1
|
Ley P, Geelhoed JS, Vasquez-Cardenas D, Meysman FJR. On the diversity, phylogeny and biogeography of cable bacteria. Front Microbiol 2024; 15:1485281. [PMID: 39629215 PMCID: PMC11611824 DOI: 10.3389/fmicb.2024.1485281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 11/05/2024] [Indexed: 12/07/2024] Open
Abstract
Cable bacteria have acquired a unique metabolism, which induces long-distance electron transport along their centimeter-long multicellular filaments. At present, cable bacteria are thought to form a monophyletic clade with two described genera. However, their diversity has not been systematically investigated. To investigate the phylogenetic relationships within the cable bacteria clade, 16S rRNA gene sequences were compiled from literature and public databases (SILVA 138 SSU and NCBI GenBank). These were complemented with novel sequences obtained from natural sediment enrichments across a wide range of salinities (2-34). To enable taxonomic resolution at the species level, we designed a procedure to attain full-length 16S rRNA gene sequences from individual cable bacterium filaments using an optimized nested PCR protocol and Sanger sequencing. The final database contained 1,876 long 16S rRNA gene sequences (≥800 bp) originating from 92 aquatic locations, ranging from polar to tropical regions and from intertidal to deep sea sediments. The resulting phylogenetic tree reveals 90 potential species-level clades (based on a delineation value of 98.7% 16S rRNA gene sequence identity) that reside within six genus-level clusters. Hence, the diversity of cable bacteria appears to be substantially larger than the two genera and 13 species that have been officially named up to now. Particularly brackish environments with strong salinity fluctuations, as well as sediments with low free sulfide concentrations and deep sea sediments harbor a large pool of novel and undescribed cable bacteria taxa.
Collapse
Affiliation(s)
- Philip Ley
- Geobiology Research Group, Department of Biology, University of Antwerp, Antwerp, Belgium
| | - Jeanine S. Geelhoed
- Geobiology Research Group, Department of Biology, University of Antwerp, Antwerp, Belgium
| | - Diana Vasquez-Cardenas
- Geobiology Research Group, Department of Biology, University of Antwerp, Antwerp, Belgium
| | - Filip J. R. Meysman
- Geobiology Research Group, Department of Biology, University of Antwerp, Antwerp, Belgium
- Department of Biotechnology, Delft University of Technology, Delft, Netherlands
| |
Collapse
|
2
|
Ruff SE, Schwab L, Vidal E, Hemingway JD, Kraft B, Murali R. Widespread occurrence of dissolved oxygen anomalies, aerobic microbes, and oxygen-producing metabolic pathways in apparently anoxic environments. FEMS Microbiol Ecol 2024; 100:fiae132. [PMID: 39327011 PMCID: PMC11549561 DOI: 10.1093/femsec/fiae132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/23/2024] [Accepted: 09/25/2024] [Indexed: 09/28/2024] Open
Abstract
Nearly all molecular oxygen (O2) on Earth is produced via oxygenic photosynthesis by plants or photosynthetically active microorganisms. Light-independent O2 production, which occurs both abiotically, e.g. through water radiolysis, or biotically, e.g. through the dismutation of nitric oxide or chlorite, has been thought to be negligible to the Earth system. However, recent work indicates that O2 is produced and consumed in dark and apparently anoxic environments at a much larger scale than assumed. Studies have shown that isotopically light O2 can accumulate in old groundwaters, that strictly aerobic microorganisms are present in many apparently anoxic habitats, and that microbes and metabolisms that can produce O2 without light are widespread and abundant in diverse ecosystems. Analysis of published metagenomic data reveals that the enzyme putatively capable of nitric oxide dismutation forms four major phylogenetic clusters and occurs in at least 16 bacterial phyla, most notably the Bacteroidota. Similarly, a re-analysis of published isotopic signatures of dissolved O2 in groundwater suggests in situ production in up to half of the studied environments. Geochemical and microbiological data support the conclusion that "dark oxygen production" is an important and widespread yet overlooked process in apparently anoxic environments with far-reaching implications for subsurface biogeochemistry and ecology.
Collapse
Affiliation(s)
- S Emil Ruff
- Marine Biological Laboratory, Ecosystems Center and J Bay Paul Center for Comparative Molecular Biology and Evolution, Woods Hole, MA 02543, United States
| | - Laura Schwab
- Institute of Biodiversity, Aquatic Geomicrobiology, Friedrich Schiller University, 07743 Jena, Germany
| | - Emeline Vidal
- Marine Biological Laboratory, Ecosystems Center and J Bay Paul Center for Comparative Molecular Biology and Evolution, Woods Hole, MA 02543, United States
| | - Jordon D Hemingway
- Geological Institute, Department of Earth and Planetary Sciences, ETH Zurich, Sonneggstrasse 5, 8092 Zurich, Switzerland
| | - Beate Kraft
- Nordcee, Department of Biology, University of Southern Denmark, 5230 Odense, Denmark
| | - Ranjani Murali
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV 89119, United States
| |
Collapse
|
3
|
Słowakiewicz M, Goraj W, Segit T, Wątor K, Dobrzyński D. Hydrochemical gradients driving extremophile distribution in saline and brine groundwater of southern Poland. ENVIRONMENTAL MICROBIOLOGY REPORTS 2024; 16:e70030. [PMID: 39440899 PMCID: PMC11497496 DOI: 10.1111/1758-2229.70030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 10/07/2024] [Indexed: 10/25/2024]
Abstract
Extreme environments, such as highly saline ecosystems, are characterised by a limited presence of microbial communities capable of tolerating and thriving under these conditions. To better understand the limits of life and its chemical and microbiological drivers, highly saline and brine groundwaters of Na-Cl and Na-Ca-Cl types with notably diverse SO4 contents were sampled in water intakes and springs from sedimentary aquifers located in the Outer Carpathians and the Carpathian Foredeep basin and its basement in Poland. Chemical and microbiological methods were used to identify the composition of groundwaters, determine microbial diversity, and indicate processes controlling their distribution using multivariate statistical analyses. DNA sequencing targeting V3-V4 and V4-V5 gene regions revealed a predominance of Proteobacteriota, Methanobacteria, Methanomicrobia, and Nanoarchaea in most of the water samples, irrespective of their geological context. Despite the sample-size constraint, redundancy analysis employing a compositional approach to hydrochemical predictors identified Cl/SO4 and Cl/HCO3 ratios, and specific electrical conductivity, as key gradients shaping microbial communities, depending on the analysed gene regions. Analysis of functional groups revealed that methanogenesis, sulphate oxidation and reduction, and the nitrogen cycle define and distinguish the halotolerant communities in the samples. These communities are characterised by an inverse relationship between methanogens and sulphur-cycling microorganisms.
Collapse
Affiliation(s)
| | - Weronika Goraj
- Faculty of MedicineThe John Paul II Catholic University of LublinLublinPoland
| | - Tomasz Segit
- Faculty of GeologyUniversity of WarsawWarsawPoland
| | - Katarzyna Wątor
- Faculty of Geology, Geophysics and Environmental ProtectionAGH University of KrakowKrakówPoland
| | | |
Collapse
|
4
|
Doloman A, Sousa DZ. Mechanisms of microbial co-aggregation in mixed anaerobic cultures. Appl Microbiol Biotechnol 2024; 108:407. [PMID: 38963458 PMCID: PMC11224092 DOI: 10.1007/s00253-024-13246-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/24/2024] [Accepted: 06/27/2024] [Indexed: 07/05/2024]
Abstract
Co-aggregation of anaerobic microorganisms into suspended microbial biofilms (aggregates) serves ecological and biotechnological functions. Tightly packed aggregates of metabolically interdependent bacteria and archaea play key roles in cycling of carbon and nitrogen. Additionally, in biotechnological applications, such as wastewater treatment, microbial aggregates provide a complete metabolic network to convert complex organic material. Currently, experimental data explaining the mechanisms behind microbial co-aggregation in anoxic environments is scarce and scattered across the literature. To what extent does this process resemble co-aggregation in aerobic environments? Does the limited availability of terminal electron acceptors drive mutualistic microbial relationships, contrary to the commensal relationships observed in oxygen-rich environments? And do co-aggregating bacteria and archaea, which depend on each other to harvest the bare minimum Gibbs energy from energy-poor substrates, use similar cellular mechanisms as those used by pathogenic bacteria that form biofilms? Here, we provide an overview of the current understanding of why and how mixed anaerobic microbial communities co-aggregate and discuss potential future scientific advancements that could improve the study of anaerobic suspended aggregates. KEY POINTS: • Metabolic dependency promotes aggregation of anaerobic bacteria and archaea • Flagella, pili, and adhesins play a role in the formation of anaerobic aggregates • Cyclic di-GMP/AMP signaling may trigger the polysaccharides production in anaerobes.
Collapse
Affiliation(s)
- Anna Doloman
- Laboratory of Microbiology, Wageningen University & Research, Stippeneng 4, 6708 WE, Wageningen, The Netherlands.
| | - Diana Z Sousa
- Laboratory of Microbiology, Wageningen University & Research, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
- Centre for Living Technologies, Eindhoven-Wageningen-Utrecht Alliance, Princetonlaan 6, 3584 CB, Utrecht, The Netherlands
| |
Collapse
|
5
|
Miyajima Y, Aoyagi T, Yoshioka H, Hori T, Takahashi HA, Tanaka M, Tsukasaki A, Goto S, Suzumura M. Impact of Concurrent aerobic-anaerobic Methanotrophy on Methane Emission from Marine Sediments in Gas Hydrate Area. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:4979-4988. [PMID: 38445630 PMCID: PMC10956523 DOI: 10.1021/acs.est.3c09484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/13/2024] [Accepted: 02/14/2024] [Indexed: 03/07/2024]
Abstract
Microbial methane oxidation has a significant impact on the methane flux from marine gas hydrate areas. However, the environmental fate of methane remains poorly constrained. We quantified the relative contributions of aerobic and anaerobic methanotrophs to methane consumption in sediments of the gas hydrate-bearing Sakata Knoll, Japan, by in situ geochemical and microbiological analyses coupled with 13C-tracer incubation experiments. The anaerobic ANME-1 and ANME-2 species contributed to the oxidation of 33.2 and 1.4% methane fluxes at 0-10 and 10-22 cm below the seafloor (bsf), respectively. Although the aerobic Methylococcaceae species consumed only 0.9% methane flux in the oxygen depleted 0.0-0.5 cmbsf zone, their metabolic activity was sustained down to 6 cmbsf (based on rRNA and lipid biosyntheses), increasing their contribution to 10.3%. Our study emphasizes that the co-occurrence of aerobic and anaerobic methanotrophy at the redox transition zone is an important determinant of methane flux.
Collapse
Affiliation(s)
- Yusuke Miyajima
- Research
Institute for Geo-Resources and Environment, Geological Survey of
Japan, National Institute of Advanced Industrial
Science and Technology (AIST), Central 7, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8567, Japan
| | - Tomo Aoyagi
- Environmental
Management Research Institute, National
Institute of Advanced Industrial Science and Technology (AIST), 16-1 Onogawa, Tsukuba, Ibaraki 305-8569, Japan
| | - Hideyoshi Yoshioka
- Research
Institute for Geo-Resources and Environment, Geological Survey of
Japan, National Institute of Advanced Industrial
Science and Technology (AIST), Central 7, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8567, Japan
| | - Tomoyuki Hori
- Environmental
Management Research Institute, National
Institute of Advanced Industrial Science and Technology (AIST), 16-1 Onogawa, Tsukuba, Ibaraki 305-8569, Japan
| | - Hiroshi A. Takahashi
- Research
Institute of Earthquake and Volcano Geology, Geological Survey of
Japan, National Institute of Advanced Industrial
Science and Technology (AIST), Central 7, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8567, Japan
| | - Minako Tanaka
- KANSO
TECHNOS Co., Ltd., 14 Kanda Higashimatsushita-cho, Chiyoda-ku, Tokyo 101-0042, Japan
| | - Ayumi Tsukasaki
- Environmental
Management Research Institute, National
Institute of Advanced Industrial Science and Technology (AIST), 16-1 Onogawa, Tsukuba, Ibaraki 305-8569, Japan
| | - Shusaku Goto
- Research
Institute for Geo-Resources and Environment, Geological Survey of
Japan, National Institute of Advanced Industrial
Science and Technology (AIST), Central 7, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8567, Japan
| | - Masahiro Suzumura
- Environmental
Management Research Institute, National
Institute of Advanced Industrial Science and Technology (AIST), 16-1 Onogawa, Tsukuba, Ibaraki 305-8569, Japan
| |
Collapse
|
6
|
Zhu K, Liu J, Zhao M, Fu L, Du Z, Meng F, Gu L, Liu P, Liu Y, Zhang C, Zhang X, Li J. An intrusion and environmental effects of man-made silver nanoparticles in cold seeps. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168890. [PMID: 38016565 DOI: 10.1016/j.scitotenv.2023.168890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/14/2023] [Accepted: 11/23/2023] [Indexed: 11/30/2023]
Abstract
Silver nanoparticles (AgNPs) are among the most widely used metal-based engineered nanomaterials in biomedicine and nanotechnology, and account for >50 % of global nanomaterial consumer products. The increasing use of AgNPs potentially causes marine ecosystem changes; however, the environmental impacts of man-made AgNPs are still poorly studied. This study reports for the first time that man-made AgNPs intruded into cold seeps, which are important marine ecosystems where hydrogen sulfide, methane, and other hydrocarbon-rich fluid seepage occur. Using a combination of electron microscopy, geochemical and metagenomic analyses, we found that in the cold seeps with high AgNPs concentrations, the relative abundance of genes associated with anaerobic oxidation of methane (AOM) was lower, while those related to the sulfide oxidizing and sulfate reducing were higher. This suggests that AgNPs can stimulate the proliferation of sulfate-reducing and sulfide-oxidizing bacteria, likely due to the effects of activating repair mechanisms of the cells against the toxicant. A reaction of AgNPs with hydrogen sulfide to form silver sulfide could also effectively reduce the amount of available sulfate in local ecosystems, which is generally used as the AOM oxidant. These novel findings indicate that man-made AgNPs may be involved in the biogeochemical cycles of sulfur and carbon in nature, and their potential effects on the releasing of methane from the marine methane seeps should not be ignored in both scientific and environmental aspects.
Collapse
Affiliation(s)
- Kelei Zhu
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Innovation Academy for Earth Sciences, Chinese Academy of Sciences, Beijing 100029, China; Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266061, China; Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai 519082, China; College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiawei Liu
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Innovation Academy for Earth Sciences, Chinese Academy of Sciences, Beijing 100029, China; Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266061, China; College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mingyu Zhao
- Key Laboratory of Cenozoic Geology and Environment, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China
| | - Lulu Fu
- Key Laboratory of Marine Geology and Environment & Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Zengfeng Du
- Key Laboratory of Marine Geology and Environment & Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Fanqi Meng
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Lin Gu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Peiyu Liu
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Innovation Academy for Earth Sciences, Chinese Academy of Sciences, Beijing 100029, China; Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266061, China; Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai 519082, China; College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yan Liu
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Innovation Academy for Earth Sciences, Chinese Academy of Sciences, Beijing 100029, China; Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266061, China; Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai 519082, China; College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chaoqun Zhang
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Innovation Academy for Earth Sciences, Chinese Academy of Sciences, Beijing 100029, China; Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266061, China; Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai 519082, China; College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xin Zhang
- Key Laboratory of Marine Geology and Environment & Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Jinhua Li
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Innovation Academy for Earth Sciences, Chinese Academy of Sciences, Beijing 100029, China; Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266061, China; College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
7
|
Ferguson DK, Li C, Chakraborty A, Gittins DA, Fowler M, Webb J, Campbell C, Morrison N, MacDonald A, Hubert CRJ. Multi-year seabed environmental baseline in deep-sea offshore oil prospective areas established using microbial biodiversity. MARINE POLLUTION BULLETIN 2023; 194:115308. [PMID: 37517246 DOI: 10.1016/j.marpolbul.2023.115308] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 07/14/2023] [Accepted: 07/16/2023] [Indexed: 08/01/2023]
Abstract
Microorganisms are the ocean's first responders to marine pollution events, yet baseline studies rarely focus on microbial communities. Temporal and spatial microbial biodiversity baselines were established using bacterial 16S rRNA gene amplicon sequencing of seafloor sediments in a deep-water oil prospective area along the Scotian Slope off Canada's east coast sampled during 2015-2018. Bacterial diversity was generally similar in space and time, with members of the family Woeseiaceae detected consistently in >1 % relative abundance, similar to seabed sediments in other parts of the world. Anomalous biodiversity results at one site featured lower Woeseiaceae as well as higher levels of bacterial groups specifically associated with cold seeps such as Aminicenantes. This was unexpected given that site selection was based on sediment geochemistry not revealing any petroleum hydrocarbons in these locations. This finding highlights the sensitivity and specificity of microbial DNA sequencing in environmental monitoring. Microbiome assessments like this one represent an important strategy for incorporating microbial biodiversity as a new and useful metric for establishing robust environmental baselines that are necessary for understanding ecosystem responses to marine pollution.
Collapse
Affiliation(s)
- Deidra K Ferguson
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada.
| | - Carmen Li
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| | - Anirban Chakraborty
- Department of Biological Sciences, Idaho State University, Pocatello, ID, USA
| | - Daniel A Gittins
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| | - Martin Fowler
- Applied Petroleum Technology Canada, Calgary, Alberta, Canada
| | - Jamie Webb
- Applied Petroleum Technology Canada, Calgary, Alberta, Canada
| | - Calvin Campbell
- Natural Resources Canada, Geological Survey of Canada-Atlantic, Dartmouth, Nova Scotia, Canada
| | - Natasha Morrison
- Nova Scotia Department of Natural Resources and Renewables, Government of Nova Scotia, Halifax, Nova Scotia, Canada
| | - Adam MacDonald
- Nova Scotia Department of Natural Resources and Renewables, Government of Nova Scotia, Halifax, Nova Scotia, Canada
| | - Casey R J Hubert
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|
8
|
He P, Wang H, Shi J, Xin M, Wang W, Xie L, Wei Q, Huang M, Shi X, Fan Y, Chen H. Prokaryote Distribution Patterns along a Dissolved Oxygen Gradient Section in the Tropical Pacific Ocean. Microorganisms 2023; 11:2172. [PMID: 37764016 PMCID: PMC10534896 DOI: 10.3390/microorganisms11092172] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/09/2023] [Accepted: 08/13/2023] [Indexed: 09/29/2023] Open
Abstract
Oceanic oxygen levels are decreasing significantly in response to global climate change; however, the microbial diversity and ecological functional responses to dissolved oxygen (DO) in the open ocean are largely unknown. Here, we present prokaryotic distribution coupled with physical and biogeochemical variables and DO gradients from the surface to near the bottom of a water column along an approximately 12,000-km transect from 13° N to 18° S in the Tropical Pacific Ocean. Nitrate (11.42%), temperature (10.90%), pH (10.91%), silicate (9.34%), phosphate (4.25%), chlorophyll a (3.66%), DO (3.50%), and salinity (3.48%) significantly explained the microbial community variations in the studied area. A distinct microbial community composition broadly corresponding to the water masses formed vertically. Additionally, distinct ecotypes of Thaumarchaeota and Nitrospinae belonging to diverse phylogenetic clades that coincided with specific vertical niches were observed. Moreover, the correlation analysis revealed large-scale natural feedback in which chlorophyll a (organic matter) promoted Thaumarchaeotal biomass at depths that subsequently coupled with Nitrospina, produced and replenished nitrate for phytoplankton productivity at the surface. Low DO also favored Thaumarchaeota growth and fueled nitrate production.
Collapse
Affiliation(s)
- Peiqing He
- Key Laboratory of Science and Technology for Marine Ecology and Environment, First Institute of Oceanography, Ministry of Natural Resources, 6 Xianxialing Road, Qingdao 266061, China; (P.H.); (H.W.); (J.S.); (M.X.); (L.X.); (Q.W.); (Y.F.)
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, 168 Wenhai Middle Road, Aoshanwei, Jimo District, Qingdao 266071, China
| | - Huan Wang
- Key Laboratory of Science and Technology for Marine Ecology and Environment, First Institute of Oceanography, Ministry of Natural Resources, 6 Xianxialing Road, Qingdao 266061, China; (P.H.); (H.W.); (J.S.); (M.X.); (L.X.); (Q.W.); (Y.F.)
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, 168 Wenhai Middle Road, Aoshanwei, Jimo District, Qingdao 266071, China
| | - Jie Shi
- Key Laboratory of Science and Technology for Marine Ecology and Environment, First Institute of Oceanography, Ministry of Natural Resources, 6 Xianxialing Road, Qingdao 266061, China; (P.H.); (H.W.); (J.S.); (M.X.); (L.X.); (Q.W.); (Y.F.)
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, 168 Wenhai Middle Road, Aoshanwei, Jimo District, Qingdao 266071, China
| | - Ming Xin
- Key Laboratory of Science and Technology for Marine Ecology and Environment, First Institute of Oceanography, Ministry of Natural Resources, 6 Xianxialing Road, Qingdao 266061, China; (P.H.); (H.W.); (J.S.); (M.X.); (L.X.); (Q.W.); (Y.F.)
| | - Weimin Wang
- Center for Ocean and Climate Research, First Institute of Oceanography, Ministry of Natural Resources, 6 Xianxialing Road, Qingdao 266061, China;
| | - Linping Xie
- Key Laboratory of Science and Technology for Marine Ecology and Environment, First Institute of Oceanography, Ministry of Natural Resources, 6 Xianxialing Road, Qingdao 266061, China; (P.H.); (H.W.); (J.S.); (M.X.); (L.X.); (Q.W.); (Y.F.)
| | - Qinsheng Wei
- Key Laboratory of Science and Technology for Marine Ecology and Environment, First Institute of Oceanography, Ministry of Natural Resources, 6 Xianxialing Road, Qingdao 266061, China; (P.H.); (H.W.); (J.S.); (M.X.); (L.X.); (Q.W.); (Y.F.)
| | - Mu Huang
- Key Laboratory of State Oceanic Administration for Marine Sedimentology & Environmental Geology, Ministry of Natural Resources, 6 Xianxialing Road, Qingdao 266061, China; (M.H.); (X.S.)
| | - Xuefa Shi
- Key Laboratory of State Oceanic Administration for Marine Sedimentology & Environmental Geology, Ministry of Natural Resources, 6 Xianxialing Road, Qingdao 266061, China; (M.H.); (X.S.)
| | - Yaqin Fan
- Key Laboratory of Science and Technology for Marine Ecology and Environment, First Institute of Oceanography, Ministry of Natural Resources, 6 Xianxialing Road, Qingdao 266061, China; (P.H.); (H.W.); (J.S.); (M.X.); (L.X.); (Q.W.); (Y.F.)
| | - Hao Chen
- Key Laboratory of Science and Technology for Marine Ecology and Environment, First Institute of Oceanography, Ministry of Natural Resources, 6 Xianxialing Road, Qingdao 266061, China; (P.H.); (H.W.); (J.S.); (M.X.); (L.X.); (Q.W.); (Y.F.)
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, 168 Wenhai Middle Road, Aoshanwei, Jimo District, Qingdao 266071, China
| |
Collapse
|
9
|
Kumar M, Chaudhary DR, Jha B. Surface-associated bacterial assemblages on marine anthropogenic litter in the intertidal zone of the Arabian Sea, India. MARINE POLLUTION BULLETIN 2023; 193:115211. [PMID: 37392592 DOI: 10.1016/j.marpolbul.2023.115211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 06/01/2023] [Accepted: 06/20/2023] [Indexed: 07/03/2023]
Abstract
Anthropogenic marine litter (mainly plastic pollution) is a serious concern globally. The interactions between terrestrial and marine ecosystems lead to the accumulation of marine litter in the intertidal zone. The biofilm-forming bacteria tend to colonize on surfaces of marine litter which are composed of diverse bacteria and are less studied. The present study investigated the bacterial community composition using both culturable and non-culturable (Next-generation sequencing (NGS)) approaches associated with the marine litter (polyethylene (PE), styrofoam (SF) and fabric (FB)) at three distinct locations (Alang, Diu and Sikka) of the Arabian Sea, Gujarat, India. Predominant bacteria observed using culturable and NGS techniques belonged to Proteobacteria phyla. Alphaproteobacteria class dominated on polyethylene and styrofoam surfaces in the culturable fraction among the sites while the Bacillus dominated fabric surfaces. In the metagenomics fraction, Gammaproteobacteria dominated the surfaces except for PE and SF surfaces from Sikka and Diu, respectively. The PE surface at Sikka was dominated by Fusobacteriia while SF surface from Diu was dominated by Alphaproteobacteria. Both culture-dependent and NGS approaches identified hydrocarbon-degrading bacteria as well as pathogenic bacteria on the surfaces. The outcome of the present study illustrates diverse bacterial assemblages which occur on marine litter and increases our understanding of the plastisphere community.
Collapse
Affiliation(s)
- Madhav Kumar
- CSIR - Central Salt and Marine Chemicals Research Institute, G. B. Marg, Bhavnagar, Gujarat 364002, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Doongar R Chaudhary
- CSIR - Central Salt and Marine Chemicals Research Institute, G. B. Marg, Bhavnagar, Gujarat 364002, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| | - Bhavanath Jha
- CSIR - Central Salt and Marine Chemicals Research Institute, G. B. Marg, Bhavnagar, Gujarat 364002, India.
| |
Collapse
|
10
|
Baloza M, Henkel S, Kasten S, Holtappels M, Molari M. The Impact of Sea Ice Cover on Microbial Communities in Antarctic Shelf Sediments. Microorganisms 2023; 11:1572. [PMID: 37375074 DOI: 10.3390/microorganisms11061572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/30/2023] [Accepted: 06/03/2023] [Indexed: 06/29/2023] Open
Abstract
The area around the Antarctic Peninsula (AP) is facing rapid climatic and environmental changes, with so far unknown impacts on the benthic microbial communities of the continental shelves. In this study, we investigated the impact of contrasting sea ice cover on microbial community compositions in surface sediments from five stations along the eastern shelf of the AP using 16S ribosomal RNA (rRNA) gene sequencing. Redox conditions in sediments with long ice-free periods are characterized by a prevailing ferruginous zone, whereas a comparatively broad upper oxic zone is present at the heavily ice-covered station. Low ice cover stations were highly dominated by microbial communities of Desulfobacterota (mostly Sva1033, Desulfobacteria, and Desulfobulbia), Myxococcota, and Sva0485, whereas Gammaproteobacteria, Alphaproteobacteria, Bacteroidota, and NB1-j prevail at the heavy ice cover station. In the ferruginous zone, Sva1033 was the dominant member of Desulfuromonadales for all stations and, along with eleven other taxa, showed significant positive correlations with dissolved Fe concentrations, suggesting a significant role in iron reduction or an ecological relationship with iron reducers. Our results indicate that sea ice cover and its effect on organic carbon fluxes are the major drivers for changes in benthic microbial communities, favoring potential iron reducers at stations with increased organic matter fluxes.
Collapse
Affiliation(s)
- Marwa Baloza
- Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Am Handelshafen 12, 27570 Bremerhaven, Germany
- Faculty 2 Biology/Chemistry, University of Bremen, Leobener Str., 28359 Bremen, Germany
| | - Susann Henkel
- Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Am Handelshafen 12, 27570 Bremerhaven, Germany
| | - Sabine Kasten
- Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Am Handelshafen 12, 27570 Bremerhaven, Germany
- Faculty of Geosciences, University of Bremen, Klagenfurter Str., 28359 Bremen, Germany
- MARUM-Center for Marine Environmental Sciences, University of Bremen, 28359 Bremen, Germany
| | - Moritz Holtappels
- Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Am Handelshafen 12, 27570 Bremerhaven, Germany
- MARUM-Center for Marine Environmental Sciences, University of Bremen, 28359 Bremen, Germany
| | - Massimiliano Molari
- HGF-MPG Joint Research Group for Deep-Sea Ecology and Technology, Max Planck Institute for Marine Microbiology, 28359 Bremen, Germany
| |
Collapse
|
11
|
Sen A, Tanguy G, Galand PE, Andersen AC, Hourdez S. Bacterial symbiont diversity in Arctic seep Oligobrachia siboglinids. Anim Microbiome 2023; 5:30. [PMID: 37264469 DOI: 10.1186/s42523-023-00251-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 05/15/2023] [Indexed: 06/03/2023] Open
Abstract
BACKGROUND High latitude seeps are dominated by Oligobrachia siboglinid worms. Since these worms are often the sole chemosymbiotrophic taxon present (they host chemosynthetic bacteria within the trophosome organ in their trunk region), a key question in the study of high latitude seep ecology has been whether they harbor methanotrophic symbionts. This debate has manifested due to the mismatch between stable carbon isotope signatures of the worms (lower than -50‰ and usually indicative of methanotrophic symbioses) and the lack of molecular or microscopic evidence for methanotrophic symbionts. Two hypotheses have circulated to explain this paradox: (1) the uptake of sediment carbon compounds with depleted δC13 values from the seep environment, and (2) a small, but significant and difficult to detect population of methanotrophic symbionts. We conducted 16S rRNA amplicon sequencing of the V3-V4 regions on two species of northern seep Oligobrachia (Oligobrachia webbi and Oligobrachia sp. CPL-clade), from four different high latitude sites, to investigate the latter hypothesis. We also visually checked the worms' symbiotic bacteria within the symbiont-hosting organ, the trophosome, through transmission electron microscopy. RESULTS The vast majority of the obtained reads corresponded to sulfide-oxidizers and only a very small proportion of the reads pertained to methane-oxidizers, which suggests a lack of methanotrophic symbionts. A number of sulfur oxidizing bacterial strains were recovered from the different worms, however, host individuals tended to possess a single strain, or sometimes two closely-related strains. However, strains did not correspond specifically with either of the two Oligobrachia species we investigated. Water depth could play a role in determining local sediment bacterial communities that were opportunistically taken up by the worms. Bacteria were abundant in non-trophosome (and thereby symbiont-free) tissue and are likely epibiotic or tube bacterial communities. CONCLUSIONS The absence of methanotrophic bacterial sequences in the trophosome of Arctic and north Atlantic seep Oligobrachia likely indicates a lack of methanotrophic symbionts in these worms, which suggests that nutrition is sulfur-based. This is turn implies that sediment carbon uptake is responsible for the low δ13C values of these animals. Furthermore, endosymbiotic partners could be locally determined, and possibly only represent a fraction of all bacterial sequences obtained from tissues of these (and other) species of frenulates.
Collapse
Affiliation(s)
- Arunima Sen
- Department of Arctic Biology, The University Centre in Svalbard (UNIS), Longyearbyen, Norway.
- Faculty of Bioscience and Aquaculture, Nord University, Bodø, Norway.
| | - Gwenn Tanguy
- FR2424 Sorbonne Université-CNRS, Genomer, Station Biologique de Roscoff, Roscoff, France
| | - Pierre E Galand
- UMR8222 Laboratoire d'Ecogéochimie des Environnements Benthiques (LECOB), CNRS-Sorbonne Université, Observatoire Océanologique, Banyuls-Sur-Mer, France
| | - Ann C Andersen
- UMR7144 Laboratoire Adaptation et Diversité en Milieu Marin (AD2M), Sorbonne Université-CNRS, Station Biologique de Roscoff, Roscoff, France
| | - Stéphane Hourdez
- UMR8222 Laboratoire d'Ecogéochimie des Environnements Benthiques (LECOB), CNRS-Sorbonne Université, Observatoire Océanologique, Banyuls-Sur-Mer, France
| |
Collapse
|
12
|
Niu M, Deng L, Su L, Ruff SE, Yang N, Luo M, Qi Q, Li J, Wang F. Methane supply drives prokaryotic community assembly and networks at cold seeps of the South China Sea. Mol Ecol 2023; 32:660-679. [PMID: 36408814 DOI: 10.1111/mec.16786] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 10/10/2022] [Accepted: 11/01/2022] [Indexed: 11/22/2022]
Abstract
Marine cold seeps are unique chemosynthetic habitats fuelled by deeply sourced hydrocarbon-rich fluids discharged at the seafloor. Through oxidizing methane and other hydrocarbons, microorganisms inhabiting cold seeps supply subsurface-derived energy to higher trophic levels, sustaining highly productive oases of life in the deep sea. Despite the central role of microbiota in mediating biogeochemical cycles, the factors that govern the assembly and network of prokaryotic communities in cold seeps remain poorly understood. Here we analysed the geochemical and microbiological profiles of 11 different sediment cores from two spatially distant cold seeps of the South China Sea. We show that prokaryotic communities belonging to the same methane-supply regimes (high-methane-supply, low-methane-supply and non-seep control sediments) had a highly similar community structure, regardless of geographical location, seep-associated biota (mussel, clam, microbial mat) and sediment depth. Methane supply appeared to drive the niche partitioning of anaerobic methanotrophic archaea (ANME) at the regional scale, with ANME-1 accounting for >60% sequence abundance of ANME in the high-methane-supply sediments, while ANME-2 dominated (>90%) the low-methane-supply sediments. Increasing methane supply enhanced the contribution of environmental selection but lessened the contributions of dispersal limitation and drift to overall community assembly. High methane supply, moreover, promoted a more tightly connected, less stable prokaryotic network dominated by positive correlations. Together, these results provide a potentially new framework for understanding the niches and network interplay of prokaryotic communities across different methane seepage regimes in cold-seep sediments.
Collapse
Affiliation(s)
- Mingyang Niu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.,School of Oceanography, Shanghai Jiao Tong University, Shanghai, China.,Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
| | - Longhui Deng
- School of Oceanography, Shanghai Jiao Tong University, Shanghai, China
| | - Lei Su
- State Key Laboratory of Marine Geology, Tongji University, Shanghai, China
| | - S Emil Ruff
- Ecosystems Center and Josephine Bay Paul Center, Marine Biological Laboratory, Woods Hole, Massachusetts, USA
| | - Na Yang
- School of Oceanography, Shanghai Jiao Tong University, Shanghai, China
| | - Min Luo
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai, China
| | - Qi Qi
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Jiangtao Li
- State Key Laboratory of Marine Geology, Tongji University, Shanghai, China
| | - Fengping Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.,School of Oceanography, Shanghai Jiao Tong University, Shanghai, China.,Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
| |
Collapse
|
13
|
Biogeochemical Activity of Methane-Related Microbial Communities in Bottom Sediments of Cold Seeps of the Laptev Sea. Microorganisms 2023; 11:microorganisms11020250. [PMID: 36838215 PMCID: PMC9964916 DOI: 10.3390/microorganisms11020250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/12/2023] [Accepted: 01/16/2023] [Indexed: 01/21/2023] Open
Abstract
Bottom sediments at methane discharge sites of the Laptev Sea shelf were investigated. The rates of microbial methanogenesis and methane oxidation were measured, and the communities responsible for these processes were analyzed. Methane content in the sediments varied from 0.9 to 37 µmol CH4 dm-3. Methane carbon isotopic composition (δ13C-CH4) varied from -98.9 to -77.6‱, indicating its biogenic origin. The rates of hydrogenotrophic methanogenesis were low (0.4-5.0 nmol dm-3 day-1). Methane oxidation rates varied from 0.4 to 1.2 µmol dm-3 day-1 at the seep stations. Four lineages of anaerobic methanotrophic archaea (ANME) (1, 2a-2b, 2c, and 3) were found in the deeper sediments at the seep stations along with sulfate-reducing Desulfobacteriota. The ANME-2a-2b clade was predominant among ANME. Aerobic ammonium-oxidizing Crenarchaeota (family Nitrosopumilaceae) predominated in the upper sediments along with heterotrophic Actinobacteriota and Bacteroidota, and mehtanotrophs of the classes Alphaproteobacteria (Methyloceanibacter) and Gammaproteobacteria (families Methylophilaceae and Methylomonadaceae). Members of the genera Sulfurovum and Sulfurimonas occurred in the sediments of the seep stations. Mehtanotrophs of the classes Alphaproteobacteria (Methyloceanibacter) and Gammaproteobacteria (families Methylophilaceae and Methylomonadaceae) occurred in the sediments of all stations. The microbial community composition was similar to that of methane seep sediments from geographically remote areas of the global ocean.
Collapse
|
14
|
Vulcano F, Hahn CJ, Roerdink D, Dahle H, Reeves EP, Wegener G, Steen IH, Stokke R. Phylogenetic and functional diverse ANME-1 thrive in Arctic hydrothermal vents. FEMS Microbiol Ecol 2022; 98:fiac117. [PMID: 36190327 PMCID: PMC9576274 DOI: 10.1093/femsec/fiac117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 09/15/2022] [Accepted: 09/29/2022] [Indexed: 01/21/2023] Open
Abstract
The methane-rich areas, the Loki's Castle vent field and the Jan Mayen vent field at the Arctic Mid Ocean Ridge (AMOR), host abundant niches for anaerobic methane-oxidizers, which are predominantly filled by members of the ANME-1. In this study, we used a metagenomic-based approach that revealed the presence of phylogenetic and functional different ANME-1 subgroups at AMOR, with heterogeneous distribution. Based on a common analysis of ANME-1 genomes from AMOR and other geographic locations, we observed that AMOR subgroups clustered with a vent-specific ANME-1 group that occurs solely at vents, and with a generalist ANME-1 group, with a mixed environmental origin. Generalist ANME-1 are enriched in genes coding for stress response and defense strategies, suggesting functional diversity among AMOR subgroups. ANME-1 encode a conserved energy metabolism, indicating strong adaptation to sulfate-methane-rich sediments in marine systems, which does not however prevent global dispersion. A deep branching family named Ca. Veteromethanophagaceae was identified. The basal position of vent-related ANME-1 in phylogenomic trees suggests that ANME-1 originated at hydrothermal vents. The heterogeneous and variable physicochemical conditions present in diffuse venting areas of hydrothermal fields could have favored the diversification of ANME-1 into lineages that can tolerate geochemical and environmental variations.
Collapse
Affiliation(s)
- F Vulcano
- Department of Biological Sciences, Center for Deep Sea Research, University of Bergen, Bergen, Norway
| | - C J Hahn
- Max-Plank Institute for Marine Microbiology, HGF MPG Joint Research Group for Deep-Sea Ecology and Technology, Bremen, 28359, Germany
| | - D Roerdink
- Department of Earth Science, Center for Deep Sea Research, University of Bergen, Bergen, Norway
| | - H Dahle
- Computational Biological Unit, Department of Informatics, Department of Biological Sciences, Center for Deep Sea Research, University of Bergen, Bergen, Norway
| | - E P Reeves
- Department of Earth Science, Center for Deep Sea Research, University of Bergen, Bergen, Norway
| | - G Wegener
- Max-Plank Institute for Marine Microbiology, HGF MPG Joint Research Group for Deep-Sea Ecology and Technology, Bremen, 28359, Germany
- MARUM, Center for Marine Environmental Sciences, University Bremen, Bremen, 28359, Germany
- Alfred Wegener Institute Helmholtz Center for Polar and Marine Research, Bremerhaven, 27570, Germany
| | - I H Steen
- Department of Biological Sciences, Center for Deep Sea Research, University of Bergen, Bergen, Norway
| | - R Stokke
- Department of Biological Sciences, Center for Deep Sea Research, University of Bergen, Bergen, Norway
| |
Collapse
|
15
|
Lim SJ, Thompson LR, Young CM, Gaasterland T, Goodwin KD. Dominance of Sulfurospirillum in Metagenomes Associated with the Methane Ice Worm (Sirsoe methanicola). Appl Environ Microbiol 2022; 88:e0029022. [PMID: 35867581 PMCID: PMC9365241 DOI: 10.1128/aem.00290-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 05/16/2022] [Indexed: 01/14/2023] Open
Abstract
Sirsoe methanicola, commonly known as the methane ice worm, is the only macrofaunal species known to inhabit the Gulf of Mexico methane hydrates. Little is known about this elusive marine polychaete that can colonize rich carbon and energy reserves. Metagenomic analysis of gut contents and worm fragments predicted diverse metabolic capabilities with the ability to utilize a range of nitrogen, sulfur, and organic carbon compounds through microbial taxa affiliated with Campylobacterales, Desulfobacterales, Enterobacterales, SAR324, Alphaproteobacteria, and Mycoplasmatales. Entomoplasmatales and Chitinivibrionales were additionally identified from extracted full-length 16S rRNA sequences, and read analysis identified 196 bacterial families. Overall, the microbial community appeared dominated by uncultured Sulfurospirillum, a taxon previously considered free-living rather than host-associated. Metagenome-assembled genomes (MAGs) classified as uncultured Sulfurospirillum predicted thiosulfate disproportionation and the reduction of tetrathionate, sulfate, sulfide/polysulfide, and nitrate. Microbial amino acid and vitamin B12 biosynthesis genes were identified in multiple MAGs, suggesting nutritional value to the host. Reads assigned to aerobic or anaerobic methanotrophic taxa were rare. IMPORTANCE Methane hydrates represent vast reserves of natural gas with roles in global carbon cycling and climate change. This study provided the first analysis of metagenomes associated with Sirsoe methanicola, the only polychaete species known to colonize methane hydrates. Previously unrecognized participation of Sulfurospirillum in a gut microbiome is provided, and the role of sulfur compound redox reactions within this community is highlighted. The comparative biology of S. methanicola is of general interest given research into the adverse effects of sulfide production in human gut microbiomes. In addition, taxonomic assignments are provided for nearly 200 bacterial families, expanding our knowledge of microbiomes in the deep sea.
Collapse
Affiliation(s)
- Shen Jean Lim
- Cooperative Institute for Marine and Atmospheric Studies, Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, Florida, USA
- Ocean Chemistry and Ecosystems Division, Atlantic Oceanographic and Meteorological Laboratory, National Oceanic and Atmospheric Administration, Miami, Florida, USA
| | - Luke R. Thompson
- Ocean Chemistry and Ecosystems Division, Atlantic Oceanographic and Meteorological Laboratory, National Oceanic and Atmospheric Administration, Miami, Florida, USA
- Northern Gulf Institute, Mississippi State University, Starkville, Mississippi, USA
| | - Craig M. Young
- Oregon Institute of Marine Biology, University of Oregon, Eugene, Oregon, USA
| | - Terry Gaasterland
- Bioinformatics and Systems Biology, University of California, La Jolla, California, USA
| | - Kelly D. Goodwin
- Ocean Chemistry and Ecosystems Division, Atlantic Oceanographic and Meteorological Laboratory, National Oceanic and Atmospheric Administration, Miami, Florida, USA
| |
Collapse
|
16
|
Kelly MR, Whitworth P, Jamieson A, Burgess JG. Bacterial colonisation of plastic in the Rockall Trough, North-East Atlantic: An improved understanding of the deep-sea plastisphere. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 305:119314. [PMID: 35447252 DOI: 10.1016/j.envpol.2022.119314] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 04/12/2022] [Accepted: 04/13/2022] [Indexed: 05/12/2023]
Abstract
Plastic pollution has now been found within multiple ecosystems across the globe. Characterisation of microbial assemblages associated with marine plastic, or the so-called 'plastisphere', has focused predominantly on plastic in the epipelagic zone. Whether this community includes taxa that are consistently enriched on plastic compared to surrounding non plastic surfaces is unresolved, as are the ecological implications. The deep sea is likely a final sink for most of the plastic entering the ocean, yet there is limited information on microbial colonisation of plastic at depth. The aim of this study was to investigate deep-sea microbial communities associated with polystyrene (PS) and polyurethane (PU) with Bath stone used as a control. The substrates (n = 15) were deployed in the Rockall Trough (Atlantic), and recovered 420 days later from a depth of 1796 m. To characterise the bacterial communities, 16S rRNA genes were sequenced using the Illumina MiSeq platform. A dominant core microbiome (taxa shared across all substrates) comprised 8% of total ASVs (amplicon sequence variant) and accounted for 92% of the total community reads. This suggests that many commonly reported members of the plastisphere are simply opportunistic which freely colonise any hard surface. Transiently associated species consisted of approximately 7% of the total community. Thirty genera were enriched on plastic (P < 0.05), representing 1% of the total community. The discovery of novel deep-sea enriched taxa included Aurantivirga, Algivirga, IheB3-7, Spirosoma, HTCC5015, Ekhidna and Calorithrix on PS and Candidatus Obscuribacter, Haloferula, Marine Methylotrophic Group 3, Aliivibrio, Tibeticola and Dethiosulfatarculus on PU. This small fraction of the microbiome include taxa with unique metabolic abilities and show how bacterial communities can be shaped by plastic pollution at depth. This study outlines a novel approach in categorising the plastisphere to elucidate the ecological implications of enriched taxa that show an affinity for colonising plastic.
Collapse
Affiliation(s)
- Max R Kelly
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, NE1 7RU, United Kingdom.
| | - Paul Whitworth
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, NE1 7RU, United Kingdom.
| | - Alan Jamieson
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, NE1 7RU, United Kingdom; Minderoo-UWA Deep Sea Research Centre, University of Western Australia, Oceans Institute, IOMRC Building, 35 Stirling Highway, Perth, WA, 6009, Australia.
| | - J Grant Burgess
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, NE1 7RU, United Kingdom.
| |
Collapse
|
17
|
Multispecies populations of methanotrophic Methyloprofundus and cultivation of a likely dominant species from the Iheya North deep-sea hydrothermal field. Appl Environ Microbiol 2021; 88:e0075821. [PMID: 34788070 PMCID: PMC8788690 DOI: 10.1128/aem.00758-21] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Methyloprofundus clade is represented by uncultivated methanotrophic bacterial endosymbionts of deep-sea bathymodiolin mussels, but only a single free-living species has been cultivated to date. This study reveals the existence of free-living Methyloprofundus variants in the Iheya North deep-sea hydrothermal field in the mid-Okinawa Trough. A clade-targeted amplicon analysis of the particulate methane monooxygenase gene (pmoA) detected 647 amplicon sequence variants (ASVs) of the Methyloprofundus clade in microbial communities newly formed in in situ colonization systems. Such systems were deployed at colonies of bathymodiolin mussels and a galatheoid crab in diffuse-flow areas. These ASVs were classified into 161 species-like groups. The proportion of the species-like groups representing endosymbionts of mussels was unexpectedly low. A methanotrophic bacterium designated INp10, a likely dominant species in the Methyloprofundus population in this field, was enriched in a biofilm formed in a methane-fed cultivation system operated at 10°C. Genomic characterization with the gene transcription data set of INp10 from the biofilm suggested traits advantageous to niche competition in environments, such as mobility, chemotaxis, biofilm formation, offensive and defensive systems, and hypoxia tolerance. The notable metabolic traits that INp10 shares with some Methyloprofundus members are the use of lanthanide-dependent XoxF as the sole methanol dehydrogenase due to the absence of the canonical MxaFI, the glycolytic pathway using fructose-6-phosphate aldolase instead of fructose-1,6-bisphosphate aldolase, and the potential to perform partial denitrification from nitrate under oxygen-limited conditions. These findings help us better understand the ecological strategies of this possibly widespread marine-specific methanotrophic clade. IMPORTANCE The Iheya North deep-sea hydrothermal field in the mid-Okinawa Trough is characterized by abundant methane derived from organic-rich sediments and diverse chemosynthetic animal species, including those harboring methanotrophic bacterial symbionts, such as bathymodiolin mussels Bathymodiolus japonicus and “Bathymodiolus” platifrons and a galatheoid crab, Shinkaia crosnieri. Symbiotic methanotrophs have attracted significant attention, and yet free-living methanotrophs in this environment have not been studied in detail. We focused on the free-living Methyloprofundus spp. that thrive in this hydrothermal field and identified an unexpectedly large number of species-like groups in this clade. Moreover, we enriched and characterized a methanotroph whose genome sequence indicated that it corresponds to a new species in the genus Methyloprofundus. This species might be a dominant member of the indigenous Methyloprofundus population. New information on free-living Methyloprofundus populations suggests that the hydrothermal field is a promising locale at which to investigate the adaptive capacity and associated genetic diversity of Methyloprofundus spp.
Collapse
|
18
|
Teske A, Wegener G, Chanton JP, White D, MacGregor B, Hoer D, de Beer D, Zhuang G, Saxton MA, Joye SB, Lizarralde D, Soule SA, Ruff SE. Microbial Communities Under Distinct Thermal and Geochemical Regimes in Axial and Off-Axis Sediments of Guaymas Basin. Front Microbiol 2021; 12:633649. [PMID: 33643265 PMCID: PMC7906980 DOI: 10.3389/fmicb.2021.633649] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 01/12/2021] [Indexed: 01/04/2023] Open
Abstract
Cold seeps and hydrothermal vents are seafloor habitats fueled by subsurface energy sources. Both habitat types coexist in Guaymas Basin in the Gulf of California, providing an opportunity to compare microbial communities with distinct physiologies adapted to different thermal regimes. Hydrothermally active sites in the southern Guaymas Basin axial valley, and cold seep sites at Octopus Mound, a carbonate mound with abundant methanotrophic cold seep fauna at the Central Seep location on the northern off-axis flanking regions, show consistent geochemical and microbial differences between hot, temperate, cold seep, and background sites. The changing microbial actors include autotrophic and heterotrophic bacterial and archaeal lineages that catalyze sulfur, nitrogen, and methane cycling, organic matter degradation, and hydrocarbon oxidation. Thermal, biogeochemical, and microbiological characteristics of the sampling locations indicate that sediment thermal regime and seep-derived or hydrothermal energy sources structure the microbial communities at the sediment surface.
Collapse
Affiliation(s)
- Andreas Teske
- Department of Marine Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Gunter Wegener
- Max-Planck-Institute for Marine Microbiology, Bremen, Germany.,MARUM, Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany
| | - Jeffrey P Chanton
- Department of Earth, Ocean and Atmospheric Sciences, Florida State University, Tallahassee, FL, United States
| | - Dylan White
- Department of Marine Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Barbara MacGregor
- Department of Marine Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.,Department of Earth and Environmental Sciences, University of Minnesota, St. Paul, MI, United States
| | - Daniel Hoer
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, United States.,United States Environmental Protection Agency, Research Triangle Park, NC, United States
| | - Dirk de Beer
- Max-Planck-Institute for Marine Microbiology, Bremen, Germany
| | - Guangchao Zhuang
- Frontiers Science Centre for Deep Ocean Multispheres and Earth System (FDOMES)/Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, China.,Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Ocean University of China, Qingdao, China.,Department of Marine Sciences, University of Georgia, Athens, GA, United States
| | - Matthew A Saxton
- Department of Marine Sciences, University of Georgia, Athens, GA, United States.,Department of Biological Sciences, Miami University, Oxford, OH, United States
| | - Samantha B Joye
- Department of Marine Sciences, University of Georgia, Athens, GA, United States
| | - Daniel Lizarralde
- Geology & Geophysics Department, Woods Hole Oceanographic Institution, Woods Hole, MA, United States
| | - S Adam Soule
- Geology & Geophysics Department, Woods Hole Oceanographic Institution, Woods Hole, MA, United States
| | - S Emil Ruff
- Marine Biological Laboratory, The Ecosystems Center, Woods Hole, MA, United States.,Marine Biological Laboratory, The Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Woods Hole, MA, United States
| |
Collapse
|
19
|
Genomic and enzymatic evidence of acetogenesis by anaerobic methanotrophic archaea. Nat Commun 2020; 11:3941. [PMID: 32770005 PMCID: PMC7414198 DOI: 10.1038/s41467-020-17860-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 07/21/2020] [Indexed: 01/26/2023] Open
Abstract
Anaerobic oxidation of methane (AOM) mediated by anaerobic methanotrophic archaea (ANME) is the primary process that provides energy to cold seep ecosystems by converting methane into inorganic carbon. Notably, cold seep ecosystems are dominated by highly divergent heterotrophic microorganisms. The role of the AOM process in supporting heterotrophic population remains unknown. We investigate the acetogenic capacity of ANME-2a in a simulated cold seep ecosystem using high-pressure biotechnology, where both AOM activity and acetate production are detected. The production of acetate from methane is confirmed by isotope-labeling experiments. A complete archaeal acetogenesis pathway is identified in the ANME-2a genome, and apparent acetogenic activity of the key enzymes ADP-forming acetate-CoA ligase and acetyl-CoA synthetase is demonstrated. Here, we propose a modified model of carbon cycling in cold seeps: during AOM process, methane can be converted into organic carbon, such as acetate, which further fuels the heterotrophic community in the ecosystem. Ocean cold seeps are poorly understood relative to related systems like hydrothermal vents. Here the authors use high pressure bioreactors and microbial communities from a cold seep mud volcano and find a previously missing step of methane conversion to acetate that likely fuels heterotrophic communities.
Collapse
|
20
|
Goffredi SK, Tilic E, Mullin SW, Dawson KS, Keller A, Lee RW, Wu F, Levin LA, Rouse GW, Cordes EE, Orphan VJ. Methanotrophic bacterial symbionts fuel dense populations of deep-sea feather duster worms (Sabellida, Annelida) and extend the spatial influence of methane seepage. SCIENCE ADVANCES 2020; 6:eaay8562. [PMID: 32284974 PMCID: PMC7124940 DOI: 10.1126/sciadv.aay8562] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 01/09/2020] [Indexed: 06/11/2023]
Abstract
Deep-sea cold seeps are dynamic sources of methane release and unique habitats supporting ocean biodiversity and productivity. Here, we describe newly discovered animal-bacterial symbioses fueled by methane, between two species of annelid (a serpulid Laminatubus and sabellid Bispira) and distinct aerobic methane-oxidizing bacteria belonging to the Methylococcales, localized to the host respiratory crown. Worm tissue δ13C of -44 to -58‰ are consistent with methane-fueled nutrition for both species, and shipboard stable isotope labeling experiments revealed active assimilation of 13C-labeled methane into animal biomass, which occurs via the engulfment of methanotrophic bacteria across the crown epidermal surface. These worms represent a new addition to the few animals known to intimately associate with methane-oxidizing bacteria and may further explain their enigmatic mass occurrence at 150-million year-old fossil seeps. High-resolution seafloor surveys document significant coverage by these symbioses, beyond typical obligate seep fauna. These findings uncover novel consumers of methane in the deep sea and, by expanding the known spatial extent of methane seeps, may have important implications for deep-sea conservation.
Collapse
Affiliation(s)
| | - Ekin Tilic
- Scripps Institution of Oceanography, La Jolla, CA, USA
- University of Bonn, Bonn, Germany
| | | | | | | | | | - Fabai Wu
- California Institute of Technology, Pasadena, CA, USA
| | - Lisa A. Levin
- Scripps Institution of Oceanography, La Jolla, CA, USA
| | - Greg W. Rouse
- Scripps Institution of Oceanography, La Jolla, CA, USA
| | | | | |
Collapse
|
21
|
Rincón-Tomás B, González FJ, Somoza L, Sauter K, Madureira P, Medialdea T, Carlsson J, Reitner J, Hoppert M. Siboglinidae Tubes as an Additional Niche for Microbial Communities in the Gulf of Cádiz-A Microscopical Appraisal. Microorganisms 2020; 8:E367. [PMID: 32150959 PMCID: PMC7143560 DOI: 10.3390/microorganisms8030367] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 02/24/2020] [Accepted: 02/29/2020] [Indexed: 11/30/2022] Open
Abstract
Siboglinids were sampled from four mud volcanoes in the Gulf of Cádiz (El Cid MV, Bonjardim MV, Al Gacel MV, and Anastasya MV). These invertebrates are characteristic to cold seeps and are known to host chemosynthetic endosymbionts in a dedicated trophosome organ. However, little is known about their tube as a potential niche for other microorganisms. Analyses by scanning and transmission electron microscopy showed dense biofilms on the tube in Al Gacel MV and Anastasya MV specimens by prokaryotic cells. Methanotrophic bacteria were the most abundant forming these biofilms as further supported by 16S rRNA sequence analysis. Furthermore, elemental analyses with electron microscopy and energy-dispersive X-ray spectroscopy point to the mineralization and silicification of the tube, most likely induced by the microbial metabolisms. Bacterial and archaeal 16S rRNA sequence libraries revealed abundant microorganisms related to these siboglinid specimens and certain variations in microbial communities among samples. Thus, the tube remarkably increases the microbial biomass related to the worms and provides an additional microbial niche in deep-sea ecosystems.
Collapse
Affiliation(s)
- Blanca Rincón-Tomás
- Institute of Microbiology and Genetics, Georg-August-University Göttingen, 37077 Göttingen, Germany; (K.S.); (M.H.)
- Göttingen Centre of Geosciences, Georg-August-University Göttingen, 37077 Göttingen, Germany;
| | | | - Luis Somoza
- Marine Geology Dv., Geological Survey of Spain, IGME, 28003 Madrid, Spain; (F.J.G.); (L.S.); (T.M.)
| | - Kathrin Sauter
- Institute of Microbiology and Genetics, Georg-August-University Göttingen, 37077 Göttingen, Germany; (K.S.); (M.H.)
| | - Pedro Madureira
- Estrutura de Missão para a Extensão da Plataforma Continental (EMEPC), 2770-047 Paço de Arcos, Portugal;
| | - Teresa Medialdea
- Marine Geology Dv., Geological Survey of Spain, IGME, 28003 Madrid, Spain; (F.J.G.); (L.S.); (T.M.)
| | - Jens Carlsson
- Area 52 Research Group, School of Biology and Environmental Science/Earth Institute, University College Dublin, Dublin 4, Ireland;
| | - Joachim Reitner
- Göttingen Centre of Geosciences, Georg-August-University Göttingen, 37077 Göttingen, Germany;
- Göttingen Academy of Sciences and Humanities, 37073 Göttingen, Germany
| | - Michael Hoppert
- Institute of Microbiology and Genetics, Georg-August-University Göttingen, 37077 Göttingen, Germany; (K.S.); (M.H.)
| |
Collapse
|
22
|
Lee DH, Lee YM, Kim JH, Jin YK, Paull C, Niemann H, Kim JH, Shin KH. Discriminative biogeochemical signatures of methanotrophs in different chemosynthetic habitats at an active mud volcano in the Canadian Beaufort Sea. Sci Rep 2019; 9:17592. [PMID: 31772218 PMCID: PMC6879587 DOI: 10.1038/s41598-019-53950-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 11/08/2019] [Indexed: 11/13/2022] Open
Abstract
Several mud volcanoes are active in the Canadian Beaufort Sea. In this study, we investigated vertical variations in methanotrophic communities in sediments of the mud volcano MV420 (420 m water depth) by analyzing geochemical properties, microbial lipids, and nucleic acid signatures. Three push cores were collected with a remotely operated vehicle from visually discriminative habitats that were devoid of megafauna and/microbial mats (DM) to the naked eye, covered with bacterial mats (BM), or colonized by siboglinid tubeworms (ST). All MV420 sites showed the presence of aerobic methane oxidation (MOx)- and anaerobic methane oxidation (AOM)-related lipid biomarkers (4α-methyl sterols and sn-2-hydroxyarchaeol, respectively), which were distinctly different in comparison with a reference site at which these compounds were not detected. Lipid biomarker results were in close agreement with 16S rRNA analyses, which revealed the presence of MOx-related bacteria (Methylococcales) and AOM-related archaea (ANME-2 and ANME-3) at the MV420 sites. 4α-methyl sterols derived from Methylococcales predominated in the surface layer at the BM site, which showed a moderate methane flux (0.04 mmol cm−2 y−1), while their occurrence was limited at the DM (0.06 mmol cm−2 y−1) and ST (0.01 mmol cm−2 y−1) sites. On the other hand, 13C-depleted sn-2-hydroxyarchaeol potentially derived from ANME-2 and/or ANME-3 was abundant in down-core sediments at the ST site. Our study indicates that a niche diversification within this mud volcano system has shaped distinct methanotrophic communities due to availability of electron acceptors in association with varying degrees of methane flux and bioirrigation activity.
Collapse
Affiliation(s)
- Dong-Hun Lee
- Hanyang University ERICA Campus, 15588, Ansan, South Korea
| | - Yung Mi Lee
- KOPRI Korea Polar Research Institute, 21990, Incheon, South Korea
| | - Jung-Hyun Kim
- KOPRI Korea Polar Research Institute, 21990, Incheon, South Korea.
| | - Young Keun Jin
- KOPRI Korea Polar Research Institute, 21990, Incheon, South Korea
| | - Charles Paull
- Monterey Bay Aquarium Research Institute, Moss Landing, California, USA
| | - Helge Niemann
- NIOZ Royal Netherlands Institute for Sea Research, Department of Marine Microbiology and Biogeochemistry, and Utrecht University, Den Burg, The Netherlands.,Department of Earth Sciences, Faculty of Geosciences, Utrecht University, Utrecht, The Netherlands
| | - Ji-Hoon Kim
- Korea Institute of Geoscience and Mineral Resources, Daejeon, 34132, South Korea
| | | |
Collapse
|
23
|
Taubert M, Grob C, Crombie A, Howat AM, Burns OJ, Weber M, Lott C, Kaster AK, Vollmers J, Jehmlich N, von Bergen M, Chen Y, Murrell JC. Communal metabolism by Methylococcaceae and Methylophilaceae is driving rapid aerobic methane oxidation in sediments of a shallow seep near Elba, Italy. Environ Microbiol 2019; 21:3780-3795. [PMID: 31267680 DOI: 10.1111/1462-2920.14728] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 06/14/2019] [Accepted: 06/29/2019] [Indexed: 11/29/2022]
Abstract
The release of abiotic methane from marine seeps into the atmosphere is a major source of this potent greenhouse gas. Methanotrophic microorganisms in methane seeps use methane as carbon and energy source, thus significantly mitigating global methane emissions. Here, we investigated microbial methane oxidation at the sediment-water interface of a shallow marine methane seep. Metagenomics and metaproteomics, combined with 13 C-methane stable isotope probing, demonstrated that various members of the gammaproteobacterial family Methylococcaceae were the key players for methane oxidation, catalysing the first reaction step to methanol. We observed a transfer of carbon to methanol-oxidizing methylotrophs of the betaproteobacterial family Methylophilaceae, suggesting an interaction between methanotrophic and methylotrophic microorganisms that allowed for rapid methane oxidation. From our microcosms, we estimated methane oxidation rates of up to 871 nmol of methane per gram sediment per day. This implies that more than 50% of methane at the seep is removed by microbial oxidation at the sediment-water interface, based on previously reported in situ methane fluxes. The organic carbon produced was further assimilated by different heterotrophic microbes, demonstrating that the methane-oxidizing community supported a complex trophic network. Our results provide valuable eco-physiological insights into this specialized microbial community performing an ecosystem function of global relevance.
Collapse
Affiliation(s)
- Martin Taubert
- Aquatic Geomicrobiology, Institute of Biodiversity, Friedrich Schiller University Jena, Dornburger Str. 159 07743, Jena, Germany.,School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Carolina Grob
- School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Andrew Crombie
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Alexandra M Howat
- School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Oliver J Burns
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Miriam Weber
- HYDRA Marine Sciences GmbH, Sinzheim, Germany.,HYDRA Field Station Elba, Italy.,Microsensor Group, Max Plank Institute for Marine Microbiology, 28359, Celsiusstr. 1, Bremen, Germany
| | - Christian Lott
- HYDRA Marine Sciences GmbH, Sinzheim, Germany.,HYDRA Field Station Elba, Italy.,Department of Symbiosis, Max Plank Institute for Marine Microbiology, 28359, Celsiusstr. 1, Bremen, Germany
| | - Anne-Kristin Kaster
- Institute for Biological Interfaces (IBG5), Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Karlsruhe, Germany.,Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, 38124, Inhoffenstrasse 7B, Braunschweig, Germany
| | - John Vollmers
- Institute for Biological Interfaces (IBG5), Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Karlsruhe, Germany.,Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, 38124, Inhoffenstrasse 7B, Braunschweig, Germany
| | - Nico Jehmlich
- Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Martin von Bergen
- Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany.,Institute of Biochemistry, Faculty of Biosciences, Pharmacy and Psychology, University of Leipzig, 04103, Brüderstraße 32, Leipzig, Germany.,Department of Chemistry and Bioscience, University of Aalborg, 9220, Fredrik Bajers Vej 7H, Aalborg East, Denmark
| | - Yin Chen
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - John Colin Murrell
- School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| |
Collapse
|
24
|
Jones EBG, Pang KL, Abdel-Wahab MA, Scholz B, Hyde KD, Boekhout T, Ebel R, Rateb ME, Henderson L, Sakayaroj J, Suetrong S, Dayarathne MC, Kumar V, Raghukumar S, Sridhar KR, Bahkali AHA, Gleason FH, Norphanphoun C. An online resource for marine fungi. FUNGAL DIVERS 2019. [DOI: 10.1007/s13225-019-00426-5] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
25
|
Rubin-Blum M, Antony CP, Sayavedra L, Martínez-Pérez C, Birgel D, Peckmann J, Wu YC, Cardenas P, MacDonald I, Marcon Y, Sahling H, Hentschel U, Dubilier N. Fueled by methane: deep-sea sponges from asphalt seeps gain their nutrition from methane-oxidizing symbionts. THE ISME JOURNAL 2019; 13:1209-1225. [PMID: 30647460 PMCID: PMC6474228 DOI: 10.1038/s41396-019-0346-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 12/16/2018] [Accepted: 12/20/2018] [Indexed: 01/26/2023]
Abstract
Sponges host a remarkable diversity of microbial symbionts, however, the benefit their microbes provide is rarely understood. Here, we describe two new sponge species from deep-sea asphalt seeps and show that they live in a nutritional symbiosis with methane-oxidizing (MOX) bacteria. Metagenomics and imaging analyses revealed unusually high amounts of MOX symbionts in hosts from a group previously assumed to have low microbial abundances. These symbionts belonged to the Marine Methylotrophic Group 2 clade. They are host-specific and likely vertically transmitted, based on their presence in sponge embryos and streamlined genomes, which lacked genes typical of related free-living MOX. Moreover, genes known to play a role in host-symbiont interactions, such as those that encode eukaryote-like proteins, were abundant and expressed. Methane assimilation by the symbionts was one of the most highly expressed metabolic pathways in the sponges. Molecular and stable carbon isotope patterns of lipids confirmed that methane-derived carbon was incorporated into the hosts. Our results revealed that two species of sponges, although distantly related, independently established highly specific, nutritional symbioses with two closely related methanotrophs. This convergence in symbiont acquisition underscores the strong selective advantage for these sponges in harboring MOX bacteria in the food-limited deep sea.
Collapse
Affiliation(s)
- Maxim Rubin-Blum
- Max Planck Institute for Marine Microbiology, Celsiusstrasse 1, 28359, Bremen, Germany.
- Israel Limnology and Oceanography Research, Tel Shikmona, 3108000, Haifa, Israel.
| | - Chakkiath Paul Antony
- Max Planck Institute for Marine Microbiology, Celsiusstrasse 1, 28359, Bremen, Germany
| | - Lizbeth Sayavedra
- Max Planck Institute for Marine Microbiology, Celsiusstrasse 1, 28359, Bremen, Germany
- Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | - Clara Martínez-Pérez
- Max Planck Institute for Marine Microbiology, Celsiusstrasse 1, 28359, Bremen, Germany
| | - Daniel Birgel
- Institute for Geology, Center for Earth System Research and Sustainability, University of Hamburg, 20146, Hamburg, Germany
| | - Jörn Peckmann
- Institute for Geology, Center for Earth System Research and Sustainability, University of Hamburg, 20146, Hamburg, Germany
| | - Yu-Chen Wu
- GEOMAR Helmholtz Centre for Ocean Research, RD3 Marine Microbiology and Christian-Albrechts University of Kiel, Düsternbrooker Weg 20, D-24105, Kiel, Germany
| | - Paco Cardenas
- Department of Medicinal Chemistry, Pharmacognosy, BioMedical Centre, Uppsala University, Husargatan 3, 751 23, Uppsala, Sweden
| | - Ian MacDonald
- Florida State University, POB 3064326, Tallahassee, FL, 32306, USA
| | - Yann Marcon
- Wegener Institute Helmholtz Centre for Polar and Marine Research, HGF-MPG Group for Deep Sea Ecology and Technology, Am Handelshafen 12, 27570, Bremerhaven, Germany
| | - Heiko Sahling
- MARUM, Center for Marine Environmental Sciences, University of Bremen, 28359, Bremen, Germany
| | - Ute Hentschel
- GEOMAR Helmholtz Centre for Ocean Research, RD3 Marine Microbiology and Christian-Albrechts University of Kiel, Düsternbrooker Weg 20, D-24105, Kiel, Germany
| | - Nicole Dubilier
- Max Planck Institute for Marine Microbiology, Celsiusstrasse 1, 28359, Bremen, Germany.
- MARUM, Center for Marine Environmental Sciences, University of Bremen, 28359, Bremen, Germany.
| |
Collapse
|
26
|
Bodelier PLE, Pérez G, Veraart AJ, Krause SMB. Methanotroph Ecology, Environmental Distribution and Functioning. METHANOTROPHS 2019. [DOI: 10.1007/978-3-030-23261-0_1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
27
|
Wang S, Yu M, Wei J, Huang M, Shi X, Chen H. Microbial community composition and diversity in the Indian Ocean deep sea REY-rich muds. PLoS One 2018; 13:e0208230. [PMID: 30557300 PMCID: PMC6296507 DOI: 10.1371/journal.pone.0208230] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 11/14/2018] [Indexed: 01/22/2023] Open
Abstract
Studies about the composition and diversity of microbial community in the Rare Earth Elements-rich muds are limited. In this research, we conducted a characterization for the composition and diversity of bacterial and archaeal communities from rare earth elements-rich gravity core sediment at approximately 4800 meters deep in the Indian Ocean by Illumina high-throughput sequencing targeting 16S rRNA genes. The results showed that the most abundant bacteria were Proteobacteria, followed by Firmicutes and Actinobacteria. Amongst Proteobacteria, Gammaproteobacteria are present in all sections of this sediment core accounted for a particularly large proportion of bacterial sequences. Candidatus Nitrosopumilus, with a higher relative abundance in our samples, belongs to Thaumarchaeota. This is the first report on the composition and diversity of rare earth elements-rich muds microbial communities in the Indian Ocean deep sea.
Collapse
Affiliation(s)
- Shuyan Wang
- Key Lab of Marine Bioactive Substances of SOA, The First Institute of Oceanography, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Qingdao Key Lab of Marine Natural Products R&D, Qingdao, China
| | - Miao Yu
- Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Jiaqiang Wei
- Key Lab of Marine Bioactive Substances of SOA, The First Institute of Oceanography, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Qingdao Key Lab of Marine Natural Products R&D, Qingdao, China
| | - Mu Huang
- Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Xuefa Shi
- Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Hao Chen
- Key Lab of Marine Bioactive Substances of SOA, The First Institute of Oceanography, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Qingdao Key Lab of Marine Natural Products R&D, Qingdao, China
- * E-mail:
| |
Collapse
|
28
|
Tarnovetskii IY, Merkel AY, Kanapatskiy TA, Ivanova EA, Gulin MB, Toshchakov S, Pimenov NV. Decoupling between sulfate reduction and the anaerobic oxidation of methane in the shallow methane seep of the Black sea. FEMS Microbiol Lett 2018; 365:5106339. [PMID: 30252039 DOI: 10.1093/femsle/fny235] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 09/22/2018] [Indexed: 01/24/2023] Open
Abstract
Methane seepages are widespread in the Black Sea. However, microbiological research has been carried out only at the continental shelf seeps. The present work dealt with coastal gas seepages of the Kalamit Bay (Black Sea). High-throughput 16S rRNA gene sequencing and radiotracer analysis (14С and 35S) were used to determine the composition of the microbial community and the rates of microbial sulfate reduction and methane oxidation. The phylum Proteobacteria, represented mainly by sulfate reducers of the class Deltaproteobacteria, was the predominant in sequence dataset. Bacteroidetes and Planctomycetes were other numerous phyla. Among archaea, the phylum Woesearchaeota and Marine Benthic Group B were predominant in the upper horizons. Relative abundance of Euryarchaeota of the families Methanomicrobiaceae and Methanosarcinaceae (including ANME-3 archaea) increased in deeper sediment layers. Sulfate reduction rate (up to 2.9 mmol/L × day) was considerably higher than the rate of anaerobic methane oxidation (up to 43.4 μmol/L × day), which indicated insignificant contribution of anaerobic methane oxidation to the total sulfide production.
Collapse
Affiliation(s)
- I Yu Tarnovetskii
- Faculty of Biology, Lomonosov Moscow State University, Leninskiye Gory 1, Moscow 119899, Russia
| | - A Yu Merkel
- Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences, 60 let Oktjabrja pr-t, 7, bld. 2, Moscow 117312, Russia
| | - T A Kanapatskiy
- Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences, 60 let Oktjabrja pr-t, 7, bld. 2, Moscow 117312, Russia
| | - E A Ivanova
- Kovalevsky Institute of Marine Biological Research, Russian Academy of Sciences, Nakhimov avenue 2, Sevastopol, 299011, Russia
| | - M B Gulin
- Kovalevsky Institute of Marine Biological Research, Russian Academy of Sciences, Nakhimov avenue 2, Sevastopol, 299011, Russia
| | - S Toshchakov
- Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences, 60 let Oktjabrja pr-t, 7, bld. 2, Moscow 117312, Russia
| | - N V Pimenov
- Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences, 60 let Oktjabrja pr-t, 7, bld. 2, Moscow 117312, Russia
| |
Collapse
|
29
|
In situ development of a methanotrophic microbiome in deep-sea sediments. ISME JOURNAL 2018; 13:197-213. [PMID: 30154496 PMCID: PMC6298960 DOI: 10.1038/s41396-018-0263-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 07/06/2018] [Accepted: 08/04/2018] [Indexed: 01/11/2023]
Abstract
Emission of the greenhouse gas methane from the seabed is globally controlled by marine aerobic and anaerobic methanotrophs gaining energy via methane oxidation. However, the processes involved in the assembly and dynamics of methanotrophic populations in complex natural microbial communities remain unclear. Here we investigated the development of a methanotrophic microbiome following subsurface mud eruptions at Håkon Mosby mud volcano (1250 m water depth). Freshly erupted muds hosted deep-subsurface communities that were dominated by Bathyarchaeota, Atribacteria and Chloroflexi. Methanotrophy was initially limited to a thin surface layer of Methylococcales populations consuming methane aerobically. With increasing distance to the eruptive center, anaerobic methanotrophic archaea, sulfate-reducing Desulfobacterales and thiotrophic Beggiatoaceae developed, and their respective metabolic capabilities dominated the biogeochemical functions of the community. Microbial richness, evenness, and cell numbers of the entire microbial community increased up to tenfold within a few years downstream of the mud flow from the eruptive center. The increasing diversity was accompanied by an up to fourfold increase in sequence abundance of relevant metabolic genes of the anaerobic methanotrophic and thiotrophic guilds. The communities fundamentally changed in their structure and functions as reflected in the metagenome turnover with distance from the eruptive center, and this was reflected in the biogeochemical zonation across the mud volcano caldera. The observed functional succession provides a framework for the response time and recovery of complex methanotrophic communities after disturbances of the deep-sea bed.
Collapse
|
30
|
Eissler Y, Gálvez MJ, Dorador C, Hengst M, Molina V. Active microbiome structure and its association with environmental factors and viruses at different aquatic sites of a high-altitude wetland. Microbiologyopen 2018; 8:e00667. [PMID: 30062777 PMCID: PMC6436485 DOI: 10.1002/mbo3.667] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 04/04/2018] [Accepted: 04/21/2018] [Indexed: 01/23/2023] Open
Abstract
Salar de Huasco is a high‐altitude wetland characterized by a highly diverse microbial life adapted to extreme climatic and environmental conditions. Our study aims to determine active microbial community structure changes within different aquatic sites and its relationship with environmental factors and viruses as potential drivers of diversification in different aquatic areas of this ecosystem. In this study, bacteria and archaea composition (16S rRNA subunit pyrolibraries) and picoplankton and viral abundance were determined at ponds, springs and lagoon sites of the wetland during wet and dry seasons (February and July 2012, respectively). In general, mixosaline waters (1,400–51,000 μS/cm) usually found in ponds and lagoon presented higher picoplanktonic abundances compared to freshwater (<800 μS/cm) spring sites, ranging from 1.07 × 105 to 1.83 × 107 cells/ml. Viral abundance and viral to picoplankton ratio (VPR) also presented greater values at ponds compared to spring sites, reaching up to 4.78 × 108 viruses‐like particles and up to 351 for VPR. In general, ponds hold a higher microbial diversity and complexity associated also with the presence of microbial mats compared with water sources or lagoon (Shannon index H′ 2.6–3.9 vs. <2.0). A greater richness of archaea was also detected in ponds characterized by functional groups such as known methanogens and ammonia oxidizers, and uncultured groups. In total, our results indicate that among the different aquatic sites of the wetland, ponds presented a great microbial community diversification associated to a higher top‐down control by viruses which may influence nutrient and greenhouse gases cycling.
Collapse
Affiliation(s)
- Yoanna Eissler
- Facultad de Ciencias, Centro de Investigación y Gestión de Recursos Naturales, Instituto de Química y Bioquímica, Universidad de Valparaíso, Valparaíso, Chile
| | - María-Jesús Gálvez
- Programa de Biodiversidad and Departamento de Biología, Facultad de Ciencias Naturales y Exactas, Observatorio de Ecología Microbiana, Universidad de Playa Ancha, Valparaíso, Chile
| | - Cristina Dorador
- Laboratorio de Complejidad Microbiana y Ecología Funcional, Departamento de Biotecnología, Facultad de Ciencias del Mar y Recursos Biológicos, Universidad de Antofagasta, Antofagasta, Chile.,Centre for Biotechnology and Bioengineering, Santiago, Chile
| | - Martha Hengst
- Centre for Biotechnology and Bioengineering, Santiago, Chile.,Departamento de Ciencias Farmacéuticas, Facultad de Ciencias, Universidad Católica del Norte, Antofagasta, Chile
| | - Verónica Molina
- Programa de Biodiversidad and Departamento de Biología, Facultad de Ciencias Naturales y Exactas, Observatorio de Ecología Microbiana, Universidad de Playa Ancha, Valparaíso, Chile
| |
Collapse
|
31
|
Savvichev AS, Rusanov II, Kadnikov VV, Beletskii AV, Ravin NV, Pimenov NV. Microbial Community Composition and Rates of the Methane Cycle Microbial Processes in the Upper Sediments of the Yamal Sector of the Southwestern Kara Sea. Microbiology (Reading) 2018. [DOI: 10.1134/s0026261718020121] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
32
|
Bhattarai S, Cassarini C, Rene ER, Kümmel S, Esposito G, Lens PNL. Enrichment of ANME-2 dominated anaerobic methanotrophy from cold seep sediment in an external ultrafiltration membrane bioreactor. Eng Life Sci 2018; 18:368-378. [PMID: 32624917 DOI: 10.1002/elsc.201700148] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 12/20/2017] [Accepted: 02/14/2018] [Indexed: 11/08/2022] Open
Abstract
Anaerobic oxidation of methane (AOM) coupled to sulfate reduction is a microbially mediated unique natural phenomenon with an ecological relevance in the global carbon balance and potential application in biotechnology. This study aimed to enrich an AOM performing microbial community with the main focus on anaerobic methanotrophic archaea (ANME) present in sediments from the Ginsburg mud volcano (Gulf of Cadiz), a known site for AOM, in a membrane bioreactor (MBR) for 726 days at 22 (± 3)°C and at ambient pressure. The MBR was equipped with a cylindrical external ultrafiltration membrane, fed a defined medium containing artificial seawater and operated at a cross flow velocity of 0.02 m/min. Sulfide production with simultaneous sulfate reduction was in equimolar ratio between days 480 and 585 of MBR operation, whereas methane consumption was in oscillating trend. At the end of the MBR operation (day 726), the enriched biomass was incubated with 13C labeled methane, 13C labeled inorganic carbon was produced and the AOM rate based on 13C-inorganic carbon was 1.2 μmol/(gdw d). Microbial analysis of the enriched biomass at 400 and 726 days of MBR operation showed that ANME-2 and Desulfosarcina type sulfate reducing bacteria were enriched in the MBR, which formed closely associated aggregates. The major relevance of this study is the enrichment of an AOM consortium in a MBR system which can assist to explore the ecophysiology of ANME and provides an opportunity to explore the potential application of AOM.
Collapse
Affiliation(s)
| | - Chiara Cassarini
- UNESCO-IHE Institute for Water Education The Netherlands.,Department of Microbiology National University of Ireland Galway Ireland
| | - Eldon R Rene
- UNESCO-IHE Institute for Water Education The Netherlands
| | - Steffen Kümmel
- Department for Isotope Biogeochemistry Helmholtz-Centre for Environmental Research (UFZ) Leipzig Germany
| | - Giovanni Esposito
- Department of Civil and Mechanical Engineering University of Cassino and Southern Lazio Cassino (FR) Italy
| | - Piet N L Lens
- UNESCO-IHE Institute for Water Education The Netherlands.,Department of Microbiology National University of Ireland Galway Ireland
| |
Collapse
|
33
|
The vertical distribution of prokaryotes in the surface sediment of Jiaolong cold seep at the northern South China Sea. Extremophiles 2018; 22:499-510. [PMID: 29442249 DOI: 10.1007/s00792-018-1012-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Accepted: 02/05/2018] [Indexed: 01/25/2023]
Abstract
In deep-sea cold seeps, microbial communities are shaped by geochemical components in seepage solutions. In the present study, we report the composition of microbial communities and potential metabolic activities in the surface sediment of Jiaolong cold seep at the northern South China Sea. Pyrosequencing of 16S rRNA gene amplicons revealed that a majority of the microbial inhabitants of the surface layers (0-6 cm) were sulfur oxidizer bacteria Sulfurimonas and archaeal methane consumer ANME-1, while sulfate reducer bacteria SEEP-SRB1, ANME-1 and ANME-2 dominated the bottom layers (8-14 cm). The potential ecological roles of the microorganisms were further supported by the presence of functional genes for methane oxidation, sulfur oxidation, sulfur reduction and nitrate reduction in the metagenomes. Metagenomic analysis revealed a significant correlation between coverage of 16S rRNA gene of sulfur oxidizer bacteria, functional genes involved in sulfur oxidation and nitrate reduction in different layers, indicating that sulfur oxidizing may be coupled to nitrate reducing at the surface layers of Jiaolong seeping site. This is probably related to the sulfur oxidizers of Sulfurimonas and Sulfurovum, which may be the capacity of nitrate reduction or associated with unidentified syntrophic nitrate-reducing microbes in the surface of the cold seep.
Collapse
|
34
|
Bessette S, Moalic Y, Gautey S, Lesongeur F, Godfroy A, Toffin L. Relative Abundance and Diversity of Bacterial Methanotrophs at the Oxic-Anoxic Interface of the Congo Deep-Sea Fan. Front Microbiol 2017; 8:715. [PMID: 28487684 PMCID: PMC5403828 DOI: 10.3389/fmicb.2017.00715] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 04/06/2017] [Indexed: 11/13/2022] Open
Abstract
Sitting at ∼5,000 m water depth on the Congo-Angola margin and ∼760 km offshore of the West African coast, the recent lobe complex of the Congo deep-sea fan receives large amounts of fluvial sediments (3-5% organic carbon). This organic-rich sedimentation area harbors habitats with chemosynthetic communities similar to those of cold seeps. In this study, we investigated relative abundance, diversity and distribution of aerobic methane-oxidizing bacteria (MOB) communities at the oxic-anoxic interface of sedimentary habitats by using fluorescence in situ hybridization and comparative sequence analysis of particulate mono-oxygenase (pmoA) genes. Our findings revealed that sedimentary habitats of the recent lobe complex hosted type I and type II MOB cells and comparisons of pmoA community compositions showed variations among the different organic-rich habitats. Furthermore, the pmoA lineages were taxonomically more diverse compared to methane seep environments and were related to those found at cold seeps. Surprisingly, MOB phylogenetic lineages typical of terrestrial environments were observed at such water depth. In contrast, MOB cells or pmoA sequences were not detected at the previous lobe complex that is disconnected from the Congo River inputs.
Collapse
Affiliation(s)
- Sandrine Bessette
- Institut Carnot Ifremer EDROME, Centre de Bretagne, REM/EEP, Laboratoire de Microbiologie des Environnements Extrêmes, UMR 6197Plouzané, France.,Laboratoire de Microbiologie des Environnements Extrêmes, Institut Universitaire Européen de la Mer, UMR 6197, Université de Bretagne OccidentalePlouzané, France.,CNRS, Laboratoire de Microbiologie des Environnements Extrêmes, Technopôle Brest Iroise, UMR 6197Plouzané, France
| | - Yann Moalic
- Institut Carnot Ifremer EDROME, Centre de Bretagne, REM/EEP, Laboratoire de Microbiologie des Environnements Extrêmes, UMR 6197Plouzané, France.,Laboratoire de Microbiologie des Environnements Extrêmes, Institut Universitaire Européen de la Mer, UMR 6197, Université de Bretagne OccidentalePlouzané, France.,CNRS, Laboratoire de Microbiologie des Environnements Extrêmes, Technopôle Brest Iroise, UMR 6197Plouzané, France
| | - Sébastien Gautey
- Institut Carnot Ifremer EDROME, Centre de Bretagne, REM/EEP, Laboratoire de Microbiologie des Environnements Extrêmes, UMR 6197Plouzané, France.,Laboratoire de Microbiologie des Environnements Extrêmes, Institut Universitaire Européen de la Mer, UMR 6197, Université de Bretagne OccidentalePlouzané, France.,CNRS, Laboratoire de Microbiologie des Environnements Extrêmes, Technopôle Brest Iroise, UMR 6197Plouzané, France
| | - Françoise Lesongeur
- Institut Carnot Ifremer EDROME, Centre de Bretagne, REM/EEP, Laboratoire de Microbiologie des Environnements Extrêmes, UMR 6197Plouzané, France.,Laboratoire de Microbiologie des Environnements Extrêmes, Institut Universitaire Européen de la Mer, UMR 6197, Université de Bretagne OccidentalePlouzané, France.,CNRS, Laboratoire de Microbiologie des Environnements Extrêmes, Technopôle Brest Iroise, UMR 6197Plouzané, France
| | - Anne Godfroy
- Institut Carnot Ifremer EDROME, Centre de Bretagne, REM/EEP, Laboratoire de Microbiologie des Environnements Extrêmes, UMR 6197Plouzané, France.,Laboratoire de Microbiologie des Environnements Extrêmes, Institut Universitaire Européen de la Mer, UMR 6197, Université de Bretagne OccidentalePlouzané, France.,CNRS, Laboratoire de Microbiologie des Environnements Extrêmes, Technopôle Brest Iroise, UMR 6197Plouzané, France
| | - Laurent Toffin
- Institut Carnot Ifremer EDROME, Centre de Bretagne, REM/EEP, Laboratoire de Microbiologie des Environnements Extrêmes, UMR 6197Plouzané, France.,Laboratoire de Microbiologie des Environnements Extrêmes, Institut Universitaire Européen de la Mer, UMR 6197, Université de Bretagne OccidentalePlouzané, France.,CNRS, Laboratoire de Microbiologie des Environnements Extrêmes, Technopôle Brest Iroise, UMR 6197Plouzané, France
| |
Collapse
|
35
|
Tavormina PL, Kellermann MY, Antony CP, Tocheva EI, Dalleska NF, Jensen AJ, Valentine DL, Hinrichs K, Jensen GJ, Dubilier N, Orphan VJ. Starvation and recovery in the deep‐sea methanotroph
M
ethyloprofundus sedimenti. Mol Microbiol 2016; 103:242-252. [DOI: 10.1111/mmi.13553] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/08/2016] [Indexed: 01/06/2023]
Affiliation(s)
- Patricia L. Tavormina
- Division of Geological and Planetary SciencesCalifornia Institute of Technology1200 E. California BlvdPasadena CA91125 USA
| | - Matthias Y. Kellermann
- Department of Earth Science and Marine Science InstituteUniversity of CaliforniaSanta Barbara CA93106 USA
| | | | - Elitza I. Tocheva
- Department of Stomatology and Department of Biochemistry and Molecular MedicineUniversité de MontréalP. O. Box 6128 Station Centre‐VilleMontreal QCH3C 3J7 Canada
- Division of Biology and Biological Engineering andCalifornia Institute of Technology1200 E. California BlvdPasadena CA91125 USA
| | - Nathan F. Dalleska
- Environmental Analysis CenterCalifornia Institute of Technology1200 E. California BlvdPasadena CA91125 USA
| | - Ashley J. Jensen
- Division of Biology and Biological Engineering andCalifornia Institute of Technology1200 E. California BlvdPasadena CA91125 USA
| | - David L. Valentine
- Department of Earth Science and Marine Science InstituteUniversity of CaliforniaSanta Barbara CA93106 USA
| | - Kai‐Uwe Hinrichs
- MARUM Center for Marine Environmental SciencesUniversity of Bremen, Leobener StrBremen28359 Germany
| | - Grant J. Jensen
- Division of Biology and Biological Engineering and Howard Hughes Medical InstituteCalifornia Institute of Technology1200 E. California BlvdPasadena CA91125 USA
| | - Nicole Dubilier
- Max Planck Institute for Marine MicrobiologyCelsiusstraße 1Bremen28359 Germany
| | - Victoria J. Orphan
- Division of Geological and Planetary SciencesCalifornia Institute of Technology1200 E. California BlvdPasadena CA91125 USA
| |
Collapse
|
36
|
Rush D, Osborne KA, Birgel D, Kappler A, Hirayama H, Peckmann J, Poulton SW, Nickel JC, Mangelsdorf K, Kalyuzhnaya M, Sidgwick FR, Talbot HM. The Bacteriohopanepolyol Inventory of Novel Aerobic Methane Oxidising Bacteria Reveals New Biomarker Signatures of Aerobic Methanotrophy in Marine Systems. PLoS One 2016; 11:e0165635. [PMID: 27824887 PMCID: PMC5100885 DOI: 10.1371/journal.pone.0165635] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 10/15/2016] [Indexed: 12/24/2022] Open
Abstract
Aerobic methane oxidation (AMO) is one of the primary biologic pathways regulating the amount of methane (CH4) released into the environment. AMO acts as a sink of CH4, converting it into carbon dioxide before it reaches the atmosphere. It is of interest for (paleo)climate and carbon cycling studies to identify lipid biomarkers that can be used to trace AMO events, especially at times when the role of methane in the carbon cycle was more pronounced than today. AMO bacteria are known to synthesise bacteriohopanepolyol (BHP) lipids. Preliminary evidence pointed towards 35-aminobacteriohopane-30,31,32,33,34-pentol (aminopentol) being a characteristic biomarker for Type I methanotrophs. Here, the BHP compositions were examined for species of the recently described novel Type I methanotroph bacterial genera Methylomarinum and Methylomarinovum, as well as for a novel species of a Type I Methylomicrobium. Aminopentol was the most abundant BHP only in Methylomarinovum caldicuralii, while Methylomicrobium did not produce aminopentol at all. In addition to the expected regular aminotriol and aminotetrol BHPs, novel structures tentatively identified as methylcarbamate lipids related to C-35 amino-BHPs (MC-BHPs) were found to be synthesised in significant amounts by some AMO cultures. Subsequently, sediments and authigenic carbonates from methane-influenced marine environments were analysed. Most samples also did not contain significant amounts of aminopentol, indicating that aminopentol is not a useful biomarker for marine aerobic methanotophic bacteria. However, the BHP composition of the marine samples do point toward the novel MC-BHPs components being potential new biomarkers for AMO.
Collapse
Affiliation(s)
- Darci Rush
- School of Civil Engineering & Geosciences, Newcastle University, Drummond Building, Newcastle upon Tyne, NE1 7RU, Newcastle-upon-Tyne, United Kingdom
- * E-mail:
| | - Kate A. Osborne
- School of Civil Engineering & Geosciences, Newcastle University, Drummond Building, Newcastle upon Tyne, NE1 7RU, Newcastle-upon-Tyne, United Kingdom
| | - Daniel Birgel
- Institute of Geology, University of Hamburg, Hamburg, Germany
| | - Andreas Kappler
- Center for Applied Geoscience, University of Tübingen, Tübingen, Germany
- Center for Geomicrobiology, Department of Bioscience, Ny Munkegade 116, 8000, Aarhus C, Denmark
| | - Hisako Hirayama
- Department of Subsurface Geobiological Analysis and Research, Japan Agency for Marine-Earth Science & Technology (JAMSTEC), Yokosuka, Japan
| | - Jörn Peckmann
- Institute of Geology, University of Hamburg, Hamburg, Germany
- Department of Geodynamics and Sedimentology, University of Vienna, 1090, Vienna, Austria
| | - Simon W. Poulton
- School of Earth and Environment, University of Leeds, Leeds, LS2 9JT, United Kingdom
| | - Julia C. Nickel
- GFZ German Research Centre for Geosciences, Telegrafenberg, D-14473, Potsdam, Germany
| | - Kai Mangelsdorf
- GFZ German Research Centre for Geosciences, Telegrafenberg, D-14473, Potsdam, Germany
| | - Marina Kalyuzhnaya
- Faculty of Biology, San Diego State University, 5500 Campanile Drive, San Diego, 92182, United States of America
| | - Frances R. Sidgwick
- School of Civil Engineering & Geosciences, Newcastle University, Drummond Building, Newcastle upon Tyne, NE1 7RU, Newcastle-upon-Tyne, United Kingdom
| | - Helen M. Talbot
- School of Civil Engineering & Geosciences, Newcastle University, Drummond Building, Newcastle upon Tyne, NE1 7RU, Newcastle-upon-Tyne, United Kingdom
| |
Collapse
|
37
|
Rosli N, Leduc D, Rowden AA, Clark MR, Probert PK, Berkenbusch K, Neira C. Differences in meiofauna communities with sediment depth are greater than habitat effects on the New Zealand continental margin: implications for vulnerability to anthropogenic disturbance. PeerJ 2016; 4:e2154. [PMID: 27441114 PMCID: PMC4941793 DOI: 10.7717/peerj.2154] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2016] [Accepted: 05/30/2016] [Indexed: 11/20/2022] Open
Abstract
Studies of deep-sea benthic communities have largely focused on particular (macro) habitats in isolation, with few studies considering multiple habitats simultaneously in a comparable manner. Compared to mega-epifauna and macrofauna, much less is known about habitat-related variation in meiofaunal community attributes (abundance, diversity and community structure). Here, we investigated meiofaunal community attributes in slope, canyon, seamount, and seep habitats in two regions on the continental slope of New Zealand (Hikurangi Margin and Bay of Plenty) at four water depths (700, 1,000, 1,200 and 1,500 m). We found that patterns were not the same for each community attribute. Significant differences in abundance were consistent across regions, habitats, water and sediment depths, while diversity and community structure only differed between sediment depths. Abundance was higher in canyon and seep habitats compared with other habitats, while between sediment layer, abundance and diversity were higher at the sediment surface. Our findings suggest that meiofaunal community attributes are affected by environmental factors that operate on micro- (cm) to meso- (0.1–10 km), and regional scales (> 100 km). We also found a weak, but significant, correlation between trawling intensity and surface sediment diversity. Overall, our results indicate that variability in meiofaunal communities was greater at small scale than at habitat or regional scale. These findings provide new insights into the factors controlling meiofauna in these deep-sea habitats and their potential vulnerability to anthropogenic activities.
Collapse
Affiliation(s)
- Norliana Rosli
- Department of Marine Science, University of Otago, Dunedin, New Zealand; National Institute of Water and Atmospheric Research (NIWA), Wellington, New Zealand; Department of Biology, Faculty Science & Mathematics, Universiti Pendidikan Sultan Idris, Tg. Malim, Perak, Malaysia
| | - Daniel Leduc
- National Institute of Water and Atmospheric Research (NIWA) , Wellington , New Zealand
| | - Ashley A Rowden
- National Institute of Water and Atmospheric Research (NIWA) , Wellington , New Zealand
| | - Malcolm R Clark
- National Institute of Water and Atmospheric Research (NIWA) , Wellington , New Zealand
| | - P Keith Probert
- Department of Marine Science, University of Otago , Dunedin , New Zealand
| | - Katrin Berkenbusch
- Department of Marine Science, University of Otago, Dunedin, New Zealand; Dragonfly Data Science, Wellington, New Zealand
| | - Carlos Neira
- Integrative Oceanography Division, Scripps Institution of Oceanography , La Jolla, California , United States
| |
Collapse
|
38
|
Meier DV, Bach W, Girguis PR, Gruber-Vodicka HR, Reeves EP, Richter M, Vidoudez C, Amann R, Meyerdierks A. HeterotrophicProteobacteriain the vicinity of diffuse hydrothermal venting. Environ Microbiol 2016; 18:4348-4368. [DOI: 10.1111/1462-2920.13304] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 03/13/2016] [Indexed: 11/27/2022]
Affiliation(s)
- Dimitri V. Meier
- Max Planck Institute for Marine Microbiology; Celsiusstrasse 1 D-28359 Bremen Germany
| | - Wolfgang Bach
- University of Bremen, MARUM - Center for Marine Environmental Sciences, Petrology of the Ocean Crust group; Leobener Str. D-28359 Bremen Germany
| | - Peter R. Girguis
- Harvard University, Department of Organismic & Evolutionary Biology; 16 Divinity Avenue Cambridge MA 02138-2020 USA
| | | | - Eoghan P. Reeves
- University of Bremen, MARUM - Center for Marine Environmental Sciences, Petrology of the Ocean Crust group; Leobener Str. D-28359 Bremen Germany
- University of Bergen, Department of Earth Science and Centre for Geobiology; Postboks 7803 N-5020 Bergen Norway
| | - Michael Richter
- Max Planck Institute for Marine Microbiology; Celsiusstrasse 1 D-28359 Bremen Germany
| | - Charles Vidoudez
- Harvard University, Department of Organismic & Evolutionary Biology; 16 Divinity Avenue Cambridge MA 02138-2020 USA
| | - Rudolf Amann
- Max Planck Institute for Marine Microbiology; Celsiusstrasse 1 D-28359 Bremen Germany
| | - Anke Meyerdierks
- Max Planck Institute for Marine Microbiology; Celsiusstrasse 1 D-28359 Bremen Germany
| |
Collapse
|
39
|
Ruff SE, Kuhfuss H, Wegener G, Lott C, Ramette A, Wiedling J, Knittel K, Weber M. Methane Seep in Shallow-Water Permeable Sediment Harbors High Diversity of Anaerobic Methanotrophic Communities, Elba, Italy. Front Microbiol 2016; 7:374. [PMID: 27065954 PMCID: PMC4814501 DOI: 10.3389/fmicb.2016.00374] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 03/08/2016] [Indexed: 11/13/2022] Open
Abstract
The anaerobic oxidation of methane (AOM) is a key biogeochemical process regulating methane emission from marine sediments into the hydrosphere. AOM is largely mediated by consortia of anaerobic methanotrophic archaea (ANME) and sulfate-reducing bacteria (SRB), and has mainly been investigated in deep-sea sediments. Here we studied methane seepage at four spots located at 12 m water depth in coastal, organic carbon depleted permeable sands off the Island of Elba (Italy). We combined biogeochemical measurements, sequencing-based community analyses and in situ hybridization to investigate the microbial communities of this environment. Increased alkalinity, formation of free sulfide and nearly stoichiometric methane oxidation and sulfate reduction rates up to 200 nmol g-1 day-1 indicated the predominance of sulfate-coupled AOM. With up to 40 cm thickness the zones of AOM activity were unusually large and occurred in deeper sediment horizons (20–50 cm below seafloor) as compared to diffusion-dominated deep-sea seeps, which is likely caused by advective flow of pore water due to the shallow water depth and permeability of the sands. Hydrodynamic forces also may be responsible for the substantial phylogenetic and unprecedented morphological diversity of AOM consortia inhabiting these sands, including the clades ANME-1a/b, ANME-2a/b/c, ANME-3, and their partner bacteria SEEP-SRB1a and SEEP-SRB2. High microbial dispersal, the availability of diverse energy sources and high habitat heterogeneity might explain that the emission spots shared few microbial taxa, despite their physical proximity. Although the biogeochemistry of this shallow methane seep was very different to that of deep-sea seeps, their key functional taxa were very closely related, which supports the global dispersal of key taxa and underlines strong selection by methane as the predominant energy source. Mesophilic, methane-fueled ecosystems in shallow-water permeable sediments may comprise distinct microbial habitats due to their unique biogeochemical and physical characteristics. To link AOM phylotypes with seep habitats and to enable future meta-analyses we thus propose that seep environment ontology needs to be further specified.
Collapse
Affiliation(s)
- S Emil Ruff
- Department for Molecular Ecology, Max Planck Institute for Marine MicrobiologyBremen, Germany; HGF MPG Group for Deep Sea Ecology and Technology, Max Planck Institute for Marine MicrobiologyBremen, Germany
| | - Hanna Kuhfuss
- Department for Molecular Ecology, Max Planck Institute for Marine Microbiology Bremen, Germany
| | - Gunter Wegener
- HGF MPG Group for Deep Sea Ecology and Technology, Max Planck Institute for Marine MicrobiologyBremen, Germany; MARUM Center for Marine Environmental Sciences, University of BremenBremen, Germany
| | - Christian Lott
- HYDRA Institute for Marine Sciences, Elba Field Station Campo nell'Elba, Italy
| | - Alban Ramette
- HGF MPG Group for Deep Sea Ecology and Technology, Max Planck Institute for Marine Microbiology Bremen, Germany
| | - Johanna Wiedling
- HYDRA Institute for Marine Sciences, Elba Field StationCampo nell'Elba, Italy; Department of Biogeochemistry, Max Planck Institute for Marine MicrobiologyBremen, Germany
| | - Katrin Knittel
- Department for Molecular Ecology, Max Planck Institute for Marine Microbiology Bremen, Germany
| | - Miriam Weber
- HYDRA Institute for Marine Sciences, Elba Field StationCampo nell'Elba, Italy; Department of Biogeochemistry, Max Planck Institute for Marine MicrobiologyBremen, Germany
| |
Collapse
|
40
|
Draft Genome Sequences of Gammaproteobacterial Methanotrophs Isolated from Marine Ecosystems. GENOME ANNOUNCEMENTS 2016; 4:4/1/e01629-15. [PMID: 26798114 PMCID: PMC4722281 DOI: 10.1128/genomea.01629-15] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The genome sequences of Methylobacter marinus A45, Methylobacter sp. strain BBA5.1, and Methylomarinum vadi IT-4 were obtained. These aerobic methanotrophs are typical members of coastal and hydrothermal vent marine ecosystems.
Collapse
|
41
|
Stagars MH, Ruff SE, Amann R, Knittel K. High Diversity of Anaerobic Alkane-Degrading Microbial Communities in Marine Seep Sediments Based on (1-methylalkyl)succinate Synthase Genes. Front Microbiol 2016; 6:1511. [PMID: 26779166 PMCID: PMC4703814 DOI: 10.3389/fmicb.2015.01511] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 12/14/2015] [Indexed: 11/13/2022] Open
Abstract
Alkanes comprise a substantial fraction of crude oil and are prevalent at marine seeps. These environments are typically anoxic and host diverse microbial communities that grow on alkanes. The most widely distributed mechanism of anaerobic alkane activation is the addition of alkanes to fumarate by (1-methylalkyl)succinate synthase (Mas). Here we studied the diversity of MasD, the catalytic subunit of the enzyme, in 12 marine sediments sampled at seven seeps. We aimed to identify cosmopolitan species as well as to identify factors structuring the alkane-degrading community. Using next generation sequencing we obtained a total of 420 MasD species-level operational taxonomic units (OTU0.96) at 96% amino acid identity. Diversity analysis shows a high richness and evenness of alkane-degrading bacteria. Sites with similar hydrocarbon composition harbored similar alkane-degrading communities based on MasD genes; the MasD community structure is clearly driven by the hydrocarbon source available at the various seeps. Two of the detected OTU0.96 were cosmopolitan and abundant while 75% were locally restricted, suggesting the presence of few abundant and globally distributed alkane degraders as well as specialized variants that have developed under specific conditions at the diverse seep environments. Of the three MasD clades identified, the most diverse was affiliated with Deltaproteobacteria. A second clade was affiliated with both Deltaproteobacteria and Firmicutes likely indicating lateral gene transfer events. The third clade was only distantly related to known alkane-degrading organisms and comprises new divergent lineages of MasD homologs, which might belong to an overlooked phylum of alkane-degrading bacteria. In addition, masD geneFISH allowed for the in situ identification and quantification of the target guild in alkane-degrading enrichment cultures. Altogether, these findings suggest an unexpectedly high number of yet unknown groups of anaerobic alkane degraders and underline the need for comprehensive surveys of microbial diversity based on metabolic genes in addition to ribosomal genes.
Collapse
Affiliation(s)
- Marion H Stagars
- Department of Molecular Ecology, Max Planck Institute for Marine Microbiology Bremen, Germany
| | - S Emil Ruff
- Department of Molecular Ecology, Max Planck Institute for Marine MicrobiologyBremen, Germany; HGF MPG Joint Research Group for Deep-Sea Ecology and Technology, Max Planck Institute for Marine MicrobiologyBremen, Germany
| | - Rudolf Amann
- Department of Molecular Ecology, Max Planck Institute for Marine Microbiology Bremen, Germany
| | - Katrin Knittel
- Department of Molecular Ecology, Max Planck Institute for Marine Microbiology Bremen, Germany
| |
Collapse
|
42
|
Honkalas V, Dabir A, Dhakephalkar PK. Life in the Anoxic Sub-Seafloor Environment: Linking Microbial Metabolism and Mega Reserves of Methane Hydrate. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2016; 156:235-262. [DOI: 10.1007/10_2015_5004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
43
|
Abstract
UNLABELLED Marine methane seeps are globally distributed geologic features in which reduced fluids, including methane, are advected upward from the subsurface. As a result of alkalinity generation during sulfate-coupled methane oxidation, authigenic carbonates form slabs, nodules, and extensive pavements. These carbonates shape the landscape within methane seeps, persist long after methane flux is diminished, and in some cases are incorporated into the geologic record. In this study, microbial assemblages from 134 native and experimental samples across 5,500 km, representing a range of habitat substrates (carbonate nodules and slabs, sediment, bottom water, and wood) and seepage conditions (active and low activity), were analyzed to address two fundamental questions of seep microbial ecology: (i) whether carbonates host distinct microbial assemblages and (ii) how sensitive microbial assemblages are to habitat substrate type and temporal shifts in methane seepage flux. Through massively parallel 16S rRNA gene sequencing and statistical analysis, native carbonates are shown to be reservoirs of distinct and highly diverse seep microbial assemblages. Unique coupled transplantation and colonization experiments on the seafloor demonstrated that carbonate-associated microbial assemblages are resilient to seep quiescence and reactive to seep activation over 13 months. Various rates of response to simulated seep quiescence and activation are observed among similar phylogenies (e.g., Chloroflexi operational taxonomic units) and similar metabolisms (e.g., putative S oxidizers), demonstrating the wide range of microbial sensitivity to changes in seepage flux. These results imply that carbonates do not passively record a time-integrated history of seep microorganisms but rather host distinct, diverse, and dynamic microbial assemblages. IMPORTANCE Since their discovery in 1984, the global distribution and importance of marine methane seeps have become increasingly clear. Much of our understanding of methane seep microorganisms-from metabolisms to community ecology-has stemmed from detailed studies of seep sediments. However, it has become apparent that carbonates represent a volumetrically significant habitat substrate at methane seeps. Through combined in situ characterization and incubation experiments, this study demonstrates that carbonates host microbial assemblages distinct from and more diverse than those of other seep habitats. This emphasizes the importance of seep carbonates as biodiversity locales. Furthermore, we demonstrate that carbonate-associated microbial assemblages are well adapted to withstand fluctuations in methane seepage, and we gain novel insight into particular taxa that are responsive (or recalcitrant) to changes in seep conditions.
Collapse
|
44
|
Knief C. Diversity and Habitat Preferences of Cultivated and Uncultivated Aerobic Methanotrophic Bacteria Evaluated Based on pmoA as Molecular Marker. Front Microbiol 2015; 6:1346. [PMID: 26696968 PMCID: PMC4678205 DOI: 10.3389/fmicb.2015.01346] [Citation(s) in RCA: 278] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 11/16/2015] [Indexed: 01/06/2023] Open
Abstract
Methane-oxidizing bacteria are characterized by their capability to grow on methane as sole source of carbon and energy. Cultivation-dependent and -independent methods have revealed that this functional guild of bacteria comprises a substantial diversity of organisms. In particular the use of cultivation-independent methods targeting a subunit of the particulate methane monooxygenase (pmoA) as functional marker for the detection of aerobic methanotrophs has resulted in thousands of sequences representing "unknown methanotrophic bacteria." This limits data interpretation due to restricted information about these uncultured methanotrophs. A few groups of uncultivated methanotrophs are assumed to play important roles in methane oxidation in specific habitats, while the biology behind other sequence clusters remains still largely unknown. The discovery of evolutionary related monooxygenases in non-methanotrophic bacteria and of pmoA paralogs in methanotrophs requires that sequence clusters of uncultivated organisms have to be interpreted with care. This review article describes the present diversity of cultivated and uncultivated aerobic methanotrophic bacteria based on pmoA gene sequence diversity. It summarizes current knowledge about cultivated and major clusters of uncultivated methanotrophic bacteria and evaluates habitat specificity of these bacteria at different levels of taxonomic resolution. Habitat specificity exists for diverse lineages and at different taxonomic levels. Methanotrophic genera such as Methylocystis and Methylocaldum are identified as generalists, but they harbor habitat specific methanotrophs at species level. This finding implies that future studies should consider these diverging preferences at different taxonomic levels when analyzing methanotrophic communities.
Collapse
Affiliation(s)
- Claudia Knief
- Institute of Crop Science and Resource Conservation – Molecular Biology of the Rhizosphere, University of BonnBonn, Germany
| |
Collapse
|
45
|
Bryson SJ, Thurber AR, Correa AMS, Orphan VJ, Vega Thurber R. A novel sister clade to the enterobacteria microviruses (family Microviridae) identified in methane seep sediments. Environ Microbiol 2015; 17:3708-21. [PMID: 25640518 DOI: 10.1111/1462-2920.12758] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Revised: 12/15/2014] [Accepted: 12/15/2014] [Indexed: 12/14/2022]
Abstract
Methane seep microbial communities perform a key ecosystem service by consuming the greenhouse gas methane prior to its release into the hydrosphere, minimizing the impact of marine methane sources on our climate. Although previous studies have examined the ecology and biochemistry of these communities, none has examined viral assemblages associated with these habitats. We employed virus particle purification, genome amplification, pyrosequencing and gene/genome reconstruction and annotation on two metagenomic libraries, one prepared for ssDNA and the other for all DNA, to identify the viral community in a methane seep. Similarity analysis of these libraries (raw and assembled) revealed a community dominated by phages, with a significant proportion of similarities to the Microviridae family of ssDNA phages. We define these viruses as the Eel River Basin Microviridae (ERBM). Assembly and comparison of 21 ERBM closed circular genomes identified five as members of a novel sister clade to the Microvirus genus of Enterobacteria phages. Comparisons among other metagenomes and these Microviridae major-capsid sequences indicated that this clade of phages is currently unique to the Eel River Basin sediments. Given this ERBM clade's relationship to the Microviridae genus Microvirus, we define this sister clade as the candidate genus Pequeñovirus.
Collapse
Affiliation(s)
- Samuel Joseph Bryson
- Department of Microbiology, Oregon State University, 454 Nash Hall, Corvallis, OR, 97331, USA
| | - Andrew R Thurber
- College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, 454 Nash Hall, Corvallis, OR, 97331, USA
| | - Adrienne M S Correa
- Department of Microbiology, Oregon State University, 454 Nash Hall, Corvallis, OR, 97331, USA.,Department of Ecology and Evolutionary Biology, Rice University, 6100 Main Street, Houston, TX, 77005, USA
| | - Victoria J Orphan
- Division of Geological and Planetary Sciences, California Institute of Technology, 1200 E. California Blvd., Pasadena, CA, 91125, USA
| | - Rebecca Vega Thurber
- Department of Microbiology, Oregon State University, 454 Nash Hall, Corvallis, OR, 97331, USA
| |
Collapse
|
46
|
Global dispersion and local diversification of the methane seep microbiome. Proc Natl Acad Sci U S A 2015; 112:4015-20. [PMID: 25775520 DOI: 10.1073/pnas.1421865112] [Citation(s) in RCA: 155] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Methane seeps are widespread seafloor ecosystems shaped by the emission of gas from seabed reservoirs. The microorganisms inhabiting methane seeps transform the chemical energy in methane to products that sustain rich benthic communities around the gas leaks. Despite the biogeochemical relevance of microbial methane removal at seeps, the global diversity and dispersion of seep microbiota remain unknown. Here we determined the microbial diversity and community structure of 23 globally distributed methane seeps and compared these to the microbial communities of 54 other seafloor ecosystems, including sulfate-methane transition zones, hydrothermal vents, coastal sediments, and deep-sea surface and subsurface sediments. We found that methane seep communities show moderate levels of microbial richness compared with other seafloor ecosystems and harbor distinct bacterial and archaeal taxa with cosmopolitan distribution and key biogeochemical functions. The high relative sequence abundance of ANME (anaerobic methanotrophic archaea), as well as aerobic Methylococcales, sulfate-reducing Desulfobacterales, and sulfide-oxidizing Thiotrichales, matches the most favorable microbial metabolisms at methane seeps in terms of substrate supply and distinguishes the seep microbiome from other seafloor microbiomes. The key functional taxa varied in relative sequence abundance between different seeps due to the environmental factors, sediment depth and seafloor temperature. The degree of endemism of the methane seep microbiome suggests a high local diversification in these heterogeneous but long-lived ecosystems. Our results indicate that the seep microbiome is structured according to metacommunity processes and that few cosmopolitan microbial taxa mediate the bulk of methane oxidation, with global relevance to methane emission in the ocean.
Collapse
|
47
|
Spatial scales of bacterial community diversity at cold seeps (Eastern Mediterranean Sea). ISME JOURNAL 2014; 9:1306-18. [PMID: 25500510 PMCID: PMC4438319 DOI: 10.1038/ismej.2014.217] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Revised: 10/09/2014] [Accepted: 10/10/2014] [Indexed: 11/08/2022]
Abstract
Cold seeps are highly productive, fragmented marine ecosystems that form at the seafloor around hydrocarbon emission pathways. The products of microbial utilization of methane and other hydrocarbons fuel rich chemosynthetic communities at these sites, with much higher respiration rates compared with the surrounding deep-sea floor. Yet little is known as to the richness, composition and spatial scaling of bacterial communities of cold seeps compared with non-seep communities. Here we assessed the bacterial diversity across nine different cold seeps in the Eastern Mediterranean deep-sea and surrounding seafloor areas. Community similarity analyses were carried out based on automated ribosomal intergenic spacer analysis (ARISA) fingerprinting and high-throughput 454 tag sequencing and were combined with in situ and ex situ geochemical analyses across spatial scales of a few tens of meters to hundreds of kilometers. Seep communities were dominated by Deltaproteobacteria, Epsilonproteobacteria and Gammaproteobacteria and shared, on average, 36% of bacterial types (ARISA OTUs (operational taxonomic units)) with communities from nearby non-seep deep-sea sediments. Bacterial communities of seeps were significantly different from those of non-seep sediments. Within cold seep regions on spatial scales of only tens to hundreds of meters, the bacterial communities differed considerably, sharing <50% of types at the ARISA OTU level. Their variations reflected differences in porewater sulfide concentrations from anaerobic degradation of hydrocarbons. This study shows that cold seep ecosystems contribute substantially to the microbial diversity of the deep-sea.
Collapse
|
48
|
Mahmoudi N, Robeson MS, Castro HF, Fortney JL, Techtmann SM, Joyner DC, Paradis CJ, Pfiffner SM, Hazen TC. Microbial community composition and diversity in Caspian Sea sediments. FEMS Microbiol Ecol 2014; 91:1-11. [PMID: 25764536 PMCID: PMC4399438 DOI: 10.1093/femsec/fiu013] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The Caspian Sea is heavily polluted due to industrial and agricultural effluents as well as extraction of oil and gas reserves. Microbial communities can influence the fate of contaminants and nutrients. However, insight into the microbial ecology of the Caspian Sea significantly lags behind other marine systems. Here we describe microbial biomass, diversity and composition in sediments collected from three sampling stations in the Caspian Sea. Illumina sequencing of 16S rRNA genes revealed the presence of a number of known bacterial and archaeal heterotrophs suggesting that organic carbon is a primary factor shaping microbial communities. Surface sediments collected from bottom waters with low oxygen levels were dominated by Gammaproteobacteria while surface sediments collected from bottom waters under hypoxic conditions were dominated by Deltaproteobacteria, specifically sulfate-reducing bacteria. Thaumarchaeota was dominant across all surface sediments indicating that nitrogen cycling in this system is strongly influenced by ammonia-oxidizing archaea. This study provides a baseline assessment that may serve as a point of reference as this system changes or as the efficacy of new remediation efforts are implemented. This study describes microbial biomass, community composition and diversity in Caspian Sea sediments using lipid and genomic techniques.
Collapse
Affiliation(s)
- Nagissa Mahmoudi
- Department of Civil and Environmental Engineering, University of Tennessee, 37996-2313 Knoxville, TN Center for Environmental Biotechnology, University of Tennessee, 37996-1605 Knoxville, TN
| | - Michael S Robeson
- BioSciences Division, Oak Ridge National Laboratory, 37831-6038 Oak Ridge, TN
| | - Hector F Castro
- Department of Chemistry, University of Tennessee, 37996-1600 Knoxville, TN
| | - Julian L Fortney
- Department of Civil and Environmental Engineering, University of Tennessee, 37996-2313 Knoxville, TN Center for Environmental Biotechnology, University of Tennessee, 37996-1605 Knoxville, TN
| | - Stephen M Techtmann
- Department of Civil and Environmental Engineering, University of Tennessee, 37996-2313 Knoxville, TN Center for Environmental Biotechnology, University of Tennessee, 37996-1605 Knoxville, TN
| | - Dominique C Joyner
- Department of Civil and Environmental Engineering, University of Tennessee, 37996-2313 Knoxville, TN Center for Environmental Biotechnology, University of Tennessee, 37996-1605 Knoxville, TN
| | - Charles J Paradis
- Department of Earth and Planetary Sciences, University of Tennessee, 37996-1410 Knoxville, TN
| | - Susan M Pfiffner
- Center for Environmental Biotechnology, University of Tennessee, 37996-1605 Knoxville, TN
| | - Terry C Hazen
- Department of Civil and Environmental Engineering, University of Tennessee, 37996-2313 Knoxville, TN BioSciences Division, Oak Ridge National Laboratory, 37831-6038 Oak Ridge, TN Center for Environmental Biotechnology, University of Tennessee, 37996-1605 Knoxville, TN Department of Earth and Planetary Sciences, University of Tennessee, 37996-1410 Knoxville, TN Department of Microbiology, University of Tennessee, 37996-0845 Knoxville, TN
| |
Collapse
|
49
|
Abdallah RZ, Adel M, Ouf A, Sayed A, Ghazy MA, Alam I, Essack M, Lafi FF, Bajic VB, El-Dorry H, Siam R. Aerobic methanotrophic communities at the Red Sea brine-seawater interface. Front Microbiol 2014; 5:487. [PMID: 25295031 PMCID: PMC4172156 DOI: 10.3389/fmicb.2014.00487] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Accepted: 08/28/2014] [Indexed: 01/16/2023] Open
Abstract
The central rift of the Red Sea contains 25 brine pools with different physicochemical conditions, dictating the diversity and abundance of the microbial community. Three of these pools, the Atlantis II, Kebrit and Discovery Deeps, are uniquely characterized by a high concentration of hydrocarbons. The brine-seawater interface, described as an anoxic-oxic (brine-seawater) boundary, is characterized by a high methane concentration, thus favoring aerobic methane oxidation. The current study analyzed the aerobic free–living methane-oxidizing bacterial communities that potentially contribute to methane oxidation at the brine-seawater interfaces of the three aforementioned brine pools, using metagenomic pyrosequencing, 16S rRNA pyrotags and pmoA library constructs. The sequencing of 16S rRNA pyrotags revealed that these interfaces are characterized by high microbial community diversity. Signatures of aerobic methane-oxidizing bacteria were detected in the Atlantis II Interface (ATII-I) and the Kebrit Deep Upper (KB-U) and Lower (KB-L) brine-seawater interfaces. Through phylogenetic analysis of pmoA, we further demonstrated that the ATII-I aerobic methanotroph community is highly diverse. We propose four ATII-I pmoA clusters. Most importantly, cluster 2 groups with marine methane seep methanotrophs, and cluster 4 represent a unique lineage of an uncultured bacterium with divergent alkane monooxygenases. Moreover, non-metric multidimensional scaling (NMDS) based on the ordination of putative enzymes involved in methane metabolism showed that the Kebrit interface layers were distinct from the ATII-I and DD-I brine-seawater interfaces.
Collapse
Affiliation(s)
- Rehab Z Abdallah
- Biotechnology Graduate Program, American University in Cairo Cairo, Egypt
| | - Mustafa Adel
- Biotechnology Graduate Program, American University in Cairo Cairo, Egypt ; Department of Biology, American University in Cairo Cairo, Egypt
| | - Amged Ouf
- Biotechnology Graduate Program, American University in Cairo Cairo, Egypt ; Department of Biology, American University in Cairo Cairo, Egypt
| | - Ahmed Sayed
- Department of Biology, American University in Cairo Cairo, Egypt
| | - Mohamed A Ghazy
- Department of Biology, American University in Cairo Cairo, Egypt
| | - Intikhab Alam
- Computer, Electrical and Mathematical Sciences and Engineering Division, Computational Bioscience Research Center, King Abdullah University of Science and Technology Thuwal, Saudi Arabia
| | - Magbubah Essack
- Computer, Electrical and Mathematical Sciences and Engineering Division, Computational Bioscience Research Center, King Abdullah University of Science and Technology Thuwal, Saudi Arabia
| | - Feras F Lafi
- Computer, Electrical and Mathematical Sciences and Engineering Division, Computational Bioscience Research Center, King Abdullah University of Science and Technology Thuwal, Saudi Arabia
| | - Vladimir B Bajic
- Computer, Electrical and Mathematical Sciences and Engineering Division, Computational Bioscience Research Center, King Abdullah University of Science and Technology Thuwal, Saudi Arabia
| | - Hamza El-Dorry
- Biotechnology Graduate Program, American University in Cairo Cairo, Egypt ; Department of Biology, American University in Cairo Cairo, Egypt
| | - Rania Siam
- Biotechnology Graduate Program, American University in Cairo Cairo, Egypt ; Department of Biology, American University in Cairo Cairo, Egypt ; YJ-Science and Technology Research Center, American University in Cairo Cairo, Egypt
| |
Collapse
|
50
|
Felden J, Ruff SE, Ertefai T, Inagaki F, Hinrichs KU, Wenzhöfer F. Anaerobic methanotrophic community of a 5346-m-deep vesicomyid clam colony in the Japan Trench. GEOBIOLOGY 2014; 12:183-199. [PMID: 24593671 PMCID: PMC4237546 DOI: 10.1111/gbi.12078] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Accepted: 01/06/2014] [Indexed: 06/03/2023]
Abstract
Vesicomyidae clams harbor sulfide-oxidizing endosymbionts and are typical members of cold seep communities where active venting of fluids and gases takes place. We investigated the central biogeochemical processes that supported a vesicomyid clam colony as part of a locally restricted seep community in the Japan Trench at 5346 m water depth, one of the deepest seep settings studied to date. An integrated approach of biogeochemical and molecular ecological techniques was used combining in situ and ex situ measurements. In sediment of the clam colony, low sulfate reduction rates (maximum 128 nmol mL(-1) day(-1)) were coupled to the anaerobic oxidation of methane. They were observed over a depth range of 15 cm, caused by active transport of sulfate due to bioturbation of the vesicomyid clams. A distinct separation between the seep and the surrounding seafloor was shown by steep horizontal geochemical gradients and pronounced microbial community shifts. The sediment below the clam colony was dominated by anaerobic methanotrophic archaea (ANME-2c) and sulfate-reducing Desulfobulbaceae (SEEP-SRB-3, SEEP-SRB-4). Aerobic methanotrophic bacteria were not detected in the sediment, and the oxidation of sulfide seemed to be carried out chemolithoautotrophically by Sulfurovum species. Thus, major redox processes were mediated by distinct subgroups of seep-related microorganisms that might have been selected by this specific abyssal seep environment. Fluid flow and microbial activity were low but sufficient to support the clam community over decades and to build up high biomasses. Hence, the clams and their microbial communities adapted successfully to a low-energy regime and may represent widespread chemosynthetic communities in the Japan Trench. In this regard, they contributed to the restricted deep-sea trench biodiversity as well as to the organic carbon availability, also for non-seep organisms, in such oligotrophic benthic environment of the dark deep ocean.
Collapse
Affiliation(s)
- J Felden
- Helmholtz-Max Planck Research Group for Deep Sea Ecology and Technology, Max Planck Institute for Marine Microbiology, Bremen, Germany
| | | | | | | | | | | |
Collapse
|