1
|
Ibrahim A, Odeh M, Mallah E, Abu-Qatouseh L, Awaad AA, Ahmad MIA, Shdifat A, Saleh S, Al Hyari M, Khadra I, Omari KW, Arafat T. Genetic analysis: Therapeutic drug monitoring of metformin and glimepiride on diabetic patients' plasma including genetic polymorphism. J Adv Pharm Technol Res 2024; 15:150-155. [PMID: 39290535 PMCID: PMC11404435 DOI: 10.4103/japtr.japtr_99_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/09/2024] [Accepted: 04/10/2024] [Indexed: 09/19/2024] Open
Abstract
Diabetes is a widespread disease that needs to be controlled. Therapeutic monitoring of drugs is very helpful in maintaining desirable doses. To study a correlation between the blood level of metformin (to a lesser extent, glimepiride) and genotyping (mainly the SULT1A1 genotype). Determine drug levels using a validated liquid chromatography-tandem mass spectrometry (LC-MS/MS) tool. A validated LC-MS/MS method was developed to determine metformin and glimepiride levels in human plasma. DNA extraction was performed using Jena Bioscience's Blood DNA preparation, in which a column kit was used to extract DNA for genetic polymorphism. The investigation was carried out using both medications in type 2 diabetes patients alongside the genetic polymorphism. One hundred and six patients were assessed. The prevalence of homozygosity for SULT1A1 and wild-type CYP2D6 * 4 were 72.6% and 73.6%, respectively. After adjustment for daily intake of metformin, three patients out of five with the highest levels of metformin had no homozygosity (SULT1A1 genotype). Statistically, variables that demonstrated an insignificant correlation with the level of metformin were body mass index (rs (87) = 0.32, P = 0.011) and age (rs (87) =0.26, P = 0.017). The homozygous (SULT1A1 genotype) correlation was moderate (rs (87) =0.21, P = 0.052). According to the findings, patients with the wt/wt CYP2D6 genotype had considerably greater levels of endoxifen than those with the v/v CYP2D6 genotype. The study's results reported a probable correlation between the blood level of metformin (to a lesser extent, glimepiride) and genotyping (mainly the SULT1A1 genotype). Genotype-guided drug therapy may provide a novel contribution to maximize drug efficacy and/or minimize toxicity.
Collapse
Affiliation(s)
- Areen Ibrahim
- Faculty of Pharmacy and Medical Sciences, University of Petra, Amman, Jordan
| | - Mohanad Odeh
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmaceutical Sciences, The Hashemite University, Zarqa, Jordan
| | - Eyad Mallah
- Faculty of Pharmacy and Medical Sciences, University of Petra, Amman, Jordan
| | - Luay Abu-Qatouseh
- Faculty of Pharmacy and Medical Sciences, University of Petra, Amman, Jordan
| | | | - Mohammad I A Ahmad
- Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Amjad Shdifat
- Department of Medicine and Family Medicine, Faculty of Medicine, The Hashemite University, Zarqa, Jordan
| | - Soadad Saleh
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, Scotland, United Kingdom
| | - Muwafaq Al Hyari
- Center of Diabetes and Endocrinology, Diabetic Center, Prince Hamza Hospital, Amman, Jordan
| | - Ibrahim Khadra
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, Scotland, United Kingdom
| | - Khaled W Omari
- College of Engineering and Technology, American University of The Middle East, Kuwait, Jordan
| | - Tawfiq Arafat
- Jordan Center for Pharmaceutical Research, Amman, Jordan
| |
Collapse
|
2
|
El Desoky ES, Taha AF, Mousa HS, Ibrahim A, Saleh MA, Abdelrady MA, Hareedy MS. Value of therapeutic drug monitoring of endoxifen in Egyptian premenopausal patients with breast cancer given tamoxifen adjuvant therapy: A pilot study. J Oncol Pharm Pract 2023; 29:1673-1686. [PMID: 36567618 DOI: 10.1177/10781552221146531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
BACKGROUND The complex metabolic profile of tamoxifen anticancer drug and polymorphism in its metabolizing enzymes particularly CYP2D6 contribute to the high-observed inter-individual variability in its main active metabolite endoxifen. Therapeutic drug monitoring of endoxifen may play a key role in optimizing tamoxifen therapy, and control of both adverse effects and cancer recurrence. This pilot study aims to assess the clinical benefits of applying endoxifen measurement during tamoxifen therapy in patients with breast cancer. METHODS Adult premenopausal breast cancer patients ≥ 18 years who received tamoxifen at a fixed dose of 20 mg daily were included. The primary endpoint was to identify the inter-subject variability in serum concentration of the drug and its metabolites especially endoxifen, through fixation of the tamoxifen dose. The secondary endpoint was to check the correlation between endoxifen metabolite concentration and the development of tamoxifen's adverse effects and cancer recurrence. RESULTS Sixty patients were included in the study with a mean age of 38.4 ± 0.6 years (range: 26-50). The mean concentration of tamoxifen and endoxifen was 181 ± 9.6 ng/mL and 31.49 ng/mL, respectively. The inter-individual variability in concentrations for the drug and its active metabolite as estimated by the coefficient of variation percentage was in 41% and 31%, respectively. Cancer recurrence was observed in a group of patients (n = 16) with an average endoxifen level of 24.48 ng/mL. Another group of patients (n = 25) developed different tamoxifen adverse effects including hot flashes, vaginal bleeding, endometrial thickness, and ovarian cysts with the average endoxifen level of 38.61 ng/mL. The rest of the patients (n = 19) who responded smoothly to the drug with no complications had an average endoxifen level of 31.37 ng/mL. Analysis of variance test showed a significant difference in endoxifen levels between the three groups (p = 0.002). CONCLUSION The measurement of the endoxifen active metabolite of tamoxifen in breast cancer patients can help dose optimization in light of the observed wide inter-individual variability in drug fixed-dose related concentration of the metabolite. Monitoring of serum concentration of endoxifen can help to reveal, reduce and control tamoxifen's adverse effects and cancer recurrence.
Collapse
Affiliation(s)
- Ehab S El Desoky
- Department of Pharmacology, Faculty of Medicine, Assiut University, Egypt
| | - Amira F Taha
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Assiut University, Egypt
| | - Heba Salah Mousa
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, South Valley University, Qena, Egypt
| | - Abeer Ibrahim
- Department of Medical Oncology and Hematological Malignancy, South Egypt Cancer Institute, Assiut University, Egypt
| | - Medhat A Saleh
- Department of Public Health and Community Medicine, Faculty of Medicine, Assiut University, Egypt
| | | | | |
Collapse
|
3
|
El Akil S, Elouilamine E, Ighid N, Izaabel EH. Explore the distribution of (rs35742686, rs3892097 and rs1065852) genetic polymorphisms of cytochrome P4502D6 gene in the Moroccan population. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2022. [DOI: 10.1186/s43042-022-00369-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Abstract
Background
The CYP2D6 gene encodes a crucial enzyme involved in the metabolic pathways of many commonly used drugs. It is a highly polymorphic gene inducing an interethnic and interindividual variability in disease susceptibility and treatment response. The aim of this study is to evaluate the frequency of the three CYP2D6 most investigated alleles (CYP2D6*3, CYP2D6*4, and CYP2D6*10 alleles) in Morocco compared to other populations.
This study enrolled 321 healthy Moroccan subjects. CYP2D6 genotypes and allele frequencies were assessed using a restriction fragment length polymorphism–polymerase chain reaction genotyping method. The Principal Component Analysis (PCA) and dendrogram were conducted to evaluate genetic proximity between Moroccans and other populations depending on CYP2D6 allele frequencies.
Results
According to the current study, the results observed the homozygous wild type of the three studied SNPs were predominant among the Moroccan population, while 1.4% of Moroccans carried the CYP2D6*4 allele responsible for a Poor Metabolizer phenotype and associated with low enzyme activity which may induce a treatment failure. The PCA and cluster dendrogram tools revealed genetic proximity between Moroccans and Mediterranean, European and African populations, versus a distancing from Asian populations.
Conclusion
The distribution of CYP2D6 polymorphisms within Morocco follows the patterns generally found among the Mediterranean, European and African populations. Furthermore, these results will help to lay a basis for clinical studies, aimed to introduce and optimize a personalized therapy in the Moroccan population.
Collapse
|
4
|
Isvoran A, Peng Y, Ceauranu S, Schmidt L, Nicot AB, Miteva MA. Pharmacogenetics of human sulfotransferases and impact of amino acid exchange on Phase II drug metabolism. Drug Discov Today 2022; 27:103349. [PMID: 36096358 DOI: 10.1016/j.drudis.2022.103349] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 07/27/2022] [Accepted: 09/06/2022] [Indexed: 11/20/2022]
Abstract
Sulfotransferases (SULTs) are Phase II drug-metabolizing enzymes (DMEs) catalyzing the sulfation of a variety of endogenous compounds, natural products, and drugs. Various drugs, such as nonsteroidal anti-inflammatory drugs (NSAIDS) can inhibit SULTs, affecting drug-drug interactions. Several polymorphisms have been identified for SULTs that might be crucial for interindividual variability in drug response and toxicity or for increased disease risk. Here, we review current knowledge on non-synonymous single nucleotide polymorphisms (nsSNPs) of human SULTs, focusing on the coded SULT allozymes and molecular mechanisms explaining their variable activity, which is essential for personalized medicine. We discuss the structural and dynamic bases of key amino acid (AA) variants implicated in the impacts on drug metabolism in the case of SULT1A1, as revealed by molecular modeling approaches.
Collapse
Affiliation(s)
- Adriana Isvoran
- Department of Biology-Chemistry and Advanced Environmental Research Laboratories, West University of Timisoara, 16 Pestalozzi, 300115 Timisoara, Romania
| | - Yunhui Peng
- INSERM U1268 Medicinal Chemistry and Translational Research, CiTCoM UMR 8038 CNRS - Université Paris Cité, 75006 Paris, France
| | - Silvana Ceauranu
- Department of Biology-Chemistry and Advanced Environmental Research Laboratories, West University of Timisoara, 16 Pestalozzi, 300115 Timisoara, Romania
| | - Leon Schmidt
- Department of Biology-Chemistry and Advanced Environmental Research Laboratories, West University of Timisoara, 16 Pestalozzi, 300115 Timisoara, Romania
| | - Arnaud B Nicot
- INSERM, Nantes Université, Center for Research in Transplantation and Translational Immunology, UMR 1064, F-44000 Nantes, France.
| | - Maria A Miteva
- INSERM U1268 Medicinal Chemistry and Translational Research, CiTCoM UMR 8038 CNRS - Université Paris Cité, 75006 Paris, France.
| |
Collapse
|
5
|
Koubek EJ, Ralya AT, Larson TR, McGovern RM, Buhrow SA, Covey JM, Adjei AA, Takebe N, Ames MM, Goetz MP, Reid JM. Population Pharmacokinetics of Z-Endoxifen in Patients With Advanced Solid Tumors. J Clin Pharmacol 2022; 62:1121-1131. [PMID: 35358345 PMCID: PMC9339467 DOI: 10.1002/jcph.2053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 03/24/2022] [Indexed: 11/11/2022]
Abstract
The purpose of this study was to develop and validate a population pharmacokinetic model for Z-endoxifen in patients with advanced solid tumors and to identify clinical variables that influence pharmacokinetic parameters. Z-endoxifen-HCl was administered orally once a day on a 28-day cycle (±3 days) over 11 dose levels ranging from 20 to 360 mg. A total of 1256 Z-endoxifen plasma concentration samples from 80 patients were analyzed using nonlinear mixed-effects modeling to develop a population pharmacokinetic model for Z-endoxifen. A 2-compartment model with oral depot and linear elimination adequately described the data. The estimated apparent total clearance, apparent central volume of distribution, and apparent peripheral volume of distribution were 4.89 L/h, 323 L, and 39.7 L, respectively, with weight-effect exponents of 0.75, 1, and 1, respectively. This model was used to explore the effects of clinical and demographic variables on Z-endoxifen pharmacokinetics. Weight, race on clearance, and aspartate aminotransferase on the absorption rate constant were identified as significant covariates in the final model. This novel population pharmacokinetic model provides insight regarding factors that may affect the pharmacokinetics of Z-endoxifen and may assist in the design of future clinical trials.
Collapse
Affiliation(s)
- Emily J. Koubek
- Department of Oncology, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Thomas R. Larson
- Department of Oncology, Mayo Clinic, Rochester, Minnesota, USA
- Molecular Pharmacology and Experimental Therapeutics Graduate Program, Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN, USA
| | | | - Sarah A. Buhrow
- Department of Oncology, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Alex A. Adjei
- Department of Oncology, Mayo Clinic, Rochester, Minnesota, USA
- Department of Pharmacology, Mayo Clinic, Rochester, Minnesota, USA
| | - Naoko Takebe
- National Cancer Institute, Bethesda, Maryland, USA
| | - Matthew M. Ames
- Department of Oncology, Mayo Clinic, Rochester, Minnesota, USA
- Department of Pharmacology, Mayo Clinic, Rochester, Minnesota, USA
| | - Matthew P. Goetz
- Department of Oncology, Mayo Clinic, Rochester, Minnesota, USA
- Department of Pharmacology, Mayo Clinic, Rochester, Minnesota, USA
| | - Joel M. Reid
- Department of Oncology, Mayo Clinic, Rochester, Minnesota, USA
- Department of Pharmacology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
6
|
Nthontho KC, Ndlovu AK, Sharma K, Kasvosve I, Hertz DL, Paganotti GM. Pharmacogenetics of Breast Cancer Treatments: A Sub-Saharan Africa Perspective. Pharmgenomics Pers Med 2022; 15:613-652. [PMID: 35761855 PMCID: PMC9233488 DOI: 10.2147/pgpm.s308531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 05/31/2022] [Indexed: 11/30/2022] Open
Abstract
Breast cancer is the most frequent cause of cancer death in low- and middle-income countries, in particular among sub-Saharan African women, where response to available anticancer treatment therapy is often limited by the recurrent breast tumours and metastasis, ultimately resulting in decreased overall survival rate. This can also be attributed to African genomes that contain more variation than those from other parts of the world. The purpose of this review is to summarize published evidence on pharmacogenetic and pharmacokinetic aspects related to specific available treatments and the known genetic variabilities associated with metabolism and/or transport of breast cancer drugs, and treatment outcomes when possible. The emphasis is on the African genetic variation and focuses on the genes with the highest strength of evidence, with a close look on CYP2A6, CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6, CYP3A4/5, CYP19A1, UGT1A4, UGT2B7, UGT2B15, SLC22A16, SLC38A7, FcγR, DPYD, ABCB1, and SULT1A1, which are the genes known to play major roles in the metabolism and/or elimination of the respective anti-breast cancer drugs given to the patients. The genetic variability of their metabolism could be associated with different metabolic phenotypes that may cause reduced patients' adherence because of toxicity or sub-therapeutic doses. Finally, this knowledge enhances possible personalized treatment approaches, with the possibility of improving survival outcomes in patients with breast cancer.
Collapse
Affiliation(s)
- Keneuoe Cecilia Nthontho
- School of Allied Health Professions, Faculty of Health Sciences, University of Botswana, Gaborone, Botswana
- Botswana-University of Pennsylvania Partnership, Gaborone, Botswana
| | - Andrew Khulekani Ndlovu
- School of Allied Health Professions, Faculty of Health Sciences, University of Botswana, Gaborone, Botswana
| | | | - Ishmael Kasvosve
- School of Allied Health Professions, Faculty of Health Sciences, University of Botswana, Gaborone, Botswana
| | - Daniel Louis Hertz
- Department of Clinical Pharmacy, University of Michigan College of Pharmacy, Ann Arbor, MI, USA
| | - Giacomo Maria Paganotti
- Botswana-University of Pennsylvania Partnership, Gaborone, Botswana
- Division of Infectious Diseases, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Biomedical Sciences, Faculty of Medicine, University of Botswana, Gaborone, Botswana
| |
Collapse
|
7
|
Gao C, Li H, Zhou C, Liu C, Zhuang J, Liu L, Sun C. Survival-Associated Metabolic Genes and Risk Scoring System in HER2-Positive Breast Cancer. Front Endocrinol (Lausanne) 2022; 13:813306. [PMID: 35663326 PMCID: PMC9161264 DOI: 10.3389/fendo.2022.813306] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 04/11/2022] [Indexed: 11/13/2022] Open
Abstract
Human epidermal growth factor receptor 2 (HER2)-positive breast cancer and triple-negative breast cancer have their own genetic, epigenetic, and protein expression profiles. In the present study, based on bioinformatics techniques, we explored the prognostic targets of HER2-positive breast cancer from metabonomics perspective and developed a new risk score system to evaluate the prognosis of patients. By identifying the differences between HER2 positive and normal control tissues, and between triple negative breast cancer and normal control tissues, we found a large number of differentially expressed metabolic genes in patients with HER2-positive breast cancer and triple-negative breast cancer. Importantly, in HER2-positive breast cancer, decreased expression of metabolism-related genes ATIC, HPRT1, ASNS, SULT1A2, and HAL was associated with increased survival. Interestingly, these five metabolism-related genes can be used to construct a risk score system to predict overall survival (OS) in HER2-positive patients. The time-dependent receiver operating characteristic (ROC) curve analysis showed that the predictive sensitivity of the risk scoring system was higher than that of other clinical factors, including age, stage, and tumor node metastasis (TNM) stage. This work shows that specific transcriptional changes in metabolic genes can be used as biomarkers to predict the prognosis of patients, which is helpful in implementing personalized treatment and evaluating patient prognosis.
Collapse
Affiliation(s)
- Chundi Gao
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Huayao Li
- College of Basic Medical, Shandong University of Traditional Chinese Medicine, Jinan, China
- College of Traditional Chinese Medicine, Weifang Medical University, Weifang, China
| | - Chao Zhou
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang, China
| | - Cun Liu
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jing Zhuang
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang, China
| | - Lijuan Liu
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang, China
| | - Changgang Sun
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang, China
- Academy of Chinese Medical Sciences, Shandong University of Traditional Chinese Medicine, Qingdao, China
- College of Traditional Chinese Medicine, Weifang Medical University, Weifang, China
- *Correspondence: Changgang Sun,
| |
Collapse
|
8
|
Helland T, Alsomairy S, Lin C, Søiland H, Mellgren G, Hertz DL. Generating a Precision Endoxifen Prediction Algorithm to Advance Personalized Tamoxifen Treatment in Patients with Breast Cancer. J Pers Med 2021; 11:jpm11030201. [PMID: 33805613 PMCID: PMC8000933 DOI: 10.3390/jpm11030201] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/05/2021] [Accepted: 03/09/2021] [Indexed: 02/06/2023] Open
Abstract
Tamoxifen is an endocrine treatment for hormone receptor positive breast cancer. The effectiveness of tamoxifen may be compromised in patients with metabolic resistance, who have insufficient metabolic generation of the active metabolites endoxifen and 4-hydroxy-tamoxifen. This has been challenging to validate due to the lack of measured metabolite concentrations in tamoxifen clinical trials. CYP2D6 activity is the primary determinant of endoxifen concentration. Inconclusive results from studies investigating whether CYP2D6 genotype is associated with tamoxifen efficacy may be due to the imprecision in using CYP2D6 genotype as a surrogate of endoxifen concentration without incorporating the influence of other genetic and clinical variables. This review summarizes the evidence that active metabolite concentrations determine tamoxifen efficacy. We then introduce a novel approach to validate this relationship by generating a precision endoxifen prediction algorithm and comprehensively review the factors that must be incorporated into the algorithm, including genetics of CYP2D6 and other pharmacogenes. A precision endoxifen algorithm could be used to validate metabolic resistance in existing tamoxifen clinical trial cohorts and could then be used to select personalized tamoxifen doses to ensure all patients achieve adequate endoxifen concentrations and maximum benefit from tamoxifen treatment.
Collapse
Affiliation(s)
- Thomas Helland
- Department of Clinical Pharmacy, University of Michigan College of Pharmacy, Ann Arbor, MI 48109, USA; (S.A.); (C.L.); (D.L.H.)
- Hormone Laboratory, Department of Medical Biochemistry and Pharmacology, Haukeland University Hospital, 5021 Bergen, Norway;
- Department of Clinical Science, University of Bergen, 5007 Bergen, Norway;
- Correspondence: ; Tel.: +47-92847793
| | - Sarah Alsomairy
- Department of Clinical Pharmacy, University of Michigan College of Pharmacy, Ann Arbor, MI 48109, USA; (S.A.); (C.L.); (D.L.H.)
| | - Chenchia Lin
- Department of Clinical Pharmacy, University of Michigan College of Pharmacy, Ann Arbor, MI 48109, USA; (S.A.); (C.L.); (D.L.H.)
| | - Håvard Søiland
- Department of Clinical Science, University of Bergen, 5007 Bergen, Norway;
| | - Gunnar Mellgren
- Hormone Laboratory, Department of Medical Biochemistry and Pharmacology, Haukeland University Hospital, 5021 Bergen, Norway;
- Department of Clinical Science, University of Bergen, 5007 Bergen, Norway;
| | - Daniel Louis Hertz
- Department of Clinical Pharmacy, University of Michigan College of Pharmacy, Ann Arbor, MI 48109, USA; (S.A.); (C.L.); (D.L.H.)
| |
Collapse
|
9
|
Sanchez-Spitman AB, Swen JJ, Dezentjé VO, Moes DJAR, Gelderblom H, Guchelaar HJ. Effect of CYP2C19 genotypes on tamoxifen metabolism and early-breast cancer relapse. Sci Rep 2021; 11:415. [PMID: 33432065 PMCID: PMC7801676 DOI: 10.1038/s41598-020-79972-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 11/17/2020] [Indexed: 12/12/2022] Open
Abstract
CYP2C19*2 and CYP2C19*17 might influence tamoxifen metabolism and clinical outcome. Our aim was to investigate the effect of CYP2C19 genotypes on tamoxifen concentrations and metabolic ratios (MRs) and breast cancer recurrence in a large cohort of Caucasian women. Genetic variants (CYP2D6 and CYP2C19 genotypes), tamoxifen and metabolites concentrations, baseline characteristics, and breast cancer recurrence from the CYPTAM study (NTR1509) were used. CYP2C19*2 and CYP2C19*17 genotypes were evaluated as alleles and as groups based on CYP2D6 genotypes (high, intermediate and low activity). Log-rank test and Kaplan–Meier analysis were used to evaluate differences in recurrence defined as relapse-free survival (RFS). Classification tree analyses (CTAs) were conducted to assess the levels of interactions per polymorphism (CYP2D6 and CYP2C19 genotypes) on endoxifen concentrations. No differences in mean concentrations and MRs were observed when comparing CYP2C19 genotypes (CYP2C19*1/*1; CYP2C19*1/*2; CYP2C19*2/*2; CYP2C19*1/*17; CYP2C19*17/*17; CYP2C19*2/*17). Only significant differences (p value < 0.05) in mean concentrations and MRs were observed when comparing tamoxifen activity groups (high, intermediate and low activity). A log-rank test did not find an association across CYP2C19 genotypes (p value 0.898). CTAs showed a significant relationship between CYP2D6 and endoxifen (p value < 0.0001), but no association with CYP2C19 genotypes was found. CYP2C19 polymorphisms do not have a significant impact on tamoxifen metabolism or breast cancer relapse.
Collapse
Affiliation(s)
- A B Sanchez-Spitman
- Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, Albinusdreef 2, 2300 RC, Leiden, The Netherlands.,Leiden Network for Personalised Therapeutics, Leiden University Medical Center, Leiden, The Netherlands
| | - J J Swen
- Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, Albinusdreef 2, 2300 RC, Leiden, The Netherlands.,Leiden Network for Personalised Therapeutics, Leiden University Medical Center, Leiden, The Netherlands
| | - V O Dezentjé
- Department of Medical Oncology, Netherlands Cancer Institute/Antoni Van Leeuwenhoek, Amsterdam, The Netherlands
| | - D J A R Moes
- Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, Albinusdreef 2, 2300 RC, Leiden, The Netherlands.,Leiden Network for Personalised Therapeutics, Leiden University Medical Center, Leiden, The Netherlands
| | - H Gelderblom
- Leiden Network for Personalised Therapeutics, Leiden University Medical Center, Leiden, The Netherlands.,Department of Medical Oncology, Leiden University Medical Center, Leiden, The Netherlands
| | - H J Guchelaar
- Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, Albinusdreef 2, 2300 RC, Leiden, The Netherlands. .,Leiden Network for Personalised Therapeutics, Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|
10
|
Slanař O, Hronová K, Bartošová O, Šíma M. Recent advances in the personalized treatment of estrogen receptor-positive breast cancer with tamoxifen: a focus on pharmacogenomics. Expert Opin Drug Metab Toxicol 2020; 17:307-321. [PMID: 33320718 DOI: 10.1080/17425255.2021.1865310] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Introduction: Tamoxifen is still an important drug in hormone-dependent breast cancer therapy. Personalization of its clinical use beyond hormone receptor positivity could improve the substantial variability of the treatment response.Areas covered: The overview of the current evidence for the treatment personalization using therapeutic drug monitoring, or using genetic biomarkers including CYP2D6 is provided. Although many studies focused on the PK aspects or the impact of CYP2D6 variability the translation into clinical routine is not clearly defined due to the inconsistent clinical outcome data.Expert opinion: We believe that at least the main candidate factors, i.e. CYP2D6 polymorphism, CYP2D6 inhibition, endoxifen serum levels may become important predictors of clinical relevance for tamoxifen treatment personalization in the future. To achieve this aim, however, further research should take into consideration more precise characterization of the disease, epigenetic factors and also utilize an appropriately powered multifactorial approach instead of a single gene evaluating studies.
Collapse
Affiliation(s)
- Ondřej Slanař
- Department of Pharmacology, Charles University and General University Hospital, Prague, Czech Republic
| | - Karolína Hronová
- Department of Pharmacology, Charles University and General University Hospital, Prague, Czech Republic
| | - Olga Bartošová
- Department of Pharmacology, Charles University and General University Hospital, Prague, Czech Republic
| | - Martin Šíma
- Department of Pharmacology, Charles University and General University Hospital, Prague, Czech Republic
| |
Collapse
|
11
|
El Daibani AA, Alherz FA, Abunnaja MS, Bairam AF, Rasool MI, Kurogi K, Liu MC. Impact of Human SULT1E1 Polymorphisms on the Sulfation of 17β-Estradiol, 4-Hydroxytamoxifen, and Diethylstilbestrol by SULT1E1 Allozymes. Eur J Drug Metab Pharmacokinet 2020; 46:105-118. [PMID: 33064293 DOI: 10.1007/s13318-020-00653-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND AND OBJECTIVES Previous studies have revealed that sulfation, as mediated by the estrogen-sulfating cytosolic sulfotransferase (SULT) SULT1E1, is involved in the metabolism of 17β-estradiol (E2), 4-hydroxytamoxifen (4OH-tamoxifen), and diethylstilbestrol in humans. It is an interesting question whether the genetic polymorphisms of SULT1E1, the gene that encodes the SULT1E1 enzyme, may impact on the metabolism of E2 and these two drug compounds through sulfation. METHODS In this study, five missense coding single nucleotide polymorphisms of the SULT1E1 gene were selected to investigate the sulfating activity of the coded SULT1E1 allozymes toward E2, 4OH-tamoxifen, and diethylstilbestrol. Corresponding cDNAs were generated by site-directed mutagenesis, and recombinant SULT1E1 allozymes were bacterially expressed, affinity-purified, and characterized using enzymatic assays. RESULTS Purified SULT1E1 allozymes were shown to display differential sulfating activities toward E2, 4OH-tamoxifen, and diethylstilbestrol. Kinetic analysis revealed further distinct Km (reflecting substrate affinity) and Vmax (reflecting catalytic activity) values of the five SULT1E1 allozymes with E2, 4OH-tamoxifen, and diethylstilbestrol as substrates. CONCLUSIONS Taken together, these findings highlighted the significant differences in E2-, as well as the drug-sulfating activities of SULT1E1 allozymes, which may have implications in the differential metabolism of E2, 4OH-tamoxifen, and diethylstilbestrol in individuals with different SULT1E1 genotypes.
Collapse
Affiliation(s)
- Amal A El Daibani
- Department of Pharmacology, College of Pharmacy and Pharmaceutical Sciences, University of Toledo Health Science Campus, 3000 Arlington Avenue, Toledo, OH, 43614, USA
| | - Fatemah A Alherz
- Department of Pharmacology, College of Pharmacy and Pharmaceutical Sciences, University of Toledo Health Science Campus, 3000 Arlington Avenue, Toledo, OH, 43614, USA
| | - Maryam S Abunnaja
- Department of Pharmacology, College of Pharmacy and Pharmaceutical Sciences, University of Toledo Health Science Campus, 3000 Arlington Avenue, Toledo, OH, 43614, USA
| | - Ahsan F Bairam
- Department of Pharmacology, College of Pharmacy and Pharmaceutical Sciences, University of Toledo Health Science Campus, 3000 Arlington Avenue, Toledo, OH, 43614, USA.,Department of Pharmacology, College of Pharmacy, University of Kufa, Najaf, Iraq
| | - Mohammed I Rasool
- Department of Pharmacology, College of Pharmacy and Pharmaceutical Sciences, University of Toledo Health Science Campus, 3000 Arlington Avenue, Toledo, OH, 43614, USA.,Department of Pharmacology, College of Pharmacy, University of Karbala, Karbala, Iraq
| | - Katsuhisa Kurogi
- Department of Pharmacology, College of Pharmacy and Pharmaceutical Sciences, University of Toledo Health Science Campus, 3000 Arlington Avenue, Toledo, OH, 43614, USA.,Biochemistry and Applied Biosciences, University of Miyazaki, Miyazaki, 889-2192, Japan
| | - Ming-Cheh Liu
- Department of Pharmacology, College of Pharmacy and Pharmaceutical Sciences, University of Toledo Health Science Campus, 3000 Arlington Avenue, Toledo, OH, 43614, USA.
| |
Collapse
|
12
|
Ximenez JP, Lanchote VL, Bello MA, Iocken FHS, Obadia RCM, Sousa VP, Suarez‐Kurtz G. Post‐marketing assessment of generic tamoxifen in Brazilian breast cancer patients. Basic Clin Pharmacol Toxicol 2020; 126:432-436. [DOI: 10.1111/bcpt.13368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 11/19/2019] [Indexed: 11/28/2022]
Affiliation(s)
- João P. Ximenez
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto Universidade de São Paulo Ribeirão Preto Brazil
| | - Vera L. Lanchote
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto Universidade de São Paulo Ribeirão Preto Brazil
| | - Marcelo A. Bello
- Hospital do Cancer III Instituto Nacional de Câncer Rio de Janeiro Brazil
| | | | | | - Valéria P. Sousa
- Laboratório de Controle de Qualidade Faculdade de Farmácia Universidade Federal do Rio de Janeiro Rio de Janeiro Brazil
| | - Guilherme Suarez‐Kurtz
- Coordenação de Pesquisa Instituto Nacional de Câncer and Rede Nacional de Farmacogenética Rio de Janeiro Brazil
| |
Collapse
|
13
|
Ahern TP, Collin LJ, Baurley JW, Kjærsgaard A, Nash R, Maliniak ML, Damkier P, Zwick ME, Isett RB, Christiansen PM, Ejlertsen B, Lauridsen KL, Christensen KB, Silliman RA, Sørensen HT, Tramm T, Hamilton-Dutoit S, Lash TL, Cronin-Fenton D. Metabolic Pathway Analysis and Effectiveness of Tamoxifen in Danish Breast Cancer Patients. Cancer Epidemiol Biomarkers Prev 2020; 29:582-590. [PMID: 31932415 PMCID: PMC7060091 DOI: 10.1158/1055-9965.epi-19-0833] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 11/15/2019] [Accepted: 12/20/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Tamoxifen and its metabolites compete with estrogen to occupy the estrogen receptor. The conventional dose of adjuvant tamoxifen overwhelms estrogen in this competition, reducing breast cancer recurrence risk by nearly half. Phase I metabolism generates active tamoxifen metabolites, and phase II metabolism deactivates them. No earlier pharmacogenetic study has comprehensively evaluated the metabolism and transport pathways, and no earlier study has included a large population of premenopausal women. METHODS We completed a cohort study of 5,959 Danish nonmetastatic premenopausal breast cancer patients, in whom 938 recurrences occurred, and a case-control study of 541 recurrent cases in a cohort of Danish predominantly postmenopausal breast cancer patients, all followed for 10 years. We collected formalin-fixed paraffin-embedded tumor blocks and genotyped 32 variants in 15 genes involved in tamoxifen metabolism or transport. We estimated conventional associations for each variant and used prior information about the tamoxifen metabolic path to evaluate the importance of metabolic and transporter pathways. RESULTS No individual variant was notably associated with risk of recurrence in either study population. Both studies showed weak evidence of the importance of phase I metabolism in the clinical response to adjuvant tamoxifen therapy. CONCLUSIONS Consistent with prior knowledge, our results support the role of phase I metabolic capacity in clinical response to tamoxifen. Nonetheless, no individual variant substantially explained the modest phase I effect on tamoxifen response. IMPACT These results are consistent with guidelines recommending against genotype-guided prescribing of tamoxifen, and for the first time provide evidence supporting these guidelines in premenopausal women.
Collapse
Affiliation(s)
- Thomas P Ahern
- Department of Surgery, Larner College of Medicine at The University of Vermont, Burlington, Vermont
| | - Lindsay J Collin
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, Georgia
| | | | - Anders Kjærsgaard
- Department of Clinical Epidemiology, Aarhus University Hospital, Aarhus, Denmark
| | - Rebecca Nash
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, Georgia
| | - Maret L Maliniak
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, Georgia
| | - Per Damkier
- Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Michael E Zwick
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia
- Emory Integrated Genomics Core, Emory University, Atlanta, Georgia
| | - R Benjamin Isett
- Emory Integrated Genomics Core, Emory University, Atlanta, Georgia
| | - Peer M Christiansen
- Breast Unit, Aarhus University Hospital/Randers Regional Hospital, Aarhus, Denmark
- Danish Breast Cancer Group, Copenhagen University Hospital, Copenhagen, Denmark
| | - Bent Ejlertsen
- Danish Breast Cancer Group, Copenhagen University Hospital, Copenhagen, Denmark
- Department of Oncology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | | | | | - Rebecca A Silliman
- Boston University School of Medicine, Boston University, Boston, Massachusetts
| | - Henrik T Sørensen
- Department of Clinical Epidemiology, Aarhus University Hospital, Aarhus, Denmark
| | - Trine Tramm
- Department of Pathology, Aarhus University Hospital, Aarhus, Denmark
| | | | - Timothy L Lash
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, Georgia.
- Department of Clinical Epidemiology, Aarhus University Hospital, Aarhus, Denmark
- Winship Cancer Institute, Emory University, Atlanta, Georgia
| | | |
Collapse
|
14
|
Wang W, Xie G, Ren Z, Xie T, Li J. Gene Selection for the Discrimination of Colorectal Cancer. Curr Mol Med 2019; 20:415-428. [PMID: 31746296 DOI: 10.2174/1566524019666191119105209] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 10/29/2019] [Accepted: 10/31/2019] [Indexed: 12/15/2022]
Abstract
BACKGROUND Colorectal cancer (CRC) is the third most common cancer worldwide. Cancer discrimination is a typical application of gene expression analysis using a microarray technique. However, microarray data suffer from the curse of dimensionality and usual imbalanced class distribution between the majority (tumor samples) and minority (normal samples) classes. Feature gene selection is necessary and important for cancer discrimination. OBJECTIVES To select feature genes for the discrimination of CRC. METHODS We improve the feature selection algorithm based on differential evolution, DEFSw by using RUSBoost classifier and weight accuracy instead of the common classifier and evaluation measure for selecting feature genes from imbalance data. We firstly extract differently expressed genes (DEGs) from the CRC dataset of the TCGA and then select the feature genes from the DEGs using the improved DEFSw algorithm. Finally, we validate the selected feature gene sets using independent datasets and retrieve the cancer related information for these genes based on text mining through the Coremine Medical online database. RESULTS We select out 16 single-gene feature sets for colorectal cancer discrimination and 19 single-gene feature sets only for colon cancer discrimination. CONCLUSIONS In summary, we find a series of high potential candidate biomarkers or signatures, which can discriminate either or both of colon cancer and rectal cancer with high sensitivity and specificity.
Collapse
Affiliation(s)
- Wenhui Wang
- Network Information Center, The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China.,National Engineering Research Center of Digital Life, Sun Yat-sen University, Guangzhou, China.,Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Guanglei Xie
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Zhonglu Ren
- College of Medical Information Engineering, Guangdong Pharmaceutical University, Guangzhou, China
| | - Tingyan Xie
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Jinming Li
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| |
Collapse
|
15
|
Hennig EE, Piątkowska M, Goryca K, Pośpiech E, Paziewska A, Karczmarski J, Kluska A, Brewczyńska E, Ostrowski J. Non- CYP2D6 Variants Selected by a GWAS Improve the Prediction of Impaired Tamoxifen Metabolism in Patients with Breast Cancer. J Clin Med 2019; 8:jcm8081087. [PMID: 31344832 PMCID: PMC6722498 DOI: 10.3390/jcm8081087] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 06/28/2019] [Accepted: 07/10/2019] [Indexed: 12/25/2022] Open
Abstract
A certain minimum plasma concentration of (Z)-endoxifen is presumably required for breast cancer patients to benefit from tamoxifen therapy. In this study, we searched for DNA variants that could aid in the prediction of risk for insufficient (Z)-endoxifen exposure. A metabolic ratio (MR) corresponding to the (Z)-endoxifen efficacy threshold level was adopted as a cutoff value for a genome-wide association study comprised of 287 breast cancer patients. Multivariate regression was used to preselect variables exhibiting an independent impact on the MR and develop models to predict below-threshold MR values. In total, 15 single-nucleotide polymorphisms (SNPs) were significantly associated with below-threshold MR values. The strongest association was with rs8138080 (WBP2NL). Two alternative models for MR prediction were developed. The predictive accuracy of Model 1, including rs7245, rs6950784, rs1320308, and the CYP2D6 genotype, was considerably higher than that of the CYP2D6 genotype alone (AUC 0.879 vs 0.758). Model 2, which was developed using the same three SNPs as for Model 1 plus rs8138080, appeared as an interesting alternative to the full CYP2D6 genotype testing. In conclusion, the four novel SNPs, tested alone or in combination with the CYP2D6 genotype, improved the prediction of impaired tamoxifen-to-endoxifen metabolism, potentially allowing for treatment optimization.
Collapse
Affiliation(s)
- Ewa E Hennig
- Department of Gastroenterology, Hepatology and Clinical Oncology, Centre of Postgraduate Medical Education, 01-813 Warsaw, Poland.
- Department of Genetics, Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, 02-781 Warsaw, Poland.
| | - Magdalena Piątkowska
- Department of Genetics, Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, 02-781 Warsaw, Poland
| | - Krzysztof Goryca
- Department of Genetics, Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, 02-781 Warsaw, Poland
| | - Ewelina Pośpiech
- Malopolska Centre of Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| | - Agnieszka Paziewska
- Department of Gastroenterology, Hepatology and Clinical Oncology, Centre of Postgraduate Medical Education, 01-813 Warsaw, Poland
| | - Jakub Karczmarski
- Department of Genetics, Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, 02-781 Warsaw, Poland
| | - Anna Kluska
- Department of Genetics, Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, 02-781 Warsaw, Poland
| | - Elżbieta Brewczyńska
- Department of Breast Cancer and Reconstructive Surgery, Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, 02-781 Warsaw, Poland
| | - Jerzy Ostrowski
- Department of Gastroenterology, Hepatology and Clinical Oncology, Centre of Postgraduate Medical Education, 01-813 Warsaw, Poland
- Department of Genetics, Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, 02-781 Warsaw, Poland
| |
Collapse
|
16
|
Sanchez-Spitman A, Swen J, Dezentje V, Moes D, Gelderblom H, Guchelaar H. Clinical pharmacokinetics and pharmacogenetics of tamoxifen and endoxifen. Expert Rev Clin Pharmacol 2019; 12:523-536. [DOI: 10.1080/17512433.2019.1610390] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- A.B. Sanchez-Spitman
- Leiden Network for Personalised Therapeutics, Leiden University Medical Center, Leiden, The Netherlands
- Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, Leiden, The Netherlands
| | - J.J. Swen
- Leiden Network for Personalised Therapeutics, Leiden University Medical Center, Leiden, The Netherlands
- Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, Leiden, The Netherlands
| | - V.O. Dezentje
- Department of Medical Oncology, Netherlands Cancer Institute/Antoni van Leeuwenhoek, Amsterdam, The Netherlands
| | - D.J.A.R. Moes
- Leiden Network for Personalised Therapeutics, Leiden University Medical Center, Leiden, The Netherlands
- Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, Leiden, The Netherlands
| | - H. Gelderblom
- Leiden Network for Personalised Therapeutics, Leiden University Medical Center, Leiden, The Netherlands
- Department of Medical Oncology, Leiden University Medical Center, Leiden, The Netherlands
| | - H.J. Guchelaar
- Leiden Network for Personalised Therapeutics, Leiden University Medical Center, Leiden, The Netherlands
- Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
17
|
Genetic polymorphisms of 3'-untranslated region of SULT1A1 and their impact on tamoxifen metabolism and efficacy. Breast Cancer Res Treat 2018; 172:401-411. [PMID: 30120701 PMCID: PMC6208901 DOI: 10.1007/s10549-018-4923-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 08/12/2018] [Indexed: 02/06/2023]
Abstract
Purpose Tamoxifen has a wide inter-variability. Recently, two SNPs in the 3′-untranslated region (UTR) of the SULT1A1 gene, rs6839 and rs1042157, have been associated with decreased SULT1A1 activity. The aim of this study is to investigate the role of the rs6839 and rs1042157 on tamoxifen metabolism and relapse-free survival (RFS) in women diagnosed with early-breast cancer receiving tamoxifen. Methods Samples from 667 patients collected in the CYPTAM study (NTR1509) were used for genotyping (CYP2D6, SULT1A1 rs6839 and rs1042157) and measurements of tamoxifen and metabolites. Patients were categorized in three groups depending on the decreased SULT1A1 activity due to rs6839 and rs1042157: low activity group (rs6839 (GG) and rs1042157 (TT)); high activity group (rs6839 (AA) and rs1042157 (CC)); and medium activity group (all the other combinations of rs6839 and rs1042157). Associations between SULT1A1 phenotypes and clinical outcome (RFS) were explored. Results In the low SULT1A1 activity group, higher endoxifen and 4-hydroxy-tamoxifen concentrations were found, compared to the medium and high activity group (endoxifen: 31.23 vs. 30.51 vs. 27.00, p value: 0.016; 4-hydroxy-tamoxifen: 5.55 vs. 5.27 vs. 4.94, p value:0.05). In terms of relapse, the low activity group had a borderline better outcome compared to the medium and high SULT1A1 activity group (adjusted Hazard ratio: 0.297; 95% CI 0.088–1.000; p value: 0.05). Conclusion Our results suggested that rs6839 and rs1042157 SNPs have a minor effect on the concentrations and metabolic ratios of tamoxifen and its metabolites, and RFS in women receiving adjuvant tamoxifen. Electronic supplementary material The online version of this article (10.1007/s10549-018-4923-7) contains supplementary material, which is available to authorized users.
Collapse
|
18
|
Pharmacogenomics Guided-Personalization of Warfarin and Tamoxifen. J Pers Med 2017; 7:jpm7040020. [PMID: 29236081 PMCID: PMC5748632 DOI: 10.3390/jpm7040020] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 11/23/2017] [Accepted: 12/07/2017] [Indexed: 02/07/2023] Open
Abstract
The use of pharmacogenomics to personalize drug therapy has been a long-sought goal for warfarin and tamoxifen. However, conflicting evidence has created reason for hesitation in recommending pharmacogenomics-guided care for both drugs. This review will provide a summary of the evidence to date on the association between cytochrome P450 enzymes and the clinical end points of warfarin and tamoxifen therapy. Further, highlighting the clinical experiences that we have gained over the past ten years of running a personalized medicine program, we will offer our perspectives on the utility and the limitations of pharmacogenomics-guided care for warfarin and tamoxifen therapy.
Collapse
|
19
|
Woo HI, Lee SK, Kim J, Kim SW, Yu J, Bae SY, Lee JE, Nam SJ, Lee SY. Variations in plasma concentrations of tamoxifen metabolites and the effects of genetic polymorphisms on tamoxifen metabolism in Korean patients with breast cancer. Oncotarget 2017; 8:100296-100311. [PMID: 29245979 PMCID: PMC5725021 DOI: 10.18632/oncotarget.22220] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 10/12/2017] [Indexed: 12/16/2022] Open
Abstract
Inter-individual variation in tamoxifen metabolism in breast cancer patients is caused by various genetic and clinical factors. We measured the plasma concentrations of tamoxifen and its metabolites and investigated genetic polymorphisms influencing those concentrations. We measured the concentrations of tamoxifen, endoxifen, N-desmethyltamoxifen (NDM), and 4-hydroxytamoxifen (4-OH tamoxifen) in 550 plasma specimens from 281 breast cancer patients treated with tamoxifen. Duplicate or triplicate specimens were obtained from 179 patients at 3-month intervals. In 80 patients, genotyping for tamoxifen metabolizing enzymes was performed using the DMET Plus array and long-range PCR. Plasma concentrations of tamoxifen and its metabolites showed wide variations among patients. The following genetic polymorphisms were associated with the plasma concentrations when body mass index and tamoxifen concentrations were considered as co-variables: CYP1A2 -2467delT, CYP2B6 genotype, CYP2D6 activity score (AS), and FMO3 441C>T. CYP2D6 AS and three variants in the SULT1E1 gene showed correlation with ratios of tamoxifen metabolites. CYP2D6 AS was the only variable that showed associations with both metabolite concentration and ratio: endoxifen (P < 0.001), NDM (P < 0.001), endoxifen/NDM (P < 0.001), NDM/tamoxifen (P < 0.001), and 4-OH tamoxifen/tamoxifen (P = 0.005). Serial measurements of 448 plasma concentrations in 179 patients at 3-month intervals showed wide intra-individual variation. Our study showed that genetic polymorphisms can in part determine the baseline concentrations of tamoxifen and its metabolites. However, marked intra-individual variations during follow-up monitoring were observed, and this could not be explained by genotype. Therefore, serial measurements of tamoxifen and its metabolites would be helpful in monitoring in vivo tamoxifen metabolic status.
Collapse
Affiliation(s)
- Hye In Woo
- Department of Laboratory Medicine, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, Changwon, Korea
| | - Se Kyung Lee
- Division of Breast Surgery, Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jiyoung Kim
- Department of Surgery, Jeju National University School of Medicine, Jeju National University Hospital, Jeju, Korea
| | - Seok Won Kim
- Division of Breast Surgery, Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jonghan Yu
- Division of Breast Surgery, Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Soo Youn Bae
- Division of Breast and Endocrine Surgery, Department of Surgery, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Korea
| | - Jeong Eon Lee
- Division of Breast Surgery, Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Seok Jin Nam
- Division of Breast Surgery, Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Soo-Youn Lee
- Department of Clinical Pharmacology & Therapeutics, Samsung Medical Center, Seoul, Korea
- Department of Laboratory Medicine & Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| |
Collapse
|
20
|
Marcath LA, Deal AM, Van Wieren E, Danko W, Walko CM, Ibrahim JG, Weck KE, Jones DR, Desta Z, McLeod HL, Carey LA, Irvin WJ, Hertz DL. Comprehensive assessment of cytochromes P450 and transporter genetics with endoxifen concentration during tamoxifen treatment. Pharmacogenet Genomics 2017; 27:402-409. [PMID: 28877533 PMCID: PMC5659294 DOI: 10.1097/fpc.0000000000000311] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
OBJECTIVES Tamoxifen bioactivation to endoxifen is mediated primarily by CYP2D6; however, considerable variability remains unexplained. Our aim was to perform a comprehensive assessment of the effect of genetic variation in tamoxifen-relevant enzymes and transporters on steady-state endoxifen concentrations. PATIENTS AND METHODS Comprehensive genotyping of CYP enzymes and transporters was performed using the iPLEX ADME PGx Pro Panel in 302 tamoxifen-treated breast cancer patients. Predicted activity phenotype for 19 enzymes and transporters were analyzed for univariate association with endoxifen concentration, and then adjusted for CYP2D6 and clinical covariates. RESULTS In univariate analysis, higher activity of CYP2C8 (regression β=0.22, P=0.020) and CYP2C9 (β=0.20, P=0.04), lower body weight (β=-0.014, P<0.0001), and endoxifen measurement during winter (each β<-0.39, P=0.002) were associated with higher endoxifen concentrations. After adjustment for the CYP2D6 diplotype, weight, and season, CYP2C9 remained significantly associated with higher concentrations (P=0.02), but only increased the overall model R by 1.3%. CONCLUSION Our results further support a minor contribution of CYP2C9 genetic variability toward steady-state endoxifen concentrations. Integration of clinician and genetic variables into individualized tamoxifen dosing algorithms would marginally improve their accuracy and potentially enhance tamoxifen treatment outcomes.
Collapse
Affiliation(s)
- Lauren A Marcath
- aDepartment of Clinical Pharmacy, University of Michigan College of Pharmacy, Ann Arbor, Michigan bUNC Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina cDeBartolo Family Personalized Medicine Institute, Moffitt Cancer Center, Tampa, Florida dDepartment of Clinical Pharmacology, Indiana University, Indianapolis, Indiana eBon Secours Cancer Institute, Richmond, Virginia, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Charoenchokthavee W, Areepium N, Panomvana D, Sriuranpong V. Effects of CYP2D6 and CYP3A5 polymorphisms on tamoxifen and its metabolites in Thai breast cancer patients. BREAST CANCER-TARGETS AND THERAPY 2017; 9:249-256. [PMID: 28450788 PMCID: PMC5399972 DOI: 10.2147/bctt.s125745] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Purpose This study aimed to determine the effects of CYP2D6 and CYP3A5 polymorphisms on the levels of tamoxifen (TAM) and its metabolites in the plasma of breast cancer patients. The protocol was designed to test the associations between CYP2D6, CYP3A5 genotypes and phenotypes (extensive metabolizer [EM], intermediate metabolizer [IM] and poor metabolizer [PM]) and TAM, N-desmethyl tamoxifen (NDMT), endoxifen (END) and 4-hydroxytamoxifen (4OHT) concentrations. Patients and methods One hundred and thirty-four Thai breast cancer patients from the Thai Tamoxifen Project undergoing TAM treatment who met the inclusion/exclusion criteria were recruited. Plasma samples were assessed for the concentrations of TAM and its metabolites using high-performance liquid chromatography. The data are presented as actual values and metabolic ratios (MR). The hypotheses were tested using Kruskal–Wallis or Mann–Whitney U test, including the simple main effects analysis. Results The patients had stage 0–IV breast cancer. The mean age and body mass index were 51.6±11.6 years and 24.0±4.3, respectively. Also, 53.0% of them were premenopausal, 10.4% were perimenopausal and 36.6% were postmenopausal, while 23.1% were CYP2D6-EM/CYP3A5-EM and 20.9% carried only CYP2D6 and CYP3A5 incomplete alleles. The median concentrations of TAM, NDMT, END and 4OHT were 374.7 (interquartile range [IQR] 230.2) ng/mL, 1,064.9 (IQR 599.6) ng/mL, 54.5 (IQR 52.5) ng/mL and 5.0 (IQR 3.1) ng/mL, respectively. MR (TAM-NDMT) and MR (NDMT-END) were statistically different (p=0.013 and p=0.014, respectively), while MR (4OHT-END) was not statistically different within the CYP2D6 phenotype (p=0.594). MR (TAM-4OHT) was not statistically different within the CYP2D6 phenotype (p=0.079), but it was potentially different from CYP3A5-PM (p=0.056). None of the MR was statistically different within the CYP3A5 phenotype. Conclusion CYP2D6 polymorphisms appear to affect END concentration through an NDMT subpathway and potentially affect 4OHT concentrations through a 4OHT subpathway in CYP3A5-PM group.
Collapse
Affiliation(s)
| | - Nutthada Areepium
- Medical Oncology Unit, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Pathumwan, Bangkok, Thailand
| | - Duangchit Panomvana
- Medical Oncology Unit, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Pathumwan, Bangkok, Thailand
| | - Virote Sriuranpong
- Medical Oncology Unit, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Pathumwan, Bangkok, Thailand
| |
Collapse
|
22
|
Xu MD, Liu SL, Feng YZ, Liu Q, Shen M, Zhi Q, Liu Z, Gu DM, Yu J, Shou LM, Gong FR, Zhu Q, Duan W, Chen K, Zhang J, Wu MY, Tao M, Li W. Genomic characteristics of pancreatic squamous cell carcinoma, an investigation by using high throughput sequencing after in-solution hybrid capture. Oncotarget 2017; 8:14620-14635. [PMID: 28099906 PMCID: PMC5362430 DOI: 10.18632/oncotarget.14678] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 01/09/2017] [Indexed: 12/23/2022] Open
Abstract
Squamous cell carcinoma (SCC) of pancreas is a rare histotype of pancreatic ductal carcinoma which is distinct from pancreatic adenocarcinoma (AC). Although there are standard treatments for pancreatic AC, no precise therapies exist for pancreatic SCC. Here, we screened 1033 cases of pancreatic cancer and identified 2 cases of pure SCC, which were pathologically diagnosed on the basis of finding definite intercellular bridges and/or focal keratin peal formation in the tumor cells. Immunohistochemistry assay confirmed the positive expression of CK5/6 and p63 in pancreatic SCC. To verify the genomic characteristics of pancreatic SCC, we employed in-solution hybrid capture targeting 137 cancer-related genes accompanied by high throughput sequencing (HTS) to compare the different genetic variants in SCC and AC of pancreas. We compared the genetic alterations of known biomarkers of pancreatic adenocarcinoma in different pancreatic cancer tissues, and identified nine mutated genes in SCC of pancreas: C7orf70, DNHD1, KPRP, MDM4, MUC6, OR51Q1, PTPRD, TCF4, TET2, and nine genes (ABCB1, CSF1R, CYP2C18, FBXW7, ITPA, KIAA0748, SOD2, SULT1A2, ZNF142) that are mutated in pancreatic AC. This study may have taken one step forward on the discovery of potential biomarkers for the targeted treatment of SCC of the pancreas.
Collapse
Affiliation(s)
- Meng-Dan Xu
- Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Shu-Ling Liu
- Department of Radiation Oncology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Yi-Zhong Feng
- Department of Pathology, The Second Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Qiang Liu
- Department of Pathology, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200000, China
| | - Meng Shen
- Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Qiaoming Zhi
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Zeyi Liu
- Department of Respiratory Medicine, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Dong-Mei Gu
- Department of Pathology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Jie Yu
- Department of Pathology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Liu-Mei Shou
- Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
- Department of Oncology, The First Affiliated Hospital of Zhejiang Chinese Medicine University, Hangzhou 310006, China
| | - Fei-Ran Gong
- Department of Hematology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Qi Zhu
- Xi'an Tianlong Science and Technology Co., Ltd., Xi'an 710018, China
| | - Weiming Duan
- Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Kai Chen
- Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Junning Zhang
- Department of Radiation Oncology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Meng-Yao Wu
- Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Min Tao
- Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
- PREMED Key Laboratory for Precision Medicine, Soochow University, Suzhou 215021, China
- Jiangsu Institute of Clinical Immunology, Suzhou 215006, China
- Institute of Medical Biotechnology, Soochow University, Suzhou 215021, China
| | - Wei Li
- Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
- PREMED Key Laboratory for Precision Medicine, Soochow University, Suzhou 215021, China
- Jiangsu Institute of Clinical Immunology, Suzhou 215006, China
| |
Collapse
|
23
|
Novillo A, Romero-Lorca A, Gaibar M, Rubio M, Fernández-Santander A. Tamoxifen metabolism in breast cancer treatment: Taking the focus off the CYP2D6 gene. THE PHARMACOGENOMICS JOURNAL 2016; 17:109-111. [PMID: 27698402 DOI: 10.1038/tpj.2016.73] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- A Novillo
- Department of Basic Biomedical Sciences, Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid, Madrid, Spain
| | - A Romero-Lorca
- Department of Basic Biomedical Sciences, Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid, Madrid, Spain
| | - M Gaibar
- Department of Basic Biomedical Sciences, Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid, Madrid, Spain
| | - M Rubio
- Department of Basic Biomedical Sciences, Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid, Madrid, Spain
| | - A Fernández-Santander
- Department of Basic Biomedical Sciences, Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid, Madrid, Spain
| |
Collapse
|
24
|
Charoenchokthavee W, Panomvana D, Sriuranpong V, Areepium N. Prevalence of CYP2D6*2, CYP2D6*4, CYP2D6*10, and CYP3A5*3 in Thai breast cancer patients undergoing tamoxifen treatment. BREAST CANCER-TARGETS AND THERAPY 2016; 8:149-55. [PMID: 27540311 PMCID: PMC4982506 DOI: 10.2147/bctt.s105563] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Background Tamoxifen (TAM) is used in breast cancer treatment, but interindividual variabilities in TAM-metabolizing enzymes exist and have been linked to single nucleotide polymorphisms in the respective encoding genes. The different alleles and genotypes of these genes have been presented for Caucasians and Asians. This study aimed to explore the prevalence of the incomplete functional alleles and genotypes of the CYP2D6 and CYP3A5 genes in Thai breast cancer patients undergoing TAM treatment. Patients and methods In total, 134 Thai breast cancer patients were randomly invited to join the Thai Tamoxifen Project. Their blood samples were collected and extracted for individual DNA. The alleles and genotypes were determined by real-time polymerase chain reaction with TaqMan® Drug Metabolism Genotyping Assays. Results The patients were aged from 27.0 years to 82.0 years with a body mass index range from 15.4 to 40.0, with the majority (103/134) in the early stage (stages 0–II) of breast cancer. The median duration of TAM administration was 17.2 months (interquartile range 16.1 months). Most (53%) of the patients were premenopausal with an estrogen receptor (ER) and progesterone receptor (PR) status of ER+/PR+ (71.7%), ER+/PR− (26.9%), ER−/PR+ (0.7%), and ER−/PR− (0.7%). The allele frequencies of CYP2D6*1, CYP2D6*2, CYP2D6*4, CYP2D6*10, CYP3A5*1, and CYP3A5*3 were 72.9%, 3.2%, 1.1%, 22.8%, 37.3%, and 62.7%, respectively, while the genotype frequencies of CYP2D6*1/*1, CYP2D6*1/*2, CYP2D6*2/*2, CYP2D6*4/*4, CYP2D6*1/*10, CYP2D6*2/*10, CYP2D6*4/*10, CYP2D6*10/*10, CYP3A5*1/*1, CYP3A5*1/*3, and CYP3A5*3/*3 were 9.7%, 2.2%, 3.7%, 1.5%, 15.7%, 9.7%, 3.7%, 53.7%, 13.4%, 47.8%, and 38.8%, respectively. Conclusion The majority (97.8%) of Thai breast cancer patients undergoing TAM treatment carry at least one incomplete functional allele, including 20.9% of the patients who carry only incomplete functional alleles for both the CYP2D6 and CYP3A5 genes. This research indicates the high prevalence of these defective alleles that are involved in TAM-metabolic pathways that might further affect TAM treatment.
Collapse
Affiliation(s)
| | | | - Virote Sriuranpong
- Medical Oncology Unit, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | | |
Collapse
|
25
|
Fernández-Santander A, Novillo A, Gaibar M, Romero-Lorca A, Moral P, Sánchez-Cuenca D, Amir N, Chaabani H, Harich N, Esteban ME. Cytochrome and sulfotransferase gene variation in north African populations. Pharmacogenomics 2016; 17:1415-23. [PMID: 27471773 DOI: 10.2217/pgs-2016-0016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
AIM To describe the diversity of four cytochrome and four sulfotransferase polymorphisms in six north African samples. Scarce data have been compiled for these samples despite the rich genetic background of north African populations. MATERIALS & METHODS CYP3A4*1B, CYP3A4*17, CYP3A4*3, CYP3A5*3, SULT1A1*2, SULT1A2*2, SULT1A2*3 and SULT1E1*2 polymorphisms were explored in 556 individuals from Morocco, Algeria, Tunisia and Libya. RESULTS Allele frequencies in our samples largely exceeded the variation ranges described for European populations, especially for CYP3A4*1B, SULT1A1*2 and SULT1A2*3. CONCLUSION North African populations are heterogeneous, genetically diverse and show a considerable sub-Saharan African contribution for markers associated with increased risk of prostate cancer and with differential drug metabolism.
Collapse
Affiliation(s)
| | - Apolonia Novillo
- Basic Biomedical Sciences Department, Universidad Europea de Madrid, Madrid, Spain
| | - María Gaibar
- Basic Biomedical Sciences Department, Universidad Europea de Madrid, Madrid, Spain
| | - Alicia Romero-Lorca
- Basic Biomedical Sciences Department, Universidad Europea de Madrid, Madrid, Spain
| | - Pedro Moral
- Section of Zoology and Anthropology, Department of Evolutive Biology, Ecology and Environmental Sciences, Faculty of Biology, University of Barcelona, Barcelona, Spain.,Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain
| | - David Sánchez-Cuenca
- Departamento de Genética, Antropología Física y Fisiología Animal (UPV/EHU), Leioa, Spain
| | - Nadir Amir
- Laboratoire de Biochimie Appliquée, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, Algeria
| | - Hassen Chaabani
- Faculty of Pharmacy, University of Monastir, Monastir, Tunisia
| | - Nourdin Harich
- Départément de Biologie, Faculté des Sciences, Université Chouaib Doukkali, El Jadida, Morocco
| | - Maria Esther Esteban
- Section of Zoology and Anthropology, Department of Evolutive Biology, Ecology and Environmental Sciences, Faculty of Biology, University of Barcelona, Barcelona, Spain.,Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
26
|
de Vries Schultink AHM, Zwart W, Linn SC, Beijnen JH, Huitema ADR. Effects of Pharmacogenetics on the Pharmacokinetics and Pharmacodynamics of Tamoxifen. Clin Pharmacokinet 2016; 54:797-810. [PMID: 25940823 PMCID: PMC4513218 DOI: 10.1007/s40262-015-0273-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The antiestrogenic drug tamoxifen is widely used in the treatment of estrogen receptor-α-positive breast cancer and substantially decreases recurrence and mortality rates. However, high interindividual variability in response is observed, calling for a personalized approach to tamoxifen treatment. Tamoxifen is bioactivated by cytochrome P450 (CYP) enzymes such as CYP2B6, CYP2C9, CYP2C19, CYP2D6 and CYP3A4/5, resulting in the formation of active metabolites, including 4-hydroxy-tamoxifen and endoxifen. Therefore, polymorphisms in the genes encoding these enzymes are proposed to influence tamoxifen and active tamoxifen metabolites in the serum and consequently affect patient response rates. To tailor tamoxifen treatment, multiple studies have been performed to clarify the influence of polymorphisms on its pharmacokinetics and pharmacodynamics. Nevertheless, personalized treatment of tamoxifen based on genotyping has not yet met consensus. This article critically reviews the published data on the effect of various genetic polymorphisms on the pharmacokinetics and pharmacodynamics of tamoxifen, and reviews the clinical implications of its findings. For each CYP enzyme, the influence of polymorphisms on pharmacokinetic and pharmacodynamic outcome measures is described throughout this review. No clear effects on pharmacokinetics and pharmacodynamics were seen for various polymorphisms in the CYP encoding genes CYP2B6, CYP2C9, CYP2C19 and CYP3A4/5. For CYP2D6, there was a clear gene-exposure effect that was able to partially explain the interindividual variability in plasma concentrations of the pharmacologically most active metabolite endoxifen; however, a clear exposure-response effect remained controversial. These controversial findings and the partial contribution of genotype in explaining interindividual variability in plasma concentrations of, in particular, endoxifen, imply that tailored tamoxifen treatment may not be fully realized through pharmacogenetics of metabolizing enzymes alone.
Collapse
Affiliation(s)
- Aurelia H M de Vries Schultink
- Department of Pharmacy and Pharmacology, Antoni van Leeuwenhoek-The Netherlands Cancer Institute, Louwesweg 6, 1066 EC, Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|
27
|
Del Re M, Citi V, Crucitta S, Rofi E, Belcari F, van Schaik RH, Danesi R. Pharmacogenetics of CYP2D6 and tamoxifen therapy: Light at the end of the tunnel? Pharmacol Res 2016; 107:398-406. [PMID: 27060675 DOI: 10.1016/j.phrs.2016.03.025] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2016] [Revised: 03/06/2016] [Accepted: 03/21/2016] [Indexed: 01/08/2023]
Abstract
The clinical usefulness of assessing the enzymatic activity of CYPD6 in patients taking tamoxifen had been longly debated. In favour of preemptive evaluation of phenotypic profile of patients is the strong pharmacologic rationale, being that the formation of endoxifen, the major and clinically most important metabolite of tamoxifen, is largely dependent on the activity of CYP2D6. This enzyme is highly polymorphic for which the activity is largely depending on genetics, but that can also be inhibited by a number of drugs, i.e. antidepressants, which are frequently used in patients with cancer. Unfortunately, the clinical trials that have been published in the last years are contradicting each other on the association between CYP2D6 and significant clinical endpoints, and for this reason CYP2D6 genotyping is at present not generally recommended. Despite this, the CYP2D6 genotyping test for tamoxifen is available in many laboratories and it may still be an appropriate test to use it in specific cases.
Collapse
Affiliation(s)
- M Del Re
- Clinical Pharmacology and Pharmacogenetics Unit, Department of Laboratory Medicine, University Hospital, Pisa, Italy.
| | - V Citi
- Clinical Pharmacology and Pharmacogenetics Unit, Department of Laboratory Medicine, University Hospital, Pisa, Italy
| | - S Crucitta
- Clinical Pharmacology and Pharmacogenetics Unit, Department of Laboratory Medicine, University Hospital, Pisa, Italy
| | - E Rofi
- Clinical Pharmacology and Pharmacogenetics Unit, Department of Laboratory Medicine, University Hospital, Pisa, Italy
| | - F Belcari
- Clinical Pharmacology and Pharmacogenetics Unit, Department of Laboratory Medicine, University Hospital, Pisa, Italy
| | - R H van Schaik
- Department of Clinical Chemistry, Erasmus MC, Rotterdam, The Netherlands
| | - R Danesi
- Clinical Pharmacology and Pharmacogenetics Unit, Department of Laboratory Medicine, University Hospital, Pisa, Italy
| |
Collapse
|
28
|
Hennig EE, Piatkowska M, Karczmarski J, Goryca K, Brewczynska E, Jazwiec R, Kluska A, Omiotek R, Paziewska A, Dadlez M, Ostrowski J. Limited predictive value of achieving beneficial plasma (Z)-endoxifen threshold level by CYP2D6 genotyping in tamoxifen-treated Polish women with breast cancer. BMC Cancer 2015; 15:570. [PMID: 26232141 PMCID: PMC4522133 DOI: 10.1186/s12885-015-1575-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 07/27/2015] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Tamoxifen, the most frequently used drug for treating estrogen receptor-positive breast cancer, must be converted into active metabolites to exert its therapeutic efficacy, mainly through CYP2D6 enzymes. The objective of this study was to investigate the impact of CYP2D6 polymorphisms on (Z)-endoxifen-directed tamoxifen metabolism and to assess the usefulness of CYP2D6 genotyping for identifying patients who are likely to have insufficient (Z)-endoxifen concentrations to benefit from standard therapy. METHODS Blood samples from 279 Polish women with breast cancer receiving tamoxifen 20 mg daily were analyzed for CYP2D6 genotype and drug metabolite concentration. Steady-state plasma levels of tamoxifen and its 14 metabolites were measured by using the ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) method. RESULTS In nearly 60 % of patients, including over 30 % of patients with fully functional CYP2D6, (Z)-endoxifen concentration was below the predefined threshold of therapeutic efficacy. The most frequently observed CYP2D6 genotype was EM/PM (34.8 %), among which 83.5 % of patients had a combination of wild-type and *4 alleles. Plasma concentration of five metabolites was significantly correlated with CYP2D6 genotype. For the first time, we identified an association between decreased (E/Z)-4-OH-N-desmethyl-tamoxifen-β-D-glucuronide levels (r (2) = 0.23; p < 10(-16)) and increased CYP2D6 functional impairment. The strongest correlation was observed for (Z)-endoxifen, whose concentration was significantly lower in groups of patients carrying at least one CYP2D6 null allele, compared with EM/EM patients. The CYP2D6 genotype accounted for plasma level variability of (Z)-endoxifen by 27 % (p < 10(-16)) and for the variability of metabolic ratio indicating (Z)-endoxifen-directed metabolism of tamoxifen by 51 % (p < 10(-43)). CONCLUSIONS The majority of breast cancer patients in Poland may not achieve a therapeutic level of (Z)-endoxifen upon receiving a standard dose of tamoxifen. This finding emphasizes the limited value of CYP2D6 genotyping in routine clinical practice for identifying patients who might not benefit from the therapy. In its place, direct monitoring of plasma steady-state (Z)-endoxifen concentration should be performed to personalize and optimize the treatment.
Collapse
Affiliation(s)
- Ewa E Hennig
- Department of Gastroenterology, Hepatology and Clinical Oncology, Medical Center for Postgraduate Education, Warsaw, Poland. .,Department of Genetics, Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Warsaw, Poland. .,Cancer Center-Institute, Roentgena 5, 02-781, Warsaw, Poland.
| | - Magdalena Piatkowska
- Department of Genetics, Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Warsaw, Poland.
| | - Jakub Karczmarski
- Department of Genetics, Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Warsaw, Poland.
| | - Krzysztof Goryca
- Department of Genetics, Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Warsaw, Poland.
| | - Elzbieta Brewczynska
- Department of Breast Cancer and Reconstructive Surgery, Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Warsaw, Poland.
| | - Radoslaw Jazwiec
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland.
| | - Anna Kluska
- Department of Genetics, Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Warsaw, Poland.
| | - Robert Omiotek
- Department of Internal Medicine and Oncology, Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Warsaw, Poland.
| | - Agnieszka Paziewska
- Department of Gastroenterology, Hepatology and Clinical Oncology, Medical Center for Postgraduate Education, Warsaw, Poland.
| | - Michal Dadlez
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland.
| | - Jerzy Ostrowski
- Department of Gastroenterology, Hepatology and Clinical Oncology, Medical Center for Postgraduate Education, Warsaw, Poland. .,Department of Genetics, Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Warsaw, Poland.
| |
Collapse
|
29
|
Romero-Lorca A, Novillo A, Gaibar M, Bandrés F, Fernández-Santander A. Impacts of the Glucuronidase Genotypes UGT1A4, UGT2B7, UGT2B15 and UGT2B17 on Tamoxifen Metabolism in Breast Cancer Patients. PLoS One 2015; 10:e0132269. [PMID: 26176234 PMCID: PMC4503404 DOI: 10.1371/journal.pone.0132269] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 06/11/2015] [Indexed: 11/19/2022] Open
Abstract
Tamoxifen is used to prevent and treat estrogen-dependent breast cancer. It is described as a prodrug since most of its antiestrogen effects are exerted through its hydroxylated metabolites 4-OH-tamoxifen and endoxifen. In prior work, we correlated optimal plasma levels of these metabolites with certain genotypes of CYP2D6 and SULT1A2. This descriptive study examines correlations between concentrations of tamoxifen's glucuronide metabolites and genotypes UGT1A4 Pro24Thr, UGT1A4 Leu48Val, UGT2B7 His268Tyr, UGT2B15 Asp85YTyr UGT2B15 Lys523Thr and UGT2B17del in 132 patients with estrogen receptor-positive breast cancer under treatment with tamoxifen. Patients were genotyped by real-time and conventional PCR-RFLP. The glucuronides 4-OH-tamoxifen-N-glucuronide, 4-OH-tamoxifen-O-glucuronide and endoxifen-O-glucuronide were isolated from blood plasma and quantified using a high-pressure liquid chromatography-tandem mass spectrometry system. Individuals who were homozygous for UGT1A448VAL showed significantly lower mean concentrations of both glucuronide metabolites compared to subjects genotyped as wt/wt plus wt/48Val (p=0.037 and p=0.031, respectively). Women homozygous for UGT2B7268Tyr also showed mean substrate/product ratios of 4-OH-tamoxifen/4-OH-tamoxifen-O-glucuronide and 4-OH-tamoxifen/4-OH-tamoxifen-N-glucuronide indicative of reduced glucuronidase activity compared to wt homozygotes or to heterozygotes for the polymorphism (p=0.005 and p=0.003, respectively). In contrast, UGT2B15 Lys523Thr and UGT2B17del were associated with possibly increased enzyme activity. Patients with at least one variant allele UGT2B15523Thr showed significantly higher 4-OH-tamoxifen-O-glucuronide and endoxifen-glucuronide levels (p=0.023 and p=0.025, respectively) indicating a variant gene-dose effect. Higher 4-OH-tamoxifen-N-glucuronide levels observed in UGT2B17del genotypes (p=0.042) could be attributed to a mechanism that compensates for the greater expression of other genes in UGT2B17 del/del individuals. Our observations suggest that patients carrying mutations UGT1A448Val, UGT2B7268Tyr or with wt genotypes for UGT2B17nodel and UGT2B15523Lys could be the best candidates for a good response to tamoxifen therapy in terms of eliciting effective plasma active tamoxifen metabolite levels. However, additional studies examining the effects of UGT genotype on overall patient response to TAM are needed to further examine the role of UGT polymorphisms in the therapeutic efficacy of TAM.
Collapse
Affiliation(s)
- Alicia Romero-Lorca
- Department of Basic Biomedical Sciences, Faculty of Biomedical Sciences, Universidad Europea de Madrid, Villaviciosa de Odón, Madrid, Spain
| | - Apolonia Novillo
- Department of Basic Biomedical Sciences, Faculty of Biomedical Sciences, Universidad Europea de Madrid, Villaviciosa de Odón, Madrid, Spain
| | - María Gaibar
- Department of Basic Biomedical Sciences, Faculty of Biomedical Sciences, Universidad Europea de Madrid, Villaviciosa de Odón, Madrid, Spain
| | | | - Ana Fernández-Santander
- Department of Basic Biomedical Sciences, Faculty of Biomedical Sciences, Universidad Europea de Madrid, Villaviciosa de Odón, Madrid, Spain
| |
Collapse
|
30
|
Binkhorst L, Mathijssen RH, Jager A, van Gelder T. Individualization of tamoxifen therapy: Much more than just CYP2D6 genotyping. Cancer Treat Rev 2015; 41:289-99. [DOI: 10.1016/j.ctrv.2015.01.002] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Revised: 12/30/2014] [Accepted: 01/07/2015] [Indexed: 12/12/2022]
|
31
|
Pharmacogenomic diversity of tamoxifen metabolites and estrogen receptor genes in Hispanics and non-Hispanic whites with breast cancer. Breast Cancer Res Treat 2014; 148:571-80. [PMID: 25395315 DOI: 10.1007/s10549-014-3191-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 10/31/2014] [Indexed: 10/24/2022]
Abstract
Ethnic differences in patient genetics and breast cancer (BC) biology contribute to ethnic disparities in cancer presentation and patient outcome. We prospectively evaluated SNPs within phase I and phase II tamoxifen (TAM) metabolizing enzymes, and the estrogen receptor gene (ESR1), aiming to identify potential pharmacogenomic ethnicity patterns in an ER-positive BC cohort constituted of Hispanic and Non-Hispanic White (NHW) women in South Texas. Plasma concentrations of TAM/metabolites were measured using HPLC. CYP2C9, CYP2D6 and SULT1A1 genotypes were determined by DNA sequencing/Pyrosequencing technology. ESR1 PvuII and XbaI SNPs were genotyped using Applied Biosystems Taqman Allelic Discrimination Assay. Hispanics had higher levels of TAM, 4-hydroxytamoxifen, and endoxifen than NHWs. There was a higher prevalence of CYP2D6 EM within Hispanics than NHWs, which corresponded to higher endoxifen levels, but no differences were verified with regard to CYP2C9 and SULT1A1. We found a higher incidence of the wild type forms of the ESR1 in Hispanics than NHWs. The performance status, the disease stage at diagnosis, and the use of aromatase inhibitors might have overcome the overall favorable pharmacogenomics profile of Hispanics when compared to NHWs in relation to TAM therapy responsiveness. Our data strongly point to ethnical peculiarities related to pharmacogenomics and demographic features of TAM treated Hispanics and NHWs. In the era of pharmacogenomics and its ultimate goal of individualized, efficacious and safe therapy, cancer studies focused on the Hispanic population are warranted because this is the fastest growing major demographic group, and an understudied segment in the U.S.
Collapse
|
32
|
Abstract
Cytosolic SULT1A1 participates in the bioconversion of a plethora of endogenous and xenobiotic substances. Genetic variation in this important enzyme such as SNPs can vary by ethnicity and have functional consequences on its activity. Most SULT1A1 genetic variability studies have been centered on the SULT1A1*1/2 SNP. Highlighted here are not only this SNP, but other genetic variants associated with SULT1A1 that could modify drug efficacy and xenobiotic metabolism. Some studies have investigated how differential metabolism of xenobiotic substances influences susceptibility to or protection from cancer in multiple sites. This review will focus primarily on the impact of SULT1A1 genetic variation on the response to anticancer therapeutic agents and subsequently how it relates to environmental and dietary exposure to both cancer-causing and cancer-preventative compounds.
Collapse
Affiliation(s)
- Jaclyn Daniels
- University of Arkansas for Medical Sciences, COM Department of Medical Genetics, 4301 W. Markham, #580 Little Rock, AR 72205, USA
| | | |
Collapse
|