1
|
Ma X, Xing Y, Zhai R, Du Y, Yan H. Development and advancements in rodent MRI-based brain atlases. Heliyon 2024; 10:e27421. [PMID: 38510053 PMCID: PMC10950579 DOI: 10.1016/j.heliyon.2024.e27421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/15/2024] [Accepted: 02/28/2024] [Indexed: 03/22/2024] Open
Abstract
Rodents, particularly mice and rats, are extensively utilized in fundamental neuroscience research. Brain atlases have played a pivotal role in this field, evolving from traditional printed histology atlases to digital atlases incorporating diverse imaging datasets. Magnetic resonance imaging (MRI)-based brain atlases, also known as brain maps, have been employed in specific studies. However, the existence of numerous versions of MRI-based brain atlases has impeded their standardized application and widespread use, despite the consensus within the academic community regarding their significance in mice and rats. Furthermore, there is a dearth of comprehensive and systematic reviews on MRI-based brain atlases for rodents. This review aims to bridge this gap by providing a comprehensive overview of the advancements in MRI-based brain atlases for rodents, with a specific focus on mice and rats. It seeks to explore the advantages and disadvantages of histologically printed brain atlases in comparison to MRI brain atlases, delineate the standardized methods for creating MRI brain atlases, and summarize their primary applications in neuroscience research. Additionally, this review aims to assist researchers in selecting appropriate versions of MRI brain atlases for their studies or refining existing MRI brain atlas resources, thereby facilitating the development and widespread adoption of standardized MRI-based brain atlases in rodents.
Collapse
Affiliation(s)
- Xiaoyi Ma
- Department of Geriatrics, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Yao Xing
- School of Information Science and Technology, Fudan University, Shanghai, 200433, China
- Wuhan United Imaging Life Science Instrument Co., Ltd., Wuhan, 430071, China
| | - Renkuan Zhai
- Wuhan United Imaging Life Science Instrument Co., Ltd., Wuhan, 430071, China
| | - Yingying Du
- Wuhan United Imaging Life Science Instrument Co., Ltd., Wuhan, 430071, China
| | - Huanhuan Yan
- Shenzhen United Imaging Research Institute of Innovative Medical Equipment, Shenzhen, 518048, China
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| |
Collapse
|
2
|
Yeo XY, Chae WR, Lee HU, Bae HG, Pettersson S, Grandjean J, Han W, Jung S. Nuanced contribution of gut microbiome in the early brain development of mice. Gut Microbes 2023; 15:2283911. [PMID: 38010368 PMCID: PMC10768743 DOI: 10.1080/19490976.2023.2283911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 11/12/2023] [Indexed: 11/29/2023] Open
Abstract
The complex symbiotic relationship between the mammalian body and gut microbiome plays a critical role in the health outcomes of offspring later in life. The gut microbiome modulates virtually all physiological functions through direct or indirect interactions to maintain physiological homeostasis. Previous studies indicate a link between maternal/early-life gut microbiome, brain development, and behavioral outcomes relating to social cognition. Here we present direct evidence of the role of the gut microbiome in brain development. Through magnetic resonance imaging (MRI), we investigated the impact of the gut microbiome on brain organization and structure using germ-free (GF) mice and conventionalized mice, with the gut microbiome reintroduced after weaning. We found broad changes in brain volume in GF mice that persist despite the reintroduction of gut microbes at weaning. These data suggest a direct link between the maternal gut or early-postnatal microbe and their impact on brain developmental programming.
Collapse
Affiliation(s)
- Xin Yi Yeo
- Lab of Metabolic Medicine, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, Singapore
- Department of Psychological Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Woo Ri Chae
- Lab of Metabolic Medicine, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, Singapore
- Department of BioNano Technology, Gachon University, Seongnam, Republic of Korea
| | - Hae Ung Lee
- National Neuroscience Institute, Tan Tock Seng Hospital, Singapore Health Services, Singapore, Singapore
| | - Han-Gyu Bae
- Department of Cellular & Integrative Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Sven Pettersson
- National Neuroscience Institute, Tan Tock Seng Hospital, Singapore Health Services, Singapore, Singapore
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Medical Sciences, Sunway University, Kuala Lumpur, Malaysia
| | - Joanes Grandjean
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Weiping Han
- Lab of Metabolic Medicine, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, Singapore
| | - Sangyong Jung
- Lab of Metabolic Medicine, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Medical Science, College of Medicine, CHA University, Seongnam, Republic of Korea
| |
Collapse
|
3
|
Tsurugizawa T, Kumamoto T, Yoshioka Y. Micro-magnetic resonance imaging of ex vivo mouse embryos with potato starch suspension. STAR Protoc 2023; 4:102483. [PMID: 37516974 PMCID: PMC10407275 DOI: 10.1016/j.xpro.2023.102483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/17/2023] [Accepted: 07/05/2023] [Indexed: 08/01/2023] Open
Abstract
Potato starch suspension (PSS) holds promise as a solution to issues, such as air bubbles and specimen motion, associated with micro-magnetic resonance imaging (micro-MRI) of ex vivo embryos. Here, we present a protocol for using PSS when scanning specimens with micro-MRI. We describe steps for preparing samples and potato starch with phosphate-buffered saline. We then detail steps for specimen immersion and micro-MRI scanning. This protocol will enable micro-MRI of not only embryos but also other specimens, such as insects. For complete details on the use and execution of this protocol, please refer to Tsurugizawa et al.1.
Collapse
Affiliation(s)
- Tomokazu Tsurugizawa
- Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba 305-8568, Japan; Faculty of Engineering, Information and Systems, University of Tsukuba, Tsukuba 305-8573, Japan; Graduate School of Frontier Biosciences, Osaka University, Suita 565-0871, Japan; Center for Information and Neural Networks (CiNet), Osaka University and National Institute of Information and Communications Technology (NICT), Suita 565-0871, Japan.
| | - Takuma Kumamoto
- Developmental Neuroscience Project, Department of Brain & Neurosciences, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | - Yoshichika Yoshioka
- Graduate School of Frontier Biosciences, Osaka University, Suita 565-0871, Japan; Center for Information and Neural Networks (CiNet), Osaka University and National Institute of Information and Communications Technology (NICT), Suita 565-0871, Japan.
| |
Collapse
|
4
|
Guma E, Beauchamp A, Liu S, Levitis E, Clasen LS, Torres E, Blumenthal J, Lalonde F, Qiu LR, Hrncir H, MacKenzie-Graham A, Yang X, Arnold AP, Lerch JP, Raznahan A. A Cross-Species Neuroimaging Study of Sex Chromosome Dosage Effects on Human and Mouse Brain Anatomy. J Neurosci 2023; 43:1321-1333. [PMID: 36631267 PMCID: PMC9987571 DOI: 10.1523/jneurosci.1761-22.2022] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 12/12/2022] [Accepted: 12/22/2022] [Indexed: 01/13/2023] Open
Abstract
All eutherian mammals show chromosomal sex determination with contrasting sex chromosome dosages (SCDs) between males (XY) and females (XX). Studies in transgenic mice and humans with sex chromosome trisomy (SCT) have revealed direct SCD effects on regional mammalian brain anatomy, but we lack a formal test for cross-species conservation of these effects. Here, we develop a harmonized framework for comparative structural neuroimaging and apply this to systematically profile SCD effects on regional brain anatomy in both humans and mice by contrasting groups with SCT (XXY and XYY) versus XY controls. Total brain size was substantially altered by SCT in humans (significantly decreased by XXY and increased by XYY), but not in mice. Robust and spatially convergent effects of XXY and XYY on regional brain volume were observed in humans, but not mice, when controlling for global volume differences. However, mice do show subtle effects of XXY and XYY on regional volume, although there is not a general spatial convergence in these effects within mice or between species. Notwithstanding this general lack of conservation in SCT effects, we detect several brain regions that show overlapping effects of XXY and XYY both within and between species (cerebellar, parietal, and orbitofrontal cortex), thereby nominating high priority targets for future translational dissection of SCD effects on the mammalian brain. Our study introduces a generalizable framework for comparative neuroimaging in humans and mice and applies this to achieve a cross-species comparison of SCD effects on the mammalian brain through the lens of SCT.SIGNIFICANCE STATEMENT Sex chromosome dosage (SCD) affects neuroanatomy and risk for psychopathology in humans. Performing mechanistic studies in the human brain is challenging but possible in mouse models. Here, we develop a framework for cross-species neuroimaging analysis and use this to show that an added X- or Y-chromosome significantly alters human brain anatomy but has muted effects in the mouse brain. However, we do find evidence for conserved cross-species impact of an added chromosome in the fronto-parietal cortices and cerebellum, which point to regions for future mechanistic dissection of sex chromosome dosage effects on brain development.
Collapse
Affiliation(s)
- Elisa Guma
- Section on Developmental Neurogenomics, Human Genetics Branch, National Institute of Mental Health, Bethesda, 20892, Maryland
| | - Antoine Beauchamp
- Mouse Imaging Centre, Toronto, Ontario M5T 3H7, Canada
- The Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Siyuan Liu
- Section on Developmental Neurogenomics, Human Genetics Branch, National Institute of Mental Health, Bethesda, 20892, Maryland
| | - Elizabeth Levitis
- Section on Developmental Neurogenomics, Human Genetics Branch, National Institute of Mental Health, Bethesda, 20892, Maryland
| | - Liv S. Clasen
- Section on Developmental Neurogenomics, Human Genetics Branch, National Institute of Mental Health, Bethesda, 20892, Maryland
| | - Erin Torres
- Section on Developmental Neurogenomics, Human Genetics Branch, National Institute of Mental Health, Bethesda, 20892, Maryland
| | - Jonathan Blumenthal
- Section on Developmental Neurogenomics, Human Genetics Branch, National Institute of Mental Health, Bethesda, 20892, Maryland
| | - Francois Lalonde
- Section on Developmental Neurogenomics, Human Genetics Branch, National Institute of Mental Health, Bethesda, 20892, Maryland
| | - Lily R. Qiu
- Mouse Imaging Centre, Toronto, Ontario M5T 3H7, Canada
- The Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada
| | - Haley Hrncir
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, California 90095
| | - Allan MacKenzie-Graham
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095
| | - Xia Yang
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, California 90095
| | - Arthur P. Arnold
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, California 90095
| | - Jason P. Lerch
- Mouse Imaging Centre, Toronto, Ontario M5T 3H7, Canada
- The Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5G 1L7, Canada
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, OX3 9DU, United Kingdom
| | - Armin Raznahan
- Section on Developmental Neurogenomics, Human Genetics Branch, National Institute of Mental Health, Bethesda, 20892, Maryland
| |
Collapse
|
5
|
Tsurugizawa T, Kumamoto T, Yoshioka Y. Utilization of potato starch suspension for MR-microimaging in ex vivo mouse embryos. iScience 2022; 25:105694. [PMID: 36567713 PMCID: PMC9768372 DOI: 10.1016/j.isci.2022.105694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/31/2022] [Accepted: 11/24/2022] [Indexed: 12/05/2022] Open
Abstract
Magnetic resonance (MR) microimaging of the mouse embryo is a promising tool to noninvasively investigate the microstructure of the brain of a developing mouse. The proton-free fluid is used for the liquid surrounding the specimen in MR microimaging, but the potential issue of image quality remains due to the air bubbles on the specimen and the retained water proton in the curvature of the embryo. Furthermore, the specimen may move during the scanning, resulting in motion artifact. Here, we developed the new concept of the ex vivo microimaging protocol with the robust method using the potato starch-containing biological polymers. Potato starch suspension with PBS significantly reduced T1 and T2 signal intensity of the suspension and strongly suppressed the motion of the embryo. Furthermore, potato starch-PBS suspension is stable for long-time scanning at room temperature. These results indicate the utility of potato starch suspension for MR microimaging in mouse embryos.
Collapse
Affiliation(s)
- Tomokazu Tsurugizawa
- Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba 305-8568, Japan,Faculty of Engineering, Information and Systems, University of Tsukuba, Tsukuba 305-8573, Japan,Jikei University School of Medicine, 3-25-8 Nishishinbashi, Tokyo 105-8461, Japan,Graduate School of Frontier Biosciences, Osaka University, Suita 565-0871, Japan,Center for Information and Neural Networks (CiNet), Osaka University and National Institute of Information and Communications Technology (NICT), Suita 565-0871, Japan,Corresponding author
| | - Takuma Kumamoto
- Developmental Neuroscience Project, Department of Brain & Neurosciences, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | - Yoshichika Yoshioka
- Graduate School of Frontier Biosciences, Osaka University, Suita 565-0871, Japan,Center for Information and Neural Networks (CiNet), Osaka University and National Institute of Information and Communications Technology (NICT), Suita 565-0871, Japan,Corresponding author
| |
Collapse
|
6
|
Volumetric assessment and longitudinal changes of subcortical structures in formalinized Beagle brains. PLoS One 2022; 17:e0261484. [PMID: 36206292 PMCID: PMC9543981 DOI: 10.1371/journal.pone.0261484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 08/02/2022] [Indexed: 11/07/2022] Open
Abstract
High field MRI is an advanced technique for diagnostic and research purposes on animal models, such as the Beagle dog. In this context, studies on neuroscience applications, e.g. aging and neuro-pathologies, are currently increasing. This led to a need for reference values, in terms of volumetric assessment, for the structures typically involved. Nowadays, several canine brain MRI atlases have been provided. However, no reports are available regarding the measurements’ reproducibility and little is known about the effect of formalin on MRI segmentation. Here, we assessed the segmentation variability of selected structures among operators (two operators segmented the same data) in a sample of 11 Beagle dogs. Then, we analyzed, for one Beagle dog, the longitudinal volumetric changes of these structures. We considered four conditions: in vivo, post mortem (after euthanasia), ex vivo (brain extracted and studied after 1 month in formalin, and after 12 months). The MRI data were collected with a 3 T scanner. Our findings suggest that the segmentation procedure was overall reproducible since only slight statistical differences were detected. In the post mortem/ ex vivo comparison, most structures showed a higher contrast, thereby leading to greater reproducibility between operators. We observed a net increase in the volume of the studied structures. This could be justified by the intrinsic relaxation time changes observed because of the formalin fixation. This led to an improvement in brain structure visualization and segmentation. To conclude, MRI-based segmentation seems to be a useful and accurate tool that allows longitudinal studies on formalin-fixed brains.
Collapse
|
7
|
Long-term changes in neuroimaging markers, cognitive function and psychiatric symptoms in an experimental model of Gulf War Illness. Life Sci 2021; 285:119971. [PMID: 34560085 DOI: 10.1016/j.lfs.2021.119971] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 09/05/2021] [Accepted: 09/16/2021] [Indexed: 11/23/2022]
Abstract
AIMS Gulf War Illness (GWI) is a multi-symptom disease with debilitating cognitive and emotional impairments in veterans. GWI, like epilepsy, is caused by chemical neurotoxicity and manifests from disturbances in neuronal excitability. However, the mechanisms underlying such devastating neurological and psychiatric symptoms remain unclear. Here we investigated the long-term changes in neural behavior and brain structural abnormalities in a rat model of GWI. GWI is linked to exposure to GWI-related organophosphate chemicals (pyridostigmine bromide or PB and insecticide DEET, permethrin) during the stressful Gulf war. METHODS To mimic GWI, we generated an experimental GWI prototype in rats by daily exposure to GWI-related chemicals with restraint stress (GWIR-CS) for 4 weeks. Changes in MRI scan and cognitive function were assessed at 5- and 10- months post-exposure. KEY FINDINGS In MRI scans, rats displayed significant increases in lateral ventricle T2 relaxation times at both 5- and 10-months after GWIR-CS, indicating alterations in the cerebrospinal fluid (CSF) density. Furthermore, at 10 months, there were significant decreases in the volumes of the hippocampus and thalamus and an increase in the lateral ventricle volume. At both time points, they exhibited impairments in multiple neurobehavioral tests, confirming substantial deficits in memory and mood function. GWI-CS rats also displayed aggressive behavior and a marked decrease in social interaction and forced swimming, indicating depression. CONCLUSIONS These results confirm that chronic GWIR-CS exposure led to cognitive and psychiatric symptoms with concurrent neuroimaging abnormalities in CSF, with morphological neural lesions, demonstrating the role of divergent etiological mechanisms in GWI and its comorbidities.
Collapse
|
8
|
Comparison of In Vivo and Ex Vivo Magnetic Resonance Imaging in a Rat Model for Glioblastoma-Associated Epilepsy. Diagnostics (Basel) 2021; 11:diagnostics11081311. [PMID: 34441246 PMCID: PMC8393600 DOI: 10.3390/diagnostics11081311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/16/2021] [Accepted: 07/17/2021] [Indexed: 11/17/2022] Open
Abstract
Magnetic resonance imaging (MRI) is frequently used for preclinical treatment monitoring in glioblastoma (GB). Discriminating between tumors and tumor-associated changes is challenging on in vivo MRI. In this study, we compared in vivo MRI scans with ex vivo MRI and histology to estimate more precisely the abnormal mass on in vivo MRI. Epileptic seizures are a common symptom in GB. Therefore, we used a recently developed GB-associated epilepsy model from our group with the aim of further characterizing the model and making it useful for dedicated epilepsy research. Ten days after GB inoculation in rat entorhinal cortices, in vivo MRI (T2w and mean diffusivity (MD)), ex vivo MRI (T2w) and histology were performed, and tumor volumes were determined on the different modalities. The estimated abnormal mass on ex vivo T2w images was significantly smaller compared to in vivo T2w images, but was more comparable to histological tumor volumes, and might be used to estimate end-stage tumor volumes. In vivo MD images displayed tumors as an outer rim of hyperintense signal with a core of hypointense signal, probably reflecting peritumoral edema and tumor mass, respectively, and might be used in the future to distinguish the tumor mass from peritumoral edema—associated with reactive astrocytes and activated microglia, as indicated by an increased expression of immunohistochemical markers—in preclinical models. In conclusion, this study shows that combining imaging techniques using different structural scales can improve our understanding of the pathophysiology in GB.
Collapse
|
9
|
Liu W, Rohlman AR, Vetreno R, Crews FT. Expression of Oligodendrocyte and Oligoprogenitor Cell Proteins in Frontal Cortical White and Gray Matter: Impact of Adolescent Development and Ethanol Exposure. Front Pharmacol 2021; 12:651418. [PMID: 34025418 PMCID: PMC8134748 DOI: 10.3389/fphar.2021.651418] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 04/12/2021] [Indexed: 12/15/2022] Open
Abstract
Adolescent development of prefrontal cortex (PFC) parallels maturation of executive functions as well as increasing white matter and myelination. Studies using MRI and other methods find that PFC white matter increases across adolescence into adulthood in both humans and rodents. Adolescent binge drinking is common and has been found to alter adult behaviors and PFC functions. This study examines development of oligoprogenitor (OPC) and oligodendrocytes (OLs) in Wistar rats from adolescence to adulthood within PFC white matter, corpus callosum forceps minor (fmi), PFC gray matter, and the neurogenic subventricular zone (SVZ) using immunohistochemistry for marker proteins. In addition, the effects of adolescent intermittent ethanol exposure [AIE; 5.0 g/kg/day, intragastric, 2 days on/2 days off on postnatal day (P)25-54], which is a weekend binge drinking model, were determined. OPC markers NG2+, PDGFRα+ and Olig2+IHC were differentially impacted by both age and PFC region. In both fmi and SVZ, NG2+IHC cells declined from adolescence to adulthood with AIE increasing adult NG2+IHC cells and their association with microglial marker Iba1. PFC gray matter decline in NG2+IHC in adulthood was not altered by AIE. Both adult maturation and AIE impacted OL expression of PLP+, MBP+, MAG+, MOG+, CNPase+, Olig1+, and Olig2+IHC in all three PFC regions, but in region- and marker-specific patterns. These findings are consistent with PFC region-specific changes in OPC and OL markers from adolescence to adulthood as well as following AIE that could contribute to lasting changes in PFC function.
Collapse
Affiliation(s)
| | | | | | - Fulton T. Crews
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
10
|
Isherwood SJS, Bazin PL, Alkemade A, Forstmann BU. Quantity and quality: Normative open-access neuroimaging databases. PLoS One 2021; 16:e0248341. [PMID: 33705468 PMCID: PMC7951909 DOI: 10.1371/journal.pone.0248341] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 02/24/2021] [Indexed: 11/19/2022] Open
Abstract
The focus of this article is to compare twenty normative and open-access neuroimaging databases based on quantitative measures of image quality, namely, signal-to-noise (SNR) and contrast-to-noise ratios (CNR). We further the analysis through discussing to what extent these databases can be used for the visualization of deeper regions of the brain, such as the subcortex, as well as provide an overview of the types of inferences that can be drawn. A quantitative comparison of contrasts including T1-weighted (T1w) and T2-weighted (T2w) images are summarized, providing evidence for the benefit of ultra-high field MRI. Our analysis suggests a decline in SNR in the caudate nuclei with increasing age, in T1w, T2w, qT1 and qT2* contrasts, potentially indicative of complex structural age-dependent changes. A similar decline was found in the corpus callosum of the T1w, qT1 and qT2* contrasts, though this relationship is not as extensive as within the caudate nuclei. These declines were accompanied by a declining CNR over age in all image contrasts. A positive correlation was found between scan time and the estimated SNR as well as a negative correlation between scan time and spatial resolution. Image quality as well as the number and types of contrasts acquired by these databases are important factors to take into account when selecting structural data for reuse. This article highlights the opportunities and pitfalls associated with sampling existing databases, and provides a quantitative backing for their usage.
Collapse
Affiliation(s)
- Scott Jie Shen Isherwood
- Integrative Model-Based Cognitive Neuroscience Research Unit, University of Amsterdam, Amsterdam, The Netherlands
| | - Pierre-Louis Bazin
- Integrative Model-Based Cognitive Neuroscience Research Unit, University of Amsterdam, Amsterdam, The Netherlands
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Anneke Alkemade
- Integrative Model-Based Cognitive Neuroscience Research Unit, University of Amsterdam, Amsterdam, The Netherlands
| | - Birte Uta Forstmann
- Integrative Model-Based Cognitive Neuroscience Research Unit, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
11
|
Beuker C, Strecker JK, Rawal R, Schmidt-Pogoda A, Ruck T, Wiendl H, Klotz L, Schäbitz WR, Sommer CJ, Minnerup H, Meuth SG, Minnerup J. Immune Cell Infiltration into the Brain After Ischemic Stroke in Humans Compared to Mice and Rats: a Systematic Review and Meta-Analysis. Transl Stroke Res 2021; 12:976-990. [PMID: 33496918 PMCID: PMC8557159 DOI: 10.1007/s12975-021-00887-4] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 12/30/2020] [Accepted: 01/04/2021] [Indexed: 12/14/2022]
Abstract
Although several studies have suggested that anti-inflammatory strategies reduce secondary infarct growth in animal stroke models, clinical studies have not yet demonstrated a clear benefit of immune modulation in patients. Potential reasons include systematic differences of post-ischemic neuroinflammation between humans and rodents. We here performed a systematic review and meta-analysis to summarize and compare the spatial and temporal distribution of immune cell infiltration in human and rodent stroke. Data on spatiotemporal distribution of immune cells (T cells, macrophages, and neutrophils) and infarct volume were extracted. Data from all rodent studies were pooled by means of a random-effect meta-analysis. Overall, 20 human and 188 rodent stroke studies were included in our analyses. In both patients and rodents, the infiltration of macrophages and neutrophils preceded the lymphocytic influx. Macrophages and neutrophils were the predominant immune cells within 72 h after infarction. Although highly heterogeneously across studies, the temporal profile of the poststroke immune response was comparable between patients and rodents. In rodent stroke, the extent of the immune cell infiltration depended on the duration and location of vessel occlusion and on the species. The density of infiltrating immune cells correlated with the infarct volume. In summary, we provide the first systematic analysis and comparison of human and rodent post-ischemic neuroinflammation. Our data suggest that the inflammatory response in rodent stroke models is comparable to that in patients with stroke. However, the overall heterogeneity of the post-ischemic immune response might contribute to the translational failure in stroke research.
Collapse
Affiliation(s)
- Carolin Beuker
- Department of Neurology with Institute of Translational Neurology, University of Münster, Albert-Schweitzer-Campus 1, Gebäude A1, 48149, Münster, Germany
| | - Jan-Kolja Strecker
- Department of Neurology with Institute of Translational Neurology, University of Münster, Albert-Schweitzer-Campus 1, Gebäude A1, 48149, Münster, Germany
| | - Rajesh Rawal
- Institute of Epidemiology and Social Medicine, University of Münster, Albert-Schweitzer-Campus 1, Münster, Germany
| | - Antje Schmidt-Pogoda
- Department of Neurology with Institute of Translational Neurology, University of Münster, Albert-Schweitzer-Campus 1, Gebäude A1, 48149, Münster, Germany
| | - Tobias Ruck
- Department of Neurology with Institute of Translational Neurology, University of Münster, Albert-Schweitzer-Campus 1, Gebäude A1, 48149, Münster, Germany
| | - Heinz Wiendl
- Department of Neurology with Institute of Translational Neurology, University of Münster, Albert-Schweitzer-Campus 1, Gebäude A1, 48149, Münster, Germany
| | - Luisa Klotz
- Department of Neurology with Institute of Translational Neurology, University of Münster, Albert-Schweitzer-Campus 1, Gebäude A1, 48149, Münster, Germany
| | | | - Clemens J Sommer
- Institute of Neuropathology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Heike Minnerup
- Institute of Epidemiology and Social Medicine, University of Münster, Albert-Schweitzer-Campus 1, Münster, Germany
| | - Sven G Meuth
- Department of Neurology with Institute of Translational Neurology, University of Münster, Albert-Schweitzer-Campus 1, Gebäude A1, 48149, Münster, Germany
| | - Jens Minnerup
- Department of Neurology with Institute of Translational Neurology, University of Münster, Albert-Schweitzer-Campus 1, Gebäude A1, 48149, Münster, Germany.
| |
Collapse
|
12
|
Reddy SD, Wu X, Kuruba R, Sridhar V, Reddy DS. Magnetic resonance imaging analysis of long-term neuropathology after exposure to the nerve agent soman: correlation with histopathology and neurological dysfunction. Ann N Y Acad Sci 2020; 1480:116-135. [PMID: 32671850 PMCID: PMC7708405 DOI: 10.1111/nyas.14431] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 05/09/2020] [Accepted: 06/17/2020] [Indexed: 12/14/2022]
Abstract
Nerve agents (NAs) produce acute and long-term brain injury and dysfunction, as evident from the Japan and Syria incidents. Magnetic resonance imaging (MRI) is a versatile technique to examine such chronic anatomical, functional, and neuronal damage in the brain. The objective of this study was to investigate long-term structural and neuronal lesion abnormalities in rats exposed to acute soman intoxication. T2-weighted MRI images of 10 control and 17 soman-exposed rats were acquired using a Siemens MRI system at 90 days after soman exposure. Quantification of brain tissue volumes and T2 signal intensity was conducted using the Inveon Research Workplace software and the extent of damage was correlated with histopathology and cognitive function. Soman-exposed rats showed drastic hippocampal atrophy with neuronal loss and reduced hippocampal volume (HV), indicating severe damage, but had similar T2 relaxation times to the control group, suggesting limited scarring and fluid density changes despite the volume decrease. Conversely, soman-exposed rats displayed significant increases in lateral ventricle volumes and T2 times, signifying strong cerebrospinal fluid expansion in compensation for tissue atrophy. The total brain volume, thalamic volume, and thalamic T2 time were similar in both groups, however, suggesting that some brain regions remained more intact long-term after soman intoxication. The MRI neuronal lesions were positively correlated with the histological markers of neurodegeneration and neuroinflammation 90 days after soman exposure. The predominant MRI hippocampal atrophy (25%) was highly consistent with massive reduction (35%) of neuronal nuclear antigen-positive (NeuN+ ) principal neurons and parvalbumin-positive (PV+ ) inhibitory interneurons within this brain region. The HV was significantly correlated with both inflammatory markers of GFAP+ astrogliosis and IBA1+ microgliosis. The reduced HV was also directly correlated with significant memory deficits in the soman-exposed cohort, confirming a possible neurobiological basis for neurological dysfunction. Together, these findings provide powerful insight on long-term region-specific neurodegenerative patterns after soman exposure and demonstrate the feasibility of in vivo neuroimaging to monitor neuropathology, predict the risk of neurological deficits, and evaluate response to medical countermeasures for NAs.
Collapse
Affiliation(s)
- Sandesh D Reddy
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, Texas
- Biomedical Engineering, College of Engineering, Texas A&M University, College Station, Texas
| | - Xin Wu
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, Texas
| | - Ramkumar Kuruba
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, Texas
| | - Vidya Sridhar
- Texas A&M Institute for Preclinical Studies, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas
| | - Doodipala Samba Reddy
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, Texas
| |
Collapse
|
13
|
Llambrich S, Wouters J, Himmelreich U, Dierssen M, Sharpe J, Gsell W, Martínez-Abadías N, Vande Velde G. ViceCT and whiceCT for simultaneous high-resolution visualization of craniofacial, brain and ventricular anatomy from micro-computed tomography. Sci Rep 2020; 10:18772. [PMID: 33128010 PMCID: PMC7599226 DOI: 10.1038/s41598-020-75720-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 10/13/2020] [Indexed: 02/07/2023] Open
Abstract
Up to 40% of congenital diseases present disturbances of brain and craniofacial development resulting in simultaneous alterations of both systems. Currently, the best available method to preclinically visualize the brain and the bones simultaneously is to co-register micro-magnetic resonance (µMR) and micro-computed tomography (µCT) scans of the same specimen. However, this requires expertise and access to both imaging techniques, dedicated software and post-processing knowhow. To provide a more affordable, reliable and accessible alternative, recent research has focused on optimizing a contrast-enhanced µCT protocol using iodine as contrast agent that delivers brain and bone images from a single scan. However, the available methods still cannot provide the complete visualization of both the brain and whole craniofacial complex. In this study, we have established an optimized protocol to diffuse the contrast into the brain that allows visualizing the brain parenchyma and the complete craniofacial structure in a single ex vivo µCT scan (whiceCT). In addition, we have developed a new technique that allows visualizing the brain ventricles using a bilateral stereotactic injection of iodine-based contrast (viceCT). Finally, we have tested both techniques in a mouse model of Down syndrome, as it is a neurodevelopmental disorder with craniofacial, brain and ventricle defects. The combined use of viceCT and whiceCT provides a complete visualization of the brain and bones with intact craniofacial structure of an adult mouse ex vivo using a single imaging modality.
Collapse
Affiliation(s)
- Sergi Llambrich
- Biomedical Imaging, Department of Imaging and Pathology, Faculty of Medicine, KU Leuven, Herestraat 49 O&N1 box 505, 3000, Leuven, Belgium.,Molecular Small Animal Imaging Centre (MoSAIC), KU Leuven, Leuven, Belgium
| | - Jens Wouters
- Biomedical Imaging, Department of Imaging and Pathology, Faculty of Medicine, KU Leuven, Herestraat 49 O&N1 box 505, 3000, Leuven, Belgium.,Molecular Small Animal Imaging Centre (MoSAIC), KU Leuven, Leuven, Belgium
| | - Uwe Himmelreich
- Biomedical Imaging, Department of Imaging and Pathology, Faculty of Medicine, KU Leuven, Herestraat 49 O&N1 box 505, 3000, Leuven, Belgium.,Molecular Small Animal Imaging Centre (MoSAIC), KU Leuven, Leuven, Belgium
| | - Mara Dierssen
- Centre for Genomic Regulation (CRG, The Barcelona Institute of Science and Technology, 08003, Barcelona, Spain.,Universitat Pompeu Fabra (UPF), 08003, Barcelona, Spain
| | - James Sharpe
- EMBL Barcelona, European Molecular Biology Laboratory, Barcelona, Spain Institució Catalana de Recerca I Estudis Avançats (ICREA), Barcelona, Spain
| | - Willy Gsell
- Biomedical Imaging, Department of Imaging and Pathology, Faculty of Medicine, KU Leuven, Herestraat 49 O&N1 box 505, 3000, Leuven, Belgium.,Molecular Small Animal Imaging Centre (MoSAIC), KU Leuven, Leuven, Belgium
| | - Neus Martínez-Abadías
- GREAB-Research Group in Biological Anthropology. Department of Evolutionary Biology, Ecology and Environmental Sciences, BEECA. Universitat de Barcelona, Barcelona, Spain
| | - Greetje Vande Velde
- Biomedical Imaging, Department of Imaging and Pathology, Faculty of Medicine, KU Leuven, Herestraat 49 O&N1 box 505, 3000, Leuven, Belgium. .,Molecular Small Animal Imaging Centre (MoSAIC), KU Leuven, Leuven, Belgium.
| |
Collapse
|
14
|
Ly M, Foley L, Manivannan A, Hitchens TK, Richardson RM, Modo M. Mesoscale diffusion magnetic resonance imaging of the ex vivo human hippocampus. Hum Brain Mapp 2020; 41:4200-4218. [PMID: 32621364 PMCID: PMC7502840 DOI: 10.1002/hbm.25119] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 06/01/2020] [Accepted: 06/16/2020] [Indexed: 12/21/2022] Open
Abstract
Mesoscale diffusion magnetic resonance imaging (MRI) endeavors to bridge the gap between macroscopic white matter tractography and microscopic studies investigating the cytoarchitecture of human brain tissue. To ensure a robust measurement of diffusion at the mesoscale, acquisition parameters were arrayed to investigate their effects on scalar indices (mean, radial, axial diffusivity, and fractional anisotropy) and streamlines (i.e., graphical representation of axonal tracts) in hippocampal layers. A mesoscale resolution afforded segementation of the pyramidal cell layer (CA1-4), the dentate gyrus, as well as stratum moleculare, radiatum, and oriens. Using ex vivo samples, surgically excised from patients with intractable epilepsy (n = 3), we found that shorter diffusion times (23.7 ms) with a b-value of 4,000 s/mm2 were advantageous at the mesoscale, providing a compromise between mean diffusivity and fractional anisotropy measurements. Spatial resolution and sample orientation exerted a major effect on tractography, whereas the number of diffusion gradient encoding directions minimally affected scalar indices and streamline density. A sample temperature of 15°C provided a compromise between increasing signal-to-noise ratio and increasing the diffusion properties of the tissue. Optimization of the acquisition afforded a system's view of intra- and extra-hippocampal connections. Tractography reflected histological boundaries of hippocampal layers. Individual layer connectivity was visualized, as well as streamlines emanating from individual sub-fields. The perforant path, subiculum and angular bundle demonstrated extra-hippocampal connections. Histology of the samples confirmed individual cell layers corresponding to ROIs defined on MR images. We anticipate that this ex vivo mesoscale imaging will yield novel insights into human hippocampal connectivity.
Collapse
Affiliation(s)
- Maria Ly
- Department of RadiologyUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Lesley Foley
- Department of NeurobiologyUniversity of PittsburghPittsburghPennsylvaniaUSA
| | | | - T. Kevin Hitchens
- Department of NeurobiologyUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - R. Mark Richardson
- Department of Neurological SurgeryUniversity of PittsburghPittsburghPennsylvaniaUSA
- McGowan Institute for Regenerative MedicineUniversity of PittsburghPittsburghPennsylvaniaUSA
- Brain InstituteUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Michel Modo
- Department of RadiologyUniversity of PittsburghPittsburghPennsylvaniaUSA
- McGowan Institute for Regenerative MedicineUniversity of PittsburghPittsburghPennsylvaniaUSA
- Department of BioengineeringUniversity of PittsburghPittsburghPennsylvaniaUSA
| |
Collapse
|
15
|
Lee TH, Yang JT, Lin JR, Hu CJ, Chou WH, Lin CP, Chi NF. Protective effects of ischemic preconditioning against neuronal apoptosis and dendritic injury in the hippocampus are age-dependent. J Neurochem 2020; 155:430-447. [PMID: 32314365 DOI: 10.1111/jnc.15029] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 04/02/2020] [Accepted: 04/03/2020] [Indexed: 12/13/2022]
Abstract
Ischemic preconditioning with non-lethal ischemia can be protective against lethal forebrain ischemia. We hypothesized that aging may aggravate ischemic susceptibility and reduce brain plasticity against preconditioning. Magnetic resonance diffusion tensor imaging (DTI) is a sensitive tool to detect brain integrity and white matter architecture. This study used DTI and histopathology to investigate the effect of aging on ischemic preconditioning. In this study, adult and middle-aged male Mongolian gerbils were subjected to non-lethal 5-min forebrain ischemia (ischemic preconditioning) or sham-operation, followed by 3 days of reperfusion, and then lethal 15-min forebrain ischemia. A 9.4-Tesla MR imaging system was used to study DTI indices, namely fractional anisotropy (FA), mean diffusivity (MD), and intervoxel coherence (IC) in the hippocampal CA1 and dentate gyrus (DG) areas. In situ expressions of microtubule-associated protein 2 (MAP2, dendritic marker protein) and apoptosis were also examined. The 5-min ischemia did not cause dendritic and neuronal injury and any significant change in DTI indices and MAP2 in adult and middle-aged gerbils. The 15-min ischemia-induced significant delayed neuronal apoptosis and early dendritic injury evidenced by DTI and MAP2 studies in both CA1 and DG areas with more severe injury in middle-aged gerbils than adult gerbils. Ischemic preconditioning could improve neuronal apoptosis in CA1 area and dendritic integrity in both CA1 and DG areas with better improvement in adult gerbils than middle-aged gerbils. This study thus suggests an age-dependent protective effect of ischemic preconditioning against both neuronal apoptosis and dendritic injury in hippocampus after forebrain ischemia.
Collapse
Affiliation(s)
- Tsong-Hai Lee
- Stroke Center and Department of Neurology, Chang Gung Memorial Hospital, Linkou Medical Center, and College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Jen-Tsung Yang
- Department of Neurosurgery, Chiayi Chang Gung Memorial Hospital and College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Jr-Rung Lin
- Clinical Informatics and Medical Statistics Research Center, Chang Gung University, Taoyuan, Taiwan
| | - Chaur-Jong Hu
- Department of Neurology, Shuang-Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| | - Wen-Hai Chou
- Center for Neuropsychiatric Research, National Health Research Institutes, Miaoli, Taiwan
| | - Ching-Po Lin
- Institute of Neuroscience, National Yang-Ming University, Taipei, Taiwan
| | - Nai-Fang Chi
- Department of Neurology, Faculty of Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| |
Collapse
|
16
|
Cullins MJ, Wenninger JM, Cullen JS, Russell JA, Kleim JA, Connor NP. Tongue Force Training Induces Plasticity of the Lingual Motor Cortex in Young Adult and Aged Rats. Front Neurosci 2019; 13:1355. [PMID: 31920514 PMCID: PMC6931318 DOI: 10.3389/fnins.2019.01355] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 12/02/2019] [Indexed: 11/24/2022] Open
Abstract
Tongue exercise programs are used clinically for dysphagia in aged individuals and have been shown to improve lingual strength. However, the neural mechanisms of age-related decline in swallowing function and its association with lingual strength are not well understood. Using an established rat model of aging and tongue exercise, we hypothesized that the motor cortex of aged rats would have a smaller lingual motor map area than young adult rats and would increase in size as a function of tongue exercise. Over 8 weeks, rats either underwent a progressive resistance tongue exercise program (TE), learned the task but did not exercise (trained controls, TC), or were naïve untrained controls (UC). Cortical motor map areas for tongue and jaw were determined using intracortical microstimulation (ICMS). Rats in the TE and TC groups had a significantly larger motor cortex region for the tongue than the UC group. Lingual cortical motor area was not correlated with protrusive tongue force gains and did not differ significantly with age. These results suggest that learning a novel tongue force skill was sufficient to induce plasticity of the lingual motor cortex yet increasing tongue strength with progressive resistance exercise did not significantly expand the lingual motor area beyond the gains that occurred through the skilled learning component.
Collapse
Affiliation(s)
- Miranda J. Cullins
- Department of Surgery, University of Wisconsin-Madison, Madison, WI, United States
- *Correspondence: Miranda J. Cullins,
| | - Julie M. Wenninger
- Department of Surgery, University of Wisconsin-Madison, Madison, WI, United States
| | - Jared S. Cullen
- Department of Surgery, University of Wisconsin-Madison, Madison, WI, United States
| | - John A. Russell
- Department of Surgery, University of Wisconsin-Madison, Madison, WI, United States
| | - Jeffrey A. Kleim
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, United States
| | - Nadine P. Connor
- Department of Surgery, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
17
|
Vučković I, Nayfeh T, Mishra PK, Periyanan S, Sussman CR, Kline TL, Macura S. Influence of water based embedding media composition on the relaxation properties of fixed tissue. Magn Reson Imaging 2019; 67:7-17. [PMID: 31821849 DOI: 10.1016/j.mri.2019.11.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 10/30/2019] [Accepted: 11/21/2019] [Indexed: 10/25/2022]
Abstract
BACKGROUND In MRI of formalin-fixed tissue one of the problems is the dependence of tissue relaxation properties on formalin composition and composition of embedding medium (EM) used for scanning. In this study, we investigated molecular mechanisms by which the EM composition affects T2 relaxation directly and T1 relaxation indirectly. OBJECTIVE To identify principal components of formaldehyde based EM and the mechanism by which they affect relaxation properties of fixed tissue. METHODS We recorded high resolution 1H NMR spectra of common formalin fixatives at temperatures in the range of 5 °C to 45 °C. We also measured T1 and T2 relaxation times of various organs of formalin fixed (FF) zebrafish at 7 T at 21 °C and 31 °C in several EM with and without fixative or gadolinium contrast agents. RESULTS We showed that the major source of T2 variability is chemical exchange between protons from EM hydroxyls and water, mediated by the presence of phosphate ions. The exchange rate increases with temperature, formaldehyde concentration in EM and phosphate concentration in EM. Depending on which side of the coalescence the system resides, the temperature increase can lead to either shortening or prolongation of T2, or to no noticeable change at all when very close to the coalescence. Chemical exchange can be minimized by washing out from EM the fixative, the phosphate or both. CONCLUSION The dependence of T2 in fixed tissue on the fixative origin and composition described in prior literature could be attributed to the phosphate buffer accelerated chemical exchange among the fixative hydroxyls and the tissue water. More consistent results in the relaxation measurements could be obtained by stricter control of the fixative composition or by scanning fixed tissue in PBS without fixative.
Collapse
Affiliation(s)
- Ivan Vučković
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | - Tarek Nayfeh
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | - Prasanna K Mishra
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | | | - Caroline R Sussman
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN 55905, USA
| | - Timothy L Kline
- Department of Radiology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Slobodan Macura
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA.
| |
Collapse
|
18
|
Boon BDC, Pouwels PJW, Jonkman LE, Keijzer MJ, Preziosa P, van de Berg WDJ, Geurts JJG, Scheltens P, Barkhof F, Rozemuller AJM, Bouwman FH, Steenwijk MD. Can post-mortem MRI be used as a proxy for in vivo? A case study. Brain Commun 2019; 1:fcz030. [PMID: 32954270 PMCID: PMC7425311 DOI: 10.1093/braincomms/fcz030] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 09/30/2019] [Accepted: 10/03/2019] [Indexed: 12/19/2022] Open
Abstract
Post-mortem in situ MRI has been used as an intermediate between brain histo(patho)logy and in vivo imaging. However, it is not known how comparable post-mortem in situ is to ante-mortem imaging. We report the unique situation of a patient with familial early-onset Alzheimer's disease due to a PSEN1 mutation, who underwent ante-mortem brain MRI and post-mortem in situ imaging only 4 days apart. T1-weighted and diffusion MRI was performed at 3-Tesla at both time points. Visual atrophy rating scales, brain volume, cortical thickness and diffusion measures were derived from both scans and compared. Post-mortem visual atrophy scores decreased 0.5-1 point compared with ante-mortem, indicating an increase in brain volume. This was confirmed by quantitative analysis; showing a 27% decrease of ventricular and 7% increase of whole-brain volume. This increase was more pronounced in the cerebellum and supratentorial white matter than in grey matter. Furthermore, axial and radial diffusivity decreased up to 60% post-mortem whereas average fractional anisotropy of white matter increased approximately 10%. This unique case study shows that the process of dying affects several imaging markers. These changes need to be taken into account when interpreting post-mortem MRI to make inferences on the in vivo situation.
Collapse
Affiliation(s)
- Baayla D C Boon
- Department of Neurology, Amsterdam Neuroscience, Alzheimer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HZ, Amsterdam, The Netherlands.,Department of Pathology, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HZ, Amsterdam, The Netherlands
| | - Petra J W Pouwels
- Department of Radiology and Nuclear Medicine, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HZ, Amsterdam, The Netherlands
| | - Laura E Jonkman
- Department of Anatomy and Neurosciences, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HZ, Amsterdam, The Netherlands
| | - Matthijs J Keijzer
- Department of Anatomy and Neurosciences, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HZ, Amsterdam, The Netherlands
| | - Paolo Preziosa
- Neuroimaging Research Unit, Division of Neuroscience, Institute of Experimental Neurology, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Via Olgettina 60, 20132 Milan, Italy
| | - Wilma D J van de Berg
- Department of Anatomy and Neurosciences, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HZ, Amsterdam, The Netherlands
| | - Jeroen J G Geurts
- Department of Anatomy and Neurosciences, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HZ, Amsterdam, The Netherlands
| | - Philip Scheltens
- Department of Neurology, Amsterdam Neuroscience, Alzheimer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HZ, Amsterdam, The Netherlands
| | - Frederik Barkhof
- Department of Radiology and Nuclear Medicine, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HZ, Amsterdam, The Netherlands.,Institutes of Neurology and Healthcare Engineering, University College London, Gower Street, WC1E 6BT London, UK
| | - Annemieke J M Rozemuller
- Department of Pathology, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HZ, Amsterdam, The Netherlands
| | - Femke H Bouwman
- Department of Neurology, Amsterdam Neuroscience, Alzheimer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HZ, Amsterdam, The Netherlands
| | - Martijn D Steenwijk
- Department of Anatomy and Neurosciences, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HZ, Amsterdam, The Netherlands
| |
Collapse
|
19
|
Waxholm Space atlas of the rat brain auditory system: Three-dimensional delineations based on structural and diffusion tensor magnetic resonance imaging. Neuroimage 2019; 199:38-56. [DOI: 10.1016/j.neuroimage.2019.05.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Revised: 05/01/2019] [Accepted: 05/06/2019] [Indexed: 12/14/2022] Open
|
20
|
Jonkman LE, Kenkhuis B, Geurts JJG, van de Berg WDJ. Post-Mortem MRI and Histopathology in Neurologic Disease: A Translational Approach. Neurosci Bull 2019; 35:229-243. [PMID: 30790214 DOI: 10.1007/s12264-019-00342-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 10/29/2018] [Indexed: 01/28/2023] Open
Abstract
In this review, combined post-mortem brain magnetic resonance imaging (MRI) and histology studies are highlighted, illustrating the relevance of translational approaches to define novel MRI signatures of neuropathological lesions in neuroinflammatory and neurodegenerative disorders. Initial studies combining post-mortem MRI and histology have validated various MRI sequences, assessing their sensitivity and specificity as diagnostic biomarkers in neurologic disease. More recent studies have focused on defining new radiological (bio)markers and implementing them in the clinical (research) setting. By combining neurological and neuroanatomical expertise with radiological development and pathological validation, a cycle emerges that allows for the discovery of novel MRI biomarkers to be implemented in vivo. Examples of this cycle are presented for multiple sclerosis, Alzheimer's disease, Parkinson's disease, and traumatic brain injury. Some applications have been shown to be successful, while others require further validation. In conclusion, there is much to explore with post-mortem MRI and histology studies, which can eventually be of high relevance for clinical practice.
Collapse
Affiliation(s)
- Laura E Jonkman
- Department of Anatomy and Neurosciences, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands.
| | - Boyd Kenkhuis
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Jeroen J G Geurts
- Department of Anatomy and Neurosciences, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
| | - Wilma D J van de Berg
- Department of Anatomy and Neurosciences, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
| |
Collapse
|
21
|
Ma D, Holmes HE, Cardoso MJ, Modat M, Harrison IF, Powell NM, O'Callaghan JM, Ismail O, Johnson RA, O'Neill MJ, Collins EC, Beg MF, Popuri K, Lythgoe MF, Ourselin S. Study the Longitudinal in vivo and Cross-Sectional ex vivo Brain Volume Difference for Disease Progression and Treatment Effect on Mouse Model of Tauopathy Using Automated MRI Structural Parcellation. Front Neurosci 2019; 13:11. [PMID: 30733665 PMCID: PMC6354066 DOI: 10.3389/fnins.2019.00011] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 01/08/2019] [Indexed: 11/29/2022] Open
Abstract
Brain volume measurements extracted from structural MRI data sets are a widely accepted neuroimaging biomarker to study mouse models of neurodegeneration. Whether to acquire and analyze data in vivo or ex vivo is a crucial decision during the phase of experimental designs, as well as data analysis. In this work, we extracted the brain structures for both longitudinal in vivo and single-time-point ex vivo MRI acquired from the same animals using accurate automatic multi-atlas structural parcellation, and compared the corresponding statistical and classification analysis. We found that most gray matter structures volumes decrease from in vivo to ex vivo, while most white matter structures volume increase. The level of structural volume change also varies between different genetic strains and treatment. In addition, we showed superior statistical and classification power of ex vivo data compared to the in vivo data, even after resampled to the same level of resolution. We further demonstrated that the classification power of the in vivo data can be improved by incorporating longitudinal information, which is not possible for ex vivo data. In conclusion, this paper demonstrates the tissue-specific changes, as well as the difference in statistical and classification power, between the volumetric analysis based on the in vivo and ex vivo structural MRI data. Our results emphasize the importance of longitudinal analysis for in vivo data analysis.
Collapse
Affiliation(s)
- Da Ma
- Translational Imaging Group, Centre for Medical Image Computing, University College London, London, United Kingdom.,Centre for Advanced Biomedical Imaging, University College London, London, United Kingdom.,School of Engineering Science, Simon Fraser University, Burnaby, BC, Canada
| | - Holly E Holmes
- Centre for Advanced Biomedical Imaging, University College London, London, United Kingdom
| | - Manuel J Cardoso
- Translational Imaging Group, Centre for Medical Image Computing, University College London, London, United Kingdom.,School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Marc Modat
- Translational Imaging Group, Centre for Medical Image Computing, University College London, London, United Kingdom.,School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Ian F Harrison
- Centre for Advanced Biomedical Imaging, University College London, London, United Kingdom
| | - Nick M Powell
- Translational Imaging Group, Centre for Medical Image Computing, University College London, London, United Kingdom.,Centre for Advanced Biomedical Imaging, University College London, London, United Kingdom
| | - James M O'Callaghan
- Centre for Advanced Biomedical Imaging, University College London, London, United Kingdom
| | - Ozama Ismail
- Centre for Advanced Biomedical Imaging, University College London, London, United Kingdom
| | - Ross A Johnson
- Tailored Therapeutics, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN, United States
| | | | - Emily C Collins
- Tailored Therapeutics, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN, United States
| | - Mirza F Beg
- Tailored Therapeutics, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN, United States
| | - Karteek Popuri
- Tailored Therapeutics, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN, United States
| | - Mark F Lythgoe
- Centre for Advanced Biomedical Imaging, University College London, London, United Kingdom
| | - Sebastien Ourselin
- Translational Imaging Group, Centre for Medical Image Computing, University College London, London, United Kingdom.,School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| |
Collapse
|
22
|
Acer N, Turgut M. Evaluation of Brachial Plexus Using Combined Stereological Techniques of Diffusion Tensor Imaging and Fiber Tracking. J Brachial Plex Peripher Nerve Inj 2019; 14:e16-e23. [PMID: 31198435 PMCID: PMC6561765 DOI: 10.1055/s-0039-1687913] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 02/18/2019] [Indexed: 02/03/2023] Open
Abstract
Background Brachial plexus (BP) is composed of intercommunications among the ventral roots of the nerves C5, C6, C7, C8, and T1 in the neck. The in vivo and in vitro evaluation of axons of the peripheral nervous system is performed using different techniques. Recently, many studies describing the application of fiber tractography and stereological axon number estimation to peripheral nerves have been published. Methods Various quantitative parameters of nerve fibers, including axon number, density, axonal area, and myelin thickness, can be estimated using stereological techniques. In vivo three-dimensional reconstruction of axons of BP can be visualized using a combined technique of diffusion tensor imaging (DTI) and fiber tracking with the potential to evaluate nerve fiber content. Conclusion It is concluded that terminal branches of BP can be successfully visualized using DTI, which is a highly reproducible method for the evaluation of BP as it shows anatomical and functional features of neural structures. We believe that quantitative morphological findings obtained from BP will be useful for new experimental, developmental, and pathological studies in the future.
Collapse
Affiliation(s)
- Niyazi Acer
- Department of Anatomy, Erciyes University School of Medicine, Kayseri, Turkey
| | - Mehmet Turgut
- Department of Neurosurgery, Adnan Menderes University School of Medicine, Aydın, Turkey
- Department of Histology and Embryology, Adnan Menderes University Health Sciences Institute, Aydın, Turkey
| |
Collapse
|
23
|
Lee Y, Rodriguez OC, Albanese C, Santos VR, Cortes de Oliveira JA, Donatti ALF, Fernandes A, Garcia-Cairasco N, N'Gouemo P, Forcelli PA. Divergent brain changes in two audiogenic rat strains: A voxel-based morphometry and diffusion tensor imaging comparison of the genetically epilepsy prone rat (GEPR-3) and the Wistar Audiogenic Rat (WAR). Neurobiol Dis 2018; 111:80-90. [PMID: 29274430 PMCID: PMC5803386 DOI: 10.1016/j.nbd.2017.12.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 11/24/2017] [Accepted: 12/19/2017] [Indexed: 02/06/2023] Open
Abstract
Acoustically evoked seizures (e.g., audiogenic seizures or AGS) are common in models of inherited epilepsy and occur in a variety of species including rat, mouse, and hamster. Two models that have been particularly well studied are the genetically epilepsy prone rat (GEPR-3) and the Wistar Audiogenic Rat (WAR) strains. Acute and repeated AGS, as well as comorbid conditions, displays a close phenotypic overlap in these models. Whether these similarities arise from convergent or divergent structural changes in the brain remains unknown. Here, we examined the brain structure of Sprague Dawley (SD) and Wistar (WIS) rats, and quantified changes in the GEPR-3 and WAR, respectively. Brains from adult, male rats of each strain (n=8-10 per group) were collected, fixed, and embedded in agar and imaged using a 7 tesla Bruker MRI. Post-acquisition analysis included voxel-based morphometry (VBM), diffusion tensor imaging (DTI), and manual volumetric tracing. In the VBM analysis, GEPR-3 displayed volumetric changes in brainstem structures known to be engaged by AGS (e.g., superior and inferior colliculus, periaqueductal grey) and in forebrain structures (e.g., striatum, septum, nucleus accumbens). WAR displayed volumetric changes in superior colliculus, and a broader set of limbic regions (e.g., hippocampus, amygdala/piriform cortex). The only area of significant overlap in the two strains was the midline cerebellum: both GEPR-3 and WAR showed decreased volume compared to their control strains. In the DTI analysis, GEPR-3 displayed decreased fractional anisotropy (FA) in the corpus callosum, posterior commissure and commissure of the inferior colliculus (IC). WAR displayed increased FA only in the commissure of IC. These data provide a biological basis for further comparative and mechanistic studies in the GEPR-3 and WAR models, as well as provide additional insight into commonalities in the pathways underlying AGS susceptibility and behavioral comorbidity.
Collapse
Affiliation(s)
- Yichien Lee
- Preclinical Research Imaging Laboratory, Georgetown University, Washington, DC, USA; Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA; Department of Pathology, Georgetown University, Washington, DC, USA
| | - Olga C Rodriguez
- Preclinical Research Imaging Laboratory, Georgetown University, Washington, DC, USA; Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA; Department of Pathology, Georgetown University, Washington, DC, USA
| | - Chris Albanese
- Preclinical Research Imaging Laboratory, Georgetown University, Washington, DC, USA; Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA; Department of Pathology, Georgetown University, Washington, DC, USA; Department of Oncology, Georgetown University, Washington, DC, USA
| | | | - José Antônio Cortes de Oliveira
- Neurophysiology and Experimental Neuroethology Laboratory (LNNE), Department of Physiology, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, Brazil
| | - Ana Luiza Ferreira Donatti
- Neurophysiology and Experimental Neuroethology Laboratory (LNNE), Department of Physiology, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, Brazil
| | - Artur Fernandes
- Neurophysiology and Experimental Neuroethology Laboratory (LNNE), Department of Physiology, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, Brazil; Laboratory of Epigenetics and Reproduction, Department of Genetics, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, Brazil
| | - Norberto Garcia-Cairasco
- Neurophysiology and Experimental Neuroethology Laboratory (LNNE), Department of Physiology, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, Brazil
| | - Prosper N'Gouemo
- Department of Pediatrics, Georgetown University, Washington, DC, USA; Interdisciplinary Program in Neuroscience, Georgetown University, Washington, DC, USA
| | - Patrick A Forcelli
- Department of Pharmacology & Physiology, Georgetown University, Washington, DC, USA; Interdisciplinary Program in Neuroscience, Georgetown University, Washington, DC, USA; Department of Neuroscience, Georgetown University, Washington, DC, USA.
| |
Collapse
|
24
|
Bauer CM, Cabral HJ, Killiany RJ. Multimodal Discrimination between Normal Aging, Mild Cognitive Impairment and Alzheimer's Disease and Prediction of Cognitive Decline. Diagnostics (Basel) 2018; 8:diagnostics8010014. [PMID: 29415470 PMCID: PMC5871997 DOI: 10.3390/diagnostics8010014] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 01/08/2018] [Accepted: 01/31/2018] [Indexed: 11/29/2022] Open
Abstract
Alzheimer’s Disease (AD) and mild cognitive impairment (MCI) are associated with widespread changes in brain structure and function, as indicated by magnetic resonance imaging (MRI) morphometry and 18-fluorodeoxyglucose position emission tomography (FDG PET) metabolism. Nevertheless, the ability to differentiate between AD, MCI and normal aging groups can be difficult. Thus, the goal of this study was to identify the combination of cerebrospinal fluid (CSF) biomarkers, MRI morphometry, FDG PET metabolism and neuropsychological test scores to that best differentiate between a sample of normal aging subjects and those with MCI and AD from the Alzheimer’s Disease Neuroimaging Initiative. The secondary goal was to determine the neuroimaging variables from MRI, FDG PET and CSF biomarkers that can predict future cognitive decline within each group. To achieve these aims, a series of multivariate stepwise logistic and linear regression models were generated. Combining all neuroimaging modalities and cognitive test scores significantly improved the index of discrimination, especially at the earliest stages of the disease, whereas MRI gray matter morphometry variables best predicted future cognitive decline compared to other neuroimaging variables. Overall these findings demonstrate that a multimodal approach using MRI morphometry, FDG PET metabolism, neuropsychological test scores and CSF biomarkers may provide significantly better discrimination than any modality alone.
Collapse
Affiliation(s)
- Corinna M Bauer
- Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA.
| | - Howard J Cabral
- Department of Biostatistics, Boston University School of Public Health, Boston, MA 02118, USA.
| | - Ronald J Killiany
- Department of Environmental Health, Boston University School of Public Health, Boston, MA 02118, USA.
- Department of Anatomy and Neurobiology, Center for Biomedical Imaging, Boston University School of Medicine, Boston, MA 02118, USA.
| |
Collapse
|
25
|
Nasseef MT, Devenyi GA, Mechling AE, Harsan LA, Chakravarty MM, Kieffer BL, Darcq E. Deformation-based Morphometry MRI Reveals Brain Structural Modifications in Living Mu Opioid Receptor Knockout Mice. Front Psychiatry 2018; 9:643. [PMID: 30559685 PMCID: PMC6287113 DOI: 10.3389/fpsyt.2018.00643] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Accepted: 11/15/2018] [Indexed: 12/12/2022] Open
Abstract
Mu opioid receptor (MOR) activation facilitates reward processing and reduces pain, and brain networks underlying these effects are under intense investigation. Mice lacking the MOR gene (MOR KO mice) show lower drug and social reward, enhanced pain sensitivity and altered emotional responses. Our previous neuroimaging analysis using Resting-state (Rs) functional Magnetic Resonance Imaging (fMRI) showed significant alterations of functional connectivity (FC) within reward/aversion networks in these mice, in agreement with their behavioral deficits. Here we further used a structural MRI approach to determine whether volumetric alterations also occur in MOR KO mice. We acquired anatomical images using a 7-Tesla MRI scanner and measured deformation-based morphometry (DBM) for each voxel in subjects from MOR KO and control groups. Our analysis shows marked anatomical differences in mutant animals. We observed both local volumetric contraction (striatum, nucleus accumbens, bed nucleus of the stria terminalis, hippocampus, hypothalamus and periacqueducal gray) and expansion (prefrontal cortex, amygdala, habenula, and periacqueducal gray) at voxel level. Volumetric modifications occurred mainly in MOR-enriched regions and across reward/aversion centers, consistent with our prior FC findings. Specifically, several regions with volume differences corresponded to components showing highest FC changes in our previous Rs-fMRI study, suggesting a possible function-structure relationship in MOR KO-related brain differences. In conclusion, both Rs-fMRI and volumetric MRI in live MOR KO mice concur to disclose functional and structural whole-brain level mechanisms that likely drive MOR-controlled behaviors in animals, and may translate to MOR-associated endophenotypes or disease in humans.
Collapse
Affiliation(s)
- Md Taufiq Nasseef
- Department of Psychiatry, School of Medicine, Douglas Hospital Research Center, McGill University, Montreal, QC, Canada
| | - Gabriel A Devenyi
- Department of Psychiatry, School of Medicine, Douglas Hospital Research Center, McGill University, Montreal, QC, Canada
| | - Anna E Mechling
- Engineering Science, Computer Science and Imaging Laboratory (ICube), Integrative Multimodal Imaging in Healthcare, CNRS, University of Strasbourg, Strasbourg, France.,Department of Radiology, Medical Physics, Faculty of Medicine, Medical Center University of Freiburg, University of Freiburg, Freiburg, Germany
| | - Laura-Adela Harsan
- Engineering Science, Computer Science and Imaging Laboratory (ICube), Integrative Multimodal Imaging in Healthcare, CNRS, University of Strasbourg, Strasbourg, France.,Department of Radiology, Medical Physics, Faculty of Medicine, Medical Center University of Freiburg, University of Freiburg, Freiburg, Germany
| | - M Mallar Chakravarty
- Department of Psychiatry, School of Medicine, Douglas Hospital Research Center, McGill University, Montreal, QC, Canada.,Department of Biological and Biomedical Engineering, McGill University, Montreal, QC, Canada
| | - Brigitte Lina Kieffer
- Department of Psychiatry, School of Medicine, Douglas Hospital Research Center, McGill University, Montreal, QC, Canada
| | - Emmanuel Darcq
- Department of Psychiatry, School of Medicine, Douglas Hospital Research Center, McGill University, Montreal, QC, Canada
| |
Collapse
|
26
|
Volumetric response of the adult brain to seizures depends on the developmental stage when systemic inflammation was induced. Epilepsy Behav 2018; 78:280-287. [PMID: 29128467 DOI: 10.1016/j.yebeh.2017.09.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Revised: 09/15/2017] [Accepted: 09/15/2017] [Indexed: 01/07/2023]
Abstract
Inflammation has detrimental influences on the developing brain including triggering the epileptogenesis. On the other hand, seizure episodes may induce inflammatory processes and further increase of brain excitability. The present study focuses on the problem whether transitory systemic inflammation during developmental period may have critical importance to functional and/or structural features of the adult brain. An inflammatory status was induced with lipopolysaccharide (LPS) in 6- or 30-day-old rats. Two-month-old rats which experienced the inflammation and untreated controls received injections of pilocarpine, and the intensity of their seizure behavior was rated during a 6-hour period. Three days thereafter, the animals were perfused; their brains were postfixed and subjected to magnetic resonance imaging (MRI) scans. Then, volumes of the brain and of its main regions were assessed. LPS injections alone performed at different developmental stages led to different changes in the volume of adult brain and also to different susceptibility to seizures induced in adulthood. Moreover, the LPS pretreatments modified different volumetric responses of the brain and of its regions to seizures. The responses showed strong inverse correlations with the intensity of seizures but exclusively in rats treated with LPS on postnatal day 30. It could be concluded that generalized inflammation elicited at developmental stages may have strong age-dependent effects on the adult brain regarding not only its susceptibility to action of a seizuregenic agent but also its volumetric reactivity to seizures.
Collapse
|
27
|
O'Callaghan J, Holmes H, Powell N, Wells JA, Ismail O, Harrison IF, Siow B, Johnson R, Ahmed Z, Fisher A, Meftah S, O'Neill MJ, Murray TK, Collins EC, Shmueli K, Lythgoe MF. Tissue magnetic susceptibility mapping as a marker of tau pathology in Alzheimer's disease. Neuroimage 2017; 159:334-345. [PMID: 28797738 PMCID: PMC5678288 DOI: 10.1016/j.neuroimage.2017.08.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 07/27/2017] [Accepted: 08/01/2017] [Indexed: 01/15/2023] Open
Abstract
Alzheimer's disease is connected to a number of other neurodegenerative conditions, known collectively as 'tauopathies', by the presence of aggregated tau protein in the brain. Neuroinflammation and oxidative stress in AD are associated with tau pathology and both the breakdown of axonal sheaths in white matter tracts and excess iron accumulation grey matter brain regions. Despite the identification of myelin and iron concentration as major sources of contrast in quantitative susceptibility maps of the brain, the sensitivity of this technique to tau pathology has yet to be explored. In this study, we perform Quantitative Susceptibility Mapping (QSM) and T2* mapping in the rTg4510, a mouse model of tauopathy, both in vivo and ex vivo. Significant correlations were observed between histological measures of myelin content and both mean regional magnetic susceptibility and T2* values. These results suggest that magnetic susceptibility is sensitive to tissue myelin concentrations across different regions of the brain. Differences in magnetic susceptibility were detected in the corpus callosum, striatum, hippocampus and thalamus of the rTg4510 mice relative to wild type controls. The concentration of neurofibrillary tangles was found to be low to intermediate in these brain regions indicating that QSM may be a useful biomarker for early stage detection of tau pathology in neurodegenerative diseases.
Collapse
Affiliation(s)
- J O'Callaghan
- UCL Centre for Advanced Biomedical Imaging, Division of Medicine, UCL, UK.
| | - H Holmes
- UCL Centre for Advanced Biomedical Imaging, Division of Medicine, UCL, UK
| | - N Powell
- UCL Centre for Advanced Biomedical Imaging, Division of Medicine, UCL, UK
| | - J A Wells
- UCL Centre for Advanced Biomedical Imaging, Division of Medicine, UCL, UK
| | - O Ismail
- UCL Centre for Advanced Biomedical Imaging, Division of Medicine, UCL, UK
| | - I F Harrison
- UCL Centre for Advanced Biomedical Imaging, Division of Medicine, UCL, UK
| | - B Siow
- UCL Centre for Advanced Biomedical Imaging, Division of Medicine, UCL, UK
| | - R Johnson
- Eli Lilly and Company, 355 E Merrill Street, Dock 48, Indianapolis, IN, 46225, USA
| | - Z Ahmed
- Eli Lilly & Co. Ltd, Erl Wood Manor, Windlesham, Surrey, GU20 6PH, UK
| | - A Fisher
- Eli Lilly & Co. Ltd, Erl Wood Manor, Windlesham, Surrey, GU20 6PH, UK
| | - S Meftah
- Eli Lilly & Co. Ltd, Erl Wood Manor, Windlesham, Surrey, GU20 6PH, UK
| | - M J O'Neill
- Eli Lilly & Co. Ltd, Erl Wood Manor, Windlesham, Surrey, GU20 6PH, UK
| | - T K Murray
- Eli Lilly & Co. Ltd, Erl Wood Manor, Windlesham, Surrey, GU20 6PH, UK
| | - E C Collins
- Eli Lilly and Company, 355 E Merrill Street, Dock 48, Indianapolis, IN, 46225, USA
| | - K Shmueli
- Department of Medical Physics and Biomedical Engineering, UCL, UK
| | - M F Lythgoe
- UCL Centre for Advanced Biomedical Imaging, Division of Medicine, UCL, UK
| |
Collapse
|
28
|
Vetreno RP, Yaxley R, Paniagua B, Johnson GA, Crews FT. Adult rat cortical thickness changes across age and following adolescent intermittent ethanol treatment. Addict Biol 2017; 22:712-723. [PMID: 26833865 PMCID: PMC4969224 DOI: 10.1111/adb.12364] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 11/02/2015] [Accepted: 12/11/2015] [Indexed: 12/27/2022]
Abstract
Human studies have established that adolescence is a period of brain maturation that parallels the development of adult behaviors. However, little is known regarding cortical development in the adult rat brain. We used magnetic resonance imaging (MRI) and histology to assess the impact of age on adult Wistar rat cortical thickness on postnatal day (P)80 and P220 as well as the effect of adolescent binge ethanol exposure on adult (P80) cortical thickness. MRI revealed changes in cortical thickness between P80 and P220 that differ across cortical region. The adult P220 rat prefrontal cortex increased in thickness whereas cortical thinning occurred in both the cingulate and parietal cortices relative to young adult P80 rats. Histological analysis confirmed the age-related cortical thinning. In the second series of experiments, an animal model of adolescent intermittent ethanol (AIE; 5.0 g/kg, intragastrically, 20 percent ethanol w/v, 2 days on/2 days off from P25 to P55) was used to assess the effects of alcohol on cortical thickness in young adult (P80) rats. MRI revealed that AIE resulted in region-specific cortical changes. A small region within the prefrontal cortex was significantly thinner whereas medial cortical regions were significantly thicker in young adult (P80) AIE-treated rats. The observed increase in cortical thickness was confirmed by histology. Thus, the rat cerebral cortex continues to undergo cortical thickness changes into adulthood, and adolescent alcohol exposure alters the young adult cortex that could contribute to brain dysfunction in adulthood.
Collapse
Affiliation(s)
- Ryan P. Vetreno
- Bowles Center for Alcohol Studies; Department of Psychiatry; University of North Carolina at Chapel Hill; Chapel Hill NC USA
| | - Richard Yaxley
- Bowles Center for Alcohol Studies; Department of Psychiatry; University of North Carolina at Chapel Hill; Chapel Hill NC USA
| | - Beatriz Paniagua
- Bowles Center for Alcohol Studies; Department of Psychiatry; University of North Carolina at Chapel Hill; Chapel Hill NC USA
| | - G. Allan Johnson
- Duke Center for In Vivo Microscopy; Duke University Medical Center; Durham NC USA
| | - Fulton T. Crews
- Bowles Center for Alcohol Studies; Department of Psychiatry; University of North Carolina at Chapel Hill; Chapel Hill NC USA
| |
Collapse
|
29
|
Holmes HE, Powell NM, Ma D, Ismail O, Harrison IF, Wells JA, Colgan N, O'Callaghan JM, Johnson RA, Murray TK, Ahmed Z, Heggenes M, Fisher A, Cardoso MJ, Modat M, O'Neill MJ, Collins EC, Fisher EMC, Ourselin S, Lythgoe MF. Comparison of In Vivo and Ex Vivo MRI for the Detection of Structural Abnormalities in a Mouse Model of Tauopathy. Front Neuroinform 2017; 11:20. [PMID: 28408879 PMCID: PMC5374887 DOI: 10.3389/fninf.2017.00020] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 02/27/2017] [Indexed: 11/15/2022] Open
Abstract
With increasingly large numbers of mouse models of human disease dedicated to MRI studies, compromises between in vivo and ex vivo MRI must be fully understood in order to inform the choice of imaging methodology. We investigate the application of high resolution in vivo and ex vivo MRI, in combination with tensor-based morphometry (TBM), to uncover morphological differences in the rTg4510 mouse model of tauopathy. The rTg4510 mouse also offers a novel paradigm by which the overexpression of mutant tau can be regulated by the administration of doxycycline, providing us with a platform on which to investigate more subtle alterations in morphology with morphometry. Both in vivo and ex vivo MRI allowed the detection of widespread bilateral patterns of atrophy in the rTg4510 mouse brain relative to wild-type controls. Regions of volume loss aligned with neuronal loss and pathological tau accumulation demonstrated by immunohistochemistry. When we sought to investigate more subtle structural alterations in the rTg4510 mice relative to a subset of doxycycline-treated rTg4510 mice, ex vivo imaging enabled the detection of more regions of morphological brain changes. The disadvantages of ex vivo MRI may however mitigate this increase in sensitivity: we observed a 10% global shrinkage in brain volume of the post-mortem tissues due to formalin fixation, which was most notable in the cerebellum and olfactory bulbs. However, many central brain regions were not adversely affected by the fixation protocol, perhaps due to our “in-skull” preparation. The disparity between our TBM findings from in vivo and ex vivo MRI underlines the importance of appropriate study design, given the trade-off between these two imaging approaches. We support the utility of in vivo MRI for morphological phenotyping of mouse models of disease; however, for subtler phenotypes, ex vivo offers enhanced sensitivity to discrete morphological changes.
Collapse
Affiliation(s)
- Holly E Holmes
- Division of Medicine, UCL Centre for Advanced Biomedical Imaging, University College LondonLondon, UK
| | - Nick M Powell
- Division of Medicine, UCL Centre for Advanced Biomedical Imaging, University College LondonLondon, UK.,Centre for Medical Image Computing, University College LondonLondon, UK
| | - Da Ma
- Division of Medicine, UCL Centre for Advanced Biomedical Imaging, University College LondonLondon, UK.,Centre for Medical Image Computing, University College LondonLondon, UK
| | - Ozama Ismail
- Division of Medicine, UCL Centre for Advanced Biomedical Imaging, University College LondonLondon, UK
| | - Ian F Harrison
- Division of Medicine, UCL Centre for Advanced Biomedical Imaging, University College LondonLondon, UK
| | - Jack A Wells
- Division of Medicine, UCL Centre for Advanced Biomedical Imaging, University College LondonLondon, UK
| | - Niall Colgan
- Division of Medicine, UCL Centre for Advanced Biomedical Imaging, University College LondonLondon, UK
| | - James M O'Callaghan
- Division of Medicine, UCL Centre for Advanced Biomedical Imaging, University College LondonLondon, UK
| | - Ross A Johnson
- Tailored Therapeutics, Eli Lilly and Company, Lilly Corporate CenterIndianapolis, IN, USA
| | | | - Zeshan Ahmed
- Molecular Pathology, Eli Lilly & Co. LtdWindlesham, UK
| | | | - Alice Fisher
- Molecular Pathology, Eli Lilly & Co. LtdWindlesham, UK
| | - M Jorge Cardoso
- Centre for Medical Image Computing, University College LondonLondon, UK
| | - Marc Modat
- Centre for Medical Image Computing, University College LondonLondon, UK
| | | | - Emily C Collins
- Tailored Therapeutics, Eli Lilly and Company, Lilly Corporate CenterIndianapolis, IN, USA
| | - Elizabeth M C Fisher
- Department of Neurodegenerative Disease, Institute of Neurology, University College LondonLondon, UK
| | | | - Mark F Lythgoe
- Division of Medicine, UCL Centre for Advanced Biomedical Imaging, University College LondonLondon, UK
| |
Collapse
|
30
|
Crews FT, Vetreno RP, Broadwater MA, Robinson DL. Adolescent Alcohol Exposure Persistently Impacts Adult Neurobiology and Behavior. Pharmacol Rev 2016; 68:1074-1109. [PMID: 27677720 PMCID: PMC5050442 DOI: 10.1124/pr.115.012138] [Citation(s) in RCA: 233] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Adolescence is a developmental period when physical and cognitive abilities are optimized, when social skills are consolidated, and when sexuality, adolescent behaviors, and frontal cortical functions mature to adult levels. Adolescents also have unique responses to alcohol compared with adults, being less sensitive to ethanol sedative-motor responses that most likely contribute to binge drinking and blackouts. Population studies find that an early age of drinking onset correlates with increased lifetime risks for the development of alcohol dependence, violence, and injuries. Brain synapses, myelination, and neural circuits mature in adolescence to adult levels in parallel with increased reflection on the consequence of actions and reduced impulsivity and thrill seeking. Alcohol binge drinking could alter human development, but variations in genetics, peer groups, family structure, early life experiences, and the emergence of psychopathology in humans confound studies. As adolescence is common to mammalian species, preclinical models of binge drinking provide insight into the direct impact of alcohol on adolescent development. This review relates human findings to basic science studies, particularly the preclinical studies of the Neurobiology of Adolescent Drinking in Adulthood (NADIA) Consortium. These studies focus on persistent adult changes in neurobiology and behavior following adolescent intermittent ethanol (AIE), a model of underage drinking. NADIA studies and others find that AIE results in the following: increases in adult alcohol drinking, disinhibition, and social anxiety; altered adult synapses, cognition, and sleep; reduced adult neurogenesis, cholinergic, and serotonergic neurons; and increased neuroimmune gene expression and epigenetic modifiers of gene expression. Many of these effects are specific to adolescents and not found in parallel adult studies. AIE can cause a persistence of adolescent-like synaptic physiology, behavior, and sensitivity to alcohol into adulthood. Together, these findings support the hypothesis that adolescent binge drinking leads to long-lasting changes in the adult brain that increase risks of adult psychopathology, particularly for alcohol dependence.
Collapse
Affiliation(s)
- Fulton T Crews
- Bowles Center for Alcohol Studies (F.T.C., R.P.V., M.A.B., D.L.R.), Department of Psychiatry (F.T.C., D.L.R.), and Department of Pharmacology (F.T.C.), School of Medicine, University of North Carolina, Chapel Hill, North Carolina
| | - Ryan P Vetreno
- Bowles Center for Alcohol Studies (F.T.C., R.P.V., M.A.B., D.L.R.), Department of Psychiatry (F.T.C., D.L.R.), and Department of Pharmacology (F.T.C.), School of Medicine, University of North Carolina, Chapel Hill, North Carolina
| | - Margaret A Broadwater
- Bowles Center for Alcohol Studies (F.T.C., R.P.V., M.A.B., D.L.R.), Department of Psychiatry (F.T.C., D.L.R.), and Department of Pharmacology (F.T.C.), School of Medicine, University of North Carolina, Chapel Hill, North Carolina
| | - Donita L Robinson
- Bowles Center for Alcohol Studies (F.T.C., R.P.V., M.A.B., D.L.R.), Department of Psychiatry (F.T.C., D.L.R.), and Department of Pharmacology (F.T.C.), School of Medicine, University of North Carolina, Chapel Hill, North Carolina
| |
Collapse
|
31
|
Biezonski D, Shah R, Krivko A, Cha J, Guilfoyle DN, Hrabe J, Gerum S, Xie S, Duan Y, Bansal R, Leventhal BL, Peterson BS, Kellendonk C, Posner J. Longitudinal magnetic resonance imaging reveals striatal hypertrophy in a rat model of long-term stimulant treatment. Transl Psychiatry 2016; 6:e884. [PMID: 27598968 PMCID: PMC5048200 DOI: 10.1038/tp.2016.158] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 06/29/2016] [Accepted: 07/16/2016] [Indexed: 12/21/2022] Open
Abstract
Stimulant treatment is highly effective in mitigating symptoms associated with attention-deficit/hyperactivity disorder (ADHD), though the neurobiological underpinnings of this effect have not been established. Studies using anatomical magnetic resonance imaging (MRI) in children with ADHD have suggested that long-term stimulant treatment may improve symptoms of ADHD in part by stimulating striatal hypertrophy. This conclusion is limited, however, as these studies have either used cross-sectional sampling or did not assess the impact of treatment length on their dependent measures. We therefore used longitudinal anatomical MRI in a vehicle-controlled study design to confirm causality regarding stimulant effects on striatal morphology in a rodent model of clinically relevant long-term stimulant treatment. Sprague Dawley rats were orally administered either lisdexamfetamine (LDX, 'Vyvanse') or vehicle (N=12 per group) from postnatal day 25 (PD25, young juvenile) until PD95 (young adult), and imaged one day before and one day after the 70-day course of treatment. Our LDX dosing regimen yielded blood levels of dextroamphetamine comparable to those documented in patients. Longitudinal analysis of striatal volume revealed significant hypertrophy in LDX-treated animals when compared to vehicle-treated controls, with a significant treatment by time point interaction. These findings confirm a causal link between long-term stimulant treatment and striatal hypertrophy, and support utility of longitudinal MRI in rodents as a translational approach for bridging preclinical and clinical research. Having demonstrated comparable morphological effects in both humans and rodents using the same imaging technology, future studies may now use this rodent model to identify the underlying cellular mechanisms and behavioral consequences of stimulant-induced striatal hypertrophy.
Collapse
Affiliation(s)
- D Biezonski
- Department of Psychiatry, New York State Psychiatric Institute, Columbia University College of Physicians and Surgeons, New York, NY, USA
| | - R Shah
- Center for Biomedical Imaging and Neuromodulation, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY, USA
| | - A Krivko
- Department of Psychiatry, New York State Psychiatric Institute, Columbia University College of Physicians and Surgeons, New York, NY, USA
| | - J Cha
- Department of Psychiatry, New York State Psychiatric Institute, Columbia University College of Physicians and Surgeons, New York, NY, USA
| | - D N Guilfoyle
- Center for Biomedical Imaging and Neuromodulation, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY, USA
| | - J Hrabe
- Center for Biomedical Imaging and Neuromodulation, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY, USA
| | - S Gerum
- Center for Biomedical Imaging and Neuromodulation, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY, USA
| | - S Xie
- Center for Biomedical Imaging and Neuromodulation, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY, USA
| | - Y Duan
- Department of Psychiatry, New York State Psychiatric Institute, Columbia University College of Physicians and Surgeons, New York, NY, USA
| | - R Bansal
- Institute for the Developing Mind, Children's Hospital Los Angeles and the Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - B L Leventhal
- Langley Porter Psychiatric Institute, University of California, San Francisco, San Francisco, CA, USA
| | - B S Peterson
- Institute for the Developing Mind, Children's Hospital Los Angeles and the Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - C Kellendonk
- Department of Psychiatry, New York State Psychiatric Institute, Columbia University College of Physicians and Surgeons, New York, NY, USA
| | - J Posner
- Department of Psychiatry, New York State Psychiatric Institute, Columbia University College of Physicians and Surgeons, New York, NY, USA
| |
Collapse
|
32
|
Vetreno RP, Yaxley R, Paniagua B, Crews FT. Diffusion tensor imaging reveals adolescent binge ethanol-induced brain structural integrity alterations in adult rats that correlate with behavioral dysfunction. Addict Biol 2016; 21:939-53. [PMID: 25678360 DOI: 10.1111/adb.12232] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Adolescence is characterized by considerable brain maturation that coincides with the development of adult behavior. Binge drinking is common during adolescence and can have deleterious effects on brain maturation because of the heightened neuroplasticity of the adolescent brain. Using an animal model of adolescent intermittent ethanol [AIE; 5.0 g/kg, intragastric, 20 percent EtOH w/v; 2 days on/2 days off from postnatal day (P)25 to P55], we assessed the adult brain structural volumes and integrity on P80 and P220 using diffusion tensor imaging (DTI). While we did not observe a long-term effect of AIE on structural volumes, AIE did reduce axial diffusivity (AD) in the cerebellum, hippocampus and neocortex. Radial diffusivity (RD) was reduced in the hippocampus and neocortex of AIE-treated animals. Prior AIE treatment did not affect fractional anisotropy (FA), but did lead to long-term reductions of mean diffusivity (MD) in both the cerebellum and corpus callosum. AIE resulted in increased anxiety-like behavior and diminished object recognition memory, the latter of which was positively correlated with DTI measures. Across aging, whole brain volumes increased, as did volumes of the corpus callosum and neocortex. This was accompanied by age-associated AD reductions in the cerebellum and neocortex as well as RD and MD reductions in the cerebellum. Further, we found that FA increased in both the cerebellum and corpus callosum as rats aged from P80 to P220. Thus, both age and AIE treatment caused long-term changes to brain structural integrity that could contribute to cognitive dysfunction.
Collapse
Affiliation(s)
- Ryan P. Vetreno
- The Bowles Center for Alcohol Studies; Department of Psychiatry; The University of North Carolina at Chapel Hill; Chapel Hill NC USA
| | - Richard Yaxley
- The Bowles Center for Alcohol Studies; Department of Psychiatry; The University of North Carolina at Chapel Hill; Chapel Hill NC USA
| | - Beatriz Paniagua
- The Bowles Center for Alcohol Studies; Department of Psychiatry; The University of North Carolina at Chapel Hill; Chapel Hill NC USA
| | - Fulton T. Crews
- The Bowles Center for Alcohol Studies; Department of Psychiatry; The University of North Carolina at Chapel Hill; Chapel Hill NC USA
| |
Collapse
|
33
|
Soo A, Taha S, Lally P, Kirmi O, Jones B, Thayyil S. Assessment of optic nerve development using post-mortem Magnetic Resonance Imaging (MRI) in fetuses and newborns. Prenat Diagn 2015; 35:1262-4. [PMID: 26256552 DOI: 10.1002/pd.4672] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Revised: 06/12/2015] [Accepted: 08/05/2015] [Indexed: 11/08/2022]
Affiliation(s)
- Audrey Soo
- Centre for Perinatal Neuroscience, Imperial College London, United Kingdom
| | - Syed Taha
- Centre for Perinatal Neuroscience, Imperial College London, United Kingdom
| | - Peter Lally
- Centre for Perinatal Neuroscience, Imperial College London, United Kingdom
| | - Olga Kirmi
- Department of Neuroradiology, Imperial College Healthcare NHS Trust, United Kingdom
| | - Brynmor Jones
- Department of Neuroradiology, Imperial College Healthcare NHS Trust, United Kingdom
| | - Sudhin Thayyil
- Centre for Perinatal Neuroscience, Imperial College London, United Kingdom
| |
Collapse
|
34
|
Bourgin J, Cachia A, Boumezbeur F, Djemaï B, Bottlaender M, Duchesnay E, Mériaux S, Jay TM. Hyper-responsivity to stress in rats is associated with a large increase in amygdala volume. A 7T MRI study. Eur Neuropsychopharmacol 2015; 25:828-35. [PMID: 25823695 DOI: 10.1016/j.euroneuro.2015.02.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2014] [Revised: 02/11/2015] [Accepted: 02/25/2015] [Indexed: 12/25/2022]
Abstract
Stress is known to precipitate psychiatric disorders in vulnerable people. Individual differences in the stress responsivity can dramatically affect the onset of these illnesses. Animal models of repeated stress represent valuable tools to identify region-specific volumetric changes in the brain. Here, using high resolution 7T MRI, we found that amygdala is the most significant parameter for distinction between F344 and SD rats known to have differential response to stress. A significant substantial increase (45%) was found in the amygdala volume of rats that do not habituate to the repeated stress procedure (F344 rats) compared to SD rats. This strain-specific effect of stress was evidenced by a significant strain-by-stress interaction. There were no significant strain differences in the volumes of hippocampi and prefrontal cortices though stress produces significant reductions of smaller amplitude in the medial prefrontal cortex (mPFC) (9% and 12%) and dorsal hippocampus (5% and 6%) in both strains. Our data further demonstrate the feasibility and relevance of high isotropic resolution structural ex vivo 7T MRI in the study of the brain effects of stress in small animals. Neuroimaging is a valuable tool to follow up brain volumetric reorganization during the stress response and could also be easily used to test pharmacological interventions to prevent the deleterious effects of stress.
Collapse
Affiliation(s)
- J Bourgin
- Laboratoire de Physiopathologie des Maladies Psychiatriques, UMR_S 894 Inserm, Centre de Psychiatrie et Neurosciences, 75014 Paris, France; Centre hospitalier Sainte-Anne, Service Hospitalo-Universitaire, Paris, France; Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - A Cachia
- Laboratoire de Physiopathologie des Maladies Psychiatriques, UMR_S 894 Inserm, Centre de Psychiatrie et Neurosciences, 75014 Paris, France; Université Paris Descartes, Sorbonne Paris Cité, Paris, France; CNRS UMR 8240, Laboratoire de Psychologie du développement et de l׳Education de l׳Enfant, Paris, France
| | - F Boumezbeur
- UNIRS, NeuroSpin, DSV/Institut d׳imagerie Biomédicale, CEA, Gif-sur-Yvette, France
| | - B Djemaï
- UNIACT, NeuroSpin, DSV/Institut d׳imagerie Biomédicale, CEA, Gif-sur-Yvette, France
| | - M Bottlaender
- UNIACT, NeuroSpin, DSV/Institut d׳imagerie Biomédicale, CEA, Gif-sur-Yvette, France
| | - E Duchesnay
- UNATI, NeuroSpin, DSV/Institut d׳imagerie Biomédicale, CEA, Gif-sur-Yvette, France
| | - S Mériaux
- UNIRS, NeuroSpin, DSV/Institut d׳imagerie Biomédicale, CEA, Gif-sur-Yvette, France
| | - T M Jay
- Laboratoire de Physiopathologie des Maladies Psychiatriques, UMR_S 894 Inserm, Centre de Psychiatrie et Neurosciences, 75014 Paris, France; Université Paris Descartes, Sorbonne Paris Cité, Paris, France.
| |
Collapse
|
35
|
Sawada K, Horiuchi-Hirose M, Saito S, Aoki I. Sexual dimorphism of sulcal morphology of the ferret cerebrum revealed by MRI-based sulcal surface morphometry. Front Neuroanat 2015; 9:55. [PMID: 25999821 PMCID: PMC4422084 DOI: 10.3389/fnana.2015.00055] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2014] [Accepted: 04/20/2015] [Indexed: 11/13/2022] Open
Abstract
The present study quantitatively assessed sexual dimorphism of cortical convolution and sulcal morphology in young adult ferrets by MRI-based sulcal surface morphometry. Ex vivo T1-weighted (short TR/TE) MRI of the ferret cerebrum was acquired with high spatial resolution at 7-tesla. The degree of cortical convolution, evaluated quantitatively based on 3D MRI data by sulcation index (SI), was significantly greater in males (0.553 ± 0.036) than in females (0.502 ± 0.043) (p < 0.001). The rostrocaudal distribution of the cortical convolution revealed a greater convolution in the frontal region of the cortex in males than in females and by a posterior extension of the convolution in the temporo-parieto-occipital region of males. Although the cerebral width in the frontal region was not different between sexes, the rhinal fissure and rostral region of splenial sulcus were more infolded in males than in females. On the contrary, the cerebral width was greater in males in the temporo-parieto-occipital region, and male-prominent posterior extension of infolding was noted in the lateral sulcus, caudal suprasylvian sulcus, pesudosylvian sulcus, hippocampal sulcus, and the caudal region of splenial sulcus. Notably, the caudal descending region of lateral sulcus was clearly infolded in males, but obscured in females. The present results suggest a region-related sexual dimorphism of the sulcal infolding, which is reflected by local cortical expansion in the ferret cerebrum. In particular, male-favored sulcal infolding with expansion of the temporo-parieto-occipital neocortex may be relevant to the human cerebral cortex regarding visuo-spatial and emotion processing, which are known to differ between sexes. The present results will provide fundamental information assessing sex-related changes in the regional sulcal infolding, when ferrets with experimentally-induced gyrification abnormality will be used as models for male-prevalent or male-earlier-onset neurodevelopmental disorders.
Collapse
Affiliation(s)
- Kazuhiko Sawada
- Department of Nutrition, Faculty of Medical and Health Sciences, Tsukuba International University Tsuchiura, Japan
| | - Miwa Horiuchi-Hirose
- Department of Nutrition, Faculty of Medical and Health Sciences, Tsukuba International University Tsuchiura, Japan
| | - Shigeyoshi Saito
- Division of Health Sciences, Department of Medical Engineering, Osaka University Graduate School of Medicine Suita, Japan ; Center for Information and Neural Networks, National Institute of Information and Communications Technology, Osaka University Suita, Japan
| | - Ichio Aoki
- Molecular Imaging Center, National Institute of Radiological Sciences Chiba, Japan
| |
Collapse
|
36
|
Styner M, Thompson WR, Galior K, Uzer G, Wu X, Kadari S, Case N, Xie Z, Sen B, Romaine A, Pagnotti GM, Rubin CT, Styner MA, Horowitz MC, Rubin J. Bone marrow fat accumulation accelerated by high fat diet is suppressed by exercise. Bone 2014; 64:39-46. [PMID: 24709686 PMCID: PMC4041820 DOI: 10.1016/j.bone.2014.03.044] [Citation(s) in RCA: 119] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Revised: 02/17/2014] [Accepted: 03/25/2014] [Indexed: 01/14/2023]
Abstract
Marrow adipose tissue (MAT), associated with skeletal fragility and hematologic insufficiency, remains poorly understood and difficult to quantify. We tested the response of MAT to high fat diet (HFD) and exercise using a novel volumetric analysis, and compared it to measures of bone quantity. We hypothesized that HFD would increase MAT and diminish bone quantity, while exercise would slow MAT acquisition and promote bone formation. Eight week-old female C57BL/6 mice were fed a regular (RD) or HFD, and exercise groups were provided voluntary access to running wheels (RD-E, HFD-E). Femoral MAT was assessed by μCT (lipid binder osmium) using a semi-automated approach employing rigid co-alignment, regional bone masks and was normalized for total femoral volume (TV) of the bone compartment. MAT was 2.6-fold higher in HFD relative to RD mice. Exercise suppressed MAT in RD-E mice by more than half compared with RD. Running similarly inhibited MAT acquisition in HFD mice. Exercise significantly increased bone quantity in both diet groups. Thus, HFD caused significant accumulation of MAT; importantly running exercise limited MAT acquisition while promoting bone formation during both diets. That MAT is exquisitely responsive to diet and exercise, and its regulation by exercise appears to be inversely proportional to effects on exercise induced bone formation, is relevant for an aging and sedentary population.
Collapse
Affiliation(s)
- Maya Styner
- Department of Medicine, University of North Carolina, Chapel Hill, NC, USA.
| | - William R Thompson
- Department of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Kornelia Galior
- Department of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Gunes Uzer
- Department of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Xin Wu
- Department of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Sanjay Kadari
- Department of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Natasha Case
- Department of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Zhihui Xie
- Department of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Buer Sen
- Department of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Andrew Romaine
- Department of Psychiatry and Computer Science, University of North Carolina, Chapel Hill, NC, USA
| | - Gabriel M Pagnotti
- Department of Biomedical Engineering, State University of New York, Stony Brook, NY, USA
| | - Clinton T Rubin
- Department of Biomedical Engineering, State University of New York, Stony Brook, NY, USA
| | - Martin A Styner
- Department of Computer Science, University of North Carolina, Chapel Hill, NC, USA; Department of Psychiatry and Computer Science, University of North Carolina, Chapel Hill, NC, USA
| | - Mark C Horowitz
- Department of Orthopedics and Rehabilitation, Yale University, New Haven, CT, USA
| | - Janet Rubin
- Department of Medicine, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|