/2023]
Abstract
Inflammasomes can prevent systemic dissemination of enteropathogenic bacteria. As adapted pathogens including Salmonella Typhimurium (S. Tm) have evolved evasion strategies, it has remained unclear when and where inflammasomes restrict their dissemination. Bacterial population dynamics establish that the NAIP/NLRC4 inflammasome specifically restricts S. Tm migration from the gut to draining lymph nodes. This is solely attributable to NAIP/NLRC4 within intestinal epithelial cells (IECs), while S. Tm evades restriction by phagocyte NAIP/NLRC4. NLRP3 and Caspase-11 also fail to restrict S. Tm mucosa traversal, migration to lymph nodes, and systemic pathogen growth. The ability of IECs (not phagocytes) to mount a NAIP/NLRC4 defense in vivo is explained by particularly high NAIP/NLRC4 expression in IECs and the necessity for epithelium-invading S. Tm to express the NAIP1-6 ligands-flagella and type-III-secretion-system-1. Imaging reveals both ligands to be promptly downregulated following IEC-traversal. These results highlight the importance of intestinal epithelial NAIP/NLRC4 in blocking bacterial dissemination in vivo, and explain why this constitutes a uniquely evasion-proof defense against the adapted enteropathogen S. Tm.
Collapse
|
21
|
Sundaram K, Miller DP, Kumar A, Teng Y, Sayed M, Mu J, Lei C, Sriwastva MK, Zhang L, Yan J, Merchant ML, He L, Fang Y, Zhang S, Zhang X, Park JW, Lamont RJ, Zhang HG. Plant-Derived Exosomal Nanoparticles Inhibit Pathogenicity of Porphyromonas gingivalis. iScience 2019; 21:308-327. [PMID: 31678913 PMCID: PMC6838522 DOI: 10.1016/j.isci.2019.10.032] [Citation(s) in RCA: 131] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 07/01/2019] [Accepted: 10/16/2019] [Indexed: 12/12/2022] Open
Abstract
Plant exosomes protect plants against infection; however, whether edible plant exosomes can protect mammalian hosts against infection is not known. In this study, we show that ginger exosome-like nanoparticles (GELNs) are selectively taken up by the periodontal pathogen Porphyromonas gingivalis in a GELN phosphatidic acid (PA) dependent manner via interactions with hemin-binding protein 35 (HBP35) on the surface of P. gingivalis. Compared with PA (34:2), PA (34:1) did not interact with HBP35, indicating that the degree of unsaturation of PA plays a critical role in GELN-mediated interaction with HBP35. On binding to HBP35, pathogenic mechanisms of P. gingivalis were significantly reduced following interaction with GELN cargo molecules, including PA and miRs. These cargo molecules interacted with multiple pathogenic factors in the recipient bacteria simultaneously. Using edible plant exosome-like nanoparticles as a potential therapeutic agent to prevent/treat chronic periodontitis was further demonstrated in a mouse model.
Collapse
Affiliation(s)
- Kumaran Sundaram
- James Graham Brown Cancer Center, Department of Microbiology & Immunology, University of Louisville, CTRB 309, 505 South Hancock Street, Louisville, KY 40202, USA
| | - Daniel P Miller
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY 40202, USA
| | - Anil Kumar
- James Graham Brown Cancer Center, Department of Microbiology & Immunology, University of Louisville, CTRB 309, 505 South Hancock Street, Louisville, KY 40202, USA
| | - Yun Teng
- James Graham Brown Cancer Center, Department of Microbiology & Immunology, University of Louisville, CTRB 309, 505 South Hancock Street, Louisville, KY 40202, USA
| | - Mohammed Sayed
- Department of Computer Engineering and Computer Science, University of Louisville, Louisville, KY 40202, USA
| | - Jingyao Mu
- James Graham Brown Cancer Center, Department of Microbiology & Immunology, University of Louisville, CTRB 309, 505 South Hancock Street, Louisville, KY 40202, USA
| | - Chao Lei
- James Graham Brown Cancer Center, Department of Microbiology & Immunology, University of Louisville, CTRB 309, 505 South Hancock Street, Louisville, KY 40202, USA
| | - Mukesh K Sriwastva
- James Graham Brown Cancer Center, Department of Microbiology & Immunology, University of Louisville, CTRB 309, 505 South Hancock Street, Louisville, KY 40202, USA
| | - Lifeng Zhang
- James Graham Brown Cancer Center, Department of Microbiology & Immunology, University of Louisville, CTRB 309, 505 South Hancock Street, Louisville, KY 40202, USA
| | - Jun Yan
- James Graham Brown Cancer Center, Department of Microbiology & Immunology, University of Louisville, CTRB 309, 505 South Hancock Street, Louisville, KY 40202, USA
| | - Michael L Merchant
- Kidney Disease Program and Clinical Proteomics Center, University of Louisville, Louisville, KY, USA
| | - Liqing He
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40202, USA
| | - Yuan Fang
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40202, USA
| | - Shuangqin Zhang
- Department of Medicine, University of Chicago, Chicago, IL 60637, USA
| | - Xiang Zhang
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40202, USA
| | - Juw W Park
- Department of Computer Engineering and Computer Science, University of Louisville, Louisville, KY 40202, USA; KBRIN Bioinformatics Core, University of Louisville, Louisville, KY 40202, USA
| | - Richard J Lamont
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY 40202, USA
| | - Huang-Ge Zhang
- Robley Rex Veterans Affairs Medical Center, Louisville, KY 40206, USA; James Graham Brown Cancer Center, Department of Microbiology & Immunology, University of Louisville, CTRB 309, 505 South Hancock Street, Louisville, KY 40202, USA.
| |
Collapse
|
22
|
Rao Z, Kim SY, Akanda MR, Lee SJ, Jung ID, Park BY, Kamala-Kannan S, Hur J, Park JH. Enhanced Expression and Functional Characterization of the Recombinant Putative Lysozyme-PMAP36 Fusion Protein. Mol Cells 2019; 42:262-269. [PMID: 30841024 PMCID: PMC6449713 DOI: 10.14348/molcells.2019.2365] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 12/24/2018] [Accepted: 01/27/2019] [Indexed: 01/12/2023] Open
Abstract
The porcine myeloid antimicrobial peptide (PMAP), one of the cathelicidin family members, contains small cationic peptides with amphipathic properties. We used a putative lysozyme originated from the bacteriophage P22 (P22 lysozyme) as a fusion partner, which was connected to the N-terminus of the PMAP36 peptide, to markedly increase the expression levels of recombinant PMAP36. The PMAP36-P22 lysozyme fusion protein with high solubility was produced in Escherichia coli. The final purified yield was approximately 1.8 mg/L. The purified PMAP36-P22 lysozyme fusion protein exhibited antimicrobial activity against both Gram-negative and Gram-positive bacteria (Staphylococcus aureus, Salmonella enterica serovar Typhimurium, Pseudomonas aeruginosa, and Bacillus subtilis). Furthermore, we estimated its hemolytic activity against pig erythrocytes as 6% at the high concentration (128 μM) of the PMAP36-P22 lysozyme fusion protein. Compared with the PMAP36 peptide (12%), our fusion protein exhibited half of the hemolytic activity. Overall, our recombinant PMAP36-P22 lysozyme fusion protein sustained the antimicrobial activity with the lower hemolytic activity associated with the synthetic PMAP36 peptide. This study suggests that the PMAP36-P22 lysozyme fusion system could be a crucial addition to the plethora of novel antimicrobials.
Collapse
Affiliation(s)
- Zhili Rao
- Division of Biotechnology, College of Environmental & Bioresources Sciences, Chonbuk National University, Iksan 54596,
Korea
| | - So Young Kim
- Division of Biotechnology, College of Environmental & Bioresources Sciences, Chonbuk National University, Iksan 54596,
Korea
| | - Md Rashedunnabi Akanda
- College of Veterinary Medicine and Bio-safety Research Institute, Chonbuk National University, Iksan 54596,
Korea
- Department of Pharmacology and Toxicology, Sylhet Agricultural University, Sylhet 3100,
Bangladesh
| | - Su Jin Lee
- Department of Immunology, Laboratory of Dendritic Cell Differentiation and Regulation, School of Medicine, Konkuk University, Chungju 27478,
Korea
| | - In Duk Jung
- Department of Immunology, Laboratory of Dendritic Cell Differentiation and Regulation, School of Medicine, Konkuk University, Chungju 27478,
Korea
| | - Byung-Yong Park
- College of Veterinary Medicine and Bio-safety Research Institute, Chonbuk National University, Iksan 54596,
Korea
| | - Seralathan Kamala-Kannan
- Division of Biotechnology, College of Environmental & Bioresources Sciences, Chonbuk National University, Iksan 54596,
Korea
- Advanced Institute of Environment and Bioscience, College of Environmental & Bioresources Sciences, Chonbuk National University, Iksan 54596,
Korea
| | - Jin Hur
- Veterinary Public Health, College of Veterinary Medicine, Chonbuk National University, Iksan 54596,
Korea
| | - Jung Hee Park
- Division of Biotechnology, College of Environmental & Bioresources Sciences, Chonbuk National University, Iksan 54596,
Korea
- Safety, Environment and Life Science Institute, College of Environmental and Bioresources Sciences, Chonbuk National University, Iksan 54596,
Korea
| |
Collapse
|
23
|
Hausmann A, Hardt WD. The Interplay between Salmonella enterica Serovar Typhimurium and the Intestinal Mucosa during Oral Infection. Microbiol Spectr 2019; 7:10.1128/microbiolspec.bai-0004-2019. [PMID: 30953432 PMCID: PMC11588296 DOI: 10.1128/microbiolspec.bai-0004-2019] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Indexed: 12/28/2022] Open
Abstract
Bacterial infection results in a dynamic interplay between the pathogen and its host. The underlying interactions are multilayered, and the cellular responses are modulated by the local environment. The intestine is a particularly interesting tissue regarding host-pathogen interaction. It is densely colonized by commensal microbes and a portal of entry for ingested pathogens. This necessitates constant monitoring of microbial stimuli in order to maintain homeostasis during encounters with benign microbiota and to trigger immune defenses in response to bacterial pathogens. Homeostasis is maintained by physical barriers (the mucus layer and epithelium), chemical defenses (antimicrobial peptides), and innate immune responses (NLRC4 inflammasome), which keep the bacteria from reaching the sterile lamina propria. Intestinal pathogens represent potent experimental tools to probe these barriers and decipher how pathogens can circumvent them. The streptomycin mouse model of oral Salmonella enterica serovar Typhimurium infection provides a well-characterized, robust experimental system for such studies. Strikingly, each stage of the gut tissue infection poses a different set of challenges to the pathogen and requires tight control of virulence factor expression, host response modulation, and cooperation between phenotypic subpopulations. Therefore, successful infection of the intestinal tissue relies on a delicate and dynamic balance between responses of the pathogen and its host. These mechanisms can be deciphered to their full extent only in realistic in vivo infection models.
Collapse
Affiliation(s)
- Annika Hausmann
- Institute of Microbiology, D-BIOL ETH Zurich, Zurich, Switzerland
| | | |
Collapse
|
24
|
Tat-exported peptidoglycan amidase-dependent cell division contributes to Salmonella Typhimurium fitness in the inflamed gut. PLoS Pathog 2018; 14:e1007391. [PMID: 30379938 PMCID: PMC6231687 DOI: 10.1371/journal.ppat.1007391] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 11/12/2018] [Accepted: 10/07/2018] [Indexed: 12/11/2022] Open
Abstract
Salmonella enterica serovar Typhimurium (S. Tm) is a cause of food poisoning accompanied with gut inflammation. Although mucosal inflammation is generally thought to be protective against bacterial infection, S. Tm exploits the inflammation to compete with commensal microbiota, thereby growing up to high densities in the gut lumen and colonizing the gut continuously at high levels. However, the molecular mechanisms underlying the beneficial effect of gut inflammation on S. Tm competitive growth are poorly understood. Notably, the twin-arginine translocation (Tat) system, which enables the transport of folded proteins outside bacterial cytoplasm, is well conserved among many bacterial pathogens, with Tat substrates including virulence factors and virulence-associated proteins. Here, we show that Tat and Tat-exported peptidoglycan amidase, AmiA- and AmiC-dependent cell division contributes to S. Tm competitive fitness advantage in the inflamed gut. S. Tm tatC or amiA amiC mutants feature a gut colonization defect, wherein they display a chain form of cells. The chains are attributable to a cell division defect of these mutants and occur in inflamed but not in normal gut. We demonstrate that attenuated resistance to bile acids confers the colonization defect on the S. Tm amiA amiC mutant. In particular, S. Tm cell chains are highly sensitive to bile acids as compared to single or paired cells. Furthermore, we show that growth media containing high concentrations of NaCl and sublethal concentrations of antimicrobial peptides induce the S. Tm amiA amiC mutant chain form, suggesting that gut luminal conditions such as high osmolarity and the presence of antimicrobial peptides impose AmiA- and AmiC-dependent cell division on S. Tm. Together, our data indicate that Tat and the Tat-exported amidases, AmiA and AmiC, are required for S. Tm luminal fitness in the inflamed gut, suggesting that these proteins might comprise effective targets for novel antibacterial agents against infectious diarrhea. For proteins residing outside the bacterial cytoplasm, transport is an essential step for adequate function. The twin-arginine translocation (Tat) system enables the transport of folded proteins across the cytoplasmic membrane in prokaryotes. It has recently become clear that this system plays a pivotal role in the detrimental effects of many bacterial pathogens, suggesting Tat as a novel therapeutic target against their infection. In particular, the bacterial enteropathogen Salmonella Typhimurium causes foodborne diarrhea by colonizing the gut interior space. Here, we describe that the S. Typhimurium Tat system contributes to intestinal infection by facilitating colonization of the gut by this pathogen. We also identify that two Tat-exported enzymes, peptidoglycan amidase AmiA and AmiC, are responsible for the Tat-dependent colonization. S. Typhimurium strains having nonfunctional Tat systems or lacking these enzymes undergo filamentous growth in the gut interior owing to defective cell division. Notably, this chain form of S. Typhimurium cells is highly sensitive to bile acids, rendering it less competitive with native bacteria in the gut. The data presented here suggest that the Tat system and associated amidases may comprise promising therapeutic targets for Salmonella diarrhea, and that controlling bacterial shape might be new strategy for regulating intestinal enteropathogen infection.
Collapse
|
25
|
Breitenbach Barroso Coelho LC, Marcelino Dos Santos Silva P, Felix de Oliveira W, de Moura MC, Viana Pontual E, Soares Gomes F, Guedes Paiva PM, Napoleão TH, Dos Santos Correia MT. Lectins as antimicrobial agents. J Appl Microbiol 2018; 125:1238-1252. [PMID: 30053345 DOI: 10.1111/jam.14055] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 06/23/2018] [Accepted: 07/15/2018] [Indexed: 12/24/2022]
Abstract
The resistance of micro-organisms to antimicrobial agents has been a challenge to treat animal and human infections, and for environmental control. Lectins are natural proteins and some are potent antimicrobials through binding to carbohydrates on microbial surfaces. Oligomerization state of lectins can influence their biological activity and maximum binding capacity; the association among lectin polypeptide chains can alter the carbohydrate-lectin binding dissociation rate constants. Antimicrobial mechanisms of lectins include the pore formation ability, followed by changes in the cell permeability and latter, indicates interactions with the bacterial cell wall components. In addition, the antifungal activity of lectins is associated with the chitin-binding property, resulting in the disintegration of the cell wall or the arrest of de novo synthesis from the cell wall during fungal development or division. Quorum sensing is a cell-to-cell communication process that allows interspecies and interkingdom signalling which coordinate virulence genes; antiquorum-sensing therapies are described for animal and plant lectins. This review article, among other approaches, evaluates lectins as antimicrobials.
Collapse
Affiliation(s)
| | | | - W Felix de Oliveira
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Brazil
| | - M C de Moura
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Brazil
| | - E Viana Pontual
- Departamento de Morfologia e Fisiologia Animal, Universidade Federal Rural de Pernambuco, Recife, Brazil
| | - F Soares Gomes
- Instituto de Química e Biotecnologia, Universidade Federal de Alagoas, Maceió, Brazil
| | - P M Guedes Paiva
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Brazil
| | - T H Napoleão
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Brazil
| | - M T Dos Santos Correia
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Brazil
| |
Collapse
|
26
|
Chiok KL, Paul NC, Adekanmbi EO, Srivastava SK, Shah DH. Dimethyl adenosine transferase (KsgA) contributes to cell-envelope fitness in Salmonella Enteritidis. Microbiol Res 2018; 216:108-119. [PMID: 30269850 DOI: 10.1016/j.micres.2018.08.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 08/17/2018] [Accepted: 08/21/2018] [Indexed: 01/02/2023]
Abstract
We previously reported that inactivation of a universally conserved dimethyl adenosine transferase (KsgA) attenuates virulence and increases sensitivity to oxidative and osmotic stress in Salmonella Enteritidis. Here, we show a role of KsgA in cell-envelope fitness as a potential mechanism underlying these phenotypes in Salmonella. We assessed structural integrity of the cell-envelope by transmission electron microscopy, permeability barrier function by determining intracellular accumulation of ethidium bromide and electrophysical properties by dielectrophoresis, an electrokinetic tool, in wild-type and ksgA knock-out mutants of S. Enteritidis. Deletion of ksgA resulted in disruption of the structural integrity, permeability barrier and distorted electrophysical properties of the cell-envelope. The cell-envelope fitness defects were alleviated by expression of wild-type KsgA (WT-ksgA) but not by its catalytically inactive form (ksgAE66A), suggesting that the dimethyl transferase activity of KsgA is important for cell-envelope fitness in S. Enteritidis. Upon expression of WT-ksgA and ksgAE66A in inherently permeable E. coli cells, the former strengthened and the latter weakened the permeability barrier, suggesting that KsgA also contributes to the cell-envelope fitness in E. coli. Lastly, expression of ksgAE66A exacerbated the cell-envelope fitness defects, resulting in impaired S. Enteritidis interactions with human intestinal epithelial cells, and human and avian phagocytes. This study shows that KsgA contributes to cell-envelope fitness and opens new avenues to modulate cell-envelopes via use of KsgA-antagonists.
Collapse
Affiliation(s)
- Kim Lam Chiok
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA 99164-7040, USA
| | - Narayan C Paul
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA 99164-7040, USA
| | - Ezekiel O Adekanmbi
- Department of Chemical and Materials Engineering, University of Idaho, Moscow, Idaho 83844-1021, USA
| | - Soumya K Srivastava
- Department of Chemical and Materials Engineering, University of Idaho, Moscow, Idaho 83844-1021, USA
| | - Devendra H Shah
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA 99164-7040, USA; Paul Allen School for Global Animal Health, Washington State University, Pullman, WA 99164-7040, USA.
| |
Collapse
|
27
|
Goto R, Miki T, Nakamura N, Fujimoto M, Okada N. Salmonella Typhimurium PagP- and UgtL-dependent resistance to antimicrobial peptides contributes to the gut colonization. PLoS One 2017; 12:e0190095. [PMID: 29267354 PMCID: PMC5739500 DOI: 10.1371/journal.pone.0190095] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 12/07/2017] [Indexed: 11/18/2022] Open
Abstract
Mucosal barrier formed by cationic antimicrobial peptides (CAMPs) is believed to be crucial for host protection from pathogenic gut infection. However, some pathogens can develop resistance to the CAMPs to survive in hosts. Salmonella enterica is a common cause of acute diarrhea. During the course of this disease, the pathogen must continuously colonize the gut lumen, which contains CAMPs. However, it is incompletely understood whether the resistance of Salmonella strains to CAMPs contributes to the development of gut infections. PhoPQ two-component system-dependent lipid A modifications confer resistance to CAMPs in S. enterica serovar Typhimurium. Therefore, we introduced mutations into the PhoPQ-regulated genes in an S. Typhimurium strain, obtaining pagP ugtL and pmrA mutant strains. Each mutant strain demonstrated a distinct spectrum of the resistance to CAMPs. Using streptomycin mouse model for Salmonella diarrhea, we show that the pagP ugtL, but not pmrA, mutant strain had a gut colonization defect. Furthermore, the pagP ugtL, but not pmrA, mutant strain had decreased outer membrane integrity and susceptibility to magainin 2, an alpha-helical CAMP. Taken together, the PagP- and UgtL-dependent resistance to CAMPs was demonstrated to contribute to sustained colonization in the gut. This may be due to the robust outer membrane of S. Typhimurium, inducing the resistance to alpha-helical CAMPs such as α-defensins. Our findings indicate that the development of resistance to CAMPs is required for the S. Typhimurium gut infection.
Collapse
Affiliation(s)
- Ryosuke Goto
- Department of Microbiology, School of Pharmacy, Kitasato University, Tokyo, Japan
| | - Tsuyoshi Miki
- Department of Microbiology, School of Pharmacy, Kitasato University, Tokyo, Japan
- * E-mail:
| | - Nao Nakamura
- Department of Microbiology, School of Pharmacy, Kitasato University, Tokyo, Japan
| | - Mayuka Fujimoto
- Department of Microbiology, School of Pharmacy, Kitasato University, Tokyo, Japan
| | - Nobuhiko Okada
- Department of Microbiology, School of Pharmacy, Kitasato University, Tokyo, Japan
| |
Collapse
|
28
|
Abstract
In the inflamed gut, the bactericidal lectin RegIIIβ is massively produced by intestinal mucosa. RegIIIβ binds peptidoglycan and lipid A respectively, and thus can kill certain Gram-positive and Gram-negative bacteria, including the gut commensal microbiota and enteropathogenic bacteria. Considering the expression pattern and bactericidal activity, RegIIIβ is believed to be a host defense factor for protecting against the infection with enteropathogenic bacteria. However, it was poorly understood how RegIIIβ recognizes the target bacteria and kill them, and how RegIIIβ plays role(s) in infectious diarrhea. Therefore, our recent study has focused on RegIIIβ-target recognition, killing of Gram-negative bacteria, and host protective functions of RegIIIβ for infectious diarrhea inflicted by Salmonella Typhimurium. Here, we discuss novel insights into the protective role of RegIIIβ in infectious diarrhea, and propose avenues towards novel therapeutic interventions for Salmonella diarrhea.
Collapse
Affiliation(s)
- Tsuyoshi Miki
- Department of Microbiology, School of Pharmacy, Kitasato University, Tokyo, Japan,CONTACT Tsuyoshi Miki Department of Microbiology, School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, 108–8641 Tokyo, Japan
| | - Nobuhiko Okada
- Department of Microbiology, School of Pharmacy, Kitasato University, Tokyo, Japan
| | - Wolf-Dietrich Hardt
- The Institute of Microbiology, Department of Biology, ETH Zürich, Zurich, Switzerland
| |
Collapse
|
29
|
Wotzka SY, Nguyen BD, Hardt WD. Salmonella Typhimurium Diarrhea Reveals Basic Principles of Enteropathogen Infection and Disease-Promoted DNA Exchange. Cell Host Microbe 2017; 21:443-454. [PMID: 28407482 DOI: 10.1016/j.chom.2017.03.009] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 03/17/2017] [Accepted: 03/24/2017] [Indexed: 12/18/2022]
Abstract
Despite decades of research, efficient therapies for most enteropathogenic bacteria are still lacking. In this review, we focus on Salmonella enterica Typhimurium (S. Typhimurium), a frequent cause of acute, self-limiting food-borne diarrhea and a model that has revealed key principles of enteropathogen infection. We review the steps of gut infection and the mucosal innate-immune defenses limiting pathogen burdens, and we discuss how inflammation boosts gut luminal S. Typhimurium growth. We also discuss how S. Typhimurium-induced inflammation accelerates the transfer of plasmids and phages, which may promote the transmission of antibiotic resistance and facilitate emergence of pathobionts and pathogens with enhanced virulence. The targeted manipulation of the microbiota and vaccination might offer strategies to prevent this evolution. As gut luminal microbes impact various aspects of the host's physiology, improved strategies for preventing enteropathogen infection and disease-inflicted DNA exchange may be of broad interest well beyond the acute infection.
Collapse
Affiliation(s)
- Sandra Y Wotzka
- Institute of Microbiology, ETH Zurich, 8093 Zurich, Switzerland
| | - Bidong D Nguyen
- Institute of Microbiology, ETH Zurich, 8093 Zurich, Switzerland
| | | |
Collapse
|
30
|
Miki T, Goto R, Fujimoto M, Okada N, Hardt WD. The Bactericidal Lectin RegIIIβ Prolongs Gut Colonization and Enteropathy in the Streptomycin Mouse Model for Salmonella Diarrhea. Cell Host Microbe 2017; 21:195-207. [DOI: 10.1016/j.chom.2016.12.008] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2016] [Revised: 11/07/2016] [Accepted: 12/07/2016] [Indexed: 12/12/2022]
|
31
|
Pedicord VA, Lockhart AAK, Rangan KJ, Craig JW, Loschko J, Rogoz A, Hang HC, Mucida D. Exploiting a host-commensal interaction to promote intestinal barrier function and enteric pathogen tolerance. Sci Immunol 2016; 1. [PMID: 28580440 DOI: 10.1126/sciimmunol.aai7732] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Commensal intestinal bacteria can prevent pathogenic infection; however, limited knowledge of the mechanisms by which individual bacterial species contribute to pathogen resistance has restricted their potential for therapeutic application. Here, we examined how colonization of mice with a human commensal Enterococcus faecium protects against enteric infections. We show that E. faecium improves host intestinal epithelial defense programs to limit Salmonella enterica serotype Typhimurium pathogenesis in vivo in multiple models of susceptibility. E. faecium protection is mediated by a unique peptidoglycan hydrolase, SagA, and requires epithelial expression of pattern recognition receptor components and antimicrobial peptides. Ectopic expression of SagA in non-protective and probiotic bacteria is sufficient to enhance intestinal barrier function and confer resistance against S. Typhimurium and Clostridium difficile pathogenesis. These studies demonstrate that specific factors from commensal bacteria can be used to improve host barrier function and limit the pathogenesis of distinct enteric infections.
Collapse
Affiliation(s)
- Virginia A Pedicord
- Laboratory of Mucosal Immunology, The Rockefeller University, New York, NY, USA.,Laboratory of Chemical Biology and Microbial Pathogenesis, The Rockefeller University, New York, NY, USA
| | | | - Kavita J Rangan
- Laboratory of Chemical Biology and Microbial Pathogenesis, The Rockefeller University, New York, NY, USA
| | - Jeffrey W Craig
- Department of Pathology, Brigham & Women's Hospital, Boston, MA, USA
| | - Jakob Loschko
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, USA
| | - Aneta Rogoz
- Laboratory of Mucosal Immunology, The Rockefeller University, New York, NY, USA
| | - Howard C Hang
- Laboratory of Chemical Biology and Microbial Pathogenesis, The Rockefeller University, New York, NY, USA
| | - Daniel Mucida
- Laboratory of Mucosal Immunology, The Rockefeller University, New York, NY, USA
| |
Collapse
|
32
|
Modulation of virulence in Acinetobacter baumannii cells surviving photodynamic treatment with toluidine blue. Photodiagnosis Photodyn Ther 2016; 15:202-12. [PMID: 27444886 DOI: 10.1016/j.pdpdt.2016.07.007] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 07/09/2016] [Accepted: 07/17/2016] [Indexed: 01/11/2023]
Abstract
INTRODUCTION Widespread resistance to antimicrobial agents has led to a dearth of therapeutic choices in treating Acinetobacter baumannii infections, leading to new strategies for treatment being needed. We evaluated the effects of photodynamic therapy (PDT) as an alternative antimicrobial modality on the virulence features of cell-surviving PDT. MATERIALS AND METHODS To determine the sublethal PDT (sPDT), a colistin-resistant, extensively drug-resistant A. baumannii (CR-XDR-AB) clinical isolate and A. baumannii and ATCC 19606 strains, photosensitized with toluidine blue O (TBO), were irradiated with light emitting diodes, following bacterial viability measurements. The biofilm formation ability, outer membrane (OM) integrity, and antimicrobial susceptibility profiles were assessed for cell-surviving PDT. The effects of sPDT on the expression of virulent genes were evaluated by real-time quantitative reverse transcription PCR (qRT-PCR). RESULTS sPDT resulted in the reduction of the biofilm formation capacity, and its metabolic activity in strains. The OM permeability and efflux pump inhibition of the sPDT-treated CR-XDR-AB cells were increased; however, there was no significant change in OM integrity in ATCC 19606 strain after sPDT. sPDT reduced the minimum inhibitory concentrations of the most tested antimicrobials by ≥2-fold in CR-XDR-AB. lpsB, blsA, and dnaK were upregulated after the strains were treated with sPDT; however, a reduction in the expression of csuE, epsA, and abaI was observed in the treated strains after sPDT. CONCLUSION The susceptibility of CR-XDR-AB to a range of antibiotics was enhanced following sPDT. The virulence of strains is reduced in cells surviving PDT with TBO, and this may have potential implications of PDT for the treatment of A. baumannii infections.
Collapse
|
33
|
Suh SJ, Shuman J, Carroll LP, Silo-Suh L. BEEP: An assay to detect bio-energetic and envelope permeability alterations in Pseudomonas aeruginosa. J Microbiol Methods 2016; 125:81-6. [PMID: 27089860 DOI: 10.1016/j.mimet.2016.04.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 04/13/2016] [Accepted: 04/13/2016] [Indexed: 12/21/2022]
Abstract
We developed an effective and rapid assay to detect both bio-energetic and envelope permeability (BEEP) alterations of Pseudomonas aeruginosa. The assay is based on quantification of extracellular ATP in bacterial cultures using luciferase as a reporter. To demonstrate the validity of our assay we conducted a biased screen of a transposon insertion library in P. aeruginosa strain PAO1 in order to expedite the isolation of mutants with defects in bioenergetic pathways. We successfully isolated insertion mutants that were reduced for extracellular ATP accumulation and identified the corresponding mutations that caused the phenotype. Most of the genes identified from this analysis were associated with energy metabolism and several appeared to be potentially novel bioenergetic targets. In addition, we show that treatment of P. aeruginosa strain PAO1 with antibiotics that disrupt the bacterial cell envelope leads to greater extracellular ATP accumulation. In summary, increases in extracellular ATP accumulation above wild type levels indicated a perturbation of membrane permeability while decreases in extracellular ATP accumulation indicated defects in bioenergetics.
Collapse
Affiliation(s)
- Sang-Jin Suh
- Department of Biological Sciences, Auburn University, AL 36849, United States.
| | - Jon Shuman
- Division of Basic Medical Sciences, Mercer University School of Medicine, Macon, GA 31207, United States.
| | - Leslie P Carroll
- Division of Basic Medical Sciences, Mercer University School of Medicine, Macon, GA 31207, United States.
| | - Laura Silo-Suh
- Division of Basic Medical Sciences, Mercer University School of Medicine, Macon, GA 31207, United States.
| |
Collapse
|
34
|
Ercan D, Cossu A, Nitin N, Tikekar RV. Synergistic interaction of ultraviolet light and zinc oxide photosensitizer for enhanced microbial inactivation in simulated wash-water. INNOV FOOD SCI EMERG 2016. [DOI: 10.1016/j.ifset.2015.11.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
35
|
Kaushal A, Gupta K, van Hoek ML. Characterization of Cimex lectularius (bedbug) defensin peptide and its antimicrobial activity against human skin microflora. Biochem Biophys Res Commun 2016; 470:955-60. [DOI: 10.1016/j.bbrc.2016.01.100] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2016] [Accepted: 01/16/2016] [Indexed: 11/29/2022]
|
36
|
Hitting the sweet spot-glycans as targets of fungal defense effector proteins. Molecules 2015; 20:8144-67. [PMID: 25955890 PMCID: PMC6272156 DOI: 10.3390/molecules20058144] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 04/29/2015] [Accepted: 04/30/2015] [Indexed: 11/16/2022] Open
Abstract
Organisms which rely solely on innate defense systems must combat a large number of antagonists with a comparably low number of defense effector molecules. As one solution of this problem, these organisms have evolved effector molecules targeting epitopes that are conserved between different antagonists of a specific taxon or, if possible, even of different taxa. In order to restrict the activity of the defense effector molecules to physiologically relevant taxa, these target epitopes should, on the other hand, be taxon-specific and easily accessible. Glycans fulfill all these requirements and are therefore a preferred target of defense effector molecules, in particular defense proteins. Here, we review this defense strategy using the example of the defense system of multicellular (filamentous) fungi against microbial competitors and animal predators.
Collapse
|
37
|
Caballero S, Pamer EG. Microbiota-mediated inflammation and antimicrobial defense in the intestine. Annu Rev Immunol 2015; 33:227-56. [PMID: 25581310 DOI: 10.1146/annurev-immunol-032713-120238] [Citation(s) in RCA: 188] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The diverse microbial populations constituting the intestinal microbiota promote immune development and differentiation, but because of their complex metabolic requirements and the consequent difficulty culturing them, they remained, until recently, largely uncharacterized and mysterious. In the last decade, deep nucleic acid sequencing platforms, new computational and bioinformatics tools, and full-genome characterization of several hundred commensal bacterial species facilitated studies of the microbiota and revealed that differences in microbiota composition can be associated with inflammatory, metabolic, and infectious diseases, that each human is colonized by a distinct bacterial flora, and that the microbiota can be manipulated to reduce and even cure some diseases. Different bacterial species induce distinct immune cell populations that can play pro- and anti-inflammatory roles, and thus the composition of the microbiota determines, in part, the level of resistance to infection and susceptibility to inflammatory diseases. This review summarizes recent work characterizing commensal microbes that contribute to the antimicrobial defense/inflammation axis.
Collapse
Affiliation(s)
- Silvia Caballero
- Immunology Program, Sloan Kettering Institute, Infectious Diseases Service, Memorial Sloan Kettering Cancer Center, New York, NY 10065;
| | | |
Collapse
|
38
|
Maier L, Diard M, Sellin ME, Chouffane ES, Trautwein-Weidner K, Periaswamy B, Slack E, Dolowschiak T, Stecher B, Loverdo C, Regoes RR, Hardt WD. Granulocytes impose a tight bottleneck upon the gut luminal pathogen population during Salmonella typhimurium colitis. PLoS Pathog 2014; 10:e1004557. [PMID: 25522364 PMCID: PMC4270771 DOI: 10.1371/journal.ppat.1004557] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 11/06/2014] [Indexed: 12/22/2022] Open
Abstract
Topological, chemical and immunological barriers are thought to limit infection by enteropathogenic bacteria. However, in many cases these barriers and their consequences for the infection process remain incompletely understood. Here, we employed a mouse model for Salmonella colitis and a mixed inoculum approach to identify barriers limiting the gut luminal pathogen population. Mice were infected via the oral route with wild type S. Typhimurium (S. Tm) and/or mixtures of phenotypically identical but differentially tagged S. Tm strains ("WITS", wild-type isogenic tagged strains), which can be individually tracked by quantitative real-time PCR. WITS dilution experiments identified a substantial loss in tag/genetic diversity within the gut luminal S. Tm population by days 2-4 post infection. The diversity-loss was not attributable to overgrowth by S. Tm mutants, but required inflammation, Gr-1+ cells (mainly neutrophilic granulocytes) and most likely NADPH-oxidase-mediated defense, but not iNOS. Mathematical modelling indicated that inflammation inflicts a bottleneck transiently restricting the gut luminal S. Tm population to approximately 6000 cells and plating experiments verified a transient, inflammation- and Gr-1+ cell-dependent dip in the gut luminal S. Tm population at day 2 post infection. We conclude that granulocytes, an important clinical hallmark of S. Tm-induced inflammation, impose a drastic bottleneck upon the pathogen population. This extends the current view of inflammation-fuelled gut-luminal Salmonella growth by establishing the host response in the intestinal lumen as a double-edged sword, fostering and diminishing colonization in a dynamic equilibrium. Our work identifies a potent immune defense against gut infection and reveals a potential Achilles' heel of the infection process which might be targeted for therapy.
Collapse
Affiliation(s)
- Lisa Maier
- Eidgenössische Technische Hochschule Zürich, Institute of Microbiology, Zurich, Switzerland
| | - Médéric Diard
- Eidgenössische Technische Hochschule Zürich, Institute of Microbiology, Zurich, Switzerland
| | - Mikael E. Sellin
- Eidgenössische Technische Hochschule Zürich, Institute of Microbiology, Zurich, Switzerland
| | - Elsa-Sarah Chouffane
- Eidgenössische Technische Hochschule Zürich, Institute of Microbiology, Zurich, Switzerland
| | | | - Balamurugan Periaswamy
- Eidgenössische Technische Hochschule Zürich, Institute of Microbiology, Zurich, Switzerland
| | - Emma Slack
- Eidgenössische Technische Hochschule Zürich, Institute of Microbiology, Zurich, Switzerland
| | - Tamas Dolowschiak
- Eidgenössische Technische Hochschule Zürich, Institute of Microbiology, Zurich, Switzerland
| | - Bärbel Stecher
- Max von Pettenkofer-Institut, München, Germany; German Center for Infection Research (DZIF), partner site Ludwig Maximilian University of Munich, Munich, Germany
| | - Claude Loverdo
- Eidgenössische Technische Hochschule Zürich, Institute of Integrative Biology, Zurich, Switzerland
| | - Roland R. Regoes
- Eidgenössische Technische Hochschule Zürich, Institute of Integrative Biology, Zurich, Switzerland
| | - Wolf-Dietrich Hardt
- Eidgenössische Technische Hochschule Zürich, Institute of Microbiology, Zurich, Switzerland
| |
Collapse
|
39
|
Mandal SM, Roy A, Ghosh AK, Hazra TK, Basak A, Franco OL. Challenges and future prospects of antibiotic therapy: from peptides to phages utilization. Front Pharmacol 2014; 5:105. [PMID: 24860506 PMCID: PMC4027024 DOI: 10.3389/fphar.2014.00105] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Accepted: 04/22/2014] [Indexed: 12/30/2022] Open
Abstract
Bacterial infections are raising serious concern across the globe. The effectiveness of conventional antibiotics is decreasing due to global emergence of multi-drug-resistant (MDR) bacterial pathogens. This process seems to be primarily caused by an indiscriminate and inappropriate use of antibiotics in non-infected patients and in the food industry. New classes of antibiotics with different actions against MDR pathogens need to be developed urgently. In this context, this review focuses on several ways and future directions to search for the next generation of safe and effective antibiotics compounds including antimicrobial peptides, phage therapy, phytochemicals, metalloantibiotics, lipopolysaccharide, and efflux pump inhibitors to control the infections caused by MDR pathogens.
Collapse
Affiliation(s)
- Santi M Mandal
- Central Research Facility, Department of Chemistry and Department of Biotechnology, Indian Institute of Technology Kharagpur Kharagpur, India
| | - Anupam Roy
- Central Research Facility, Department of Chemistry and Department of Biotechnology, Indian Institute of Technology Kharagpur Kharagpur, India
| | - Ananta K Ghosh
- Central Research Facility, Department of Chemistry and Department of Biotechnology, Indian Institute of Technology Kharagpur Kharagpur, India
| | - Tapas K Hazra
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Texas Medical Branch at Galveston Galveston, TX, USA
| | - Amit Basak
- Central Research Facility, Department of Chemistry and Department of Biotechnology, Indian Institute of Technology Kharagpur Kharagpur, India
| | - Octavio L Franco
- Centro de Análises Proteômicas e Bioquímicas, Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília Brasilia, Brazil
| |
Collapse
|