1
|
Patil V, Hernandez-Franco JF, Yadagiri G, Bugybayeva D, Dolatyabi S, Feliciano-Ruiz N, Schrock J, Suresh R, Hanson J, Yassine H, HogenEsch H, Renukaradhya GJ. Characterization of the Efficacy of a Split Swine Influenza A Virus Nasal Vaccine Formulated with a Nanoparticle/STING Agonist Combination Adjuvant in Conventional Pigs. Vaccines (Basel) 2023; 11:1707. [PMID: 38006039 PMCID: PMC10675483 DOI: 10.3390/vaccines11111707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/09/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023] Open
Abstract
Swine influenza A viruses (SwIAVs) are pathogens of both veterinary and medical significance. Intranasal (IN) vaccination has the potential to reduce flu infection. We investigated the efficacy of split SwIAV H1N2 antigens adsorbed with a plant origin nanoparticle adjuvant [Nano11-SwIAV] or in combination with a STING agonist ADU-S100 [NanoS100-SwIAV]. Conventional pigs were vaccinated via IN and challenged with a heterologous SwIAV H1N1-OH7 or 2009 H1N1 pandemic virus. Immunologically, in NanoS100-SwIAV vaccinates, we observed enhanced frequencies of activated monocytes in the blood of the pandemic virus challenged animals and in tracheobronchial lymph nodes (TBLN) of H1N1-OH7 challenged animals. In both groups of the virus challenged pigs, increased frequencies of IL-17A+ and CD49d+IL-17A+ cytotoxic lymphocytes were observed in Nano11-SwIAV vaccinates in the draining TBLN. Enhanced frequency of CD49d+IFNγ+ CTLs in the TBLN and blood of both the Nano11-based SwIAV vaccinates was observed. Animals vaccinated with both Nano11-based vaccines had upregulated cross-reactive secretory IgA in the lungs and serum IgG against heterologous and heterosubtypic viruses. However, in NanoS100-SwIAV vaccinates, a slight early reduction in the H1N1 pandemic virus and a late reduction in the SwIAV H1N1-OH7 load in the nasal passages were detected. Hence, despite vast genetic differences between the vaccine and both the challenge viruses, IN vaccination with NanoS100-SwIAV induced antigen-specific moderate levels of cross-protective immune responses.
Collapse
Affiliation(s)
- Veerupaxagouda Patil
- Center for Food Animal Health, Department of Animal Sciences, The Ohio State University, 1680 Madison Avenue, Wooster, OH 44691, USA; (V.P.); (G.Y.); (D.B.); (S.D.); (N.F.-R.); (J.S.); (R.S.); (J.H.)
| | - Juan F. Hernandez-Franco
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN 47907, USA;
| | - Ganesh Yadagiri
- Center for Food Animal Health, Department of Animal Sciences, The Ohio State University, 1680 Madison Avenue, Wooster, OH 44691, USA; (V.P.); (G.Y.); (D.B.); (S.D.); (N.F.-R.); (J.S.); (R.S.); (J.H.)
| | - Dina Bugybayeva
- Center for Food Animal Health, Department of Animal Sciences, The Ohio State University, 1680 Madison Avenue, Wooster, OH 44691, USA; (V.P.); (G.Y.); (D.B.); (S.D.); (N.F.-R.); (J.S.); (R.S.); (J.H.)
| | - Sara Dolatyabi
- Center for Food Animal Health, Department of Animal Sciences, The Ohio State University, 1680 Madison Avenue, Wooster, OH 44691, USA; (V.P.); (G.Y.); (D.B.); (S.D.); (N.F.-R.); (J.S.); (R.S.); (J.H.)
| | - Ninoshkaly Feliciano-Ruiz
- Center for Food Animal Health, Department of Animal Sciences, The Ohio State University, 1680 Madison Avenue, Wooster, OH 44691, USA; (V.P.); (G.Y.); (D.B.); (S.D.); (N.F.-R.); (J.S.); (R.S.); (J.H.)
| | - Jennifer Schrock
- Center for Food Animal Health, Department of Animal Sciences, The Ohio State University, 1680 Madison Avenue, Wooster, OH 44691, USA; (V.P.); (G.Y.); (D.B.); (S.D.); (N.F.-R.); (J.S.); (R.S.); (J.H.)
| | - Raksha Suresh
- Center for Food Animal Health, Department of Animal Sciences, The Ohio State University, 1680 Madison Avenue, Wooster, OH 44691, USA; (V.P.); (G.Y.); (D.B.); (S.D.); (N.F.-R.); (J.S.); (R.S.); (J.H.)
| | - Juliette Hanson
- Center for Food Animal Health, Department of Animal Sciences, The Ohio State University, 1680 Madison Avenue, Wooster, OH 44691, USA; (V.P.); (G.Y.); (D.B.); (S.D.); (N.F.-R.); (J.S.); (R.S.); (J.H.)
| | - Hadi Yassine
- Biomedical Research Center, Research Institute in Doha, Qatar University, QU-NRC, Building H10, Zone 5, Room D101, Doha P.O. Box 2713, Qatar;
| | - Harm HogenEsch
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN 47907, USA;
| | - Gourapura J. Renukaradhya
- Center for Food Animal Health, Department of Animal Sciences, The Ohio State University, 1680 Madison Avenue, Wooster, OH 44691, USA; (V.P.); (G.Y.); (D.B.); (S.D.); (N.F.-R.); (J.S.); (R.S.); (J.H.)
| |
Collapse
|
2
|
Razim A, Pyclik M, Pacyga K, Górska S, Xu J, Olszewski MA, Gamian A, Myc A. Silicone Oil-Based Nanoadjuvants as Candidates for a New Formulation of Intranasal Vaccines. Vaccines (Basel) 2021; 9:vaccines9030234. [PMID: 33800507 PMCID: PMC7999606 DOI: 10.3390/vaccines9030234] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/03/2021] [Accepted: 03/05/2021] [Indexed: 01/05/2023] Open
Abstract
Many conventional vaccines are administered via a needle injection, while most pathogens primarily invade the host via mucosal surfaces. Moreover, protective IgA antibodies are insufficiently induced by parenteral vaccines. Mucosal immunity induces both local and systemic response to pathogens and typically lasts for long periods of time. Therefore, vaccination via mucosal routes has been increasingly explored. However, mucosal vaccines require potent adjuvants to become efficacious. Despite many efforts to develop safe and robust adjuvants for mucosal vaccines, only a few have been approved for use in human formulations. The aim of our study was to design, develop and characterize new silicone oil-based nanoadjuvant candidates for intranasal vaccines with potential to become mucosal adjuvants. We have developed an array of nanoadjuvant candidates (NACs), based on well-defined ingredients. NAC1, 2 and 3 are based on silicone oil, but differ in the used detergents and organic solvents, which results in variations in their droplet size and zeta potential. NACs' cytotoxicity, Tumor Necrosis Factor α (TNF-α) induction and their effect on antigen engulfment by immune cells were tested in vitro. Adjuvant properties of NACs were verified by intranasal vaccination of mice together with ovalbumin (OVA). NACs show remarkable stability and do not require any special storage conditions. They exhibit bio-adhesiveness and influence the degree of model protein engulfment by epithelial cells. Moreover, they induce high specific anti-OVA IgG antibody titers after two intranasal administrations. Nanoadjuvant candidates composed of silicone oil and cationic detergents are stable, exhibit remarkable adjuvant properties and can be used as adjuvants for intranasal immunization.
Collapse
Affiliation(s)
- Agnieszka Razim
- Department of Microbiology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland; (M.P.); (K.P.); (S.G.)
- Correspondence:
| | - Marcelina Pyclik
- Department of Microbiology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland; (M.P.); (K.P.); (S.G.)
| | - Katarzyna Pacyga
- Department of Microbiology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland; (M.P.); (K.P.); (S.G.)
| | - Sabina Górska
- Department of Microbiology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland; (M.P.); (K.P.); (S.G.)
| | - Jintao Xu
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI 48109, USA; (J.X.); (M.A.O.)
- Research Service, Department of Veterans Affairs Ann Arbor Healthcare System, Ann Arbor, MI 48105, USA
| | - Michal A. Olszewski
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI 48109, USA; (J.X.); (M.A.O.)
- Research Service, Department of Veterans Affairs Ann Arbor Healthcare System, Ann Arbor, MI 48105, USA
| | - Andrzej Gamian
- Department of Immunology of Infectious Diseases, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland; (A.G.); (A.M.)
| | - Andrzej Myc
- Department of Immunology of Infectious Diseases, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland; (A.G.); (A.M.)
- MNIMBS, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
3
|
Nasal route for vaccine and drug delivery: Features and current opportunities. Int J Pharm 2019; 572:118813. [PMID: 31678521 DOI: 10.1016/j.ijpharm.2019.118813] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 10/16/2019] [Accepted: 10/17/2019] [Indexed: 01/12/2023]
Abstract
Mucosal administration, and specifically nasal route, constitutes an alternative and promising strategy for drug and vaccine delivery. Mucosal routes have several advantages supporting their selective use for different pathologies. Currently, many efforts are being made to develop effective drug formulations and novel devices for nasal delivery. This review described the structure and main characteristics of the nasal cavity. The advantages, achievements and challenges of the nasal route use for medical purposes are discussed, with particular focus on vaccine delivery. Compelling evidences support the potentialities and safety of the nasal delivery of vaccines and drugs. This alternative route could become a solution for many unmet medical issues and also may facilitate and cheapen massive immunization campaigns or long-lasting chronic treatments. Nowadays, in spite of certain remaining skepticism, the field of nasal delivery of drugs and vaccines is growing fast, bolstered by current developments in nanotechnology, imaging and administration devices. A notable increase in the number of approved drugs for nasal administration is envisaged.
Collapse
|
4
|
Calzas C, Chevalier C. Innovative Mucosal Vaccine Formulations Against Influenza A Virus Infections. Front Immunol 2019; 10:1605. [PMID: 31379823 PMCID: PMC6650573 DOI: 10.3389/fimmu.2019.01605] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 06/27/2019] [Indexed: 12/11/2022] Open
Abstract
Despite efforts made to develop efficient preventive strategies, infections with influenza A viruses (IAV) continue to cause serious clinical and economic problems. Current licensed human vaccines are mainly inactivated whole virus particles or split-virion administered via the parenteral route. These vaccines provide incomplete protection against IAV in high-risk groups and are poorly/not effective against the constant antigenic drift/shift occurring in circulating strains. Advances in mucosal vaccinology and in the understanding of the protective anti-influenza immune mechanisms suggest that intranasal immunization is a promising strategy to fight against IAV. To date, human mucosal anti-influenza vaccines consist of live attenuated strains administered intranasally, which elicit higher local humoral and cellular immune responses than conventional parenteral vaccines. However, because of inconsistent protective efficacy and safety concerns regarding the use of live viral strains, new vaccine candidates are urgently needed. To prime and induce potent and long-lived protective immune responses, mucosal vaccine formulations need to ensure the immunoavailability and the immunostimulating capacity of the vaccine antigen(s) at the mucosal surfaces, while being minimally reactogenic/toxic. The purpose of this review is to compile innovative delivery/adjuvant systems tested for intranasal administration of inactivated influenza vaccines, including micro/nanosized particulate carriers such as lipid-based particles, virus-like particles and polymers associated or not with immunopotentiatory molecules including microorganism-derived toxins, Toll-like receptor ligands and cytokines. The capacity of these vaccines to trigger specific mucosal and systemic humoral and cellular responses against IAV and their (cross)-protective potential are considered.
Collapse
Affiliation(s)
- Cynthia Calzas
- VIM, UR892, Equipe Virus Influenza, INRA, University PARIS-SACLAY, Jouy-en-Josas, France
| | - Christophe Chevalier
- VIM, UR892, Equipe Virus Influenza, INRA, University PARIS-SACLAY, Jouy-en-Josas, France
| |
Collapse
|
5
|
Singh B, Maharjan S, Sindurakar P, Cho KH, Choi YJ, Cho CS. Needle-Free Immunization with Chitosan-Based Systems. Int J Mol Sci 2018; 19:E3639. [PMID: 30463211 PMCID: PMC6274840 DOI: 10.3390/ijms19113639] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 11/10/2018] [Accepted: 11/12/2018] [Indexed: 02/02/2023] Open
Abstract
Despite successful use, needle-based immunizations have several issues such as the risk of injuries and infections from the reuse of needles and syringes and the low patient compliance due to pain and fear of needles during immunization. In contrast, needle-free immunizations have several advantages including ease of administration, high level of patient compliance and the possibility of mass vaccination. Thus, there is an increasing interest on developing effective needle-free immunizations via cutaneous and mucosal approaches. Here, we discuss several methods of needle-free immunizations and provide insights into promising use of chitosan systems for successful immunization.
Collapse
Affiliation(s)
- Bijay Singh
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA.
- Research Institute for Bioscience and Biotechnology, Kathmandu 44600, Nepal.
| | - Sushila Maharjan
- Research Institute for Bioscience and Biotechnology, Kathmandu 44600, Nepal.
- Division of Engineering in Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA.
| | - Princy Sindurakar
- Department of Biology, College of the Holy Cross, Worcester, MA 01610, USA.
| | - Ki-Hyun Cho
- Department of Plastic Surgery, Cleveland Clinic, Cleveland, OH 44195, USA.
| | - Yun-Jaie Choi
- Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea.
| | - Chong-Su Cho
- Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea.
| |
Collapse
|
6
|
Falkeborn T, Hinkula J, Olliver M, Lindberg A, Maltais AK. The intranasal adjuvant Endocine™ enhances both systemic and mucosal immune responses in aged mice immunized with influenza antigen. Virol J 2017; 14:44. [PMID: 28253901 PMCID: PMC5335733 DOI: 10.1186/s12985-017-0698-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 02/02/2017] [Indexed: 01/17/2023] Open
Abstract
Despite availability of annual influenza vaccines, influenza causes significant morbidity and mortality in the elderly. This is at least in part a result of immunosenescence; the age-dependent decrease in immunological competence that results in greater susceptibility to infections and reduced responses to vaccination. To improve protective immune responses in this age group, new vaccines strategies, such as the use of adjuvants, are needed. Here, we evaluated the mucosal vaccine adjuvant Endocine™, formulated with split influenza antigen and administered intranasally in aged (20-month old) mice. Humoral immune responses were assessed and compared to unadjuvanted intranasal and subcutaneous vaccines. We show that formulation with Endocine™ significantly enhances hemagglutination inhibition (HI) titers, as well as serum IgG and mucosal IgA antibody titers, compared to both types of unadjuvanted vaccines. Thus, our results indicate that intranasal vaccination with Endocine™ is a possible approach for the development of mucosal influenza vaccines for the elderly.
Collapse
Affiliation(s)
- Tina Falkeborn
- Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Jorma Hinkula
- Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Marie Olliver
- Eurocine Vaccines AB, Karolinska Institutet Science Park, Solna, Sweden
| | - Alf Lindberg
- Eurocine Vaccines AB, Karolinska Institutet Science Park, Solna, Sweden
| | | |
Collapse
|
7
|
RNA is an Adjuvanticity Mediator for the Lipid-Based Mucosal Adjuvant, Endocine. Sci Rep 2016; 6:29165. [PMID: 27374884 PMCID: PMC4931589 DOI: 10.1038/srep29165] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 04/21/2016] [Indexed: 01/10/2023] Open
Abstract
Nasal vaccination has the potential to elicit systemic and mucosal immunity against pathogens. However, split and subunit vaccines lack potency at stimulating mucosal immunity, and an adjuvant is indispensable for eliciting potent mucosal immune response to nasal vaccines. Endocine, a lipid-based mucosal adjuvant, potentiates both systemic and mucosal immune responses. Although Endocine has shown efficacy and tolerability in animal and clinical studies, its mechanism of action remains unknown. It has been reported recently that endogenous danger signals are essential for the effects of some adjuvants such as alum or MF59. However, the contribution of danger signals to the adjuvanticity of Endocine has not been explored. Here, we show that RNA is likely to be an important mediator for the adjuvanticity of Endocine. Administration of Endocine generated nucleic acids release, and activated dendritic cells (DCs) in draining lymph nodes in vivo. These results suggest the possibility that Endocine indirectly activates DCs via damage-associated molecular patterns. Moreover, the adjuvanticity of Endocine disappeared in mice lacking TANK-binding kinase 1 (Tbk1), which is a downstream molecule of nucleic acid sensing signal pathway. Furthermore, co-administration of RNase A reduced the adjuvanticity of Endocine. These data suggest that RNA is important for the adjuvanticity of Endocine.
Collapse
|
8
|
Ross K, Adams J, Loyd H, Ahmed S, Sambol A, Broderick S, Rajan K, Kohut M, Bronich T, Wannemuehler MJ, Carpenter S, Mallapragada S, Narasimhan B. Combination Nanovaccine Demonstrates Synergistic Enhancement in Efficacy against Influenza. ACS Biomater Sci Eng 2016; 2:368-374. [PMID: 33429541 DOI: 10.1021/acsbiomaterials.5b00477] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
H5N1 influenza virus has the potential to become a significant global health threat, and next generation vaccine technologies are needed. In this work, the combined efficacy of two nanoadjuvant platforms (polyanhydride nanoparticles and pentablock copolymer-based hydrogels) to induce protective immunity against H5N1 influenza virus was examined. Mice received two subcutaneous vaccinations (day 0 and 21) containing 10 μg of H5 hemagglutinin trimer alone or in combination with the nanovaccine platforms. Nanovaccine immunization induced high neutralizing antibody titers that were sustained through 70 days postimmunization. Finally, mice were intranasally challenged with A/H5N1 VNH5N1-PR8CDC-RG virus and monitored for 14 days. Animals receiving the combination nanovaccine had lower viral loads in the lung and weight loss after challenge in comparison to animals vaccinated with each platform alone. These data demonstrate the synergy between polyanhydride nanoparticles and pentablock copolymer-based hydrogels as adjuvants in the design of a more efficacious influenza vaccine.
Collapse
Affiliation(s)
| | | | | | | | | | - Scott Broderick
- Materials Design and Innovation, University at Buffalo-The State University of New York, Buffalo, New York 14260, United States
| | - Krishna Rajan
- Materials Design and Innovation, University at Buffalo-The State University of New York, Buffalo, New York 14260, United States
| | | | | | | | | | | | | |
Collapse
|
9
|
Broadly protective immunity against divergent influenza viruses by oral co-administration of Lactococcus lactis expressing nucleoprotein adjuvanted with cholera toxin B subunit in mice. Microb Cell Fact 2015; 14:111. [PMID: 26242406 PMCID: PMC4524015 DOI: 10.1186/s12934-015-0287-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 06/19/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Current influenza vaccines need to be annually reformulated to well match the predicated circulating strains. Thus, it is critical for developing a novel universal influenza vaccine that would be able to confer cross-protection against constantly emerging divergent influenza virus strains. Influenza virus A is a genus of the Orthomyxoviridae family of viruses. Influenza virus nucleoprotein (NP) is a structural protein which encapsidates the negative strand viral RNA, and anti-NP antibodies play role in cross-protective immunity. Lactococcus lactis (L. lactis) is an ideal vaccine delivery vehicle via oral administration route. However, L. lactis vectored vaccine exhibits poor immunogenicity without the use of mucosal adjuvant. To enhance the immunogenicity of L. lactis vectored vaccine, cholera toxin B (CTB) subunit, one of mucosal adjuvants, is a safe adjuvant for oral route, when combined with L. lactis vectored vaccine. In this study, we hypothesized that pNZ8008, a L. lactis expression plasmid, encoding NP antigen, would be able to elicit cross-protection with the use of CTB via oral administration route. RESULTS To construct L. lactis vectored vaccine, nucleoprotein (NP) gene of A/California/04/2009(H1N1) was sub-cloned into a L. lactis expression plasmid, pNZ8008. The expression of recombinant L. lactis/pNZ8008-NP was confirmed by Western blot, immunofluorescence assay and flow cytometric analysis. Further, immunogenicity of L. lactis/pNZ8008-NP alone or adjuvanted with cholera toxin B (CTB) subunit was evaluated in a mouse model via oral administration route. Antibodies responses were detected by ELISA. The result indicated that oral administration of L. lactis/pNZ8008-NP adjuvanted with CTB could elicit significant humoral and mucosal immune responses, as well as cellular immune response, compared with L. lactis/pNZ8008-NP alone. To further assess the cross-protective immunity of L. lactis/pNZ8008-NP adjuvanted with CTB, we used L. lactis/pNZ8110-pgsA-HA1 alone or adjuvanted with CTB as controls. Mice that received L. lactis/pNZ8008-NP adjuvanted with CTB were completely protected from homologous H1N1 virus and showed 80% protection against heterologous H3N2 or H5N1 virus, respectively. By contrast, L. lactis/pNZ8110-pgsA-HA1 adjuvanted with CTB also conferred 100% protection against H5N1 virus infection, but indicated no cross-protection against H1N1 or H5N1 virus challenge. As controls, mice vaccinated orally with L. lactis/pNZ8008-NP alone or L. lactis/pNZ8110-pgsA-HA1 alone could not survive. CONCLUSION This study is the first to report the construction of recombinant L. lactis/pNZ8008-NP and investigate its immunogenicity with the use of CTB. Compared with L. lactis/pNZ8110-pgsA-HA1 adjuvanted with CTB, our data support 5 × 10(11) CFU of L. lactis/pNZ8008-NP adjuvanted with 1 µg of CTB is a better combination for universal influenza vaccines development that would provide cross-protective immunity against divergent influenza A viruses.
Collapse
|
10
|
Intranasal administration of a therapeutic HIV vaccine (Vacc-4x) induces dose-dependent systemic and mucosal immune responses in a randomized controlled trial. PLoS One 2014; 9:e112556. [PMID: 25398137 PMCID: PMC4232368 DOI: 10.1371/journal.pone.0112556] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 10/07/2014] [Indexed: 11/19/2022] Open
Abstract
Background Vacc-4x, a Gag p24-based therapeutic HIV vaccine, has been shown to reduce viral load set-points after intradermal administration. In this randomized controlled pilot study we investigate intranasal administration of Vacc-4x with Endocine as adjuvant. Methods Safety and immunogenicity were tested in patients on effective ART. They were randomized to low, medium or high dose Vacc-4x or adjuvant alone, administered four times at weekly intervals with no booster. Vacc-4x-specific T cell responses were measured in vitro by proliferation and in vivo by a single DTH skin test at the end of study. Nasal and rectal mucosal secretions were analyzed for Vacc-4x-specific antibodies by ELISA. Immune regulation induced by Vacc-4x was assessed by functional blockade of the regulatory cytokines IL-10 and TGF-β. Results Vacc-4x proliferative T cell responses increased only among the vaccinated (p≤0.031). The low dose group showed the greatest increase in Vacc-4x CD8+T cell responses (p = 0.037) and developed larger DTH (p = 0.005) than the adjuvant group. Rectal (distal) Vacc-4x IgA and IgG antibodies also increased (p = 0.043) in this group. In contrast, the high dose generated higher nasal (local) Vacc-4x IgA (p = 0.028) and serum IgG (p = 0.030) antibodies than the adjuvant. Irrespective of dose, increased Vacc-4x CD4+T cell responses were associated with low proliferation (r = −0.82, p<0.001) and high regulation (r = 0.61, p = 0.010) at baseline. Conclusion Intranasal administration of Vacc-4x with Endocine was safe and induced dose-dependent vaccine-specific T cell responses and both mucosal and systemic humoral responses. The clinical significance of dose, immune regulation and mucosal immunity warrants further investigation. Trial Registration ClinicalTrials.gov NCT01473810
Collapse
|
11
|
Sanchez MV, Ebensen T, Schulze K, Cargnelutti D, Blazejewska P, Scodeller EA, Guzmán CA. Intranasal delivery of influenza rNP adjuvanted with c-di-AMP induces strong humoral and cellular immune responses and provides protection against virus challenge. PLoS One 2014; 9:e104824. [PMID: 25140692 PMCID: PMC4139298 DOI: 10.1371/journal.pone.0104824] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Accepted: 07/17/2014] [Indexed: 12/17/2022] Open
Abstract
There is a critical need for new influenza vaccines able to protect against constantly emerging divergent virus strains. This will be sustained by the induction of vigorous cellular responses and humoral immunity capable of acting at the portal of entry of this pathogen. In this study we evaluate the protective efficacy of intranasal vaccination with recombinant influenza nucleoprotein (rNP) co-administrated with bis-(3′,5′)-cyclic dimeric adenosine monophosphate (c-di-AMP) as adjuvant. Immunization of BALB/c mice with two doses of the formulation stimulates high titers of NP-specific IgG in serum and secretory IgA at mucosal sites. This formulation also promotes a strong Th1 response characterized by high secretion of INF-γ and IL-2. The immune response elicited promotes efficient protection against virus challenge. These results suggest that c-di-AMP is a potent mucosal adjuvant which may significantly contribute towards the development of innovative mucosal vaccines against influenza.
Collapse
Affiliation(s)
- Maria Victoria Sanchez
- Laboratory of Virology, Institute of Experimental Medicine and Biology of Cuyo (IMBECU-CCT, CONICET), Mendoza, Argentina
- Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Thomas Ebensen
- Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research, Braunschweig, Germany
- * E-mail:
| | - Kai Schulze
- Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Diego Cargnelutti
- Laboratory of Virology, Institute of Experimental Medicine and Biology of Cuyo (IMBECU-CCT, CONICET), Mendoza, Argentina
| | - Paulina Blazejewska
- Boehringer Ingelheim Veterinary Research Center GmbH & Co. KG, Hannover, Germany
| | - Eduardo A. Scodeller
- Laboratory of Virology, Institute of Experimental Medicine and Biology of Cuyo (IMBECU-CCT, CONICET), Mendoza, Argentina
| | - Carlos A. Guzmán
- Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| |
Collapse
|
12
|
Intranasally administered Endocine™ formulated 2009 pandemic influenza H1N1 vaccine induces broad specific antibody responses and confers protection in ferrets. Vaccine 2014; 32:3307-15. [DOI: 10.1016/j.vaccine.2014.03.061] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Revised: 03/11/2014] [Accepted: 03/17/2014] [Indexed: 01/13/2023]
|