1
|
Kananivand M, Nouri F, Yousefi MH, Pajouhi A, Ghorbani H, Afkhami H, Razavi ZS. Mesenchymal stem cells and their exosomes: a novel approach to skin regeneration via signaling pathways activation. J Mol Histol 2025; 56:132. [PMID: 40208456 DOI: 10.1007/s10735-025-10394-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Accepted: 03/06/2025] [Indexed: 04/11/2025]
Abstract
Accelerating wound healing is a crucial objective in surgical and regenerative medicine. The wound healing process involves three key stages: inflammation, cell proliferation, and tissue repair. Mesenchymal stem cells (MSCs) have demonstrated significant therapeutic potential in promoting tissue regeneration, particularly by enhancing epidermal cell migration and proliferation. However, the precise molecular mechanisms underlying MSC-mediated wound healing remain unclear. This review highlights the pivotal role of MSCs and their exosomes in wound repair, with a specific focus on critical signaling pathways, including PI3K/Akt, WNT/β-catenin, Notch, and MAPK. These pathways regulate essential cellular processes such as proliferation, differentiation, and angiogenesis. Moreover, in vitro and in vivo studies reveal that MSCs accelerate wound closure, enhance collagen deposition, and modulate immune responses, contributing to improved tissue regeneration. Understanding these mechanisms provides valuable insights into MSC-based therapeutic strategies for enhancing wound healing.
Collapse
Affiliation(s)
- Maryam Kananivand
- Medical Department, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Fatemeh Nouri
- Department of Biology, School of Basic Sciences, Science and Research Branch, Islamic Azad University (SRBIAU), Tehran, Iran
| | - Mohammad Hasan Yousefi
- Department of Tissue Engineering and Applied Cell Sciences, School of Medicine, Qom University of Medical Sciences, Qom, Iran
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
- Student Research Committee, Qom University of Medical Sciences, Qom, Iran
| | - Ali Pajouhi
- Student Research Committee, USERN Office, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Hakimeah Ghorbani
- Department of Sciences, Faculty of Biological Sciences, Tabriz University of Sciences, Tabriz, Iran
| | - Hamed Afkhami
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran.
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran.
- Department of Medical Microbiology, Faculty of Medicine, Shahed University, Tehran, Iran.
- Student Research Committee, Qom University of Medical Sciences, Qom, Iran.
| | - Zahra Sadat Razavi
- Physiology Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Abe JI, Allen BG, Beyer AM, Lewandowski D, Mapuskar KA, Subramanian V, Tamplin MR, Grumbach IM. Radiation-Induced Macrovessel/Microvessel Disease. Arterioscler Thromb Vasc Biol 2024; 44:2407-2415. [PMID: 39445428 PMCID: PMC11842029 DOI: 10.1161/atvbaha.124.319866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Radiation therapy (RT) is a cornerstone in cancer treatment (used in 50% of cases), yet challenges persist because damage to normal tissue through direct impact of radiation or bystander effects is inevitable. Injury of macrovessels by RT manifests as obstructive disease, which is akin to atherosclerotic disease. Historically observed in coronary arteries of patients treated for breast cancer and lymphoma, it also affects patients receiving contemporary therapy for lung and chest cancers. Moreover, radiation at various sites can lead to peripheral vascular disease. An aspect of radiation-induced injury that has received little attention is microvascular injury, which typically results from damage to the endothelium and is considered the primary driver of RT-induced toxicity in the skin, kidney, and brain. This review delves into the clinical manifestations of RT-induced vascular disease, signaling pathways, cellular targets affected by radiation injury, and preclinical models of RT-induced vascular injury. The goal is to inspire the development of innovative strategies to prevent RT-related cardiovascular disease.
Collapse
Affiliation(s)
- Jun-Ichi Abe
- Department of Cardiology, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston (J.-I.A.)
| | - Bryan G Allen
- Free Radical and Radiation Biology Program, Department of Radiation Oncology (B.G.A., K.A.M., I.M.G.), Carver College of Medicine, University of Iowa
| | - Andreas M Beyer
- Department of Pharmacology and Physiology, Cardiovascular Center (A.M.B.), Medical College of Wisconsin, Milwaukee
| | - David Lewandowski
- Division of Cardiology/Cardiovascular Medicine, Department of Medicine (D.L.), Medical College of Wisconsin, Milwaukee
| | - Kranti A Mapuskar
- Free Radical and Radiation Biology Program, Department of Radiation Oncology (B.G.A., K.A.M., I.M.G.), Carver College of Medicine, University of Iowa
| | - Vikram Subramanian
- Department of Internal Medicine, Abboud Cardiovascular Research Center (V.S., M.R.T., I.M.G.), Carver College of Medicine, University of Iowa
| | - Michelle R Tamplin
- Department of Internal Medicine, Abboud Cardiovascular Research Center (V.S., M.R.T., I.M.G.), Carver College of Medicine, University of Iowa
| | - Isabella M Grumbach
- Free Radical and Radiation Biology Program, Department of Radiation Oncology (B.G.A., K.A.M., I.M.G.), Carver College of Medicine, University of Iowa
- Department of Internal Medicine, Abboud Cardiovascular Research Center (V.S., M.R.T., I.M.G.), Carver College of Medicine, University of Iowa
- Iowa City VA Healthcare System (I.M.G.)
| |
Collapse
|
3
|
Kozbenko T, Adam N, Grybas VS, Smith BJ, Alomar D, Hocking R, Abdelaziz J, Pace A, Boerma M, Azimzadeh O, Blattnig S, Hamada N, Yauk C, Wilkins R, Chauhan V. AOP report: Development of an adverse outcome pathway for deposition of energy leading to abnormal vascular remodeling. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2024; 65 Suppl 3:4-30. [PMID: 39440813 DOI: 10.1002/em.22636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 09/26/2024] [Indexed: 10/25/2024]
Abstract
Cardiovascular diseases (CVDs) are complex, encompassing many types of heart pathophysiologies and associated etiologies. Radiotherapy studies have shown that fractionated radiation exposure at high doses (3-17 Gy) to the heart increases the incidence of CVD. However, the effects of low doses of radiation on the cardiovascular system or the effects from space travel, where radiation and microgravity are important contributors to damage, are not clearly understood. Herein, the adverse outcome pathway (AOP) framework was applied to develop an AOP to abnormal vascular remodeling from the deposition of energy. Following the creation of a preliminary pathway with the guidance of field experts and authoritative reviews, a scoping review was conducted that informed final key event (KE) selection and evaluation of the Bradford Hill criteria for the KE relationships (KERs). The AOP begins with a molecular initiating event of deposition of energy; ionization events increase oxidative stress, which when persistent concurrently causes the release of pro-inflammatory mediators, suppresses anti-inflammatory mechanisms and alters stress response signaling pathways. These KEs alter nitric oxide levels leading to endothelial dysfunction, and subsequent abnormal vascular remodeling (the adverse outcome). The work identifies evidence needed to strengthen understanding of the causal associations for the KERs, emphasizing where there are knowledge gaps and uncertainties in both qualitative and quantitative understanding. The AOP is anticipated to direct future research to better understand the effects of space on the human body and potentially develop countermeasures to better protect future space travelers.
Collapse
Affiliation(s)
- Tatiana Kozbenko
- Health Canada, Ottawa, Ontario, Canada
- University of Ottawa, Ottawa, Ontario, Canada
| | | | | | | | | | | | | | - Amanda Pace
- Carleton University, Ottawa, Ontario, Canada
| | - Marjan Boerma
- University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Omid Azimzadeh
- Federal Office for Radiation Protection (BfS), Section Radiation Biology, Neuherberg, Germany
| | | | - Nobuyuki Hamada
- Biology and Environmental Chemistry Division, Sustainable System Research Laboratory, Central Research Institute of Electric Power Industry (CRIEPI), Chiba, Japan
| | - Carole Yauk
- University of Ottawa, Ottawa, Ontario, Canada
| | | | | |
Collapse
|
4
|
Shao X, Xu H, Kim H, Ljaz S, Beier F, Jankowski V, Lellig M, Vankann L, Werner JN, Chen L, Ziegler S, Kuppe C, Zenke M, Schneider RK, Hayat S, Saritas T, Kramann R. Generation of a conditional cellular senescence model using proximal tubule cells and fibroblasts from human kidneys. Cell Death Discov 2024; 10:364. [PMID: 39143064 PMCID: PMC11324798 DOI: 10.1038/s41420-024-02131-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 07/26/2024] [Accepted: 08/01/2024] [Indexed: 08/16/2024] Open
Abstract
Emerging evidence highlights cellular senescence's pivotal role in chronic kidney disease (CKD). Proximal tubule epithelial cells (PTECs) and fibroblasts are major players in CKD and serve as cellular sources of senescence. The generation of a conditionally immortalized human kidney cell model would allow to better understand the specific mechanisms and factors associated with cellular senescence in a controlled setting, devoid of potential confounding factors such as age and comorbidities. In addition, the availability of human kidney cell lines for preclinical research is sparse and most cell lines do not reflect their in vivo counterparts due to their altered behavior as immortalized cancer-like cells. In this study, PTECs and fibroblasts from human kidneys were isolated and transduced with doxycycline-inducible simian virus 40 large T antigen (SV40LT) vector. By comparing their gene expression with single-cell RNA sequencing data from human kidneys, the newly produced human kidney cell lines demonstrated significant resemblances to their in vivo counterparts. As predicted, PTECs showed functional activity and fibroblasts responded to injury with fibrosis. Withdrawal of the immortalizing factor doxycycline led to p21+ cell-cycle arrest and the key hallmarks of senescence. The obtained senescence gene set largely overlapped between both cell lines and with the previously published SenMayo set of senescence-associated genes. Furthermore, crosstalk experiments showed that senescent PTECs can cause a profibrotic response in fibroblasts by paracrine actions. In 76 human kidney sections, the number of p21+ cells correlated with the degree of fibrosis, age and reduced glomerular filtration, validating the role of senescence in CKD. In conclusion, we provide a novel cellular ex vivo model to study kidney senescence which can serve as a platform for large scale compounds testing.
Collapse
Affiliation(s)
- Xiaohang Shao
- Department of Nephrology and Clinical Immunology, RWTH Aachen University, Medical Faculty, Aachen, Germany
| | - Huaming Xu
- Department of Cell Biology, Institute of Biomedical Engineering, RWTH Aachen University Medical School, Aachen, Germany
- Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Aachen, Germany
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Hyojin Kim
- Department of Nephrology and Clinical Immunology, RWTH Aachen University, Medical Faculty, Aachen, Germany
| | - Sadaf Ljaz
- Department of Nephrology and Clinical Immunology, RWTH Aachen University, Medical Faculty, Aachen, Germany
| | - Fabian Beier
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Aachen, Germany
| | - Vera Jankowski
- Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University, Aachen, Germany
| | - Michaela Lellig
- Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University, Aachen, Germany
| | - Lucia Vankann
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Aachen, Germany
| | - Jan Niklas Werner
- Department of Nephrology and Clinical Immunology, RWTH Aachen University, Medical Faculty, Aachen, Germany
| | - Lu Chen
- Department of Nephrology and Clinical Immunology, RWTH Aachen University, Medical Faculty, Aachen, Germany
| | - Susanne Ziegler
- Department of Nephrology and Clinical Immunology, RWTH Aachen University, Medical Faculty, Aachen, Germany
| | - Christoph Kuppe
- Department of Nephrology and Clinical Immunology, RWTH Aachen University, Medical Faculty, Aachen, Germany
| | - Martin Zenke
- Department of Cell Biology, Institute of Biomedical Engineering, RWTH Aachen University Medical School, Aachen, Germany
- Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Aachen, Germany
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Aachen, Germany
| | - Rebekka K Schneider
- Institute of Cell and Tumorbiology, RWTH Aachen University, Medical Faculty, Aachen, Germany
- Oncode Institute, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Sikander Hayat
- Department of Nephrology and Clinical Immunology, RWTH Aachen University, Medical Faculty, Aachen, Germany
| | - Turgay Saritas
- Department of Nephrology and Clinical Immunology, RWTH Aachen University, Medical Faculty, Aachen, Germany.
- Department of Internal Medicine, Nephrology, and Transplantation, Erasmus Medical Center, Rotterdam, The Netherlands.
| | - Rafael Kramann
- Department of Nephrology and Clinical Immunology, RWTH Aachen University, Medical Faculty, Aachen, Germany.
- Department of Internal Medicine, Nephrology, and Transplantation, Erasmus Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|
5
|
Zablotska LB, Little MP, Hamada N. Revisiting an Inverse Dose-Fractionation Effect of Ionizing Radiation Exposure for Ischemic Heart Disease: Insights from Recent Studies. Radiat Res 2024; 202:80-86. [PMID: 38772552 PMCID: PMC11260496 DOI: 10.1667/rade-00230.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 04/26/2024] [Indexed: 05/23/2024]
Abstract
Over the last two decades, there has been emerging evidence suggesting that ionizing radiation exposures could be associated with elevated risks of cardiovascular disease (CVD), particularly ischemic heart disease (IHD). Excess CVD risks have been observed in a number of exposed groups, with generally similar risk estimates both at low and high radiation doses and dose rates. In 2014, we reported for the first time significantly higher risks of IHD mortality when radiation doses were delivered over a protracted period of time (an inverse dose-fractionation effect) in the Canadian Fluoroscopy Cohort Study. Here we review the current evidence on the dose-fractionation effect of radiation exposure, discuss potential implication for radiation protection policies and suggest further directions for research in this area.
Collapse
Affiliation(s)
- Lydia B Zablotska
- Department of Epidemiology & Biostatistics, School of Medicine, University of California, San Francisco, San Francisco, California
| | - Mark P Little
- Radiation Epidemiology Branch, National Cancer Institute, Bethesda, Maryland; Faculty of Health and Life Sciences, Oxford Brookes University, Headington Campus, Oxford, United Kingdom
| | - Nobuyuki Hamada
- Biology and Environmental Chemistry Division, Sustainable System Research Laboratory, Central Research Institute of Electric Power Industry (CRIEPI), Chiba, Japan
| |
Collapse
|
6
|
Sun L, Wang J, Lei J, Zhang Y, Zhang Y, Zhang Y, Xing S. Differential gene expression and miRNA regulatory network in coronary slow flow. Sci Rep 2024; 14:8419. [PMID: 38600259 PMCID: PMC11006858 DOI: 10.1038/s41598-024-58745-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 04/02/2024] [Indexed: 04/12/2024] Open
Abstract
Coronary slow flow (CSF) is characterized by slow progression of coronary angiography without epicardial stenosis. The aim of this study was to explore the potential biomarkers and regulatory mechanism for CSF. Peripheral blood mononuclear cells from 3 cases of CSF and 3 healthy controls were collected for high-throughput sequencing of mRNA and miRNA, respectively. The differentially expressed mRNAs (DE-mRNAs) and miRNAs (DE-miRNAs) was identified. A total of 117 DE-mRNAs and 32 DE-miRNAs were obtained and they were mainly enriched in immune and inflammatory responses. Twenty-six DE-mRNAs were the predicted target genes for miRNAs by RAID, and then the regulatory network of 15 miRNAs were constructed. In addition, through the PPI network, we identified the three genes (FPR1, FPR2 and CXCR4) with larger degrees as hub genes. Among them, FPR1 was regulated by hsa-miR-342-3p, hsa-let-7c-5p and hsa-miR-197-3p and participated in the immune response. Finally, we validated the differential expression of hub genes and key miRNAs between 20 CSF and 20 control. Moreover, we found that miR-342-3p has a targeted regulatory relationship with FPR1, and their expression is negatively correlated. Then we established a hypoxia/reoxygenation (H/R) HUVEC model and detected FPR1, cell proliferation and apoptosis. Transfection with miR-342-3p mimics can significantly promote the proliferation of HUVEC under H/R conditions. FPR1 were associated with CSF as a biomarker and may be regulated by miR-342-3p potential biomarkers.
Collapse
Affiliation(s)
- Lihua Sun
- Department of Cardiology, Zhongshan Boai Hospital Affiliated to South Medical University, No. 6, Chenggui Road, Zhongshan, 528405, Guangdong, China
| | - Juan Wang
- Department of Cardiology, The Fifth Affiliated Hospital of Xinjiang Medical University, No. 118 Henan West Road, Xinshi District, Urumqi, 830000, Xinjiang, China
| | - Jimin Lei
- Department of Cardiology, Zhongshan Boai Hospital Affiliated to South Medical University, No. 6, Chenggui Road, Zhongshan, 528405, Guangdong, China
| | - Ying Zhang
- Department of Cardiology, The Fifth Affiliated Hospital of Xinjiang Medical University, No. 118 Henan West Road, Xinshi District, Urumqi, 830000, Xinjiang, China
| | - Yue Zhang
- Department of Cardiology, The Fifth Affiliated Hospital of Xinjiang Medical University, No. 118 Henan West Road, Xinshi District, Urumqi, 830000, Xinjiang, China
| | - Yaling Zhang
- Department of Cardiology, The Fifth Affiliated Hospital of Xinjiang Medical University, No. 118 Henan West Road, Xinshi District, Urumqi, 830000, Xinjiang, China
| | - Shifeng Xing
- Department of Cardiology, The Fifth Affiliated Hospital of Xinjiang Medical University, No. 118 Henan West Road, Xinshi District, Urumqi, 830000, Xinjiang, China.
| |
Collapse
|
7
|
Picano E, Vano E. Updated Estimates of Radiation Risk for Cancer and Cardiovascular Disease: Implications for Cardiology Practice. J Clin Med 2024; 13:2066. [PMID: 38610831 PMCID: PMC11012972 DOI: 10.3390/jcm13072066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/28/2024] [Accepted: 03/29/2024] [Indexed: 04/14/2024] Open
Abstract
This review aims to furnish an updated assessment of the societal healthcare load, including cancer and cardiovascular disease resulting from diagnostic radiologic operations. The previously projected additional cancer risk of 0.9% in a United States 2004 study referred to radiological conditions in 1996 with an X-ray exposure of 0.50 millisievert (mSv) per capita annually. Radiological exposure (radiology + nuclear medicine) has escalated to 2.29 mSv (2016) per capita per year. Low-dose exposures were previously assumed to have a lower biological impact, since they allow the DNA repair system to mitigate molecular damage. However, epidemiological data matured and disproved this assumption, as shown by updated cancer risk assessments derived from the World Health Organization 2013 and the German Institute of Radioprotection 2014 data. The risk of cardiovascular disease aligns within the same order of magnitude as cancer risk and compounds it, as shown by a comprehensive meta-analysis of 93 studies. The collective societal burden arising from the augmented risks of cancer and cardiovascular disease attributable to diagnostic radiology and nuclear medicine is higher than previously thought.
Collapse
Affiliation(s)
- Eugenio Picano
- Cardiology Clinic, University Center Serbia, Medical School, University of Belgrade, 11000 Belgrade, Serbia
| | - Eliseo Vano
- Cardiology Department, Medical Faculty, Complutense University, 28040 Madrid, Spain;
| |
Collapse
|
8
|
Khor YS, Wong PF. MicroRNAs-associated with FOXO3 in cellular senescence and other stress responses. Biogerontology 2024; 25:23-51. [PMID: 37646881 DOI: 10.1007/s10522-023-10059-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 08/01/2023] [Indexed: 09/01/2023]
Abstract
FOXO3 is a member of the FOXO transcription factor family and is known for regulating cellular survival in response to stress caused by various external and biological stimuli. FOXO3 decides cell fate by modulating cellular senescence, apoptosis and autophagy by transcriptional regulation of genes involved in DNA damage response and oxidative stress resistance. These cellular processes are tightly regulated physiologically, with FOXO3 acting as the hub that integrates signalling networks controlling them. The activity of FOXO3 is influenced by post-translational modifications, altering its subcellular localisation. In addition, FOXO3 can also be regulated directly or indirectly by microRNAs (miRNAs) or vice versa. This review discusses the involvement of various miRNAs in FOXO3-driven cellular responses such as senescence, apoptosis, autophagy, redox and inflammation defence. Given that these responses are linked and influence cell fate, a thorough understanding of the complex regulation by miRNAs would provide key information for developing therapeutic strategy and avoid unintended consequences caused by off-site targeting of FOXO3.
Collapse
Affiliation(s)
- Yi-Sheng Khor
- Department of Pharmacology, Faculty of Medicine, Universiti Malaya, 50603, Wilayah Persekutuan Kuala Lumpur, Malaysia
| | - Pooi-Fong Wong
- Department of Pharmacology, Faculty of Medicine, Universiti Malaya, 50603, Wilayah Persekutuan Kuala Lumpur, Malaysia.
| |
Collapse
|
9
|
Averbeck D. Low-Dose Non-Targeted Effects and Mitochondrial Control. Int J Mol Sci 2023; 24:11460. [PMID: 37511215 PMCID: PMC10380638 DOI: 10.3390/ijms241411460] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/26/2023] [Accepted: 06/29/2023] [Indexed: 07/30/2023] Open
Abstract
Non-targeted effects (NTE) have been generally regarded as a low-dose ionizing radiation (IR) phenomenon. Recently, regarding long distant abscopal effects have also been observed at high doses of IR) relevant to antitumor radiation therapy. IR is inducing NTE involving intracellular and extracellular signaling, which may lead to short-ranging bystander effects and distant long-ranging extracellular signaling abscopal effects. Internal and "spontaneous" cellular stress is mostly due to metabolic oxidative stress involving mitochondrial energy production (ATP) through oxidative phosphorylation and/or anaerobic pathways accompanied by the leakage of O2- and other radicals from mitochondria during normal or increased cellular energy requirements or to mitochondrial dysfunction. Among external stressors, ionizing radiation (IR) has been shown to very rapidly perturb mitochondrial functions, leading to increased energy supply demands and to ROS/NOS production. Depending on the dose, this affects all types of cell constituents, including DNA, RNA, amino acids, proteins, and membranes, perturbing normal inner cell organization and function, and forcing cells to reorganize the intracellular metabolism and the network of organelles. The reorganization implies intracellular cytoplasmic-nuclear shuttling of important proteins, activation of autophagy, and mitophagy, as well as induction of cell cycle arrest, DNA repair, apoptosis, and senescence. It also includes reprogramming of mitochondrial metabolism as well as genetic and epigenetic control of the expression of genes and proteins in order to ensure cell and tissue survival. At low doses of IR, directly irradiated cells may already exert non-targeted effects (NTE) involving the release of molecular mediators, such as radicals, cytokines, DNA fragments, small RNAs, and proteins (sometimes in the form of extracellular vehicles or exosomes), which can induce damage of unirradiated neighboring bystander or distant (abscopal) cells as well as immune responses. Such non-targeted effects (NTE) are contributing to low-dose phenomena, such as hormesis, adaptive responses, low-dose hypersensitivity, and genomic instability, and they are also promoting suppression and/or activation of immune cells. All of these are parts of the main defense systems of cells and tissues, including IR-induced innate and adaptive immune responses. The present review is focused on the prominent role of mitochondria in these processes, which are determinants of cell survival and anti-tumor RT.
Collapse
Affiliation(s)
- Dietrich Averbeck
- Laboratory of Cellular and Molecular Radiobiology, PRISME, UMR CNRS 5822/IN2P3, IP2I, Lyon-Sud Medical School, University Lyon 1, 69921 Oullins, France
| |
Collapse
|
10
|
Little MP, Azizova TV, Richardson DB, Tapio S, Bernier MO, Kreuzer M, Cucinotta FA, Bazyka D, Chumak V, Ivanov VK, Veiga LHS, Livinski A, Abalo K, Zablotska LB, Einstein AJ, Hamada N. Ionising radiation and cardiovascular disease: systematic review and meta-analysis. BMJ 2023; 380:e072924. [PMID: 36889791 PMCID: PMC10535030 DOI: 10.1136/bmj-2022-072924] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/09/2023] [Indexed: 03/10/2023]
Abstract
OBJECTIVE To systematically review and perform a meta-analysis of radiation associated risks of cardiovascular disease in all groups exposed to radiation with individual radiation dose estimates. DESIGN Systematic review and meta-analysis. MAIN OUTCOME MEASURES Excess relative risk per unit dose (Gy), estimated by restricted maximum likelihood methods. DATA SOURCES PubMed and Medline, Embase, Scopus, Web of Science Core collection databases. ELIGIBILITY CRITERIA FOR SELECTING STUDIES Databases were searched on 6 October 2022, with no limits on date of publication or language. Animal studies and studies without an abstract were excluded. RESULTS The meta-analysis yielded 93 relevant studies. Relative risk per Gy increased for all cardiovascular disease (excess relative risk per Gy of 0.11 (95% confidence interval 0.08 to 0.14)) and for the four major subtypes of cardiovascular disease (ischaemic heart disease, other heart disease, cerebrovascular disease, all other cardiovascular disease). However, interstudy heterogeneity was noted (P<0.05 for all endpoints except for other heart disease), possibly resulting from interstudy variation in unmeasured confounders or effect modifiers, which is markedly reduced if attention is restricted to higher quality studies or those at moderate doses (<0.5 Gy) or low dose rates (<5 mGy/h). For ischaemic heart disease and all cardiovascular disease, risks were larger per unit dose for lower dose (inverse dose effect) and for fractionated exposures (inverse dose fractionation effect). Population based excess absolute risks are estimated for a number of national populations (Canada, England and Wales, France, Germany, Japan, USA) and range from 2.33% per Gy (95% confidence interval 1.69% to 2.98%) for England and Wales to 3.66% per Gy (2.65% to 4.68%) for Germany, largely reflecting the underlying rates of cardiovascular disease mortality in these populations. Estimated risk of mortality from cardiovascular disease are generally dominated by cerebrovascular disease (around 0.94-1.26% per Gy), with the next largest contribution from ischaemic heart disease (around 0.30-1.20% per Gy). CONCLUSIONS Results provide evidence supporting a causal association between radiation exposure and cardiovascular disease at high dose, and to a lesser extent at low dose, with some indications of differences in risk between acute and chronic exposures, which require further investigation. The observed heterogeneity complicates a causal interpretation of these findings, although this heterogeneity is much reduced if only higher quality studies or those at moderate doses or low dose rates are considered. Studies are needed to assess in more detail modifications of radiation effect by lifestyle and medical risk factors. SYSTEMATIC REVIEW REGISTRATION PROSPERO CRD42020202036.
Collapse
Affiliation(s)
- Mark P Little
- Radiation Epidemiology Branch, National Cancer Institute, Bethesda, MD, USA
| | - Tamara V Azizova
- Clinical Department, Southern Urals Biophysics Institute, Ozyorsk, Chelyabinsk Region, Russia
| | - David B Richardson
- Department of Environmental and Occupational Health, Irvine Program in Public Health, University of California Irvine, Irvine, CA, USA
| | - Soile Tapio
- Technische Universität München, Munich, Germany
| | - Marie-Odile Bernier
- Institut de Radioprotection et de Sureté Nucléaire, Fontenay aux Roses, France
| | | | - Francis A Cucinotta
- Department of Health Physics and Diagnostic Sciences, University of Nevada Las Vegas, Las Vegas, NV, USA
| | - Dimitry Bazyka
- National Research Center for Radiation Medicine, National Academy of Medical Sciences of Ukraine, Kyiv, Ukraine
| | - Vadim Chumak
- National Research Center for Radiation Medicine, National Academy of Medical Sciences of Ukraine, Kyiv, Ukraine
| | - Victor K Ivanov
- Medical Radiological Research Center of Russian Academy of Medical Sciences, Obninsk, Russia
| | - Lene H S Veiga
- Radiation Epidemiology Branch, National Cancer Institute, Bethesda, MD, USA
| | - Alicia Livinski
- National Institutes of Health Library, National Institutes of Health, Bethesda, MD, USA
| | - Kossi Abalo
- Department of Medicine Solna, Clinical Epidemiology Division, Karolinska Institutet, Stockholm, Sweden
- Department of Immunology Genetics and Pathology, Cancer Precision Medicine, Uppsala University, Uppsala, Sweden
| | - Lydia B Zablotska
- Department of Epidemiology and Biostatistics, School of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Andrew J Einstein
- Seymour, Paul, and Gloria Milstein Division of Cardiology, Department of Medicine, and Department of Radiology, Columbia University Irving Medical Center/New York-Presbyterian Hospital, New York, NY, USA
| | - Nobuyuki Hamada
- Biology and Environmental Chemistry Division, Sustainable System Research Laboratory, Central Research Institute of Electric Power Industry (CRIEPI), Komae, Tokyo, Japan
| |
Collapse
|
11
|
Shen S, Lyu P, Yang B, Yang X, Li Y, Zhu Z, Shen L. Identification of circRNAs and circRNA-miRNA-mRNA regulatory network in radiation-induced heart disease. Int J Radiat Biol 2023; 99:1343-1351. [PMID: 36731456 DOI: 10.1080/09553002.2023.2176560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 01/26/2023] [Accepted: 01/31/2023] [Indexed: 02/04/2023]
Abstract
OBJECTIVE Radiation-induced heart disease (RIHD) is one of the most common and serious long-term adverse effect after thoracic radiotherapy. Our aim was to investigate the potential molecular mechanism underlying RIHD using RNA-sequencing (RNA-seq) and bioinformatics methods. MATERIALS AND METHODS An RIHD rat model was established and transcription profiles were identified using RNA-seq. Differentially expressed circRNAs, miRNAs and mRNAs were identified. Enrichment of functions and signaling pathways analysis were performed based on GO and the KEGG database. Potential circRNA-miRNA-mRNA regulatory network underlying RIHD was established. qRT-PCR was used to validate the associated genes. RESULTS In total, 21 circRNAs, 26 miRNAs, and 178 mRNA transcripts were differentially expressed in RIHD. GO and KEGG pathway analyses identified that differentially expressed mRNAs were most enriched in pathways referring to endothelial function and vascular pathological processes. Nine circRNAs, 10 miRNAs, and 6 mRNA transcripts were most likely involved in vascular function and a candidate competitive endogenous RNA (ceRNA) network of circRNA-miRNA-mRNA was established, which were further validated by qRT-PCR. CONCLUSIONS Our study revealed that vascular pathology plays an important role in the early stage of RIHD. Furthermore, a circRNA-miRNA-mRNA ceRNA network was found that may be involved in the regulation of vascular function and RIHD.
Collapse
Affiliation(s)
- Shutong Shen
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, National Clinical Research Center for Interventional Medicine, Shanghai, China
| | - Ping Lyu
- Department of Cardiology, The First People's Hospital of Nantong, The Second Affiliated Hospital of Nantong University, Nantong, China
| | - Baixia Yang
- Department of Radiation Oncology, Nantong Tumor Hospital, Affiliated Tumor Hospital of Nantong University, Nantong, China
| | - Xi Yang
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Clinical Research Center for Radiation Oncology, Shanghai, China
- Shanghai Key Laboratory of Radiation Oncology, Shanghai, China
| | - Yida Li
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Clinical Research Center for Radiation Oncology, Shanghai, China
- Shanghai Key Laboratory of Radiation Oncology, Shanghai, China
| | - Zhengfei Zhu
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Clinical Research Center for Radiation Oncology, Shanghai, China
- Shanghai Key Laboratory of Radiation Oncology, Shanghai, China
| | - Li Shen
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, National Clinical Research Center for Interventional Medicine, Shanghai, China
| |
Collapse
|
12
|
Liu XC, Zhou PK. Tissue Reactions and Mechanism in Cardiovascular Diseases Induced by Radiation. Int J Mol Sci 2022; 23:ijms232314786. [PMID: 36499111 PMCID: PMC9738833 DOI: 10.3390/ijms232314786] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/16/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022] Open
Abstract
The long-term survival rate of cancer patients has been increasing as a result of advances in treatments and precise medical management. The evidence has accumulated that the incidence and mortality of non-cancer diseases have increased along with the increase in survival time and long-term survival rate of cancer patients after radiotherapy. The risk of cardiovascular disease as a radiation late effect of tissue damage reactions is becoming a critical challenge and attracts great concern. Epidemiological research and clinical trials have clearly shown the close association between the development of cardiovascular disease in long-term cancer survivors and radiation exposure. Experimental biological data also strongly supports the above statement. Cardiovascular diseases can occur decades post-irradiation, and from initiation and development to illness, there is a complicated process, including direct and indirect damage of endothelial cells by radiation, acute vasculitis with neutrophil invasion, endothelial dysfunction, altered permeability, tissue reactions, capillary-like network loss, and activation of coagulator mechanisms, fibrosis, and atherosclerosis. We summarize the most recent literature on the tissue reactions and mechanisms that contribute to the development of radiation-induced cardiovascular diseases (RICVD) and provide biological knowledge for building preventative strategies.
Collapse
|
13
|
Lowe D, Roy L, Tabocchini MA, Rühm W, Wakeford R, Woloschak GE, Laurier D. Radiation dose rate effects: what is new and what is needed? RADIATION AND ENVIRONMENTAL BIOPHYSICS 2022; 61:507-543. [PMID: 36241855 PMCID: PMC9630203 DOI: 10.1007/s00411-022-00996-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 09/13/2022] [Indexed: 05/04/2023]
Abstract
Despite decades of research to understand the biological effects of ionising radiation, there is still much uncertainty over the role of dose rate. Motivated by a virtual workshop on the "Effects of spatial and temporal variation in dose delivery" organised in November 2020 by the Multidisciplinary Low Dose Initiative (MELODI), here, we review studies to date exploring dose rate effects, highlighting significant findings, recent advances and to provide perspective and recommendations for requirements and direction of future work. A comprehensive range of studies is considered, including molecular, cellular, animal, and human studies, with a focus on low linear-energy-transfer radiation exposure. Limits and advantages of each type of study are discussed, and a focus is made on future research needs.
Collapse
Affiliation(s)
- Donna Lowe
- UK Health Security Agency, CRCE Chilton, Didcot, OX11 0RQ, Oxfordshire, UK
| | - Laurence Roy
- Institut de Radioprotection Et de Sûreté Nucléaire, Fontenay-Aux-Roses, France
| | - Maria Antonella Tabocchini
- Istituto Nazionale i Fisica Nucleare, Sezione i Roma, Rome, Italy
- Istituto Superiore Di Sanità, Rome, Italy
| | - Werner Rühm
- Institute of Radiation Medicine, Helmholtz Center Munich, Ingolstädter Landstr. 1, 85764, Neuherberg, Germany
| | - Richard Wakeford
- Centre for Occupational and Environmental Health, The University of Manchester, Manchester, M13 9PL, UK
| | - Gayle E Woloschak
- Department of Radiation Oncology, Northwestern University School of Medicine, Chicago, IL, USA.
| | - Dominique Laurier
- Institut de Radioprotection Et de Sûreté Nucléaire, Fontenay-Aux-Roses, France
| |
Collapse
|
14
|
Sangsuwan T, Mannervik M, Haghdoost S. Transgenerational effects of gamma radiation dose and dose rate on Drosophila flies irradiated at an early embryonal stage. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2022; 881:503523. [PMID: 36031335 DOI: 10.1016/j.mrgentox.2022.503523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 06/26/2022] [Accepted: 06/28/2022] [Indexed: 06/15/2023]
Abstract
Ionizing radiation (IR) kills cells mainly through induction of DNA damages and the surviving cells may suffer from mutations. Transgenerational effects of IR are well documented, but the exact mechanisms underlying them are less well understood; they include induction of mutations in germ cells and epigenetic inheritance. Previously, effects in the offspring of mice and zebrafish exposed to IR have been reported. A few studies also showed indications of transgenerational effects of radiation in humans, particularly in nuclear power workers. In the present project, short- and long-term effects of low-dose-rate (LDR; 50 and 97 mGy/h) and high-dose-rate (HDR; 23.4, 47.1 and 495 Gy/h) IR in Drosophila embryos were investigated. The embryos were irradiated at different doses and dose rates and radiosensitivity at different developmental stages was investigated. Also, the survival of larvae, pupae and adults developed from embryos irradiated at an early stage (30 min after egg laying) were studied. The larval crawling and pupation height assays were applied to investigate radiation effects on larval locomotion and pupation behavior, respectively. In parallel, the offspring from 3 Gy irradiated early-stage embryos were followed up to 12 generations and abnormal phenotypes were studied. Acute exposure of embryos at different stages of development showed that the early stage embryo is the most sensitive. The effects on larval locomotion showed no significant differences between the dose rates but a significant decrease of locomotion activity above 7 Gy was observed. The results indicate that embryos exposed to the low dose rates have shorter eclosion times. At the same cumulative dose (1 up to 7 Gy), HDR is more embryotoxic than LDR. We also found a radiation-induced depigmentation on males (A5 segment of the dorsal abdomen, A5pig-) that can be transmitted up to 12 generations. The phenomenon does not follow the classical Mendelian laws of segregation.
Collapse
Affiliation(s)
- Traimate Sangsuwan
- Centre for Radiation Protection Research, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Mattias Mannervik
- Centre for Radiation Protection Research, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Siamak Haghdoost
- Centre for Radiation Protection Research, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden; University of Caen Normandy, Cimap-Aria, Ganil, and Advanced Resource Center for HADrontherapy in Europe (ARCHADE), Caen, France.
| |
Collapse
|
15
|
Azimzadeh O, Moertl S, Ramadan R, Baselet B, Laiakis EC, Sebastian S, Beaton D, Hartikainen JM, Kaiser JC, Beheshti A, Salomaa S, Chauhan V, Hamada N. Application of radiation omics in the development of adverse outcome pathway networks: an example of radiation-induced cardiovascular disease. Int J Radiat Biol 2022; 98:1722-1751. [PMID: 35976069 DOI: 10.1080/09553002.2022.2110325] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Epidemiological studies have indicated that exposure of the heart to doses of ionizing radiation as low as 0.5 Gy increases the risk of cardiac morbidity and mortality with a latency period of decades. The damaging effects of radiation to myocardial and endothelial structures and functions have been confirmed radiobiologically at high dose, but much less is known at low dose. Integration of radiation biology and epidemiology data is a recommended approach to improve the radiation risk assessment process. The adverse outcome pathway (AOP) framework offers a comprehensive tool to compile and translate mechanistic information into pathological endpoints which may be relevant for risk assessment at the different levels of a biological system. Omics technologies enable the generation of large volumes of biological data at various levels of complexity, from molecular pathways to functional organisms. Given the quality and quantity of available data across levels of biology, omics data can be attractive sources of information for use within the AOP framework. It is anticipated that radiation omics studies could improve our understanding of the molecular mechanisms behind the adverse effects of radiation on the cardiovascular system. In this review, we explored the available omics studies on radiation-induced cardiovascular disease (CVD) and their applicability to the proposed AOP for CVD. RESULTS The results of 80 omics studies published on radiation-induced CVD over the past 20 years have been discussed in the context of the AOP of CVD proposed by Chauhan et al. Most of the available omics data on radiation-induced CVD are from proteomics, transcriptomics, and metabolomics, whereas few datasets were available from epigenomics and multi-omics. The omics data presented here show great promise in providing information for several key events of the proposed AOP of CVD, particularly oxidative stress, alterations of energy metabolism, extracellular matrix and vascular remodeling. CONCLUSIONS The omics data presented here shows promise to inform the various levels of the proposed AOP of CVD. However, the data highlight the urgent need of designing omics studies to address the knowledge gap concerning different radiation scenarios, time after exposure and experimental models. This review presents the evidence to build a qualitative omics-informed AOP and provides views on the potential benefits and challenges in using omics data to assess risk-related outcomes.
Collapse
Affiliation(s)
- Omid Azimzadeh
- Federal Office for Radiation Protection (BfS), Section Radiation Biology, 85764 Neuherberg, Germany
| | - Simone Moertl
- Federal Office for Radiation Protection (BfS), Section Radiation Biology, 85764 Neuherberg, Germany
| | - Raghda Ramadan
- Institute for Environment, Health and Safety, Radiobiology Unit, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
| | - Bjorn Baselet
- Institute for Environment, Health and Safety, Radiobiology Unit, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
| | - Evagelia C Laiakis
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, USA.,Department of Biochemistry and Molecular and Cellular Biology, Georgetown University, Washington, DC 20057, USA
| | | | | | - Jaana M Hartikainen
- School of Medicine, Institute of Clinical Medicine, Pathology and Forensic Medicine, and Translational Cancer Research Area, University of Eastern Finland, Kuopio, Finland
| | - Jan Christian Kaiser
- Helmholtz Zentrum München, Institute of Radiation Medicine (HMGU-IRM), 85764 Neuherberg, Germany
| | - Afshin Beheshti
- KBR, Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, 94035, USA.,Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Sisko Salomaa
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
| | - Vinita Chauhan
- Environmental Health Science Research Bureau, Health Canada, Ottawa, Ontario, Canada
| | - Nobuyuki Hamada
- Biology and Environmental Chemistry Division, Sustainable System Research Laboratory, Central Research Institute of Electric Power Industry (CRIEPI), Komae, Tokyo 201-8511, Japan
| |
Collapse
|
16
|
Babini G, Baiocco G, Barbieri S, Morini J, Sangsuwan T, Haghdoost S, Yentrapalli R, Azimzadeh O, Rombouts C, Aerts A, Quintens R, Ebrahimian T, Benotmane MA, Ramadan R, Baatout S, Tapio S, Harms-Ringdahl M, Ottolenghi A. A systems radiation biology approach to unravel the role of chronic low-dose-rate gamma-irradiation in inducing premature senescence in endothelial cells. PLoS One 2022; 17:e0265281. [PMID: 35286349 PMCID: PMC8920222 DOI: 10.1371/journal.pone.0265281] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 02/24/2022] [Indexed: 12/13/2022] Open
Abstract
Purpose The aim of this study was to explore the effects of chronic low-dose-rate gamma-radiation at a multi-scale level. The specific objective was to obtain an overall view of the endothelial cell response, by integrating previously published data on different cellular endpoints and highlighting possible different mechanisms underpinning radiation-induced senescence. Materials and methods Different datasets were collected regarding experiments on human umbilical vein endothelial cells (HUVECs) which were chronically exposed to low dose rates (0, 1.4, 2.1 and 4.1 mGy/h) of gamma-rays until cell replication was arrested. Such exposed cells were analyzed for different complementary endpoints at distinct time points (up to several weeks), investigating cellular functions such as proliferation, senescence and angiogenic properties, as well as using transcriptomics and proteomics profiling. A mathematical model was proposed to describe proliferation and senescence. Results Simultaneous ceasing of cell proliferation and senescence onset as a function of time were well reproduced by the logistic growth curve, conveying shared equilibria between the two endpoints. The combination of all the different endpoints investigated highlighted a dose-dependence for prematurely induced senescence. However, the underpinning molecular mechanisms appeared to be dissimilar for the different dose rates, thus suggesting a more complex scenario. Conclusions This study was conducted integrating different datasets, focusing on their temporal dynamics, and using a systems biology approach. Results of our analysis highlight that different dose rates have different effects in inducing premature senescence, and that the total cumulative absorbed dose also plays an important role in accelerating endothelial cell senescence.
Collapse
Affiliation(s)
| | | | - Sofia Barbieri
- Physics Department, University of Pavia, Pavia, Italy
- Faculty of Medicine, Department of Cellular Physiology and Metabolism, University of Geneva, Geneva, Switzerland
| | - Jacopo Morini
- Physics Department, University of Pavia, Pavia, Italy
| | - Traimate Sangsuwan
- Department of Molecular Bioscience, Centre for Radiation Protection Research, Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Siamak Haghdoost
- Department of Molecular Bioscience, Centre for Radiation Protection Research, Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
- ARIA Laboratory, University of Caen Normandy, CIMAP-GANIL, 14076, Caen, France
| | - Ramesh Yentrapalli
- Institute of Radiation Biology, Helmholtz Zentrum Muenchen—German Research Centre for Environmental Health, Neuherberg, Germany
| | - Omid Azimzadeh
- Institute of Radiation Biology, Helmholtz Zentrum Muenchen—German Research Centre for Environmental Health, Neuherberg, Germany
- Section Radiation Biology, Federal Office for Radiation Protection, Munich, Germany
| | - Charlotte Rombouts
- Radiobiology Unit, Belgian Nuclear Research Centre, SCK CEN, Boeretang, Belgium
- Department of Molecular Biotechnology, Ghent University, Ghent, Belgium
| | - An Aerts
- Radiobiology Unit, Belgian Nuclear Research Centre, SCK CEN, Boeretang, Belgium
| | - Roel Quintens
- Radiobiology Unit, Belgian Nuclear Research Centre, SCK CEN, Boeretang, Belgium
| | - Teni Ebrahimian
- Laboratoire de Radiobiologie et RadioToxicologie expérimentale, Service de recherche des effets biologiques et sanitaires des rayonnements ionisants, Pôle santé, F-92262, Fontenay-aux-Roses, France
| | | | - Raghda Ramadan
- Radiobiology Unit, Belgian Nuclear Research Centre, SCK CEN, Boeretang, Belgium
- * E-mail:
| | - Sarah Baatout
- Radiobiology Unit, Belgian Nuclear Research Centre, SCK CEN, Boeretang, Belgium
- Department of Molecular Biotechnology, Ghent University, Ghent, Belgium
| | - Soile Tapio
- Institute of Radiation Biology, Helmholtz Zentrum Muenchen—German Research Centre for Environmental Health, Neuherberg, Germany
| | - Mats Harms-Ringdahl
- Department of Molecular Bioscience, Centre for Radiation Protection Research, Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | | |
Collapse
|
17
|
da Silveira WA, Renaud L, Hazard ES, Hardiman G. miRNA and lncRNA Expression Networks Modulate Cell Cycle and DNA Repair Inhibition in Senescent Prostate Cells. Genes (Basel) 2022; 13:genes13020208. [PMID: 35205253 PMCID: PMC8872619 DOI: 10.3390/genes13020208] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 01/16/2022] [Accepted: 01/20/2022] [Indexed: 01/27/2023] Open
Abstract
Cellular senescence is a state of permanent growth arrest that arises once cells reach the limit of their proliferative capacity. It creates an inflammatory microenvironment favouring the initiation and progression of various age-related diseases, including prostate cancer. Non-coding RNAs (ncRNAs) have emerged as important regulators of cellular gene expression. Nonetheless, very little is known about the interplay of microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) and how deregulation of ncRNA networks promotes cellular senescence. To investigate this, human prostate epithelial cells were cultured through different passages until senescent, and their RNA was extracted and sequenced using RNA sequencing (RNAseq) and microRNA sequencing (miRNA-seq) miRNAseq. Differential expression (DE) gene analysis was performed to compare senescent and proliferating cells with Limma, miRNA-target interactions with multiMiR, lncRNA-target interactions using TCGA data and network evaluation with miRmapper. We found that miR-335-3p, miR-543 and the lncRNAs H19 and SMIM10L2A all play central roles in the regulation of cell cycle and DNA repair processes. Expression of most genes belonging to these pathways were down-regulated by senescence. Using the concept of network centrality, we determined the top 10 miRNAs and lncRNAs, with miR-335-3p and H19 identified as the biggest hubs for miRNAs and lncRNA respectively. These ncRNAs regulate key genes belonging to pathways involved in cell senescence and prostate cancer demonstrating their central role in these processes and opening the possibility for their use as biomarkers or therapeutic targets to mitigate against prostate ageing and carcinogenesis.
Collapse
Affiliation(s)
- Willian A. da Silveira
- Department of Biological Sciences, Science Centre, School of Health, Science and Wellbeing, Staffordshire University, Leek Road, Stoke-on-Trent ST4 2DF, UK;
- Faculty of Medicine, Health and Life Sciences, Institute for Global Food Security (IGFS), School of Biological Sciences, Queen’s University Belfast, 19 Chlorine Gardens, Belfast BT9 5DL, UK
| | - Ludivine Renaud
- Department of Medicine, Medical University of South Carolina, MSC 403, 171 Ashley Ave Suite 419, Charleston, SC 29425, USA; (L.R.); (E.S.H.)
| | - Edward S. Hazard
- Department of Medicine, Medical University of South Carolina, MSC 403, 171 Ashley Ave Suite 419, Charleston, SC 29425, USA; (L.R.); (E.S.H.)
| | - Gary Hardiman
- Faculty of Medicine, Health and Life Sciences, Institute for Global Food Security (IGFS), School of Biological Sciences, Queen’s University Belfast, 19 Chlorine Gardens, Belfast BT9 5DL, UK
- Department of Medicine, Medical University of South Carolina, MSC 403, 171 Ashley Ave Suite 419, Charleston, SC 29425, USA; (L.R.); (E.S.H.)
- Correspondence: ; Tel.: +44-(0)-28-9097-6514
| |
Collapse
|
18
|
Tamaddondoust RN, Wang Y, Jafarnejad SM, Graber TE, Alain T. The highs and lows of ionizing radiation and its effects on protein synthesis. Cell Signal 2021; 89:110169. [PMID: 34662715 DOI: 10.1016/j.cellsig.2021.110169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 08/19/2021] [Accepted: 10/06/2021] [Indexed: 11/03/2022]
Abstract
Ionizing radiation (IR) is a constant feature of our environment and one that can dramatically affect organismal health and development. Although the impacts of high-doses of IR on mammalian cells and systems have been broadly explored, there are still challenges in accurately quantifying biological responses to IR, especially in the low-dose range to which most individuals are exposed in their lifetime. The resulting uncertainty has led to the entrenchment of conservative radioprotection policies around the world. Thus, uncovering long-sought molecular mechanisms and tissue responses that are targeted by IR could lead to more informed policymaking and propose new therapeutic avenues for a variety of pathologies. One often overlooked target of IR is mRNA translation, a highly regulated cellular process that consumes more than 40% of the cell's energy. In response to environmental stimuli, regulation of mRNA translation allows for precise and rapid changes to the cellular proteome, and unsurprisingly high-dose of IR was shown to trigger a severe reprogramming of global protein synthesis allowing the cell to conserve energy by preventing the synthesis of unneeded proteins. Nonetheless, under these conditions, certain mRNAs encoding specific proteins are translationally favoured to produce the factors essential to repair the cell or send it down the path of no return through programmed cell death. Understanding the mechanisms controlling protein synthesis in response to varying doses of IR could provide novel insights into how this stress-mediated cellular adaptation is regulated and potentially uncover novel targets for radiosensitization or radioprotection. Here, we review the current literature on the effects of IR at both high- and low-dose on the mRNA translation machinery.
Collapse
Affiliation(s)
- Rosette Niloufar Tamaddondoust
- Molecular Biomedicine Program, Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada; Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada; Radiobiology and Health, Canadian Nuclear Laboratories, Chalk River, Ontario, Canada.
| | - Yi Wang
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada; Radiobiology and Health, Canadian Nuclear Laboratories, Chalk River, Ontario, Canada
| | - Seyed Mehdi Jafarnejad
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast BT9 7AE, UK
| | - Tyson E Graber
- Molecular Biomedicine Program, Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada
| | - Tommy Alain
- Molecular Biomedicine Program, Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada; Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada.
| |
Collapse
|
19
|
Chauhan V, Hamada N, Monceau V, Ebrahimian T, Adam N, Wilkins RC, Sebastian S, Patel ZS, Huff JL, Simonetto C, Iwasaki T, Kaiser JC, Salomaa S, Moertl S, Azimzadeh O. Expert consultation is vital for adverse outcome pathway development: a case example of cardiovascular effects of ionizing radiation. Int J Radiat Biol 2021; 97:1516-1525. [PMID: 34402738 DOI: 10.1080/09553002.2021.1969466] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
BACKGROUND The circulatory system distributes nutrients, signaling molecules, and immune cells to vital organs and soft tissues. Epidemiological, animal, and in vitro cellular mechanistic studies have highlighted that exposure to ionizing radiation (IR) can induce molecular changes in cellular and subcellular milieus leading to long-term health impacts, particularly on the circulatory system. Although the mechanisms for the pathologies are not fully elucidated, endothelial dysfunction is proven to be a critical event via radiation-induced oxidative stress mediators. To delineate connectivities of events specifically to cardiovascular disease (CVD) initiation and progression, the adverse outcome pathway (AOP) approach was used with consultation from field experts. AOPs are a means to organize information around a disease of interest to a regulatory question. An AOP begins with a molecular initiating event and ends in an adverse outcome via sequential linkages of key event relationships that are supported by evidence in the form of the modified Bradford-Hill criteria. Detailed guidelines on building AOPs are provided by the Organisation for Economic Cooperation and Development (OECD) AOP program. Here, we report on the questions and discussions needed to develop an AOP for CVD resulting from IR exposure. A recent workshop jointly organized by the MELODI (Multidisciplinary European Low Dose Initiative) and the ALLIANCE (European Radioecology Alliance) associations brought together experts from the OECD to present the AOP approach and tools with examples from the toxicology field. As part of this workshop, four working groups were formed to discuss the identification of adverse outcomes relevant to radiation exposures and development of potential AOPs, one of which was focused on IR-induced cardiovascular effects. Each working group comprised subject matter experts and radiation researchers interested in the specific disease area and included an AOP coach. CONCLUSION The CVD working group identified the critical questions of interest for AOP development, including the exposure scenario that would inform the evidence, the mechanisms of toxicity, the initiating event, intermediate key events/relationships, and the type of data currently available. This commentary describes the four-day discussion of the CVD working group, its outcomes, and demonstrates how collaboration and expert consultation is vital to informing AOP construction.
Collapse
Affiliation(s)
- Vinita Chauhan
- Consumer and Clinical Radiation Bureau, Health Canada, Ottawa, Canada
| | - Nobuyuki Hamada
- Radiation Safety Unit, Biology and Environmental Chemistry Division, Sustainable System Research Laboratory, Central Research Institute of Electric Power Industry (CRIEPI), Tokyo, Japan
| | - Virginie Monceau
- Institute of Radiation and Nuclear Safety (IRSN), Radiotoxicology and Radiobiology Research Laboratory (LRTOX), Fontenay-Aux-Roses, France
| | - Teni Ebrahimian
- Institute of Radiation and Nuclear Safety (IRSN), Radiotoxicology and Radiobiology Research Laboratory (LRTOX), Fontenay-Aux-Roses, France
| | - Nadine Adam
- Consumer and Clinical Radiation Bureau, Health Canada, Ottawa, Canada
| | - Ruth C Wilkins
- Consumer and Clinical Radiation Bureau, Health Canada, Ottawa, Canada
| | - Soji Sebastian
- Radiobiology, Canadian Nuclear Laboratories, Chalk River, Canada
| | - Zarana S Patel
- KBR Inc, Houston, TX, USA.,NASA Johnson Space Center, Houston, TX, USA
| | | | - Cristoforo Simonetto
- Helmholtz Zentrum München, Institute of Radiation Medicine (HMGU-IRM), Neuherberg, Germany
| | - Toshiyasu Iwasaki
- Radiation Safety Unit, Biology and Environmental Chemistry Division, Sustainable System Research Laboratory, Central Research Institute of Electric Power Industry (CRIEPI), Tokyo, Japan
| | - Jan Christian Kaiser
- Helmholtz Zentrum München, Institute of Radiation Medicine (HMGU-IRM), Neuherberg, Germany
| | - Sisko Salomaa
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
| | - Simone Moertl
- Section Radiation Biology, Federal Office for Radiation Protection (BfS), Neuherberg, Germany
| | - Omid Azimzadeh
- Section Radiation Biology, Federal Office for Radiation Protection (BfS), Neuherberg, Germany
| |
Collapse
|
20
|
Abstract
PURPOSE The aim of this article is to describe the technical development in proteomics during the last two decades with the focus on its use in radiation biology. It is written from a subjective point of view and aims not to be a scientific review of the subject. CONCLUSION Proteomics is a fast developing technique and it has already contributed greatly to our understanding of biological mechanisms following radiation exposure. Novel proteomics approaches can be used in adequately designed cellular and animal experiments and above all in big clinical trials to investigate effects of ionizing radiation in the future.
Collapse
Affiliation(s)
- Soile Tapio
- Institute of Radiation Biology and Institute for Biological and Medical Imaging, Helmholtz Center Munich, German Research Center for Environmental Health GmbH, Neuherberg, Germany
| |
Collapse
|
21
|
Sun X, Feinberg MW. Vascular Endothelial Senescence: Pathobiological Insights, Emerging Long Noncoding RNA Targets, Challenges and Therapeutic Opportunities. Front Physiol 2021; 12:693067. [PMID: 34220553 PMCID: PMC8242592 DOI: 10.3389/fphys.2021.693067] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 05/07/2021] [Indexed: 01/10/2023] Open
Abstract
Cellular senescence is a stable form of cell cycle arrest in response to various stressors. While it serves as an endogenous pro-resolving mechanism, detrimental effects ensue when it is dysregulated. In this review, we introduce recent advances for cellular senescence and inflammaging, the underlying mechanisms for the reduction of nicotinamide adenine dinucleotide in tissues during aging, new knowledge learned from p16 reporter mice, and the development of machine learning algorithms in cellular senescence. We focus on pathobiological insights underlying cellular senescence of the vascular endothelium, a critical interface between blood and all tissues. Common causes and hallmarks of endothelial senescence are highlighted as well as recent advances in endothelial senescence. The regulation of cellular senescence involves multiple mechanistic layers involving chromatin, DNA, RNA, and protein levels. New targets are discussed including the roles of long noncoding RNAs in regulating endothelial cellular senescence. Emerging small molecules are highlighted that have anti-aging or anti-senescence effects in age-related diseases and impact homeostatic control of the vascular endothelium. Lastly, challenges and future directions are discussed including heterogeneity of endothelial cells and endothelial senescence, senescent markers and detection of senescent endothelial cells, evolutionary differences for immune surveillance in mice and humans, and long noncoding RNAs as therapeutic targets in attenuating cellular senescence. Accumulating studies indicate that cellular senescence is reversible. A better understanding of endothelial cellular senescence through lifestyle and pharmacological interventions holds promise to foster a new frontier in the management of cardiovascular disease risk.
Collapse
Affiliation(s)
- Xinghui Sun
- Department of Biochemistry, University of Nebraska–Lincoln, Lincoln, NE, United States
- Nebraska Center for the Prevention of Obesity Diseases Through Dietary Molecules, University of Nebraska–Lincoln, Lincoln, NE, United States
- Nebraska Center for Integrated Biomolecular Communication, University of Nebraska–Lincoln, Lincoln, NE, United States
| | - Mark W. Feinberg
- Cardiovascular Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
22
|
Abdelgawad IY, Sadak KT, Lone DW, Dabour MS, Niedernhofer LJ, Zordoky BN. Molecular mechanisms and cardiovascular implications of cancer therapy-induced senescence. Pharmacol Ther 2021; 221:107751. [PMID: 33275998 PMCID: PMC8084867 DOI: 10.1016/j.pharmthera.2020.107751] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 11/16/2020] [Accepted: 11/23/2020] [Indexed: 12/11/2022]
Abstract
Cancer treatment has been associated with accelerated aging that can lead to early-onset health complications typically experienced by older populations. In particular, cancer survivors have an increased risk of developing premature cardiovascular complications. In the last two decades, cellular senescence has been proposed as an important mechanism of premature cardiovascular diseases. Cancer treatments, specifically anthracyclines and radiation, have been shown to induce senescence in different types of cardiovascular cells. Additionally, clinical studies identified increased systemic markers of senescence in cancer survivors. Preclinical research has demonstrated the potential of several approaches to mitigate cancer therapy-induced senescence. However, strategies to prevent and/or treat therapy-induced cardiovascular senescence have not yet been translated to the clinic. In this review, we will discuss how therapy-induced senescence can contribute to cardiovascular complications. Thereafter, we will summarize the current in vitro, in vivo, and clinical evidence regarding cancer therapy-induced cardiovascular senescence. Then, we will discuss interventional strategies that have the potential to protect against therapy-induced cardiovascular senescence. To conclude, we will highlight challenges and future research directions to mitigate therapy-induced cardiovascular senescence in cancer survivors.
Collapse
Affiliation(s)
- Ibrahim Y Abdelgawad
- Department of Experimental and Clinical Pharmacology, University of Minnesota College of Pharmacy, Minneapolis, MN 55455, USA
| | - Karim T Sadak
- Department of Pediatrics, University of Minnesota Medical School, Minneapolis, MN 55455, USA; University of Minnesota Masonic Children's Hospital, Minneapolis, MN 55455, USA; University of Minnesota Masonic Cancer Center, Minneapolis, MN 55455, USA
| | - Diana W Lone
- University of Minnesota Masonic Children's Hospital, Minneapolis, MN 55455, USA
| | - Mohamed S Dabour
- Clinical Pharmacy Department, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt
| | - Laura J Niedernhofer
- Institute on the Biology of Aging and Metabolism and Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Beshay N Zordoky
- Department of Experimental and Clinical Pharmacology, University of Minnesota College of Pharmacy, Minneapolis, MN 55455, USA.
| |
Collapse
|
23
|
Tapio S, Little MP, Kaiser JC, Impens N, Hamada N, Georgakilas AG, Simar D, Salomaa S. Ionizing radiation-induced circulatory and metabolic diseases. ENVIRONMENT INTERNATIONAL 2021; 146:106235. [PMID: 33157375 PMCID: PMC10686049 DOI: 10.1016/j.envint.2020.106235] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 09/09/2020] [Accepted: 10/08/2020] [Indexed: 05/23/2023]
Abstract
Risks to health are the prime consideration in all human situations of ionizing radiation exposure and therefore of relevance to radiation protection in all occupational, medical, and public exposure situations. Over the past few decades, advances in therapeutic strategies have led to significant improvements in cancer survival rates. However, a wide range of long-term complications have been reported in cancer survivors, in particular circulatory diseases and their major risk factors, metabolic diseases. However, at lower levels of exposure, the evidence is less clear. Under real-life exposure scenarios, including radiotherapy, radiation effects in the whole organism will be determined mainly by the response of normal tissues receiving relatively low doses, and will be mediated and moderated by systemic effects. Therefore, there is an urgent need for further research on the impact of low-dose radiation. In this article, we review radiation-associated risks of circulatory and metabolic diseases in clinical, occupational or environmental exposure situations, addressing epidemiological, biological, risk modelling, and systems biology aspects, highlight the gaps in knowledge and discuss future directions to address these gaps.
Collapse
Affiliation(s)
- Soile Tapio
- Institute of Radiation Biology, Helmholtz Zentrum Muenchen, German Research Center for Environmental Health GmbH, Neuherberg, Germany.
| | - Mark P Little
- Radiation Epidemiology Branch, National Cancer Institute (NCI), National Institutes of Health (NIH), MD, USA
| | - Jan Christian Kaiser
- Institute of Radiation Medicine, Helmholtz Zentrum Muenchen, German Research Center for Environmental Health GmbH, Neuherberg, Germany
| | - Nathalie Impens
- Institute of Environment, Health and Safety, Biosphere Impact Studies, SCK•CEN, Mol, Belgium
| | - Nobuyuki Hamada
- Radiation Safety Research Center, Nuclear Technology Research Laboratory, Central Research Institute of Electric Power Industry (CRIEPI), Tokyo, Japan
| | - Alexandros G Georgakilas
- DNA Damage Laboratory, Department of Physics, School of Applied Mathematical and Physical Sciences, National Technical University of Athens (NTUA), Athens, Greece
| | - David Simar
- Mechanisms of Disease and Translational Research, School of Medical Sciences, UNSW Sydney, Sydney, Australia
| | - Sisko Salomaa
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
24
|
Schroth J, Thiemermann C, Henson SM. Senescence and the Aging Immune System as Major Drivers of Chronic Kidney Disease. Front Cell Dev Biol 2020; 8:564461. [PMID: 33163486 PMCID: PMC7581911 DOI: 10.3389/fcell.2020.564461] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 09/16/2020] [Indexed: 12/20/2022] Open
Abstract
Chronic kidney disease (CKD) presents an ever-growing disease burden for the world's aging population. It is characterized by numerous changes to the kidney, including a decrease in renal mass, renal fibrosis, and a diminished glomerular filtration rate. The premature aging phenotype observed in CKD is associated with cellular senescence, particularly of renal tubular epithelial cells (TECs), which contributes to chronic inflammation through the production of a proinflammatory senescence associated secretory phenotype (SASP). When coupled with changes in immune system composition and progressive immune dysfunction, the accumulation of senescent kidney cells acts as a driver for the progression of CKD. The targeting of senescent cells may well present an attractive therapeutic avenue for the treatment of CKD. We propose that the targeting of senescent cells either by direct inhibition of pro-survival pathways (senolytics) or through the inhibition of their proinflammatory secretory profile (senomorphics) together with immunomodulation to enhance immune system surveillance of senescent cells could be of benefit to patients with CKD.
Collapse
Affiliation(s)
| | | | - Siân M. Henson
- Translational Medicine and Therapeutics, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
25
|
Aliper AM, Bozdaganyan ME, Sarkisova VA, Veviorsky AP, Ozerov IV, Orekhov PS, Korzinkin MB, Moskalev A, Zhavoronkov A, Osipov AN. Radioprotectors.org: an open database of known and predicted radioprotectors. Aging (Albany NY) 2020; 12:15741-15755. [PMID: 32805729 PMCID: PMC7467366 DOI: 10.18632/aging.103815] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 07/20/2020] [Indexed: 12/20/2022]
Abstract
The search for radioprotectors is an ambitious goal with many practical applications. Particularly, the improvement of human radioresistance for space is an important task, which comes into view with the recent successes in the space industry. Currently, all radioprotective drugs can be divided into two large groups differing in their effectiveness depending on the type of exposure. The first of these is radioprotectors, highly effective for pulsed, and some types of relatively short exposure to irradiation. The second group consists of long-acting radioprotectors. These drugs are effective for prolonged and fractionated irradiation. They also protect against impulse exposure to ionizing radiation, but to a lesser extent than short-acting radioprotectors. Creating a database on radioprotectors is a necessity dictated by the modern development of science and technology. We have created an open database, Radioprotectors.org, containing an up-to-date list of substances with proven radioprotective properties. All radioprotectors are annotated with relevant chemical and biological information, including transcriptomic data, and can be filtered according to their properties. Additionally, the performed transcriptomics analysis has revealed specific transcriptomic profiles of radioprotectors, which should facilitate the search for potent radioprotectors.
Collapse
Affiliation(s)
| | - Marine E Bozdaganyan
- Insilico Medicine, Hong Kong Science and Technology Park, Hong Kong.,Lomonosov Moscow State University, School of Biology, Moscow, Russia.,N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow, Russia
| | - Viktoria A Sarkisova
- Insilico Medicine, Hong Kong Science and Technology Park, Hong Kong.,Lomonosov Moscow State University, School of Biology, Moscow, Russia
| | | | - Ivan V Ozerov
- Insilico Medicine, Hong Kong Science and Technology Park, Hong Kong
| | - Philipp S Orekhov
- Insilico Medicine, Hong Kong Science and Technology Park, Hong Kong.,Lomonosov Moscow State University, School of Biology, Moscow, Russia.,The Moscow Institute of Physics and Technology, Moscow Region, Dolgoprudny, Russia
| | | | - Alexey Moskalev
- Department of Radioecology, Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology of the FRC of Komi Science Center, Ural Branch, Russian Academy of Sciences, Syktyvkar, Komi Republic, Russia
| | - Alex Zhavoronkov
- Insilico Medicine, Hong Kong Science and Technology Park, Hong Kong
| | - Andreyan N Osipov
- Insilico Medicine, Hong Kong Science and Technology Park, Hong Kong.,N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow, Russia.,The Moscow Institute of Physics and Technology, Moscow Region, Dolgoprudny, Russia.,State Research Center-Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency (SRC-FMBC), Moscow, Russia
| |
Collapse
|
26
|
Wei F, Wang A, Wang Q, Han W, Rong R, Wang L, Liu S, Zhang Y, Dong C, Li Y. Plasma endothelial cells-derived extracellular vesicles promote wound healing in diabetes through YAP and the PI3K/Akt/mTOR pathway. Aging (Albany NY) 2020; 12:12002-12018. [PMID: 32570219 PMCID: PMC7343472 DOI: 10.18632/aging.103366] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Accepted: 05/20/2020] [Indexed: 02/06/2023]
Abstract
Extracellular vesicles are involved in skin wound healing and diabetes. After enrichment and identification, plasma endothelial cells-derived-extracellular vesicles were cocultured with skin fibroblasts or HaCaT. The gain-and loss-of functions were performed to measure fibroblast proliferation, senescence, and reactive oxygen species. Levels of senescence-related proteins, senescence-associated secretory phenotypes, vascular markers, YAP and the PI3K/Akt/mTOR pathway-related proteins were determined. Diabetic mice were induced to establish skin wound model. After endothelial cells-derived-extracellular vesicles were injected into skin wound modeling mice, skin wound healing was evaluated. Endothelial cells-derived-extracellular vesicles treatment enhanced fibroblast proliferation, and decreased senescence through the elevation of YAP nuclear translocation and activation the PI3K/Akt/mTOR pathway. YAP inhibition reversed the effect of plasma endothelial cells-derived-extracellular vesicles on fibroblast proliferation. Endothelial cells-derived-extracellular vesicles also promoted wound healing in diabetic mice, increased microvascular density, collagen deposition, macrophage infiltration and positive rates of vascular markers, and inhibited YAP phosphorylation and senescence. Plasma endothelial cells-derived-extracellular vesicles prevent fibroblast senescence and accelerate skin wound healing in diabetic mice by reducing YAP phosphorylation and activating the PI3K/Akt/mTOR pathway. This study may provide novel insights for skin disorders in diabetic mice.
Collapse
Affiliation(s)
- Feng Wei
- Department of Dermatology, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei, P.R. China
| | - Aixue Wang
- Department of Dermatology, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei, P.R. China
| | - Qing Wang
- Department of Dermatology, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei, P.R. China
| | - Wenrui Han
- Department of Dermatology, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei, P.R. China
| | - Rong Rong
- Department of Dermatology, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei, P.R. China
| | - Lijuan Wang
- Department of Dermatology, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei, P.R. China
| | - Sijia Liu
- Department of Dermatology, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei, P.R. China
| | - Yimeng Zhang
- Department of Dermatology, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei, P.R. China
| | - Chao Dong
- Department of Dermatology, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei, P.R. China
| | - Yanling Li
- Department of Dermatology, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei, P.R. China
| |
Collapse
|
27
|
Yu JR, Janssen M, Liang BJ, Huang HC, Fisher JP. A liposome/gelatin methacrylate nanocomposite hydrogel system for delivery of stromal cell-derived factor-1α and stimulation of cell migration. Acta Biomater 2020; 108:67-76. [PMID: 32194261 PMCID: PMC7198368 DOI: 10.1016/j.actbio.2020.03.015] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 03/09/2020] [Accepted: 03/11/2020] [Indexed: 11/29/2022]
Abstract
Chronic, non-healing skin and soft tissue wounds are susceptible to infection, difficult to treat clinically, and can severely reduce a patient's quality of life. A key aspect of this issue is the impaired recruitment of mesenchymal stem cells (MSCs), which secrete regenerative cytokines and modulate the phenotypes of other effector cells that promote healing. We have engineered a therapeutic delivery system that can controllably release the pro-healing chemokine stromal cell derived factor-1α (SDF-1α) to induce the migration of MSCs. In order to protect the protein cargo from hydrolytic degradation and control its release, we have loaded SDF-1α in anionic liposomes (lipoSDF) and embedded them in gelatin methacrylate (GelMA) to form a nanocomposite hydrogel. In this study, we quantify the release of SDF-1α from our hydrogel system and measure the induced migration of MSCs in vitro via a transwell assay. Lastly, we evaluate the ability of this system to activate intracellular signaling in MSCs by using Western blots to probe for the phosphorylation of key proteins in the mTOR pathway. To our knowledge, this is the first study to report the delivery of liposomal SDF-1α using a nanocomposite approach. The results of this study expand on our current understanding of factors that can be modified to affect MSC behavior and phenotype. Furthermore, our findings contribute to the development of new hydrogel-based therapeutic delivery strategies for clinical wound healing applications. STATEMENT OF SIGNIFICANCE: Chronic, non-healing wounds promote an inflammatory environment that inhibits the migration of mesenchymal stem cells (MSCs), which secrete pro-healing and regenerative cytokines. The goal of this project is to apply principles of tissue engineering to achieve controllable release of the pro-healing chemokine SDF-1α to modulate the intracellular signaling and migratory behavior of MSCs. In this work, we introduce a nanocomposite strategy to tailor the release of SDF-1α using a liposome/gelatin methacrylate hydrogel approach. We are the first group to report the delivery of liposomal SDF-1α using this strategy. Our findings aim to further elucidate the role of MSCs in directing wound healing and guide the development of immunomodulatory and therapeutic delivery strategies for clinical wound healing applications.
Collapse
Affiliation(s)
- Justine R Yu
- Fischell Department of Bioengineering, University of Maryland - College Park, 3121 A. James Clark Hall, 8278 Paint Branch Drive, College Park, MD 20742, United States; NIH/NBIB Center for Engineering Complex Tissues, University of Maryland - College Park, 3121 A. James Clark Hall, 8278 Paint Branch Drive, College Park, MD 20742, United States; University of Maryland School of Medicine, Baltimore, MD 21201, United States
| | - Miriam Janssen
- Fischell Department of Bioengineering, University of Maryland - College Park, 3121 A. James Clark Hall, 8278 Paint Branch Drive, College Park, MD 20742, United States
| | - Barry J Liang
- Fischell Department of Bioengineering, University of Maryland - College Park, 3121 A. James Clark Hall, 8278 Paint Branch Drive, College Park, MD 20742, United States
| | - Huang-Chiao Huang
- Fischell Department of Bioengineering, University of Maryland - College Park, 3121 A. James Clark Hall, 8278 Paint Branch Drive, College Park, MD 20742, United States; Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, United States
| | - John P Fisher
- Fischell Department of Bioengineering, University of Maryland - College Park, 3121 A. James Clark Hall, 8278 Paint Branch Drive, College Park, MD 20742, United States; NIH/NBIB Center for Engineering Complex Tissues, University of Maryland - College Park, 3121 A. James Clark Hall, 8278 Paint Branch Drive, College Park, MD 20742, United States.
| |
Collapse
|
28
|
Khor ES, Wong PF. The roles of MTOR and miRNAs in endothelial cell senescence. Biogerontology 2020; 21:517-530. [PMID: 32246301 DOI: 10.1007/s10522-020-09876-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 03/30/2020] [Indexed: 12/11/2022]
Abstract
Accumulation of senescent cells in vascular endothelium is known to contribute to vascular aging and increases the risk of developing cardiovascular diseases. The involvement of classical pathways such as p53/p21 and p16/pRB in cellular senescence are well described but there are emerging evidence supporting the increasingly important role of mammalian target of rapamycin (MTOR) as driver of cellular senescence via these pathways or other effector molecules. MicroRNAs (miRNAs) are a highly conserved group of small non-coding RNAs (18-25 nucleotides), instrumental in modulating the expression of target genes associated with various biological and cellular processes including cellular senescence. The inhibition of MTOR activity is predominantly linked to cellular senescence blunting and prolonged lifespan in model organisms. To date, known miRNAs regulating MTOR in endothelial cell senescence remain limited. Herein, this review discusses the roles of MTOR and MTOR-associated miRNAs in regulating endothelial cell senescence, including the crosstalk between MTOR Complex 1 (MTORC1) and cell cycle pathways and the emerging role of MTORC2 in cellular senescence. New insights on how MTOR and miRNAs coordinate underlying molecular mechanisms of endothelial senescence will provide deeper understanding and clarity to the complexity of the regulation of cellular senescence.
Collapse
Affiliation(s)
- Eng-Soon Khor
- Department of Pharmacology, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Pooi-Fong Wong
- Department of Pharmacology, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia.
| |
Collapse
|
29
|
Drobin K, Marczyk M, Halle M, Danielsson D, Papiez A, Sangsuwan T, Bendes A, Hong MG, Qundos U, Harms-Ringdahl M, Wersäll P, Polanska J, Schwenk JM, Haghdoost S. Molecular Profiling for Predictors of Radiosensitivity in Patients with Breast or Head-and-Neck Cancer. Cancers (Basel) 2020; 12:cancers12030753. [PMID: 32235817 PMCID: PMC7140105 DOI: 10.3390/cancers12030753] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 03/13/2020] [Accepted: 03/16/2020] [Indexed: 02/07/2023] Open
Abstract
Nearly half of all cancers are treated with radiotherapy alone or in combination with other treatments, where damage to normal tissues is a limiting factor for the treatment. Radiotherapy-induced adverse health effects, mostly of importance for cancer patients with long-term survival, may appear during or long time after finishing radiotherapy and depend on the patient’s radiosensitivity. Currently, there is no assay available that can reliably predict the individual’s response to radiotherapy. We profiled two study sets from breast (n = 29) and head-and-neck cancer patients (n = 74) that included radiosensitive patients and matched radioresistant controls.. We studied 55 single nucleotide polymorphisms (SNPs) in 33 genes by DNA genotyping and 130 circulating proteins by affinity-based plasma proteomics. In both study sets, we discovered several plasma proteins with the predictive power to find radiosensitive patients (adjusted p < 0.05) and validated the two most predictive proteins (THPO and STIM1) by sandwich immunoassays. By integrating genotypic and proteomic data into an analysis model, it was found that the proteins CHIT1, PDGFB, PNKD, RP2, SERPINC1, SLC4A, STIM1, and THPO, as well as the VEGFA gene variant rs69947, predicted radiosensitivity of our breast cancer (AUC = 0.76) and head-and-neck cancer (AUC = 0.89) patients. In conclusion, circulating proteins and a SNP variant of VEGFA suggest that processes such as vascular growth capacity, immune response, DNA repair and oxidative stress/hypoxia may be involved in an individual’s risk of experiencing radiation-induced toxicity.
Collapse
Affiliation(s)
- Kimi Drobin
- Affinity Proteomics, Science for Life Laboratory, Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH – Royal Institute of Technology, Tomtebodavägen 23, 171 65 Stockholm, Sweden; (K.D.); (A.B.); (M.-G.H.); (U.Q.); (J.M.S.)
| | - Michal Marczyk
- Yale Cancer Center, Department of Internal Medicine, Yale University School of Medicine, 06511 New Haven, CT, USA;
- Department of Data Science and Engineering, Silesian University of Technology, 44-100 Gliwice, Poland; (A.P.); (J.P.)
| | - Martin Halle
- Department of Molecular Medicine and Surgery, Karolinska Institutet, 17176, Stockholm, Sweden;
- Reconstructive Plastic Surgery, Karolinska University Hospital, 17176 Stockholm, Sweden
| | - Daniel Danielsson
- Department of Clinical Science, Intervention and Technology, Division of ENT Diseases, Karolinska Institutet, 14186 Stockholm, Sweden;
- Department of Oral and Maxillofacial Surgery, Karolinska University Hospital, 17176, Stockholm, Sweden
| | - Anna Papiez
- Department of Data Science and Engineering, Silesian University of Technology, 44-100 Gliwice, Poland; (A.P.); (J.P.)
| | - Traimate Sangsuwan
- Centre for Radiation Protection Research, Department of Molecular Biosciences, The Wenner-Gren Institute Stockholm University, 10691 Stockholm, Sweden; (T.S.); (M.H.-R.)
| | - Annika Bendes
- Affinity Proteomics, Science for Life Laboratory, Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH – Royal Institute of Technology, Tomtebodavägen 23, 171 65 Stockholm, Sweden; (K.D.); (A.B.); (M.-G.H.); (U.Q.); (J.M.S.)
| | - Mun-Gwan Hong
- Affinity Proteomics, Science for Life Laboratory, Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH – Royal Institute of Technology, Tomtebodavägen 23, 171 65 Stockholm, Sweden; (K.D.); (A.B.); (M.-G.H.); (U.Q.); (J.M.S.)
| | - Ulrika Qundos
- Affinity Proteomics, Science for Life Laboratory, Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH – Royal Institute of Technology, Tomtebodavägen 23, 171 65 Stockholm, Sweden; (K.D.); (A.B.); (M.-G.H.); (U.Q.); (J.M.S.)
| | - Mats Harms-Ringdahl
- Centre for Radiation Protection Research, Department of Molecular Biosciences, The Wenner-Gren Institute Stockholm University, 10691 Stockholm, Sweden; (T.S.); (M.H.-R.)
| | - Peter Wersäll
- Department of Radiotherapy, Karolinska University Hospital, 17176 Stockholm, Sweden;
| | - Joanna Polanska
- Department of Data Science and Engineering, Silesian University of Technology, 44-100 Gliwice, Poland; (A.P.); (J.P.)
| | - Jochen M. Schwenk
- Affinity Proteomics, Science for Life Laboratory, Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH – Royal Institute of Technology, Tomtebodavägen 23, 171 65 Stockholm, Sweden; (K.D.); (A.B.); (M.-G.H.); (U.Q.); (J.M.S.)
| | - Siamak Haghdoost
- Centre for Radiation Protection Research, Department of Molecular Biosciences, The Wenner-Gren Institute Stockholm University, 10691 Stockholm, Sweden; (T.S.); (M.H.-R.)
- University of Caen Normandy, Department of medicine, Cimap-Laria, Advanced Resource Center for HADrontherapy in Europe (ARCHADE), 14076 Caen, France
- Correspondence:
| |
Collapse
|
30
|
Mrotzek SM, Rassaf T, Totzeck M. Cardiovascular Damage Associated With Chest Irradiation. Front Cardiovasc Med 2020; 7:41. [PMID: 32266294 PMCID: PMC7103638 DOI: 10.3389/fcvm.2020.00041] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 03/03/2020] [Indexed: 12/24/2022] Open
Abstract
The improvement of anticancer-therapies results in a greater amount of long-term survivors after radiotherapy. Therefore, the understanding of cardiotoxicity after irradiation is of increasing importance. Cardiovascular adverse events after chest irradiation have been acknowledged for a long time but remain difficult to diagnose. Long-term cardiovascular adverse events may become evident years or decades after radiotherapy and the spectrum of potential cardiovascular side effects is large. Recent experimental and clinical data indicate that cardiovascular symptoms may be caused especially by heart failure with preserved ejection fraction, which remains incompletely understood in patients after radiation therapy. Heart radiation dose and co-existing cardiovascular risk factors represent some of the most important contributors for incidence and severity of radiation-induced cardiovascular side effects. In this review, we aim to elucidate the underlying patho-mechanisms and to characterize the development of radiation-induced cardiovascular damage. Additionally, approaches for clinical management and treatment options are presented.
Collapse
Affiliation(s)
- Simone M Mrotzek
- Department of Cardiology and Vascular Medicine, West German Heart and Vascular Center, Medical Faculty, University Hospital Essen, Essen, Germany
| | - Tienush Rassaf
- Department of Cardiology and Vascular Medicine, West German Heart and Vascular Center, Medical Faculty, University Hospital Essen, Essen, Germany
| | - Matthias Totzeck
- Department of Cardiology and Vascular Medicine, West German Heart and Vascular Center, Medical Faculty, University Hospital Essen, Essen, Germany
| |
Collapse
|
31
|
Ramadan R, Vromans E, Anang DC, Goetschalckx I, Hoorelbeke D, Decrock E, Baatout S, Leybaert L, Aerts A. Connexin43 Hemichannel Targeting With TAT-Gap19 Alleviates Radiation-Induced Endothelial Cell Damage. Front Pharmacol 2020; 11:212. [PMID: 32210810 PMCID: PMC7066501 DOI: 10.3389/fphar.2020.00212] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 02/14/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Emerging evidence indicates an excess risk of late occurring cardiovascular diseases, especially atherosclerosis, after thoracic cancer radiotherapy. Ionizing radiation (IR) induces cellular effects which may induce endothelial cell dysfunction, an early marker for atherosclerosis. In addition, intercellular communication through channels composed of transmembrane connexin proteins (Cxs), i.e. Gap junctions (direct cell-cell coupling) and hemichannels (paracrine release/uptake pathway) can modulate radiation-induced responses and therefore the atherosclerotic process. However, the role of endothelial hemichannel in IR-induced atherosclerosis has never been described before. MATERIALS AND METHODS Telomerase-immortalized human Coronary Artery/Microvascular Endothelial cells (TICAE/TIME) were exposed to X-rays (0.1 and 5 Gy). Production of reactive oxygen species (ROS), DNA damage, cell death, inflammatory responses, and senescence were assessed with or without applying a Cx43 hemichannel blocker (TAT-Gap19). RESULTS We report here that IR induces an increase in oxidative stress, cell death, inflammatory responses (IL-8, IL-1β, VCAM-1, MCP-1, and Endothelin-1) and premature cellular senescence in TICAE and TIME cells. These effects are significantly reduced in the presence of the Cx43 hemichannel-targeting peptide TAT-Gap19. CONCLUSION Our findings suggest that endothelial Cx43 hemichannels contribute to various IR-induced processes, such as ROS, cell death, inflammation, and senescence, resulting in an increase in endothelial cell damage, which could be protected by blocking these hemichannels. Thus, targeting Cx43 hemichannels may potentially exert radioprotective effects.
Collapse
Affiliation(s)
- Raghda Ramadan
- Radiobiology Unit, Belgian Nuclear Research Centre (SCK•CEN), Mol, Belgium
- Department of Fundamental and Basic Medical Sciences, Physiology Group, Ghent University, Ghent, Belgium
| | - Els Vromans
- Centre for Environmental Health Sciences, Hasselt University, Hasselt, Belgium
| | - Dornatien Chuo Anang
- Biomedical Research Institute and Transnational University of Limburg, Hasselt University, Hasselt, Belgium
| | - Ines Goetschalckx
- Protein Chemistry, Proteomics and Epigenetic Signaling Group, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Antwerp, Belgium
| | - Delphine Hoorelbeke
- Department of Fundamental and Basic Medical Sciences, Physiology Group, Ghent University, Ghent, Belgium
| | - Elke Decrock
- Department of Fundamental and Basic Medical Sciences, Physiology Group, Ghent University, Ghent, Belgium
| | - Sarah Baatout
- Radiobiology Unit, Belgian Nuclear Research Centre (SCK•CEN), Mol, Belgium
- Department of Molecular Biotechnology, Ghent University, Ghent, Belgium
| | - Luc Leybaert
- Department of Fundamental and Basic Medical Sciences, Physiology Group, Ghent University, Ghent, Belgium
| | - An Aerts
- Radiobiology Unit, Belgian Nuclear Research Centre (SCK•CEN), Mol, Belgium
| |
Collapse
|
32
|
Lowe DJ, Herzog M, Mosler T, Cohen H, Felton S, Beli P, Raj K, Galanty Y, Jackson SP. Chronic irradiation of human cells reduces histone levels and deregulates gene expression. Sci Rep 2020; 10:2200. [PMID: 32042076 PMCID: PMC7010678 DOI: 10.1038/s41598-020-59163-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 01/24/2020] [Indexed: 01/10/2023] Open
Abstract
Over the past decades, there have been huge advances in understanding cellular responses to ionising radiation (IR) and DNA damage. These studies, however, were mostly executed with cell lines and mice using single or multiple acute doses of radiation. Hence, relatively little is known about how continuous exposure to low dose ionising radiation affects normal cells and organisms, even though our cells are constantly exposed to low levels of radiation. We addressed this issue by examining the consequences of exposing human primary cells to continuous ionising γ-radiation delivered at 6-20 mGy/h. Although these dose rates are estimated to inflict fewer than a single DNA double-strand break (DSB) per hour per cell, they still caused dose-dependent reductions in cell proliferation and increased cellular senescence. We concomitantly observed histone protein levels to reduce by up to 40%, which in contrast to previous observations, was not mainly due to protein degradation but instead correlated with reduced histone gene expression. Histone reductions were accompanied by enlarged nuclear size paralleled by an increase in global transcription, including that of pro-inflammatory genes. Thus, chronic irradiation, even at low dose-rates, can induce cell senescence and alter gene expression via a hitherto uncharacterised epigenetic route. These features of chronic radiation represent a new aspect of radiation biology.
Collapse
Affiliation(s)
- Donna J Lowe
- Radiation Effects Department, Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Chilton, Didcot, Oxfordshire, OX11 0RQ, UK.
- Wellcome/Cancer Research UK Gurdon Institute and Department of Biochemistry, University of Cambridge, Cambridge, CB2 1QN, UK.
| | - Mareike Herzog
- Wellcome/Cancer Research UK Gurdon Institute and Department of Biochemistry, University of Cambridge, Cambridge, CB2 1QN, UK
| | | | - Howard Cohen
- Elizabeth House Surgery, Warlingham, Surrey, CR6 9LF, UK
| | - Sarah Felton
- Department of Dermatology, Churchill Hospital, Oxford, OX3 7LJ, UK
| | - Petra Beli
- Institute of Molecular Biology (IMB), 55128, Mainz, Germany
| | - Ken Raj
- Radiation Effects Department, Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Chilton, Didcot, Oxfordshire, OX11 0RQ, UK
| | - Yaron Galanty
- Wellcome/Cancer Research UK Gurdon Institute and Department of Biochemistry, University of Cambridge, Cambridge, CB2 1QN, UK.
| | - Stephen P Jackson
- Wellcome/Cancer Research UK Gurdon Institute and Department of Biochemistry, University of Cambridge, Cambridge, CB2 1QN, UK.
| |
Collapse
|
33
|
Wang D, Liu S, Xu S. Identification of hub genes, key pathways, and therapeutic agents in Hutchinson-Gilford Progeria syndrome using bioinformatics analysis. Medicine (Baltimore) 2020; 99:e19022. [PMID: 32049798 PMCID: PMC7035007 DOI: 10.1097/md.0000000000019022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Hutchinson-Gilford Progeria syndrome (HGPS) is a rare lethal premature and accelerated aging disease caused by mutations in the lamin A/C gene. Nevertheless, the mechanisms of cellular damage, senescence, and accelerated aging in HGPS are not fully understood. Therefore, we aimed to screen potential key genes, pathways, and therapeutic agents of HGPS by using bioinformatics methods in this study. METHODS The gene expression profile of GSE113648 and GSE41751 were retrieved from the gene expression omnibus database and analyzed to identify the differentially expressed genes (DEGs) between HGPS and normal controls. Then, gene ontology and the Kyoto encyclopedia of genes and genomes pathway enrichment analysis were carried out. To construct the protein-protein interaction (PPI) network, we used STRING and Cytoscape to make module analysis of these DEGs. Besides, the connectivity map (cMAP) tool was used as well to predict potential drugs. RESULTS As a result, 180 upregulated DEGs and 345 downregulated DEGs were identified, which were significantly enriched in pathways in cancer and PI3K-Akt signaling pathway. The top centrality hub genes fibroblast growth factor 2, decorin, matrix metallopeptidase2, and Fos proto-oncogene, AP-1 transcription factor subunit were screened out as the critical genes among the DEGs from the PPI network. Dexibuprofen and parthenolide were predicted to be the possible agents for the treatment of HGPS by cMAP analysis. CONCLUSION This study identified key genes, signal pathways and therapeutic agents, which might help us improve our understanding of the mechanisms of HGPS and identify some new therapeutic agents for HGPS.
Collapse
Affiliation(s)
- Dengchuan Wang
- Office of Medical Ethics, Shenzhen Longhua District Central Hospital, Shenzhen, Guangdong
| | - Shengshuo Liu
- School of Pharmacy, Henan University, Kaifeng, Henan, China
| | - Shi Xu
- Department of Burn and Plastic Surgery, Shenzhen Longhua District Central Hospital, Shenzhen, Guangdong, China
| |
Collapse
|
34
|
Zhang S, Mo Q, Wang X. Oncological role of HMGA2 (Review). Int J Oncol 2019; 55:775-788. [PMID: 31432151 DOI: 10.3892/ijo.2019.4856] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 05/17/2019] [Indexed: 11/06/2022] Open
Abstract
The high mobility group A2 (HMGA2) protein is a non‑histone architectural transcription factor that modulates the transcription of several genes by binding to AT‑rich sequences in the minor groove of B‑form DNA and alters the chromatin structure. As a result, HMGA2 influences a variety of biological processes, including the cell cycle process, DNA damage repair process, apoptosis, senescence, epithelial‑mesenchymal transition and telomere restoration. In addition, the overexpression of HMGA2 is a feature of malignancy, and its elevated expression in human cancer predicts the efficacy of certain chemotherapeutic agents. Accumulating evidence has suggested that the detection of HMGA2 can be used as a routine procedure in clinical tumour analysis.
Collapse
Affiliation(s)
- Shizhen Zhang
- Department of Breast Surgery, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
| | - Qiuping Mo
- Department of Surgical Oncology and Cancer Institute, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| | - Xiaochen Wang
- Department of Breast Surgery, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
| |
Collapse
|
35
|
Paskaš S, Krajnović T, Basile MS, Dunđerović D, Cavalli E, Mangano K, Mammana S, Al-Abed Y, Nicoletti F, Mijatović S, Maksimović-Ivanić D. Senescence as a main mechanism of Ritonavir and Ritonavir-NO action against melanoma. Mol Carcinog 2019; 58:1362-1375. [PMID: 30997718 DOI: 10.1002/mc.23020] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 03/26/2019] [Accepted: 04/01/2019] [Indexed: 12/19/2022]
Abstract
The main focus of this study is exploring the effect and mechanism of two HIV-protease inhibitors: Ritonavir and Ritonavir-nitric oxide (Ritonavir-NO) on in vitro growth of melanoma cell lines. NO modification significantly improved the antitumor potential of Ritonavir, as the IC50 values of Ritonavir-NO were approximately two times lower than IC50 values of the parental compound. Our results showed for the first time, that both compounds induced senescence in primary and metastatic melanoma cell lines. This transformation was manifested as a change in cell morphology, enlargement of nuclei, increased cellular granulation, upregulation of β-galactosidase activity, lipofuscin granules appearance, higher production of reactive oxygen species and persistent inhibition of proliferation. The expression of p53, as one of the key regulators of senescence, was upregulated after 48 hours of Ritonavir-NO treatment only in metastatic B16F10 cells, ranking it as a late-response event. The development of senescent phenotype was consistent with the alteration of the cytoskeleton-as we observed diminished expression of vinculin, α-actin, and β-tubulin. Permanent inhibition of S6 protein by Ritonavir-NO, but not Ritonavir, could be responsible for a stronger antiproliferative potential of the NO-modified compound. Taken together, induction of senescent phenotype may provide an excellent platform for developing therapeutic approaches based on selective killing of senescent cells.
Collapse
Affiliation(s)
- Svetlana Paskaš
- Department of Immunology, Institute for Biological Research "Siniša Stanković", Belgrade University, Belgrade, Serbia
| | - Tamara Krajnović
- Department of Immunology, Institute for Biological Research "Siniša Stanković", Belgrade University, Belgrade, Serbia
| | - Maria S Basile
- Department of Immunology, Institute for Biological Research "Siniša Stanković", Belgrade University, Belgrade, Serbia.,Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Duško Dunđerović
- Institute of Pathology, School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Eugenio Cavalli
- Department of Experimental Neurology, IRCCS Centro Neurolesi "Bonino-Pulejo", Messina, Italy
| | - Katia Mangano
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Santa Mammana
- Department of Experimental Neurology, IRCCS Centro Neurolesi "Bonino-Pulejo", Messina, Italy
| | - Yousef Al-Abed
- Center for Molecular Innovation, The Feinstein Institute for Medical Research, Manhasset, New York
| | - Ferdinando Nicoletti
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Sanja Mijatović
- Department of Immunology, Institute for Biological Research "Siniša Stanković", Belgrade University, Belgrade, Serbia
| | - Danijela Maksimović-Ivanić
- Department of Immunology, Institute for Biological Research "Siniša Stanković", Belgrade University, Belgrade, Serbia
| |
Collapse
|
36
|
Sizek H, Hamel A, Deritei D, Campbell S, Ravasz Regan E. Boolean model of growth signaling, cell cycle and apoptosis predicts the molecular mechanism of aberrant cell cycle progression driven by hyperactive PI3K. PLoS Comput Biol 2019; 15:e1006402. [PMID: 30875364 PMCID: PMC6436762 DOI: 10.1371/journal.pcbi.1006402] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 03/27/2019] [Accepted: 02/12/2019] [Indexed: 02/07/2023] Open
Abstract
The PI3K/AKT signaling pathway plays a role in most cellular functions linked to cancer progression, including cell growth, proliferation, cell survival, tissue invasion and angiogenesis. It is generally recognized that hyperactive PI3K/AKT1 are oncogenic due to their boost to cell survival, cell cycle entry and growth-promoting metabolism. That said, the dynamics of PI3K and AKT1 during cell cycle progression are highly nonlinear. In addition to negative feedback that curtails their activity, protein expression of PI3K subunits has been shown to oscillate in dividing cells. The low-PI3K/low-AKT1 phase of these oscillations is required for cytokinesis, indicating that oncogenic PI3K may directly contribute to genome duplication. To explore this, we construct a Boolean model of growth factor signaling that can reproduce PI3K oscillations and link them to cell cycle progression and apoptosis. The resulting modular model reproduces hyperactive PI3K-driven cytokinesis failure and genome duplication and predicts the molecular drivers responsible for these failures by linking hyperactive PI3K to mis-regulation of Polo-like kinase 1 (Plk1) expression late in G2. To do this, our model captures the role of Plk1 in cell cycle progression and accurately reproduces multiple effects of its loss: G2 arrest, mitotic catastrophe, chromosome mis-segregation / aneuploidy due to premature anaphase, and cytokinesis failure leading to genome duplication, depending on the timing of Plk1 inhibition along the cell cycle. Finally, we offer testable predictions on the molecular drivers of PI3K oscillations, the timing of these oscillations with respect to division, and the role of altered Plk1 and FoxO activity in genome-level defects caused by hyperactive PI3K. Our model is an important starting point for the predictive modeling of cell fate decisions that include AKT1-driven senescence, as well as the non-intuitive effects of drugs that interfere with mitosis.
Collapse
Affiliation(s)
- Herbert Sizek
- Biochemistry and Molecular Biology, The College of Wooster, Wooster, OH, United States of America
| | - Andrew Hamel
- Biochemistry and Molecular Biology, The College of Wooster, Wooster, OH, United States of America
| | - Dávid Deritei
- Department of Physics, Pennsylvania State University, State College, PA, United States of America
- Department of Network and Data Science, Central European University, Budapest, Hungary
| | - Sarah Campbell
- Biochemistry and Molecular Biology, The College of Wooster, Wooster, OH, United States of America
| | - Erzsébet Ravasz Regan
- Biochemistry and Molecular Biology, The College of Wooster, Wooster, OH, United States of America
| |
Collapse
|
37
|
Tharmalingam S, Sreetharan S, Brooks AL, Boreham DR. Re-evaluation of the linear no-threshold (LNT) model using new paradigms and modern molecular studies. Chem Biol Interact 2019; 301:54-67. [PMID: 30763548 DOI: 10.1016/j.cbi.2018.11.013] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 11/13/2018] [Accepted: 11/22/2018] [Indexed: 02/06/2023]
Abstract
The linear no-threshold (LNT) model is currently used to estimate low dose radiation (LDR) induced health risks. This model lacks safety thresholds and postulates that health risks caused by ionizing radiation is directly proportional to dose. Therefore even the smallest radiation dose has the potential to cause an increase in cancer risk. Advances in LDR biology and cell molecular techniques demonstrate that the LNT model does not appropriately reflect the biology or the health effects at the low dose range. The main pitfall of the LNT model is due to the extrapolation of mutation and DNA damage studies that were conducted at high radiation doses delivered at a high dose-rate. These studies formed the basis of several outdated paradigms that are either incorrect or do not hold for LDR doses. Thus, the goal of this review is to summarize the modern cellular and molecular literature in LDR biology and provide new paradigms that better represent the biological effects in the low dose range. We demonstrate that LDR activates a variety of cellular defense mechanisms including DNA repair systems, programmed cell death (apoptosis), cell cycle arrest, senescence, adaptive memory, bystander effects, epigenetics, immune stimulation, and tumor suppression. The evidence presented in this review reveals that there are minimal health risks (cancer) with LDR exposure, and that a dose higher than some threshold value is necessary to achieve the harmful effects classically observed with high doses of radiation. Knowledge gained from this review can help the radiation protection community in making informed decisions regarding radiation policy and limits.
Collapse
Affiliation(s)
- Sujeenthar Tharmalingam
- Northern Ontario School of Medicine, Laurentian University, 935 Ramsey Lake Rd, Sudbury, ON, P3E 2C6, Canada.
| | - Shayenthiran Sreetharan
- Department of Medical Physics and Applied Radiation Sciences, McMaster University, 1280 Main Street W, Hamilton ON, L8S 4K1, Canada
| | - Antone L Brooks
- Environmental Science, Washington State University, Richland, WA, USA
| | - Douglas R Boreham
- Northern Ontario School of Medicine, Laurentian University, 935 Ramsey Lake Rd, Sudbury, ON, P3E 2C6, Canada; Bruce Power, Tiverton, ON(3), UK.
| |
Collapse
|
38
|
Baselet B, Sonveaux P, Baatout S, Aerts A. Pathological effects of ionizing radiation: endothelial activation and dysfunction. Cell Mol Life Sci 2019; 76:699-728. [PMID: 30377700 PMCID: PMC6514067 DOI: 10.1007/s00018-018-2956-z] [Citation(s) in RCA: 157] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 10/19/2018] [Accepted: 10/23/2018] [Indexed: 01/13/2023]
Abstract
The endothelium, a tissue that forms a single layer of cells lining various organs and cavities of the body, especially the heart and blood as well as lymphatic vessels, plays a complex role in vascular biology. It contributes to key aspects of vascular homeostasis and is also involved in pathophysiological processes, such as thrombosis, inflammation, and hypertension. Epidemiological data show that high doses of ionizing radiation lead to cardiovascular disease over time. The aim of this review is to summarize the current knowledge on endothelial cell activation and dysfunction after ionizing radiation exposure as a central feature preceding the development of cardiovascular diseases.
Collapse
Affiliation(s)
- Bjorn Baselet
- Radiobiology Unit, Belgian Nuclear Research Centre (SCK•CEN), Mol, Belgium
- Institute of Experimental and Clinical Research (IREC), Pole of Pharmacology and Therapeutics, Université catholique de Louvain (UCL), Brussels, Belgium
| | - Pierre Sonveaux
- Institute of Experimental and Clinical Research (IREC), Pole of Pharmacology and Therapeutics, Université catholique de Louvain (UCL), Brussels, Belgium
| | - Sarah Baatout
- Radiobiology Unit, Belgian Nuclear Research Centre (SCK•CEN), Mol, Belgium
- Department of Molecular Biotechnology, Ghent University, Ghent, Belgium
| | - An Aerts
- Radiobiology Unit, Belgian Nuclear Research Centre (SCK•CEN), Mol, Belgium.
| |
Collapse
|
39
|
Yang HW, Hong HL, Luo WW, Dai CM, Chen XY, Wang LP, Li Q, Li ZQ, Liu PQ, Li ZM. mTORC2 facilitates endothelial cell senescence by suppressing Nrf2 expression via the Akt/GSK-3β/C/EBPα signaling pathway. Acta Pharmacol Sin 2018; 39:1837-1846. [PMID: 29991711 DOI: 10.1038/s41401-018-0079-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Accepted: 06/18/2018] [Indexed: 02/07/2023]
Abstract
Vascular endothelial cell senescence is a leading cause of age-associated and vascular diseases. Mammalian target of rapamycin complex 2 (mTORC2) is a conserved serine/threonine (Ser/Thr) protein kinase that plays an important regulatory role in various cellular processes. However, its impact on endothelial senescence remains controversial. In this study we investigated the role and molecular mechanisms of mTORC2 in endothelial senescence. A replicative senescence model and H2O2-induced premature senescence model were established in primary cultured human umbilical vein endothelial cells (HUVECs). In these senescence models, the formation and activation of mTORC2 were significantly increased, evidenced by the increases in binding of Rictor (the essential component of mTORC2) to mTOR, phosphorylation of mTOR at Ser2481 and phosphorylation of Akt (the effector of mTORC2) at Ser473. Knockdown of Rictor or treatment with the Akt inhibitor MK-2206 attenuated senescence-associated β-galactosidase (β-gal) staining and expression of p53 and p21 proteins in the senescent endothelial cells, suggesting that mTORC2/Akt facilitates endothelial senescence. The effect of mTORC2/Akt on endothelial senescence was due to suppression of nuclear factor erythroid 2-related factor 2 (Nrf2) at the transcriptional level, since knockdown of Rictor reversed the reduction of Nrf2 mRNA expression in endothelial senescence. Furthermore, mTORC2 suppressed the expression of Nrf2 via the Akt/GSK-3β/C/EBPα signaling pathway. These results suggest that the mTORC2/Akt/GSK-3β/C/EBPα/Nrf2 signaling pathway is involved in both replicative and inducible endothelial senescence. The deleterious role of mTORC2 in endothelial cell senescence suggests therapeutic strategies (targeting mTORC2) for aging-associated diseases and vascular diseases.
Collapse
|
40
|
Tang FR, Loganovsky K. Low dose or low dose rate ionizing radiation-induced health effect in the human. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2018; 192:32-47. [PMID: 29883875 DOI: 10.1016/j.jenvrad.2018.05.018] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 05/28/2018] [Indexed: 06/08/2023]
Abstract
The extensive literature review on human epidemiological studies suggests that low dose ionizing radiation (LDIR) (≤100 mSv) or low dose rate ionizing radiation (LDRIR) (<6mSv/H) exposure could induce either negative or positive health effects. These changes may depend on genetic background, age (prenatal day for embryo), sex, nature of radiation exposure, i.e., acute or chronic irradiation, radiation sources (such as atomic bomb attack, fallout from nuclear weapon test, nuclear power plant accidents, 60Co-contaminated building, space radiation, high background radiation, medical examinations or procedures) and radionuclide components and human epidemiological experimental designs. Epidemiological and clinical studies show that LDIR or LDRIR exposure may induce cancer, congenital abnormalities, cardiovascular and cerebrovascular diseases, cognitive and other neuropsychiatric disorders, cataracts and other eye and somatic pathology (endocrine, bronchopulmonary, digestive, etc). LDIR or LDRIR exposure may also reduce mutation and cancer mortality rates. So far, the mechanisms of LDIR- or LDRIR -induced health effect are poorly understood. Further extensive studies are still needed to clarify under what circumstances, LDIR or LDRIR exposure may induce positive or negative effects, which may facilitate development of new therapeutic approaches to prevent or treat the radiation-induced human diseases or enhance radiation-induced positive health effect.
Collapse
Affiliation(s)
- Feng Ru Tang
- Singapore Nuclear Research and Safety Initiative, National University of Singapore, 138602, Singapore.
| | - Konstantin Loganovsky
- Radiation Psychoneurology Department, Institute of Clinical Radiology, State Institution "National Research Centre for Radiation Medicne, National Academy of Medical Sciences of Ukraine", 53 Melnikov Str., Kyiv, 04050, Ukraine
| |
Collapse
|
41
|
Venkatesulu BP, Mahadevan LS, Aliru ML, Yang X, Bodd MH, Singh PK, Yusuf SW, Abe JI, Krishnan S. Radiation-Induced Endothelial Vascular Injury: A Review of Possible Mechanisms. JACC Basic Transl Sci 2018; 3:563-572. [PMID: 30175280 PMCID: PMC6115704 DOI: 10.1016/j.jacbts.2018.01.014] [Citation(s) in RCA: 191] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 10/08/2017] [Accepted: 01/24/2018] [Indexed: 12/24/2022]
Abstract
In radiation therapy for cancer, the therapeutic ratio represents an optimal balance between tumor control and normal tissue complications. As improvements in the therapeutic arsenal against cancer extend longevity, the importance of late effects of radiation increases, particularly those caused by vascular endothelial injury. Radiation both initiates and accelerates atherosclerosis, leading to vascular events like stroke, coronary artery disease, and peripheral artery disease. Increased levels of proinflammatory cytokines in the blood of long-term survivors of the atomic bomb suggest that radiation evokes a systemic inflammatory state responsible for chronic vascular side effects. In this review, the authors offer an overview of potential mechanisms implicated in radiation-induced vascular injury.
Collapse
Key Words
- ATM, ataxia telangiectasia mutated
- CD, cluster of differentiation
- EC, endothelial cell
- HUVEC, human umbilical vein endothelial cell
- IGF, insulin-like growth factor
- IGFBP, insulin-like growth factor binding protein
- LDL, low-density lipoprotein
- MAPK, mitogen-activated protein kinase
- NEMO, nuclear factor kappa B essential modulator
- NF-κB, nuclear factor-kappa beta
- ROS, reactive oxygen species
- SEK1, stress-activated protein kinase 1
- TNF, tumor necrosis factor
- XIAP, X-linked inhibitor of apoptosis
- angiogenesis
- apoptosis
- cytokines
- mTOR, mammalian target of rapamycin
- senescence
Collapse
Affiliation(s)
- Bhanu Prasad Venkatesulu
- Department of Experimental Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Lakshmi Shree Mahadevan
- Department of Experimental Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Maureen L Aliru
- Department of Experimental Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Xi Yang
- Department of Experimental Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Monica Himaani Bodd
- Department of Experimental Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Pankaj K Singh
- Department of Experimental Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Syed Wamique Yusuf
- Department of Cardiology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jun-Ichi Abe
- Department of Cardiology, University of Texas MD Anderson Cancer Center, Houston, Texas.,Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, Texas
| | - Sunil Krishnan
- Department of Experimental Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas.,Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
42
|
Nguyen HQ, To NH, Zadigue P, Kerbrat S, De La Taille A, Le Gouvello S, Belkacemi Y. Ionizing radiation-induced cellular senescence promotes tissue fibrosis after radiotherapy. A review. Crit Rev Oncol Hematol 2018; 129:13-26. [PMID: 30097231 DOI: 10.1016/j.critrevonc.2018.06.012] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Revised: 06/08/2018] [Accepted: 06/15/2018] [Indexed: 02/06/2023] Open
Abstract
Ionizing radiation-exposure induces a variety of cellular reactions, such as senescence and apoptosis. Senescence is a permanent arrest state of the cell division, which can be beneficial or detrimental for normal tissue via an inflammatory response and senescence-associated secretion phenotype. Damage to healthy cells and their microenvironment is considered as an important source of early and late complications with an increased risk of morbidity in patients after radiotherapy (RT). In addition, the benefit/risk ratio may depend on the radiation technique/dose used for cancer eradication and the irradiated volume of healthy tissues. For radiation-induced fibrosis risk, the knowledge of mechanisms and potential prevention has become a crucial point to determining radiation parameters and patients' intrinsic radiosensitivity. This review summarizes our understanding of ionizing radiation-induced senescent cell in fibrogenesis. This mechanism may provide new insights for therapeutic modalities for better risk/benefit ratios after RT in the new era of personalized treatments.
Collapse
Affiliation(s)
- Hoang Quy Nguyen
- University of Paris Saclay, University of Paris Est Créteil (UPEC), France, University of Medicine and Pharmacy, Ho Chi Minh City, Viet Nam; INSERM U955 Team 07, Créteil, France
| | - Nhu Hanh To
- INSERM U955 Team 07, Créteil, France; APHP, Department of Radiation Oncology and Henri Mondor Breast Cancer and, Henri Mondor University Hospital, University of Paris Est Créteil (UPEC), France
| | | | - Stéphane Kerbrat
- INSERM U955 Team 04, University of Paris Est Créteil (UPEC), France
| | - Alexandre De La Taille
- INSERM U955 Team 07, Créteil, France; APHP, Department of Urology, Henri Mondor University Hospital, University of Paris Est Créteil (UPEC), Créteil, France
| | - Sabine Le Gouvello
- INSERM U955 Team 04, University of Paris Est Créteil (UPEC), France; APHP, Department of Biology & Pathology, Henri Mondor University Hospital, University of Paris Est Créteil (UPEC), Créteil, France
| | - Yazid Belkacemi
- INSERM U955 Team 07, Créteil, France; APHP, Department of Radiation Oncology and Henri Mondor Breast Cancer and, Henri Mondor University Hospital, University of Paris Est Créteil (UPEC), France.
| |
Collapse
|
43
|
Averbeck D, Salomaa S, Bouffler S, Ottolenghi A, Smyth V, Sabatier L. Progress in low dose health risk research. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2018; 776:46-69. [DOI: 10.1016/j.mrrev.2018.04.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 04/11/2018] [Accepted: 04/12/2018] [Indexed: 12/11/2022]
|
44
|
Ionizing radiation reduces ADAM10 expression in brain microvascular endothelial cells undergoing stress-induced senescence. Aging (Albany NY) 2018; 9:1248-1268. [PMID: 28437250 PMCID: PMC5425125 DOI: 10.18632/aging.101225] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Accepted: 04/10/2017] [Indexed: 12/15/2022]
Abstract
Cellular senescence is associated with aging and is considered a potential contributor to age-associated neurodegenerative disease. Exposure to ionizing radiation increases the risk of developing premature neurovascular degeneration and dementia but also induces premature senescence. As cells of the cerebrovascular endothelium are particularly susceptible to radiation and play an important role in brain homeostasis, we investigated radiation-induced senescence in brain microvascular endothelial cells (EC). Using biotinylation to label surface proteins, streptavidin enrichment and proteomic analysis, we analyzed the surface proteome of stress-induced senescent EC in culture. An array of both recognized and novel senescence-associated proteins were identified. Most notably, we identified and validated the novel radiation-stimulated down-regulation of the protease, a disintegrin and metalloprotease 10 (ADAM10). ADAM10 is an important modulator of amyloid beta protein production, accumulation of which is central to the pathologies of Alzheimer's disease and cerebral amyloid angiopathy. Concurrently, we identified and validated increased surface expression of ADAM10 proteolytic targets with roles in neural proliferation and survival, inflammation and immune activation (L1CAM, NEO1, NEST, TLR2, DDX58). ADAM10 may be a key molecule linking radiation, senescence and endothelial dysfunction with increased risk of premature neurodegenerative diseases normally associated with aging.
Collapse
|
45
|
Gu Z, Tan W, Ji J, Feng G, Meng Y, Da Z, Guo G, Xia Y, Zhu X, Shi G, Cheng C. Rapamycin reverses the senescent phenotype and improves immunoregulation of mesenchymal stem cells from MRL/lpr mice and systemic lupus erythematosus patients through inhibition of the mTOR signaling pathway. Aging (Albany NY) 2017; 8:1102-14. [PMID: 27048648 PMCID: PMC4931856 DOI: 10.18632/aging.100925] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 02/13/2016] [Indexed: 12/22/2022]
Abstract
We have shown that bone marrow (BM)-derived mesenchymal stem cells (BM-MSCs) from SLE patients exhibit senescent behavior and are involved in the pathogenesis of SLE. The aim of this study was to investigate the effects of rapamycin (RAPA) on the senescences and immunoregulatory ability of MSCs of MRL/lpr mice and SLE patients and the underlying mechanisms. Cell morphology, senescence associated β-galactosidase (SA-β-gal) staining, F-actin staining were used to detect the senescence of cells. BM-MSCs and purified CD4+ T cells were co-cultured indirectly. Flow cytometry was used to inspect the proportion of regulatory T (Treg) /T helper type 17 (Th17). We used small interfering RNA (siRNA) to interfere the expression of mTOR, and detect the effects by RT-PCR, WB and immunofluorescence. Finally, 1×106 of SLE BM-MSCs treated with RAPA were transplanted to cure the 8 MRL/lpr mice aged 16 weeks for 12 weeks. We demonstrated that RAPA alleviated the clinical symptoms of lupus nephritis and prolonged survival in MRL/lpr mice. RAPA reversed the senescent phenotype and improved immunoregulation of MSCs from MRL/lpr mice and SLE patients through inhibition of the mTOR signaling pathway. Marked therapeutic effects were observed in MRL/lpr mice following transplantation of BM-MSCs from SLE patients pretreated with RAPA.
Collapse
Affiliation(s)
- Zhifeng Gu
- Department of Rheumatology, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province 226001, China
| | - Wei Tan
- Department of Rheumatology, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province 226001, China.,Department of Emergency Medicine, The Yangzhou First People's Hospital, Yangzhou, Jiangsu Province 225001, China
| | - Juan Ji
- Department of Rheumatology, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province 226001, China
| | - Guijian Feng
- Department of Stomatology, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province 226001, China
| | - Yan Meng
- Department of Rheumatology, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province 226001, China
| | - Zhanyun Da
- Department of Rheumatology, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province 226001, China
| | - Genkai Guo
- Department of Rheumatology, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province 226001, China
| | - Yunfei Xia
- Department of Rheumatology, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province 226001, China
| | - Xinhang Zhu
- Department of Rheumatology, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province 226001, China
| | - Guixiu Shi
- Department of Rheumatology, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province 226001, China.,Department of Rheumatology, Affiliated First Hospital of Xiamen University, Xiamen, Fujian Province 361000, China
| | - Chun Cheng
- Department of Rheumatology, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province 226001, China.,Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Medical College of Nantong University, Nantong, Jiangsu Province 226001, China
| |
Collapse
|
46
|
Abstract
National space agencies and private corporations aim at an extended presence of humans in space in the medium to long term. Together with currently suboptimal technology, microgravity and cosmic rays raise health concerns about deep-space exploration missions. Both of these physical factors affect the cardiovascular system, whose gravity-dependence is pronounced. Heart and vascular function are, therefore, susceptible to substantial changes in weightlessness. The altered cardiovascular function in space causes physiological problems in the postflight period. A compromised cardiovascular system can be excessively vulnerable to space radiation, synergistically resulting in increased damage. The space radiation dose is significantly lower than in patients undergoing radiotherapy, in whom cardiac damage is well-documented following cancer therapy in the thoracic region. Nevertheless, epidemiological findings suggest an increased risk of late cardiovascular disease even with low doses of radiation. Moreover, the peculiar biological effectiveness of heavy ions in cosmic rays might increase this risk substantially. However, whether radiation-induced cardiovascular effects have a threshold at low doses is still unclear. The main countermeasures to mitigate the effect of the space environment on cardiac function are physical exercise, antioxidants, nutraceuticals, and radiation shielding.
Collapse
|
47
|
Azimzadeh O, Tapio S. Proteomics landscape of radiation-induced cardiovascular disease: somewhere over the paradigm. Expert Rev Proteomics 2017; 14:987-996. [PMID: 28976223 DOI: 10.1080/14789450.2017.1388743] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
INTRODUCTION Epidemiological studies clearly show that thoracic or whole body exposure to ionizing radiation increases the risk of cardiac morbidity and mortality. Radiation-induced cardiovascular disease (CVD) has been intensively studied during the last ten years but the underlying molecular mechanisms are still poorly understood. Areas covered: Heart proteomics is a powerful tool holding promise for the future research. The central focus of this review is to compare proteomics data on radiation-induced CVD with data arising from proteomics of healthy and diseased cardiac tissue in general. In this context we highlight common and unique features of radiation-related and other heart pathologies. Future prospects and challenges of the field are discussed. Expert commentary: Data from comprehensive cardiac proteomics have deepened the knowledge of molecular mechanisms involved in radiation-induced cardiac dysfunction. State-of-the-art proteomics has the potential to identify novel diagnostic and therapeutic markers of this disease.
Collapse
Affiliation(s)
- Omid Azimzadeh
- a Institute of Radiation Biology , Helmholtz Zentrum München, German Research Center for Environmental Health GmbH , Neuherberg , Germany
| | - Soile Tapio
- a Institute of Radiation Biology , Helmholtz Zentrum München, German Research Center for Environmental Health GmbH , Neuherberg , Germany
| |
Collapse
|
48
|
Baselet B, Azimzadeh O, Erbeldinger N, Bakshi MV, Dettmering T, Janssen A, Ktitareva S, Lowe DJ, Michaux A, Quintens R, Raj K, Durante M, Fournier C, Benotmane MA, Baatout S, Sonveaux P, Tapio S, Aerts A. Differential Impact of Single-Dose Fe Ion and X-Ray Irradiation on Endothelial Cell Transcriptomic and Proteomic Responses. Front Pharmacol 2017; 8:570. [PMID: 28993729 PMCID: PMC5622284 DOI: 10.3389/fphar.2017.00570] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 08/09/2017] [Indexed: 12/12/2022] Open
Abstract
Background and Purpose: Radiotherapy is an essential tool for cancer treatment. In order to spare normal tissues and to reduce the risk of normal tissue complications, particle therapy is a method of choice. Although a large part of healthy tissues can be spared due to improved depth dose characteristics, little is known about the biological and molecular mechanisms altered after particle irradiation in healthy tissues. Elucidation of these effects is also required in the context of long term space flights, as particle radiation is the main contributor to the radiation effects observed in space. Endothelial cells (EC), forming the inner layer of all vascular structures, are especially sensitive to irradiation and, if damaged, contribute to radiation-induced cardiovascular disease. Materials and Methods: Transcriptomics, proteomics and cytokine analyses were used to compare the response of ECs irradiated or not with a single 2 Gy dose of X-rays or Fe ions measured one and 7 days post-irradiation. To support the observed inflammatory effects, monocyte adhesion on ECs was also assessed. Results: Experimental data indicate time- and radiation quality-dependent changes of the EC response to irradiation. The irradiation impact was more pronounced and longer lasting for Fe ions than for X-rays. Both radiation qualities decreased the expression of genes involved in cell-cell adhesion and enhanced the expression of proteins involved in caveolar mediated endocytosis signaling. Endothelial inflammation and adhesiveness were increased with X-rays, but decreased after Fe ion exposure. Conclusions: Fe ions induce pro-atherosclerotic processes in ECs that are different in nature and kinetics than those induced by X-rays, highlighting radiation quality-dependent differences which can be linked to the induction and progression of cardiovascular diseases (CVD). Our findings give a better understanding of the underlying processes triggered by particle irradiation in ECs, a crucial aspect for the development of protective measures for cancer patients undergoing particle therapy and for astronauts in space.
Collapse
Affiliation(s)
- Bjorn Baselet
- Radiobiology Unit, Institute for Environment, Health and Safety, Belgian Nuclear Research Centre (SCK•CEN)Mol, Belgium.,Pole of Pharmacology and Therapeutics, Institut de Recherche Expérimentale et Clinique, Université catholique de LouvainBrussels, Belgium
| | - Omid Azimzadeh
- Institute of Radiation Biology, Helmholtz Zentrum Munich, German Research Center for Environmental HealthMunich, Germany
| | - Nadine Erbeldinger
- GSI Helmholtz Centre for Heavy Ion ResearchDarmstadt, Germany.,Technical University DarmstadtDarmstadt, Germany
| | - Mayur V Bakshi
- Institute of Radiation Biology, Helmholtz Zentrum Munich, German Research Center for Environmental HealthMunich, Germany
| | - Till Dettmering
- GSI Helmholtz Centre for Heavy Ion ResearchDarmstadt, Germany
| | - Ann Janssen
- Radiobiology Unit, Institute for Environment, Health and Safety, Belgian Nuclear Research Centre (SCK•CEN)Mol, Belgium
| | | | - Donna J Lowe
- Department of Radiation Effects, Centre for Radiation, Chemical and Environmental Hazards, Public Health EnglandDidcot, United Kingdom
| | - Arlette Michaux
- Radiobiology Unit, Institute for Environment, Health and Safety, Belgian Nuclear Research Centre (SCK•CEN)Mol, Belgium
| | - Roel Quintens
- Radiobiology Unit, Institute for Environment, Health and Safety, Belgian Nuclear Research Centre (SCK•CEN)Mol, Belgium
| | - Kenneth Raj
- Department of Radiation Effects, Centre for Radiation, Chemical and Environmental Hazards, Public Health EnglandDidcot, United Kingdom
| | - Marco Durante
- GSI Helmholtz Centre for Heavy Ion ResearchDarmstadt, Germany.,Technical University DarmstadtDarmstadt, Germany
| | | | - Mohammed A Benotmane
- Radiobiology Unit, Institute for Environment, Health and Safety, Belgian Nuclear Research Centre (SCK•CEN)Mol, Belgium
| | - Sarah Baatout
- Radiobiology Unit, Institute for Environment, Health and Safety, Belgian Nuclear Research Centre (SCK•CEN)Mol, Belgium.,Department of Molecular Biotechnology, Ghent UniversityGhent, Belgium
| | - Pierre Sonveaux
- Pole of Pharmacology and Therapeutics, Institut de Recherche Expérimentale et Clinique, Université catholique de LouvainBrussels, Belgium
| | - Soile Tapio
- Institute of Radiation Biology, Helmholtz Zentrum Munich, German Research Center for Environmental HealthMunich, Germany
| | - An Aerts
- Radiobiology Unit, Institute for Environment, Health and Safety, Belgian Nuclear Research Centre (SCK•CEN)Mol, Belgium
| |
Collapse
|
49
|
Philipp J, Azimzadeh O, Subramanian V, Merl-Pham J, Lowe D, Hladik D, Erbeldinger N, Ktitareva S, Fournier C, Atkinson MJ, Raj K, Tapio S. Radiation-Induced Endothelial Inflammation Is Transferred via the Secretome to Recipient Cells in a STAT-Mediated Process. J Proteome Res 2017; 16:3903-3916. [PMID: 28849662 DOI: 10.1021/acs.jproteome.7b00536] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Radiation is the most common treatment of cancer. Minimizing the normal tissue injury, especially the damage to vascular endothelium, remains a challenge. This study aimed to analyze direct and indirect radiation effects on the endothelium by investigating mechanisms of signal transfer from irradiated to nonirradiated endothelial cells by means of secreted proteins. Human coronary artery endothelial cells (HCECest2) undergo radiation-induced senescence in vitro 14 days after exposure to 10 Gy X-rays. Proteomics analysis was performed on HCECest2 14 days after irradiation with X-ray doses of 0 Gy (control) or 10 Gy using label-free technology. Additionally, the proteomes of control and radiation-induced secretomes, and those of nonirradiated HCECest2 exposed for 24 h to secreted proteins of either condition were measured. Key changes identified by proteomics and bioinformatics were validated by immunoblotting, ELISA, bead-based multiplex assays, and targeted transcriptomics. The irradiated cells, their secretome, and the nonirradiated recipient cells showed similar inflammatory response, characterized by induction of interferon type I-related proteins and activation of the STAT3 pathway. These data indicate that irradiated endothelial cells may adversely affect nonirradiated surrounding cells via senescence-associated secretory phenotype. This study adds to our knowledge of the pathological background of radiation-induced cardiovascular disease.
Collapse
Affiliation(s)
- Jos Philipp
- Helmholtz Zentrum München - German Research Center for Environmental Health GmbH, Institute of Radiation Biology , D-85764 Neuherberg, Germany
| | - Omid Azimzadeh
- Helmholtz Zentrum München - German Research Center for Environmental Health GmbH, Institute of Radiation Biology , D-85764 Neuherberg, Germany
| | - Vikram Subramanian
- Helmholtz Zentrum München - German Research Center for Environmental Health GmbH, Institute of Radiation Biology , D-85764 Neuherberg, Germany
| | - Juliane Merl-Pham
- Helmholtz Zentrum München - German Research Centre for Environmental Health, Research Unit Protein Science , D-80939 Munich, Germany
| | - Donna Lowe
- Biological Effects Department, Centre for Radiation, Chemicals and Environmental Hazards, Public Health England , OX11 0RQ Chilton, United Kingdom
| | - Daniela Hladik
- Helmholtz Zentrum München - German Research Center for Environmental Health GmbH, Institute of Radiation Biology , D-85764 Neuherberg, Germany
| | - Nadine Erbeldinger
- GSI Helmholtz Zentrum für Schwerionenforschung , 64291 Darmstadt, Germany
| | - Svetlana Ktitareva
- GSI Helmholtz Zentrum für Schwerionenforschung , 64291 Darmstadt, Germany
| | - Claudia Fournier
- GSI Helmholtz Zentrum für Schwerionenforschung , 64291 Darmstadt, Germany
| | - Michael J Atkinson
- Helmholtz Zentrum München - German Research Center for Environmental Health GmbH, Institute of Radiation Biology , D-85764 Neuherberg, Germany
| | - Ken Raj
- Biological Effects Department, Centre for Radiation, Chemicals and Environmental Hazards, Public Health England , OX11 0RQ Chilton, United Kingdom
| | - Soile Tapio
- Helmholtz Zentrum München - German Research Center for Environmental Health GmbH, Institute of Radiation Biology , D-85764 Neuherberg, Germany
| |
Collapse
|
50
|
Azimzadeh O, Subramanian V, Ständer S, Merl-Pham J, Lowe D, Barjaktarovic Z, Moertl S, Raj K, Atkinson MJ, Tapio S. Proteome analysis of irradiated endothelial cells reveals persistent alteration in protein degradation and the RhoGDI and NO signalling pathways. Int J Radiat Biol 2017; 93:920-928. [DOI: 10.1080/09553002.2017.1339332] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Omid Azimzadeh
- Institute of Radiation Biology, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Neuherberg, Germany
| | - Vikram Subramanian
- Institute of Radiation Biology, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Neuherberg, Germany
| | - Susanne Ständer
- Institute of Radiation Biology, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Neuherberg, Germany
| | - Juliane Merl-Pham
- Research Unit Protein Science, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, München, Germany
| | - Donna Lowe
- Biological Effects Department, Centre for Radiation, Chemicals and Environmental Hazards, Public Health England, Chilton, Didcot, UK
| | - Zarko Barjaktarovic
- Institute of Radiation Biology, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Neuherberg, Germany
| | - Simone Moertl
- Institute of Radiation Biology, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Neuherberg, Germany
| | - Ken Raj
- Biological Effects Department, Centre for Radiation, Chemicals and Environmental Hazards, Public Health England, Chilton, Didcot, UK
| | - Michael J. Atkinson
- Institute of Radiation Biology, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Neuherberg, Germany
- Radiation Biology, Technical University Munich, Munich, Germany
| | - Soile Tapio
- Institute of Radiation Biology, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Neuherberg, Germany
| |
Collapse
|