1
|
Mahboub HH, Rahman ANA, Elazab ST, Abdelwarith AA, Younis EM, Shaalan M, Aziz EK, Sobh MS, Yousefi M, Ismail SH, Davies SJ, Gaballa MMS. Nano-chitosan hydrogel alleviates Candida albicans-induced health alterations in Nile tilapia (Oreochromis niloticus): antioxidant response, neuro-behaviors, hepato-renal functions, and histopathological investigation. BMC Vet Res 2025; 21:159. [PMID: 40057767 PMCID: PMC11889809 DOI: 10.1186/s12917-025-04568-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 02/05/2025] [Indexed: 05/13/2025] Open
Abstract
BACKGROUND Candida albicans infection induces economic losses in aquaculture practices. Currently, the success of the nanotechnology field has gained more consideration in the aquaculture sector as it bestows favorable impacts in remedies in comparison to traditional practices. OBJECTIVE The present study was conducted to assess the role of nano chitosan gel (NCG) exposure via water in managing the deteriorating impacts triggered by C. albicans in Nile tilapia, Oreochromis niloticus. Hepato-renal function, behavioral and stress response, neurological function, hepatic antioxidant/oxidant status, and histopathological architectures were investigated. METHODS A total of 160 fish (average weight: 50.00 ± 6.30 g) were randomly assigned to four groups, each with four replicates: control, NCG, C. albicans, and NCG + C. albicans. The NCG was applied as bath treatment at a concentration of 75 µg/L for ten days. RESULTS The outcomes demonstrated that the C. albicans challenged fish exhibited obvious behavioral alterations including loss of equilibrium, surfacing, abnormal swimming and movement, and aggression. Infection with C. albicans caused an elevation in hepato-renal biomarkers (alanine and aspartate aminotransferases, alkaline phosphatase, urea, and creatinine), stress-related indices (glucose, cortisol, nor-epinephrine, and 8-hydroxy-2-deoxyguanosine), and lipid peroxides (malondialdehyde). Moreover, it caused a noticeable decline in the hepatic antioxidant indices (total antioxidant capacity and reduced glutathione content) and acetylcholinesterase activity. The hepatic, renal, and brain architectures were severely damaged by the C. albicans challenge, exhibiting significant fatty changes, necrosis, vacuolation, and congestion. Remarkably, the aqueous application of NCG in the C. albicans-challenged fish ameliorated all the aforementioned biomarkers and facilitated the regeneration of histopathological changes. CONCLUSION Overall, the application of NCG in the aquatic environment is an effective tool for managing C. albicans infection in Nile tilapia. Moreover, it can be utilized in combating stress conditions in the aquaculture sector.
Collapse
Affiliation(s)
- Heba H Mahboub
- Department of Aquatic Animal Medicine, Faculty of Veterinary Medicine, Zagazig University, PO Box 44511, Zagazig, Sharkia, Egypt.
| | - Afaf N Abdel Rahman
- Department of Aquatic Animal Medicine, Faculty of Veterinary Medicine, Zagazig University, PO Box 44511, Zagazig, Sharkia, Egypt
| | - Sara T Elazab
- Department of Pharmacology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Abdelwahab A Abdelwarith
- Department of Zoology, College of Science, King Saud University, PO Box 2455, Riyadh, 11451, Saudi Arabia
| | - Elsayed M Younis
- Department of Zoology, College of Science, King Saud University, PO Box 2455, Riyadh, 11451, Saudi Arabia
| | - Mohamed Shaalan
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, PO Box 12211, Giza, Egypt.
- Polymer Institute, Slovak Academy of Sciences, Dúbravská cesta 9, Bratislava, 84541, Slovakia.
| | - Enas K Aziz
- Department of Husbandry and Animal Wealth Development, Faculty of Veterinary Medicine, University of Sadat City, PO Box 32958, Sadat City, Egypt
| | - Mohammed S Sobh
- Pathology Department, Faculty of Veterinary Medicine, Zagazig University, PO Box 44511, Zagazig, Sharkia, Egypt
| | - Morteza Yousefi
- Department of Veterinary Medicine, RUDN University, Miklukho-Maklaya St, Moscow, 117198, Russia
| | - Sameh H Ismail
- Faculty of Nanotechnology for Postgraduate Studies, Cairo University, Sheikh Zayed Branch Campus, PO Box 12588, Sheikh Zayed City, Giza, Egypt
| | - Simon J Davies
- Aquaculture Nutrition Research Unit ANRU, Carna Research Station, Ryan Institute, College of Science and Engineering, University of Galway, Galway, H91V8Y1, Ireland
| | - Mohamed M S Gaballa
- Department of Pathology, Faculty of Veterinary Medicine, Benha University, PO Box 13736, Benha, Toukh, Egypt
| |
Collapse
|
2
|
Pokhrel S, Boonmee N, Tulyaprawat O, Pharkjaksu S, Thaipisutikul I, Chairatana P, Ngamskulrungroj P, Mitrpant C. Assessment of Biofilm Formation by Candida albicans Strains Isolated from Hemocultures and Their Role in Pathogenesis in the Zebrafish Model. J Fungi (Basel) 2022; 8:jof8101014. [PMID: 36294579 PMCID: PMC9605499 DOI: 10.3390/jof8101014] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/20/2022] [Accepted: 09/21/2022] [Indexed: 12/04/2022] Open
Abstract
Candida albicans, an opportunistic pathogen, has the ability to form biofilms in the host or within medical devices in the body. Biofilms have been associated with disseminated/invasive disease with increased severity of infection by disrupting the host immune response and prolonging antifungal treatment. In this study, the in vivo virulence of three strains with different biofilm formation strengths, that is, non-, weak-, and strong biofilm formers, was evaluated using the zebrafish model. The survival assay and fungal tissue burden were measured. Biofilm-related gene expressions were also investigated. The survival of zebrafish, inoculated with strong biofilms forming C. albicans,, was significantly shorter than strains without biofilms forming C. albicans. However, there were no statistical differences in the burden of viable colonogenic cell number between the groups of the three strains tested. We observed that the stronger the biofilm formation, the higher up-regulation of biofilm-associated genes. The biofilm-forming strain (140 and 57), injected into zebrafish larvae, possessed a higher level of expression of genes associated with adhesion, attachment, filamentation, and cell proliferation, including eap1, als3, hwp1, bcr1, and mkc1 at 8 h. The results suggested that, despite the difference in genetic background, biofilm formation is an important virulence factor for the pathogenesis of C. albicans. However, the association between biofilm formation strength and in vivo virulence is controversial and needs to be further studied.
Collapse
Affiliation(s)
- Sabi Pokhrel
- Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Nawarat Boonmee
- Department of Biochemistry, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Orawan Tulyaprawat
- Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Sujiraphong Pharkjaksu
- Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Iyarit Thaipisutikul
- Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Phoom Chairatana
- Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Popchai Ngamskulrungroj
- Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Chalermchai Mitrpant
- Department of Biochemistry, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
- Correspondence:
| |
Collapse
|
3
|
Abdel-Latif HMR, Dawood MAO, Menanteau-Ledouble S, El-Matbouli M. The nature and consequences of co-infections in tilapia: A review. JOURNAL OF FISH DISEASES 2020; 43:651-664. [PMID: 32315088 DOI: 10.1111/jfd.13164] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 03/02/2020] [Accepted: 03/02/2020] [Indexed: 06/11/2023]
Abstract
Co-infections commonly arise when two or multiple different pathogens infect the same host, either as simultaneous or as secondary concurrent infection. This potentiates their pathogenic effects and leads to serious negative consequences on the exposed host. Numerous studies on the occurrence of the bacterial, parasitic, fungal and viral co-infections were conducted in various tilapia species. Co-infections have been associated with serious negative impacts on susceptible fish because they increase the fish susceptibility to diseases and the likelihood of outbreaks in the affected fish. Co-infections can alter the disease course and increase the severity of disease through synergistic and, more rarely, antagonistic interactions. In this review, reports on the synergistic co-infections and their impacts on the affected tilapia species are highlighted. Additionally, their pathogenic mechanisms are briefly discussed. Tilapia producers should be aware of the possible occurrence of co-infections and their effects on the affected tilapia species and in particular of the clinical signs and course of the disease. To date, there is still limited information regarding the pathogenicity mechanisms and pathogen interactions during these co-infections. This is generally due to low awareness regarding co-infections, and in many cases, a dominant pathogen is perceived to be of vital importance and hence becomes the target of treatment while the treatment of the co-infectious agents is neglected. This review article aimed at raising awareness regarding co-infections and helping researchers and fish health specialists pay greater attention to these natural cases, leading to increased research and more consistent diagnosis of co-infectious outbreaks in order to improve control strategies to protect tilapia when infected with multiple pathogens.
Collapse
Affiliation(s)
- Hany M R Abdel-Latif
- Department of Poultry and Fish diseases, Faculty of Veterinary Medicine, Alexandria University, Alexandria, Egypt
| | - Mahmoud A O Dawood
- Department of Animal Production, Faculty of Agriculture, Kafrelsheikh University, Kafrelsheikh, Egypt
| | | | - Mansour El-Matbouli
- Clinical Division of Fish Medicine, University of Veterinary Medicine Vienna, Vienna, Austria
| |
Collapse
|
4
|
Rosowski EE, Knox BP, Archambault LS, Huttenlocher A, Keller NP, Wheeler RT, Davis JM. The Zebrafish as a Model Host for Invasive Fungal Infections. J Fungi (Basel) 2018; 4:jof4040136. [PMID: 30551557 PMCID: PMC6308935 DOI: 10.3390/jof4040136] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 12/10/2018] [Accepted: 12/11/2018] [Indexed: 12/14/2022] Open
Abstract
The zebrafish has become a widely accepted model host for studies of infectious disease, including fungal infections. The species is genetically tractable, and the larvae are transparent and amenable to prolonged in vivo imaging and small molecule screening. The aim of this review is to provide a thorough introduction into the published studies of fungal infection in the zebrafish and the specific ways in which this model has benefited the field. In doing so, we hope to provide potential new zebrafish researchers with a snapshot of the current toolbox and prior results, while illustrating how the model has been used well and where the unfulfilled potential of this model can be found.
Collapse
Affiliation(s)
- Emily E Rosowski
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI 53716, USA.
| | - Benjamin P Knox
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI 53716, USA.
| | - Linda S Archambault
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, ME 04469, USA.
| | - Anna Huttenlocher
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI 53716, USA.
- Department of Pediatrics, University of Wisconsin-Madison, Madison, WI 53792, USA.
| | - Nancy P Keller
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI 53716, USA.
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA.
| | - Robert T Wheeler
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, ME 04469, USA.
- Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME 04469, USA.
| | - J Muse Davis
- Stead Family Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|
5
|
Davy CM, Donaldson ME, Willis CKR, Saville BJ, McGuire LP, Mayberry H, Wilcox A, Wibbelt G, Misra V, Bollinger T, Kyle CJ. The other white-nose syndrome transcriptome: Tolerant and susceptible hosts respond differently to the pathogen Pseudogymnoascus destructans. Ecol Evol 2017; 7:7161-7170. [PMID: 28944007 PMCID: PMC5606880 DOI: 10.1002/ece3.3234] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 06/11/2017] [Accepted: 06/12/2017] [Indexed: 12/30/2022] Open
Abstract
Mitigation of emerging infectious diseases that threaten global biodiversity requires an understanding of critical host and pathogen responses to infection. For multihost pathogens where pathogen virulence or host susceptibility is variable, host–pathogen interactions in tolerant species may identify potential avenues for adaptive evolution in recently exposed, susceptible hosts. For example, the fungus Pseudogymnoascus destructans causes white‐nose syndrome (WNS) in hibernating bats and is responsible for catastrophic declines in some species in North America, where it was recently introduced. Bats in Europe and Asia, where the pathogen is endemic, are only mildly affected. Different environmental conditions among Nearctic and Palearctic hibernacula have been proposed as an explanation for variable disease outcomes, but this hypothesis has not been experimentally tested. We report the first controlled, experimental investigation of response to P. destructans in a tolerant, European species of bat (the greater mouse‐eared bat, Myotis myotis). We compared body condition, disease outcomes and gene expression in control (sham‐exposed) and exposed M. myotis that hibernated under controlled environmental conditions following treatment. Tolerant M. myotis experienced extremely limited fungal growth and did not exhibit symptoms of WNS. However, we detected no differential expression of genes associated with immune response in exposed bats, indicating that immune response does not drive tolerance of P. destructans in late hibernation. Variable responses to P. destructans among bat species cannot be attributed solely to environmental or ecological factors. Instead, our results implicate coevolution with the pathogen, and highlight the dynamic nature of the “white‐nose syndrome transcriptome.” Interspecific variation in response to exposure by the host (and possibly pathogen) emphasizes the importance of context in studies of the bat‐WNS system, and robust characterization of genetic responses to exposure in various hosts and the pathogen should precede any attempts to use particular bat species as generalizable “model hosts.”
Collapse
Affiliation(s)
- Christina M Davy
- Environmental and Life Sciences Graduate Program Trent University Peterborough ON Canada.,Department of Biology University of Winnipeg Winnipeg MB Canada.,Present address: Ontario Ministry of Natural Resources and Forestry, Wildlife Research and Monitoring Section Trent University Peterborough ON Canada
| | - Michael E Donaldson
- Environmental and Life Sciences Graduate Program Trent University Peterborough ON Canada
| | | | - Barry J Saville
- Forensic Science Department Trent University Peterborough ON Canada
| | - Liam P McGuire
- Department of Biology University of Winnipeg Winnipeg MB Canada.,Department of Biological Sciences Texas Tech University Lubbock TX USA
| | | | - Alana Wilcox
- Department of Biology University of Winnipeg Winnipeg MB Canada
| | - Gudrun Wibbelt
- Leibniz Institute of Zoo and Wildlife Research Berlin Germany
| | - Vikram Misra
- Department of Microbiology Western College of Veterinary Medicine University of Saskatchewan Saskatoon SK Canada
| | - Trent Bollinger
- Department of Veterinary Pathology Western College of Veterinary Medicine University of Saskatchewan Saskatoon SK Canada
| | | |
Collapse
|
6
|
Wu Y, Li YH, Yu SB, Li WG, Liu XS, Zhao L, Lu JX. A Genome-Wide Transcriptional Analysis of Yeast-Hyphal Transition in Candida tropicalis by RNA-Seq. PLoS One 2016; 11:e0166645. [PMID: 27851809 PMCID: PMC5112795 DOI: 10.1371/journal.pone.0166645] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 11/01/2016] [Indexed: 12/28/2022] Open
Abstract
Candida tropicalis is considered as the leading pathogen in nosocomial fungemia and hepatosplenic fungal infections in patients with cancer, particularly in leukemia. The yeast-filament transition is required for virulent infection by Candida. Several studies have explored the genome-wide transcription profile of Candida, however, no report on the transcriptional profile of C. tropicalis under yeast-filament transition has been published. In this study, the transcriptomes of three C. tropicalis isolates with different adhesion and biofilm formation abilities, identified in our previous studies, were analyzed in both the yeast and filament states using RNA-Seq. Differentially expressed genes were found for each isolate during the transition. A total of 115 genes were up- or down- regulated in the two hyphal-producing isolates (ZRCT 4 and ZRCT 45). Among these differentially expressed genes, only two were down-regulated during the yeast-filament transition. Furthermore, six filament-associated genes were up-regulated in the hyphae-producing isolates. According to Candida Hypha Growth Database established in this study, 331 hyphae- related genes were discovered in C. tropicalis. ALS1 and ALS3 were down-regulated and up-regulated, respectively, during filamentous growth of C. tropicalis. These findings proved a better understanding of gene expression dynamics during the yeast-filament transition in C. tropicalis.
Collapse
Affiliation(s)
- Yuan Wu
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Chang bai Road 155, Chang ping District, Beijing, China
| | - Yin-hu Li
- Microbial Research Department, BGI-Shenzhen, Main building, Beishan Industry Zone, Yantian District, Shenzhen, China
| | - Shuan-bao Yu
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Chang bai Road 155, Chang ping District, Beijing, China
| | - Wen-ge Li
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Chang bai Road 155, Chang ping District, Beijing, China
| | - Xiao-shu Liu
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Chang bai Road 155, Chang ping District, Beijing, China
| | - Lei Zhao
- Department of Molecular Physiology and Biophysics, Holden Comprehensive Cancer Center, University of Iowa Carver College of Medicine, Iowa City, IA, 52242, United States of America
| | - Jin-xing Lu
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Chang bai Road 155, Chang ping District, Beijing, China
- * E-mail:
| |
Collapse
|
7
|
Hebecker B, Vlaic S, Conrad T, Bauer M, Brunke S, Kapitan M, Linde J, Hube B, Jacobsen ID. Dual-species transcriptional profiling during systemic candidiasis reveals organ-specific host-pathogen interactions. Sci Rep 2016; 6:36055. [PMID: 27808111 PMCID: PMC5093689 DOI: 10.1038/srep36055] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 10/11/2016] [Indexed: 11/15/2022] Open
Abstract
Candida albicans is a common cause of life-threatening fungal bloodstream infections. In the murine model of systemic candidiasis, the kidney is the primary target organ while the fungal load declines over time in liver and spleen. To better understand these organ-specific differences in host-pathogen interaction, we performed gene expression profiling of murine kidney, liver and spleen and determined the fungal transcriptome in liver and kidney. We observed a delayed transcriptional immune response accompanied by late induction of fungal stress response genes in the kidneys. In contrast, early upregulation of the proinflammatory response in the liver was associated with a fungal transcriptome resembling response to phagocytosis, suggesting that phagocytes contribute significantly to fungal control in the liver. Notably, C. albicans hypha-associated genes were upregulated in the absence of visible filamentation in the liver, indicating an uncoupling of gene expression and morphology and a morphology-independent effect by hypha-associated genes in this organ. Consistently, integration of host and pathogen transcriptional data in an inter-species gene regulatory network indicated connections of C. albicans cell wall remodelling and metabolism to the organ-specific immune responses.
Collapse
Affiliation(s)
- Betty Hebecker
- Research Group Microbial Immunology, Leibniz Institute for Natural Product Research and Infection Biology (Hans Knöll Institute), Jena, Germany.,Center for Sepsis Control and Care, Jena University Hospital, Jena, Germany
| | - Sebastian Vlaic
- Department of General, Visceral and Vascular Surgery, Experimental Transplantation Surgery, Jena University Hospital, Jena, Germany.,Research Group Systems Biology/Bioinformatics, Leibniz Institute for Natural Product Research and Infection Biology (Hans Knöll Institute), Jena, Germany.,Department of Bioinformatics, Friedrich-Schiller-University Jena, Germany
| | - Theresia Conrad
- Research Group Systems Biology/Bioinformatics, Leibniz Institute for Natural Product Research and Infection Biology (Hans Knöll Institute), Jena, Germany
| | - Michael Bauer
- Center for Sepsis Control and Care, Jena University Hospital, Jena, Germany.,Department of Anaesthesiology and Intensive Care Therapy, Jena University Hospital, Jena, Germany
| | - Sascha Brunke
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology (Hans Knöll Institute), Jena, Germany
| | - Mario Kapitan
- Research Group Microbial Immunology, Leibniz Institute for Natural Product Research and Infection Biology (Hans Knöll Institute), Jena, Germany
| | - Jörg Linde
- Research Group Systems Biology/Bioinformatics, Leibniz Institute for Natural Product Research and Infection Biology (Hans Knöll Institute), Jena, Germany
| | - Bernhard Hube
- Center for Sepsis Control and Care, Jena University Hospital, Jena, Germany.,Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology (Hans Knöll Institute), Jena, Germany.,Friedrich-Schiller-University, Jena, Germany
| | - Ilse D Jacobsen
- Research Group Microbial Immunology, Leibniz Institute for Natural Product Research and Infection Biology (Hans Knöll Institute), Jena, Germany.,Center for Sepsis Control and Care, Jena University Hospital, Jena, Germany.,Friedrich-Schiller-University, Jena, Germany
| |
Collapse
|
8
|
Dissecting Candida albicans Infection from the Perspective of C. albicans Virulence and Omics Approaches on Host-Pathogen Interaction: A Review. Int J Mol Sci 2016; 17:ijms17101643. [PMID: 27763544 PMCID: PMC5085676 DOI: 10.3390/ijms17101643] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 09/15/2016] [Accepted: 09/19/2016] [Indexed: 02/06/2023] Open
Abstract
Candida bloodstream infections remain the most frequent life-threatening fungal disease, with Candida albicans accounting for 70% to 80% of the Candida isolates recovered from infected patients. In nature, Candida species are part of the normal commensal flora in mammalian hosts. However, they can transform into pathogens once the host immune system is weakened or breached. More recently, mortality attributed to Candida infections has continued to increase due to both inherent and acquired drug resistance in Candida, the inefficacy of the available antifungal drugs, tedious diagnostic procedures, and a rising number of immunocompromised patients. Adoption of animal models, viz. minihosts, mice, and zebrafish, has brought us closer to unraveling the pathogenesis and complexity of Candida infection in human hosts, leading towards the discovery of biomarkers and identification of potential therapeutic agents. In addition, the advancement of omics technologies offers a holistic view of the Candida-host interaction in a non-targeted and non-biased manner. Hence, in this review, we seek to summarize past and present milestone findings on C. albicans virulence, adoption of animal models in the study of C. albicans infection, and the application of omics technologies in the study of Candida–host interaction. A profound understanding of the interaction between host defense and pathogenesis is imperative for better design of novel immunotherapeutic strategies in future.
Collapse
|
9
|
In Vivo Transcriptional Profiling of Human Pathogenic Fungi during Infection: Reflecting the Real Life? PLoS Pathog 2016; 12:e1005471. [PMID: 27078150 PMCID: PMC4831747 DOI: 10.1371/journal.ppat.1005471] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
10
|
A Systems Biology Approach to the Coordination of Defensive and Offensive Molecular Mechanisms in the Innate and Adaptive Host-Pathogen Interaction Networks. PLoS One 2016; 11:e0149303. [PMID: 26881892 PMCID: PMC4755559 DOI: 10.1371/journal.pone.0149303] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 01/29/2016] [Indexed: 11/19/2022] Open
Abstract
Infected zebrafish coordinates defensive and offensive molecular mechanisms in response to Candida albicans infections, and invasive C. albicans coordinates corresponding molecular mechanisms to interact with the host. However, knowledge of the ensuing infection-activated signaling networks in both host and pathogen and their interspecific crosstalk during the innate and adaptive phases of the infection processes remains incomplete. In the present study, dynamic network modeling, protein interaction databases, and dual transcriptome data from zebrafish and C. albicans during infection were used to infer infection-activated host-pathogen dynamic interaction networks. The consideration of host-pathogen dynamic interaction systems as innate and adaptive loops and subsequent comparisons of inferred innate and adaptive networks indicated previously unrecognized crosstalk between known pathways and suggested roles of immunological memory in the coordination of host defensive and offensive molecular mechanisms to achieve specific and powerful defense against pathogens. Moreover, pathogens enhance intraspecific crosstalk and abrogate host apoptosis to accommodate enhanced host defense mechanisms during the adaptive phase. Accordingly, links between physiological phenomena and changes in the coordination of defensive and offensive molecular mechanisms highlight the importance of host-pathogen molecular interaction networks, and consequent inferences of the host-pathogen relationship could be translated into biomedical applications.
Collapse
|
11
|
Amorim-Vaz S, Sanglard D. Novel Approaches for Fungal Transcriptomics from Host Samples. Front Microbiol 2016; 6:1571. [PMID: 26834721 PMCID: PMC4717316 DOI: 10.3389/fmicb.2015.01571] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 12/28/2015] [Indexed: 11/13/2022] Open
Abstract
Candida albicans adaptation to the host requires a profound reprogramming of the fungal transcriptome as compared to in vitro laboratory conditions. A detailed knowledge of the C. albicans transcriptome during the infection process is necessary in order to understand which of the fungal genes are important for host adaptation. Such genes could be thought of as potential targets for antifungal therapy. The acquisition of the C. albicans transcriptome is, however, technically challenging due to the low proportion of fungal RNA in host tissues. Two emerging technologies were used recently to circumvent this problem. One consists of the detection of low abundance fungal RNA using capture and reporter gene probes which is followed by emission and quantification of resulting fluorescent signals (nanoString). The other is based first on the capture of fungal RNA by short biotinylated oligonucleotide baits covering the C. albicans ORFome permitting fungal RNA purification. Next, the enriched fungal RNA is amplified and subjected to RNA sequencing (RNA-seq). Here we detail these two transcriptome approaches and discuss their advantages and limitations and future perspectives in microbial transcriptomics from host material.
Collapse
Affiliation(s)
- Sara Amorim-Vaz
- Institute of Microbiology, University Hospital Center, University of Lausanne Lausanne, Switzerland
| | - Dominique Sanglard
- Institute of Microbiology, University Hospital Center, University of Lausanne Lausanne, Switzerland
| |
Collapse
|
12
|
Abstract
Candida species are the most prevalent human fungal pathogens, with Candida albicans being the most clinically relevant species. Candida albicans resides as a commensal of the human gastrointestinal tract but is a frequent cause of opportunistic mucosal and systemic infections. Investigation of C. albicans virulence has traditionally relied on candidate gene approaches, but recent advances in functional genomics have now facilitated global, unbiased studies of gene function. Such studies include comparative genomics (both between and within Candida species), analysis of total RNA expression, and regulation and delineation of protein-DNA interactions. Additionally, large collections of mutant strains have begun to aid systematic screening of clinically relevant phenotypes. Here, we will highlight the development of functional genomics in C. albicans and discuss the use of these approaches to addressing both commensalism and pathogenesis in this species.
Collapse
|
13
|
RNA Enrichment Method for Quantitative Transcriptional Analysis of Pathogens In Vivo Applied to the Fungus Candida albicans. mBio 2015; 6:e00942-15. [PMID: 26396240 PMCID: PMC4600103 DOI: 10.1128/mbio.00942-15] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED In vivo transcriptional analyses of microbial pathogens are often hampered by low proportions of pathogen biomass in host organs, hindering the coverage of full pathogen transcriptome. We aimed to address the transcriptome profiles of Candida albicans, the most prevalent fungal pathogen in systemically infected immunocompromised patients, during systemic infection in different hosts. We developed a strategy for high-resolution quantitative analysis of the C. albicans transcriptome directly from early and late stages of systemic infection in two different host models, mouse and the insect Galleria mellonella. Our results show that transcriptome sequencing (RNA-seq) libraries were enriched for fungal transcripts up to 1,600-fold using biotinylated bait probes to capture C. albicans sequences. This enrichment biased the read counts of only ~3% of the genes, which can be identified and removed based on a priori criteria. This allowed an unprecedented resolution of C. albicans transcriptome in vivo, with detection of over 86% of its genes. The transcriptional response of the fungus was surprisingly similar during infection of the two hosts and at the two time points, although some host- and time point-specific genes could be identified. Genes that were highly induced during infection were involved, for instance, in stress response, adhesion, iron acquisition, and biofilm formation. Of the in vivo-regulated genes, 10% are still of unknown function, and their future study will be of great interest. The fungal RNA enrichment procedure used here will help a better characterization of the C. albicans response in infected hosts and may be applied to other microbial pathogens. IMPORTANCE Understanding the mechanisms utilized by pathogens to infect and cause disease in their hosts is crucial for rational drug development. Transcriptomic studies may help investigations of these mechanisms by determining which genes are expressed specifically during infection. This task has been difficult so far, since the proportion of microbial biomass in infected tissues is often extremely low, thus limiting the depth of sequencing and comprehensive transcriptome analysis. Here, we adapted a technology to capture and enrich C. albicans RNA, which was next used for deep RNA sequencing directly from infected tissues from two different host organisms. The high-resolution transcriptome revealed a large number of genes that were so far unknown to participate in infection, which will likely constitute a focus of study in the future. More importantly, this method may be adapted to perform transcript profiling of any other microbes during host infection or colonization.
Collapse
|
14
|
Remmele CW, Luther CH, Balkenhol J, Dandekar T, Müller T, Dittrich MT. Integrated inference and evaluation of host-fungi interaction networks. Front Microbiol 2015; 6:764. [PMID: 26300851 PMCID: PMC4523839 DOI: 10.3389/fmicb.2015.00764] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 07/13/2015] [Indexed: 12/18/2022] Open
Abstract
Fungal microorganisms frequently lead to life-threatening infections. Within this group of pathogens, the commensal Candida albicans and the filamentous fungus Aspergillus fumigatus are by far the most important causes of invasive mycoses in Europe. A key capability for host invasion and immune response evasion are specific molecular interactions between the fungal pathogen and its human host. Experimentally validated knowledge about these crucial interactions is rare in literature and even specialized host–pathogen databases mainly focus on bacterial and viral interactions whereas information on fungi is still sparse. To establish large-scale host–fungi interaction networks on a systems biology scale, we develop an extended inference approach based on protein orthology and data on gene functions. Using human and yeast intraspecies networks as template, we derive a large network of pathogen–host interactions (PHI). Rigorous filtering and refinement steps based on cellular localization and pathogenicity information of predicted interactors yield a primary scaffold of fungi–human and fungi–mouse interaction networks. Specific enrichment of known pathogenicity-relevant genes indicates the biological relevance of the predicted PHI. A detailed inspection of functionally relevant subnetworks reveals novel host–fungal interaction candidates such as the Candida virulence factor PLB1 and the anti-fungal host protein APP. Our results demonstrate the applicability of interolog-based prediction methods for host–fungi interactions and underline the importance of filtering and refinement steps to attain biologically more relevant interactions. This integrated network framework can serve as a basis for future analyses of high-throughput host–fungi transcriptome and proteome data.
Collapse
Affiliation(s)
| | | | | | - Thomas Dandekar
- Department of Bioinformatics, University of Würzburg Würzburg, Germany
| | - Tobias Müller
- Department of Bioinformatics, University of Würzburg Würzburg, Germany
| | - Marcus T Dittrich
- Department of Bioinformatics, University of Würzburg Würzburg, Germany ; Department of Human Genetics, University of Würzburg Würzburg, Germany
| |
Collapse
|
15
|
Duggan S, Leonhardt I, Hünniger K, Kurzai O. Host response to Candida albicans bloodstream infection and sepsis. Virulence 2015; 6:316-26. [PMID: 25785541 PMCID: PMC4601378 DOI: 10.4161/21505594.2014.988096] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Candida albicans is a major cause of bloodstream infection which may present as sepsis and septic shock - major causes of morbidity and mortality world-wide. After invasion of the pathogen, innate mechanisms govern the early response. Here, we outline the models used to study these mechanisms and summarize our current understanding of innate immune responses during Candida bloodstream infection. This includes protective immunity as well as harmful responses resulting in Candida induced sepsis. Neutrophilic granulocytes are considered principal effector cells conferring protection and recognize C. albicans mainly via complement receptor 3. They possess a range of effector mechanisms, contributing to elimination of the pathogen. Neutrophil activation is closely linked to complement and modulated by activated mononuclear cells. A thorough understanding of these mechanisms will help in creating an individualized approach to patients suffering from systemic candidiasis and aid in optimizing clinical management.
Collapse
Affiliation(s)
- Seána Duggan
- a Septomics Research Center ; Friedrich-Schiller-University and Leibniz-Institute for Natural Product Research and Infection Biology-Hans-Knoell-Institute ; Jena , Germany
| | | | | | | |
Collapse
|
16
|
Activation and alliance of regulatory pathways in C. albicans during mammalian infection. PLoS Biol 2015; 13:e1002076. [PMID: 25693184 PMCID: PMC4333574 DOI: 10.1371/journal.pbio.1002076] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Accepted: 01/09/2015] [Indexed: 11/24/2022] Open
Abstract
Gene expression dynamics have provided foundational insight into almost all biological processes. Here, we analyze expression of environmentally responsive genes and transcription factor genes to infer signals and pathways that drive pathogen gene regulation during invasive Candida albicans infection of a mammalian host. Environmentally responsive gene expression shows that there are early and late phases of infection. The early phase includes induction of zinc and iron limitation genes, genes that respond to transcription factor Rim101, and genes characteristic of invasive hyphal cells. The late phase includes responses related to phagocytosis by macrophages. Transcription factor gene expression also reflects early and late phases. Transcription factor genes that are required for virulence or proliferation in vivo are enriched among highly expressed transcription factor genes. Mutants defective in six transcription factor genes, three previously studied in detail (Rim101, Efg1, Zap1) and three less extensively studied (Rob1, Rpn4, Sut1), are profiled during infection. Most of these mutants have distinct gene expression profiles during infection as compared to in vitro growth. Infection profiles suggest that Sut1 acts in the same pathway as Zap1, and we verify that functional relationship with the finding that overexpression of either ZAP1 or the Zap1-dependent zinc transporter gene ZRT2 restores pathogenicity to a sut1 mutant. Perturbation with the cell wall inhibitor caspofungin also has distinct gene expression impact in vivo and in vitro. Unexpectedly, caspofungin induces many of the same genes that are repressed early during infection, a phenomenon that we suggest may contribute to drug efficacy. The pathogen response circuitry is tailored uniquely during infection, with many relevant regulatory relationships that are not evident during growth in vitro. Our findings support the principle that virulence is a property that is manifested only in the distinct environment in which host–pathogen interaction occurs. A study of the invasive infection of a mammalian host by the pathogenic fungus Candida albicans reveals characteristic gene regulation patterns in response to the host environment, distinct from those seen when growing in vitro. We have a limited understanding of how the expression of pathogens’ genes changes during infection of humans or other animal hosts, in contrast to in vitro models of infection. Here we profile the alteration in gene expression over time as a predictor of functional consequences during invasive growth of Candida in the kidney; a situation in which the limited number of pathogen cells makes gene expression challenging to assay. Our findings reveal that there are distinct early and late phases of infection, and identify new genes that govern the early zinc acquisition response necessary for proliferation in vivo—and thus required for infection. We also find that the response to drug treatment that manifests during infection can be distinct from that detected in vitro. We show that a well-known gene expression response to the antifungal drug caspofungin is naturally down-regulated in infecting cells, suggesting that the efficacy of the drug may be enhanced by a susceptible state of the pathogen during invasive proliferation.
Collapse
|
17
|
Lin C, Lin CN, Wang YC, Liu FY, Chien YW, Chuang YJ, Lan CY, Hsieh WP, Chen BS. Robustness analysis on interspecies interaction network for iron and glucose competition between Candida albicans and zebrafish during infection. BMC SYSTEMS BIOLOGY 2014; 8 Suppl 5:S6. [PMID: 25603810 PMCID: PMC4305985 DOI: 10.1186/1752-0509-8-s5-s6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Candida albicans has emerged as an important model organism for the study of infectious disease. Using high-throughput simultaneously quantified time-course transcriptomics, this study constructed host-pathogen interspecies interaction networks between C. albicans and zebrafish during the adhesion, invasion, and damage stages. Given that iron and glucose have been identified as crucial resources required during the infection process between C. albicans and zebrafish, we focused on the construction of the interspecies networks associated with them. Furthermore, a randomization technique was proposed to identify differentially regulated proteins that are statistically eminent for the three infection stages. The behaviors of the highly connected or differentially regulated proteins identified from the resulting networks were further investigated. "Robustness" is an important system property that measures the ability of the system tolerating the intrinsic perturbations in a dynamic network. This characteristic provides a systematic and quantitative view to elucidate the dynamics of iron and glucose competition in terms of the interspecies interaction networks. Here, we further estimated the robustness of our constructed interspecies interaction networks for the three infection stages. The constructed networks and robustness analysis provided significant insight into dynamic interactions related to iron and glucose competition during infection and enabled us to quantify the system's intrinsic perturbation tolerance ability during iron and glucose competition throughout the three infection stages. Moreover, the networks also assist in elucidating the offensive and defensive mechanisms of C. albicans and zebrafish during their competition for iron and glucose. Our proposed method can be easily extended to identify other such networks involved in the competition for essential resources during infection.
Collapse
|
18
|
Lin C, Lin CN, Wang YC, Liu FY, Chuang YJ, Lan CY, Hsieh WP, Chen BS. The role of TGF-β signaling and apoptosis in innate and adaptive immunity in zebrafish: a systems biology approach. BMC SYSTEMS BIOLOGY 2014; 8:116. [PMID: 25341656 PMCID: PMC4224695 DOI: 10.1186/s12918-014-0116-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Accepted: 10/03/2014] [Indexed: 01/10/2023]
Abstract
Background The immune system is a key biological system present in vertebrates. Exposure to pathogens elicits various defensive immune mechanisms that protect the host from potential threats and harmful substances derived from pathogens such as parasites, bacteria, and viruses. The complex immune system of humans and many other vertebrates can be divided into two major categories: the innate and the adaptive immune systems. At present, analysis of the complex interactions between the two subsystems that regulate host defense and inflammatory responses remains challenging. Results Based on time-course microarray data following primary and secondary infection of zebrafish by Candida albicans, we constructed two intracellular protein–protein interaction (PPI) networks for primary and secondary responses of the host. 57 proteins and 341 PPIs were identified for primary infection while 90 proteins and 385 PPIs were identified for secondary infection. There were 20 proteins in common while 37 and 70 proteins specific to primary and secondary infection. By inspecting the hub proteins of each network and comparing significant changes in the number of linkages between the two PPI networks, we identified TGF-β signaling and apoptosis as two of the main functional modules involved in primary and secondary infection. Smad7, a member of the inhibitor SMADs, was identified to be a key protein in TGF-β signaling involved in secondary infection only. Indeed, the Smad7-dependent feedback system is related to the TGF-β signaling pathway and the immune response, suggesting that Smad7 may be an important regulator of innate and adaptive immune responses in zebrafish. Furthermore, we found that apoptosis was differentially involved in the two infection phases; more specifically, whereas apoptosis was promoted in response to primary infection, it was inhibited during secondary infection. Conclusions Our initial in silico analyses pave the way for further investigation into the interesting roles played by the TGF-β signaling pathway and apoptosis in innate and adaptive immunity in zebrafish. Such insights could lead to therapeutic advances and improved drug design in the continual battle against infectious diseases. Electronic supplementary material The online version of this article (doi:10.1186/s12918-014-0116-0) contains supplementary material, which is available to authorized users.
Collapse
|
19
|
Gratacap RL, Wheeler RT. Utilization of zebrafish for intravital study of eukaryotic pathogen-host interactions. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2014; 46:108-15. [PMID: 24491522 PMCID: PMC4028364 DOI: 10.1016/j.dci.2014.01.020] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Revised: 01/21/2014] [Accepted: 01/22/2014] [Indexed: 05/04/2023]
Abstract
Unique imaging tools and practical advantages have made zebrafish a popular model to investigate in vivo host-pathogen interactions. These studies have uncovered details of the mechanisms involved in several human infections. Until recently, studies using this versatile host were limited to viral and prokaryotic pathogens. Eukaryotic pathogens are a diverse group with a major impact on the human and fish populations. The relationships of eukaryote pathogens with their hosts are complex and many aspects remain obscure. The small and transparent zebrafish, with its conserved immune system and amenability to genetic manipulation, make it an exciting model for quantitative study of the core strategies of eukaryotic pathogens and their hosts. The only thing to do now is realize its potential for advancement of biomedical and aquaculture research.
Collapse
Affiliation(s)
- Remi L Gratacap
- Department of Molecular & Biomedical Sciences, University of Maine, Orono, ME 04469, United States
| | - Robert T Wheeler
- Department of Molecular & Biomedical Sciences, University of Maine, Orono, ME 04469, United States; Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME 04469, United States.
| |
Collapse
|
20
|
Goody MF, Sullivan C, Kim CH. Studying the immune response to human viral infections using zebrafish. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2014; 46:84-95. [PMID: 24718256 PMCID: PMC4067600 DOI: 10.1016/j.dci.2014.03.025] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Revised: 03/31/2014] [Accepted: 03/31/2014] [Indexed: 05/24/2023]
Abstract
Humans and viruses have a long co-evolutionary history. Viral illnesses have and will continue to shape human history: from smallpox, to influenza, to HIV, and beyond. Animal models of human viral illnesses are needed in order to generate safe and effective antiviral medicines, adjuvant therapies, and vaccines. These animal models must support the replication of human viruses, recapitulate aspects of human viral illnesses, and respond with conserved immune signaling cascades. The zebrafish is perhaps the simplest, most commonly used laboratory model organism in which innate and/or adaptive immunity can be studied. Herein, we will discuss the current zebrafish models of human viral illnesses and the insights they have provided. We will highlight advantages of early life stage zebrafish and the importance of innate immunity in human viral illnesses. We will also discuss viral characteristics to consider before infecting zebrafish with human viruses as well as predict other human viruses that may be able to infect zebrafish.
Collapse
Affiliation(s)
- Michelle F Goody
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, ME 04469, USA
| | - Con Sullivan
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, ME 04469, USA; Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME 04469, USA
| | - Carol H Kim
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, ME 04469, USA; Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME 04469, USA.
| |
Collapse
|
21
|
Essential functional modules for pathogenic and defensive mechanisms in Candida albicans infections. BIOMED RESEARCH INTERNATIONAL 2014; 2014:136130. [PMID: 24757665 PMCID: PMC3976935 DOI: 10.1155/2014/136130] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Accepted: 02/10/2014] [Indexed: 12/24/2022]
Abstract
The clinical and biological significance of the study of fungal pathogen Candida albicans (C. albicans) has markedly increased. However, the explicit pathogenic and invasive mechanisms of such host-pathogen interactions have not yet been fully elucidated. Therefore, the essential functional modules involved in C. albicans-zebrafish interactions were investigated in this study. Adopting a systems biology approach, the early-stage and late-stage protein-protein interaction (PPI) networks for both C. albicans and zebrafish were constructed. By comparing PPI networks at the early and late stages of the infection process, several critical functional modules were identified in both pathogenic and defensive mechanisms. Functional modules in C. albicans, like those involved in hyphal morphogenesis, ion and small molecule transport, protein secretion, and shifts in carbon utilization, were seen to play important roles in pathogen invasion and damage caused to host cells. Moreover, the functional modules in zebrafish, such as those involved in immune response, apoptosis mechanisms, ion transport, protein secretion, and hemostasis-related processes, were found to be significant as defensive mechanisms during C. albicans infection. The essential functional modules thus determined could provide insights into the molecular mechanisms of host-pathogen interactions during the infection process and thereby devise potential therapeutic strategies to treat C. albicans infection.
Collapse
|
22
|
Wang YC, Lin C, Chuang MT, Hsieh WP, Lan CY, Chuang YJ, Chen BS. Interspecies protein-protein interaction network construction for characterization of host-pathogen interactions: a Candida albicans-zebrafish interaction study. BMC SYSTEMS BIOLOGY 2013; 7:79. [PMID: 23947337 PMCID: PMC3751520 DOI: 10.1186/1752-0509-7-79] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Accepted: 08/14/2013] [Indexed: 11/10/2022]
Abstract
Background Despite clinical research and development in the last decades, infectious diseases remain a top global problem in public health today, being responsible for millions of morbidities and mortalities each year. Therefore, many studies have sought to investigate host-pathogen interactions from various viewpoints in attempts to understand pathogenic and defensive mechanisms, which could help control pathogenic infections. However, most of these efforts have focused predominately on the host or the pathogen individually rather than on a simultaneous analysis of both interaction partners. Results In this study, with the help of simultaneously quantified time-course Candida albicans-zebrafish interaction transcriptomics and other omics data, a computational framework was developed to construct the interspecies protein-protein interaction (PPI) network for C. albicans-zebrafish interactions based on the inference of ortholog-based PPIs and the dynamic modeling of regulatory responses. The identified C. albicans-zebrafish interspecies PPI network highlights the association between C. albicans pathogenesis and the zebrafish redox process, indicating that redox status is critical in the battle between the host and pathogen. Conclusions Advancing from the single-species network construction method, the interspecies network construction approach allows further characterization and elucidation of the host-pathogen interactions. With continued accumulation of interspecies transcriptomics data, the proposed method could be used to explore progressive network rewiring over time, which could benefit the development of network medicine for infectious diseases.
Collapse
Affiliation(s)
- Yu-Chao Wang
- Laboratory of Control and Systems Biology, Department of Electrical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | | | | | | | | | | | | |
Collapse
|